Skip to main content

Dynamic Size Effect in Concrete Materials

  • Chapter
  • First Online:
Size Effect in Concrete Materials and Structures

Abstract

As known, there is obvious size effect and strain-rate effect in concrete materials. Therefore, how concrete materials behave under the combined influences of size effect and strain-rate effect should be an interesting issue. Great progresses have been made in static size effect while almost no efforts have been conducted in dynamic size effect of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams D (1917) Effect of rate of application of load on the compressive strength of concrete [J]. Proc Am Soc Testing Mater 364–377

    Google Scholar 

  • Bažant ZP (1984) Size effect in blunt fracture: concrete, rock, metal [J]. J Eng Mech 110(4):518–535

    Google Scholar 

  • Bažant ZP (1997) Fracture and size effect in concrete and other quasibrittle materials [M]. CRC Press, USA

    Google Scholar 

  • Bažant ZP (2004) Probability distribution of energetic-statistical size effect in quasibrittle fracture [J]. Probab Eng Mech 19(4):307–319

    Article  Google Scholar 

  • Bažant ZP, Pang S (2007) Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture [J]. J Mech Phys Solids 55(1):91–131

    Article  MATH  Google Scholar 

  • Bažant Z, Caner F, Adley M, Akers S (2000) Fracturing rate effect and creep in microplane model for dynamics [J]. J Eng Mech 126(9):962–970

    Google Scholar 

  • Bindiganavile V, Banthia N (2006) Size effects and the dynamic response of plain concrete [J]. J Mater Civ Eng 18(4):485–491

    Article  Google Scholar 

  • Carpinteri A, Ferro G (1994) Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure [J]. Mater Struct 27(10):563–571

    Article  Google Scholar 

  • Chen X, Wu S, Zhou J (2013) Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete [J]. Constr Build Mater 47:419–430

    Article  Google Scholar 

  • Chen J, Xiang D, Wang Z, Wu G, Wang G (2018) Dynamic tensile strength enhancement of concrete in split Hopkinson pressure bar test [J]. Adv Mech Eng 10(6):2072047318

    Article  Google Scholar 

  • Comité euro-international du béton, Fédération Internationale de la Précontrainte (1993) CEB-FIP model code 1990: design code [M]. Thomas Telford Publishing, Lausanne, Switzerland

    Book  Google Scholar 

  • Cusatis G (2011) Strain-rate effects on concrete behavior [J]. Int J Impact Eng 38(4):162–170

    Article  Google Scholar 

  • Dilger WH, Koch R, Kowalczyk R (1984) Ductility of plain and confined concrete under different strain rates [J]. J Proc 81(1):73–81

    Google Scholar 

  • Du X, Jin L (2014) Effects of loading rate and its sudden change on concrete compressive failure [J]. J Vibr Shock 19:187–193 (in Chinese)

    Google Scholar 

  • Du X, Jin L, Ma G (2013) A meso-scale analysis method for the simulation of nonlinear damage and failure behavior of reinforced concrete members [J]. Int J Damage Mech 22(6):878–904

    Article  Google Scholar 

  • Du M, Jin L, Li D, Du X (2017) Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading [J]. Eng Mech 34(09):54–63 (in Chinese)

    Google Scholar 

  • Elfahal M, Krauthammer T (2005) Dynamic size effect in normal-and high-strength concrete cylinders [J]. ACI Mater J 102(2):77–85

    Google Scholar 

  • Elfahal MM, Krauthammer T, Ohno T, Beppu M, Mindess S (2005) Size effect for normal strength concrete cylinders subjected to axial impact [J]. Int J Impact Eng 31(4):461–481

    Article  Google Scholar 

  • Erzar B, Forquin P (2011) Experiments and mesoscopic modelling of dynamic testing of concrete [J]. Mech Mater 43(9):505–527

    Article  Google Scholar 

  • Fan X, Hu S, Lu J, Chen Q (2017) Effects of initial static loads on the tensile strength of concrete [J]. J Vibr Shock 36(02):83–88 (in Chinese)

    Google Scholar 

  • Hao Y, Hao H, Li Z (2013) Influence of end friction confinement on impact tests of concrete material at high strain rate [J]. Int J Impact Eng 60:82–106

    Article  Google Scholar 

  • Hu W, Zou R, Peng G, Zou S (2015) Research on energy absorption characteristics and size effect of concrete under different strain rates [J]. J Changjiang Acad Sci 05:132–136 (in Chinese)

    Google Scholar 

  • Jin L, Yu W, Du X, Yang W (2019a) Dynamic size effect of concrete under tension: A numerical study [J]. Int J Impact Eng 132:103318

    Article  Google Scholar 

  • Jin L, Yu W, Du X, Yang W (2019b) Mesoscopic numerical simulation of dynamic size effect on the splitting-tensile strength of concrete [J]. Eng Fract Mech 209:317–332

