Plant Biol (Stuttg) 2001; 3(1): 98-105
DOI: 10.1055/s-2001-11748
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Identification of Factors that Cause Heterophylly in Ludwigia arcuata Walt. (Onagraceae)

A. Kuwabara 1 , H. Tsukaya 2 , T. Nagata 1
  • 1 Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo
  • 2 National Institute for Basic Biology, Center for Integrated Bioscience, Okazaki, Japan
Further Information

Publication History

August 10, 2000

December 4, 2000

Publication Date:
29 April 2004 (online)

Abstract

The submerged leaves of Ludwigia arcuata are much narrower than the terrestrial leaves. Such heterophyllous changes in leaf shape have been observed in other aquatic angiosperms, such as Callitriche heterophylla, Hippuris vulgaris and Ranunculus flabellaris, but the cause of the formation of heterophyllous leaves in L. arcuata seems to be quite different. In contrast to other species, in which the shapes of epidermal cells have been changed, the change of leaf shape in L. arcuata was found to be due to changes in the numbers of epidermal cells aligned in transverse sections. The susceptibility of leaves to changes in shape above and below the water is dependent on the developmental stages: leaves younger than the fourth leaf responded to a change in environment, while leaves older than the fifth leaf did not. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), a precursor to ethylene, induced the formation of submerged-type leaves on terrestrial shoots, implying that ethylene might be the endogenous factor responsible for the change in leaf shape. The results are discussed with reference to the significance of the acclimation of plants to environmental changes.

Abbreviations

ABA: abscisic acid

ACC: 1-aminocyclopropane-1-carboxylic acid

BL: brassinolide

DMSO: dimethyl sulfoxide

GA3: gibberellic acid

LN: leaf number

P: primordium number

S-type: submerged type

T-type: terrestrial type

References

  • 01 Anderson,  L. W. J.. (1978);  Abscisic acid induces formation of floating leaves in the heterophyllous aquatic angiosperm Potamogeton nodosus. .  Science. 201 1135-1138
  • 02 Anderson,  L. W. J.. (1982);  Effects of abscisic acid on growth and leaf development in American pondweed (Potamogeton nodosus Poir.).  Aquatic. Bot.. 13 29-44
  • 03 Aoki,  M.. (1985);  Ecological implications of heterophylly in Myriophyllum sp.  Mizukusakenkaiho. 21 4-7 (in Japanese)
  • 04 Bodkin,  P. C.,, Spence,  D. H.,, and Weeks,  D. C.. (1980);  Photoreversible control of heterophylly in Hippuris vulgaris L.  New Phytol.. 84 533-542
  • 05 Bruni,  N. C.,, Young,  J. P.,, and Dengler,  N. G.. (1996);  Leaf developmental plasticity of Ranunculus flabellaris in response to terrestrial and submerged environments.  Can. J. Bot.. 74 823-837
  • 06 Cooke,  C. D. K.. (1969);  On the determination of leaf form in Ranunculus aquatilis. .  New Phytol.. 68 469-480
  • 07 Deschamp,  P. A., and Cooke,  T. J.. (1983);  Leaf dimorphism in aquatic angiosperms: significance of turgor pressure and cell expansion.  Science. 219 505-507
  • 08 Deschamp,  P. A., and Cooke,  T. J.. (1984);  Causal mechanisms of leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. .  Am. J. Bot.. 71 319-329
  • 09 Deschamp,  P. A., and Cooke,  T. J.. (1985);  Leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. .  Am. J. Bot.. 72 1377-1387
  • 10 Gee,  D., and Anderson,  L. W. J.. (1998);  Influence of leaf age on responsiveness of Potamogeton nodosus to ABA-induced heterophylly.  Plant Growth Regulation. 24 119-125
  • 11 Goliber,  T. E.. (1989);  Endogenous abscisic acid content correlates with photon fluence rate and induced leaf morphology in Hippuris vulgaris. .  Plant Physiol.. 89 732-734
  • 12 Goliber,  T. E., and Feldman,  L. J.. (1989);  Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L.  Plant Cell Environ.. 12 163-171
  • 13 Goliber,  T. E., and Feldman,  L. J.. (1990);  Developmental analysis of leaf plasticity in the heterophyllous aquatic plant Hippuris vulgaris. .  Am. J. Bot.. 77 399-412
  • 14 Johnson,  M. P.. (1967);  Temperature dependent leaf morphogenesis in Ranunculus flabellaris. .  Nature. 214 1354-1355
  • 15 Jones,  H.. (1995);  Further studies on heterophylly in Callitriche intermedia: leaf development and experimental induction of ovate leaves.  Ann. Bot.. 19 369-389
  • 16 Kane,  M. E., and Albert,  L. S.. (1982);  Environmental and growth regulator effects on heterophylly and growth in Proserpinaca intermedia (Haloragaceae).  Aquat. Bot.. 13 73-85
  • 17 Kane,  M. E., and Albert,  L. S.. (1987 a);  Abscisic acid induces aerial leaf morphology and vasculature in submerged Hippuris vulgaris L.  Aquat. Bot.. 28 81-88
  • 18 Kane,  M. E., and Albert,  L. S.. (1987 b);  Integrative regulation of leaf morphogenesis by gibberellic and abscisic acids in the aquatic angiosperm Proserpinaca palustris L.  Aquat. Bot.. 28 89-96
  • 19 McComb,  A. J.. (1965);  The control of elongation in Callitriche shoots by environment and gibberellic acid.  Ann. Bot.. 29 445-458
  • 20 McCully,  M. E., and Dale,  H. M.. (1961);  Heterophylly in Hippuris, a problem in identification.  Can. J. Bot.. 39 1099-1116
  • 21 Musgrave,  A.,, Jackson,  M. B.,, and Ling,  E.. (1972);  Callitriche stem elongation is controlled by ethylene and gibberellin.  Nature New Biol.. 238 93-96
  • 22 Mohan Ram,  H. Y., and Rao,  S.. (1982);  In vitro induction of aerial leaves and of precocious flowering in submerged shoots of Limnophila indica. .  Planta. 155 521-533
  • 23 Murashige,  T., and Skoog,  F.. (1962);  A revised medium for rapid growth and bioassay with tobacco cultures.  Physiol. Plant.. 15 473-497
  • 24 Rankin,  I., and Kende,  H.. (1984);  Regulation of growth in stem of deep-water rice.  Planta. 160 66-72
  • 25 Rijinders,  J. G. H. M.,, Young-Yell,  Y.,, Kamiya,  Y.,, Takahashi,  N.,, Barendse,  G. W. M.,, Bolm,  C. W. P. M.,, and Voesenek,  L. A. C. J.. (1997);  Ethylene enhances gibberellin levels and petiole sensitivity in flooding-tolerant Rumex palustris but not in flooding-intolerant R. acetosa. .  Planta. 203 20-25
  • 26 Samarakoon,  A. B., and Horton,  R. F.. (1984);  Petiole growth in Ranunculus sceleratus L.: ethylene synthesis and submergence.  Ann. Bot.. 54 263-270
  • 27 Smulders,  M. J., and Horton,  R. F.. (1991);  Ethylene promotes elongation growth and auxin promotes radial growth in Ranunculus sceleratus petioles.  Plant Physiol.. 96 806-811
  • 28 Tsuge,  T.,, Tsukaya,  H.,, and Uchimiya,  H.. (1996);  Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.) Heynh.  Development. 122 1589-1600
  • 29 Tsukaya,  H.,, Naito,  S.,, Redei,  G. P.,, and Komeda,  Y.. (1993);  A new class of mutations in Arabidopsis thaliana, acaulis1, affecting the development of both inflorescences and leaves.  Development. 118 751-764
  • 30 Wallenstein,  A., and Albert,  L. S.. (1963);  Plant morphology: its control in Proserpinaca by photoperiod, temperature, and gibberellic acid.  Science. 140 998-1000
  • 31 Young,  J. P., and Horton,  R. F.. (1985);  Heterophylly in Ranunculus flabellaris: the effect of abscisic acid.  Ann. Bot.. 55 899-902
  • 32 Young,  J. P.,, Dengler,  N. G.,, and Horton,  R. F.. (1987);  Heterophylly in Ranunculus flabellaris: the effect of abscisic acid on leaf anatomy.  Ann. Bot.. 60 117-125
  • 33 Young,  J. P.,, Dengler,  N. G.,, Donnelly,  P. M.,, and Dickinson,  T. A.. (1990);  Heterophylly in Ranunculus flabellaris: the effect of abscisic acid on leaf ultrastructure.  Ann. Bot.. 65 603-615
  • 34 Young,  J. P.,, Dickinson,  T. A.,, and Dengler,  N. G.. (1995);  A morphometric analysis of heterophyllous leaf development in Ranunculus flabellaris. .  Int. J. Plant Sci.. 156 590-602

A. Kuwabara

Department of Biological Sciences
Graduate School of Science
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku
Tokyo 113-0033
Japan

Email: asuka@biol.s.u-tokyo.ac.jp

Section Editor: L. A. C. J. Voesenek

    >