    Article  Google Scholar 

  • Jin L, Yu W, Du X, Zhang S, Yang W, Li D (2019e) Research on size effect of concrete dynamic compressive strength based on meso-simulation [J]. Eng Mech 36(11):50–61 (in Chinese)

    Google Scholar 

  • Jin L, Yu W, Du X, Zhang S, Li D (2019c) Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates [J]. Int J Impact Eng 125:1–12

    Article  Google Scholar 

  • Jin L, Yu W, Du X, Zhang S, Li D (2019d) Meso-scale simulation of size effect of dynamic tensile failure of concrete under low strain rate [J]. Eng Mech 36(08):59–69 (in Chinese)

    Google Scholar 

  • Jin L, Yu W, Du X, Yang W (2020b) Meso-scale simulations of size effect on concrete dynamic splitting tensile strength: Influence of aggregate content and maximum aggregate size [J]. Eng Fract Mech 230:106979

    Article  Google Scholar 

  • Jin L, Yu W, Du X (2020c) Effect of initial static load and dynamic load on concrete dynamic compressive failure [J]. J Mater Civ Eng 32(12):4020351

    Article  Google Scholar 

  • Jin L, Yu W, Du X, (2020a) Size effect on dynamic compressive strength of lightweight aggregate concrete: Meso-scale investigation [J]. Cement Concr Compos (in preparation)

    Google Scholar 

  • Kaplan S (1980) Factors affecting the relationship between rate of loading and measured compressive strength of concrete [J]. Magazine Concrete Res 32(111):79–88

    Article  Google Scholar 

  • Khandelwal M, Ranjith PG (2013) Behaviour of brittle material in multiple loading rates under uniaxial compression [J]. Geotech Geol Eng 31(4):1305–1315

    Article  Google Scholar 

  • Khandelwal M, Ranjith PG (2017) Study of crack propagation in concrete under multiple loading rates by acoustic emission [J]. Geomech Geophys Geo-Energy Geo-Res 3(4):393–404

    Article  Google Scholar 

  • Krauthammer T, Elfahal MM, Lim J, Ohno T, Beppu M, Markeset G (2003) Size effect for high-strength concrete cylinders subjected to axial impact [J]. Int J Impact Eng 28(9):1001–1016

    Article  Google Scholar 

  • Li M, Hao H, Shi Y, Hao Y (2018) Specimen shape and size effects on the concrete compressive strength under static and dynamic tests [J]. Constr Build Mater 161:84–93

    Article  Google Scholar 

  • Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension [J]. Mater J 95(6):735–739

    Google Scholar 

  • Shi L, Song Y (2018) Effect of initial static stress on the dynamic behavior of larger aggregate concrete under uniaxial compression [J]. Concrete 06:35–38 (in Chinese)

    Google Scholar 

  • Wang L, Chen G (2008) Mesoscopic simulation for mechanical properties of lightweight aggregate concrete by rigid body spring model [J]. J Hydraulic Eng 39(5):80–87 (in Chinese)

    Google Scholar 

  • Wang X, Zhang S, Wang C, Song R, Shang C, Fang X (2018) Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading [J]. Constr Build Mater 165:45–57

    Article  Google Scholar 

  • Wang X, Zhang S, Wang C, Song R, Shang C, Tang X (2018) Experimental investigation of the size effect of layered roller compacted concrete (RCC) under high-strain-rate loading [J]. Constr Build Mater 165:45–57

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of materials [J]. Proc Am Math Soc 151(5):1034

    Google Scholar 

  • Wu M, Qin C, Zhang C (2014) High strain rate splitting tensile tests of concrete and numerical simulation by mesoscale particle elements [J]. J Mater Civ Eng 26(1):71–82

    Article  Google Scholar 

  • Xiao S, Zhang J (2010) Experiment study on effect of load histories on dynamic compressive damage behaviors of concrete [J]. J Hydraulic Eng 41(08):943–952 (in Chinese)

    Google Scholar 

  • Yan D, Lin G (2006) Dynamic properties of concrete in direct tension [J]. Cem Concr Res 36(7):1371–1378

    Article  Google Scholar 

  • Yan D, Lin G (2008) Influence of initial static stress on the dynamic properties of concrete [J]. Cem Concr Res 30(4):327–333

    Article  MathSciNet  Google Scholar 

  • Yan D, Liu K, Fan L, Yang Z (2017) An experimental investigation of pre-loading effects on the dynamic behaviour of concrete [J]. Magazine Concrete Res 69(11):586–594

    Article  Google Scholar 

  • Zhou X, Hao H (2008) Modelling of compressive behaviour of concrete-like materials at high strain rate [J]. Int J Solids Struct 45(17):4648–4661

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, X., Jin, L. (2021). Dynamic Size Effect in Concrete Materials. In: Size Effect in Concrete Materials and Structures. Springer, Singapore. https://doi.org/10.1007/978-981-33-4943-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4943-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4942-1

  • Online ISBN: 978-981-33-4943-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics