Skip to main content

Abstract

All living organisms contribute to the biogeochemical cycles, but microorganisms, due to their high abundance, their tremendous metabolic capacities and adaptation potential, play a key role in the functioning and the evolution of biogeochemical cycles. Consequently, they are keyplayers in adaptation, resistance and resilience of ecosystems. The role of microorganisms in the main biogeochemical cycles (carbon, nitrogen, sulfur, phosphorus, silicon, metals), in soils, freshwater and marine ecosystems is presented. Microbial processes involved in the turnover of biogeochemical cycles are discussed from gene to ecosystem (natural and anthropogenic ecosystems), at global, regional and local scales, as well as in targeted microenvironments (such as particles or microniches). The biodiversity of microorganisms is highlighted and their metabolic pathways on which are based exchanges and biotransformations of organic and mineral components within ecosystems are described in details. The impacts of human activities on the microbial actors and processes of biogeochemical cycles, and the cascading ecological effects (greenhouse gas emissions, acid rains, dystrophic crises, etc.), are also discussed.

Chapter Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The chemical element phosphorus (31P) exists in waters only in forms of phosphates (oxidation degree V), organic or mineral, particulate or dissolved, non-reducible under natural conditions. It is then preferable to talk about the phosphate cycle instead of the phosphorus cycle.

  2. 2.

    Enzyme excreted by the cell and remaining attached to the outer membrane (or in the periplasmic space of gram-negative bacteria). Prokaryotic heterotrophic microorganisms, prokaryotic autotrophic (cyanobacteria) and single-celled eukaryotes (flagellates, diatoms) have for some species the genetic ability to produce ectoenzymes such as the alkaline phosphatase or the phosphonatase. The production of these enzymes is usually induced by mineral phosphate deficiency, and enables hydrolyze the phospho-ester (C-O-P) or the phosphonate (C–P) bonds of organic molecules of the DOP. The mineral phosphate released can then be incorporated by microorganisms.

References

  • Aller RC (1994) Bioturbation and remineralisation of sedimentary organic matter: effects of redox oscillation. Chem Geol 114:331–345

    CAS  Google Scholar 

  • Amblard C, Boisson J-C, Fontvielle D, Gayte X, Sime-Ngando T (1998) Microbial ecology in aquatic systems: a review from viruses to protozoa. Rev Sci Eau N° Special: 145–162

    Google Scholar 

  • An SM, Gardner WS, Kana T (2001) Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Appl Environ Microbiol 67:1171–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azam F, Fenchel T, Gray JG, Meyer-Reil LA, Thingstad TF (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326:891–892

    CAS  PubMed  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    CAS  PubMed  Google Scholar 

  • Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. Geology 4:297–300

    CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev 2:217–230

    CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    CAS  PubMed  Google Scholar 

  • Beatty JT et al (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102:9306–9310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beauchamp B (2004) Natural gas hydrates: myths, facts and issues. C R Geosci 336:751–765

    CAS  Google Scholar 

  • Benitez-Nelson CR (2000) The biogeochemical cycling of phosphorus in marine systems. Earth Sci Rev 51:109–135

    CAS  Google Scholar 

  • Berelson WM, Balch WM, Najjar R, Feely RA, Sabine C, Lee K (2007) Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. Glob Biogeochem Cycles 21, GB1024

    Google Scholar 

  • Bernalier A, Rochet V, Leclerc M, Doré J, Pochart P (1996) Diversity of H2/CO2-utilizing acetogenic bacteria from feces of non-methane-producing humans. Curr Microbiol 33:94–99

    CAS  PubMed  Google Scholar 

  • Berner RA (2004) The Phanerozoic carbon cycle: CO2 and O2. Oxford University Press, Oxford

    Google Scholar 

  • Blain S et al (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1075

    CAS  PubMed  Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boetius A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    CAS  PubMed  Google Scholar 

  • Bond JH, Engel RR, Levitt MD (1971) Factors influencing pulmonary methane excretion in man. An indirect method of studying the in situ metabolism of the methane-producing colonic bacteria. J Exp Med 133:572–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonin P, Gilewicz M (1992) A direct demonstration of “co-respiration” of oxygen and nitrogen oxides by Pseudomonas nautica. FEMS Microbiol Lett 80:183–188

    Google Scholar 

  • Bonin P, Omnes P, Chamalet A (1998) Simultaneous occurence of denitrification and nitrate ammonification in sediments of French Mediterranean Coast. Hydrobiologia 389:169–182

    CAS  Google Scholar 

  • Boyd PW et al (2007) Synthesis and future directions. Science 315:612–617

    CAS  PubMed  Google Scholar 

  • Brauman A, Fonty G, Roger P (2008) La Méthanisation. Éditions Tech & Doc-Lavoisier, Paris

    Google Scholar 

  • Bruland K et al (1979) Sampling and analytical methods for the determination of copper, cadmium, zinc and nickel at the nanogram per liter level in sea water. Anal Chim Acta 105:223–245

    Google Scholar 

  • Brune A (1998) Termite guts: the world’s smallest bioreactors. Trends Biotechnol 16:16–21

    CAS  Google Scholar 

  • Buffet BA (2000) Clathrates hydrates. Annu Rev Earth Planet Sci 28:477–507

    Google Scholar 

  • Butler A (1998) Acquisition and utilization of transition metals ions by marine organisms. Science 281:207–210

    CAS  PubMed  Google Scholar 

  • Caumette P (1986) Phototrophic sulfur bacteria and sulfatereducing bacteria causing red waters in a shallow brackish coastal lagoon (Prevost Lagoon, France). FEMS Microbiol Ecol 38:113–124

    CAS  Google Scholar 

  • Chapin FS (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chisholm SW (2000) Oceanography – stirring times in the Southern Ocean. Nature 407:685–687

    CAS  PubMed  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Google Scholar 

  • Chistoserdova L, Vorholt JA, Lidstrom ME (2005) A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea. Genome Biol 6:208

    PubMed Central  PubMed  Google Scholar 

  • Chivan D et al (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278

    Google Scholar 

  • Christl SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Production, metabolism and excretion of H2 in the large intestine. Gastroenterology 102:1269–1277

    CAS  PubMed  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    CAS  Google Scholar 

  • Coates JD, Councell T, Ellis DJ, Lovley DR (1998) Carbohydrate oxidation coupled to Fe (III) reduction, a novel form of anaerobic metabolism. Anaerobe 4:277–282

    CAS  PubMed  Google Scholar 

  • Cohen Y, Jørgensen BB, Padan E, Shilo M (1975) Sulfide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257:486–492

    Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crolet JL (1992) From biology and corrosion to biocorrosion. Oceanol Acta 15:87–94

    CAS  Google Scholar 

  • Cypionka H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    CAS  PubMed  Google Scholar 

  • Damste JSS et al (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712

    Google Scholar 

  • Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144

    CAS  PubMed  Google Scholar 

  • Daumas S, Magot M, Crolet JL (1993) Measurement of the net production of acidity by a sulphate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion. Res Microbiol 144:327–332

    CAS  PubMed  Google Scholar 

  • De Bona FD, Bayer C, Dieckow J, Bergamaschi H (2008) Soil quality assessed by carbon management index in a subtropical acrisol subjected to tillage systems and irrigation. Aust J Soil Res 46:469–475

    Google Scholar 

  • de Wit R, van Gemerden H (1990) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154:459–464

    Google Scholar 

  • Del Amo Y, Quéguiner B, Tréguer P, Breton H, Lampert L (1997) Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France). Mar Ecol Prog Ser 161:225–237

    Google Scholar 

  • del Giorgio PA, Williams PJB (2005) The global significance of respiration in aquatic ecosystems: from single cells to the biosphere. In: del Giorgio PA, Williams PJB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 267–303

    Google Scholar 

  • Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167

    CAS  PubMed  Google Scholar 

  • Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189

    CAS  PubMed  Google Scholar 

  • Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis, gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907

    CAS  PubMed  Google Scholar 

  • Duhamel S, Björkman KM, van Wambeke F, Moutin T, Karl DM (2011) Characterization of alkaline phosphatase activity in the North and South pacific subtropical gyres: implications for phosphorus cycling. Limnol Oceanogr 56:1244–1254

    CAS  Google Scholar 

  • Dyhrman ST, Ammermann JW, Van Mooy BA (2007) Microbes and marine phosphorus cycle. Oceanography 20:110–116

    Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed Central  PubMed  Google Scholar 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. App Environ Microbiol 60:4517–4526

    CAS  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology. Marcel Dekker, New York

    Google Scholar 

  • Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulphate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419

    CAS  Google Scholar 

  • Ettwig KF et al (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    CAS  PubMed  Google Scholar 

  • Ettwig KF et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    CAS  PubMed  Google Scholar 

  • Farenhorst A (2006) Importance of soil organic matter fractions in soil-landscape and regional assessments of pesticide sorption and leaching in soil. Soil Sci 70:1005–1012

    CAS  Google Scholar 

  • Farina M, Esquivel DMS, Lins de Bzarros HGP (1990) Magnetic iron-sulfur crystals from a magnetotactil microorganism. Nature 343:256–258

    CAS  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen-fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Féron D, Compère C, Dupont I, Magot M (2002) Biodétérioration des matériaux métalliques ou biocorrosion. In Béranger G, et Mazille H (eds) Corrosion des métaux et alliages. Lavoisier, Paris, pp 385–405

    Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    CAS  PubMed  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediment and iron-reducing bacterium. Appl Environ Microbiol 64:457–464

    Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    CAS  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Google Scholar 

  • Forshay KJ, Stanley EH (2005) Rapid nitrate loss and denitrification in a temperate river floodplain. Biogeochemistry 75:43–64

    CAS  Google Scholar 

  • Fossing H, Jørgensen BB (1989) Measurement of bacterial sulfate reduction in sediments: evaluation of single step chromium reduction method. Biogeochemistry 8:205–222

    CAS  Google Scholar 

  • Francis CA, Co EM, Tebo BM (2001) Enzymaticmanganese(II) oxidation by a marine alpha-proteobacterium. Appl Environ Microbiol 67:4024–4029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frontier S, et Pichot-Viale D (1998) Ecosystèmes: Structure,fonctionnement, évolution, 2e édition. Dunod, Paris

    Google Scholar 

  • Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three-dimensional model synthesis of the global methane cycle. J Phys Res 96(D7):13033–13065

    CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    CAS  PubMed  Google Scholar 

  • Garcia J-L, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    CAS  PubMed  Google Scholar 

  • Gilbert F, Bonin P, Stora G (1995) Effect of bioturbation on denitrification in a marine sediment from the West Mediterranean littoral. Hydrobiologia 304:49–58

    CAS  Google Scholar 

  • Goevert D, Conrad R (2009) Effect of substrate concentration on carbon isotope fractionation during acetoclastic methanogenesis by Methanosarcina barkeri and M. acetivorans and in rice field soil. Appl Environ Microbiol 75:2605–2612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham JW, Cooper SC (1959) Biological origin of manganese-rich deposits of the sea floor. Nature 183:1050–1051

    CAS  Google Scholar 

  • Grossi V, Cuny P, Caradec S, Nerini D, Pancost R, Gilbert F (2006) Impact of feeding by Arenicola marina (L.) and ageing of faecal material on fatty acid distribution and bacterial community structure in marine sediments: an expérimental approach. J Exp Mar Biol Ecol 336:54–64

    CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haroon MF et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    CAS  PubMed  Google Scholar 

  • Hauck RD, Bouldin DR (1961) Distribution of isotopic nitrogen gas during denitrification. Nature 191:871–872

    CAS  Google Scholar 

  • Hegler F, Popsth NR, Jiang J, Kappler A (2008) Physiology of phototrophic iron (II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol Ecol 66:250–260

    CAS  PubMed  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590

    CAS  PubMed  Google Scholar 

  • Hernesmaa A, Bjorklof K, Kiikkila O, Fritze H, Haahtela K, Romantschuk M (2005) Structure and function of microbial communities in the rhizosphere of Scots pine after tree-felling. Soil Biol Biochem 37:777–785

    CAS  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, De Long EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    CAS  PubMed  Google Scholar 

  • Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Jayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701

    CAS  Google Scholar 

  • Hoeler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycle 8:451–463

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2004) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan Z (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1:377–384

    CAS  PubMed  Google Scholar 

  • Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition – an important source for carbon turnover in soils. J Plant Nut Soil Sci 165:397–407

    CAS  Google Scholar 

  • IPCC (1995) Greenhouse gas inventory reference manual. IPCC Guidelines for National Greenhouse Gas Inventories. United Nations Environment Programme (UNEP), the Organisation for Economic Co-operation and Development (OECD), the International Energy Agency (IEA) and the Intergovernmental Panel on Climate Change (IPCC), Bracknell

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report IPCC. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Mille HL (eds). Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jahn MK, Haderlein SB, Meckenstock RU (2005) Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl Environ Microbiol 71:3355–3358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jannasch HW, Mottl MJ (1985) Geomicrobiology of deep-sea hydrothermal vents. Science 229:717–725

    CAS  PubMed  Google Scholar 

  • Jetten MS, Logemann S, Muyzer G, Robertson LA, de Vries S, van Loosdrecht MC, Kuenen JG (1997) Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek 71:75–93

    CAS  PubMed  Google Scholar 

  • Jickells T et al (2005) Global iron connections between desert dust, ocean oiogeochemistry, and climate knowledge. Science 303:67–71

    Google Scholar 

  • Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment. Limnol Oceanogr 22:817–832

    Google Scholar 

  • Jørgensen BB (1983) The microbial sulphur cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific Publication, Oxford, pp 91–124

    Google Scholar 

  • Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154

    PubMed  Google Scholar 

  • Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin/Heidelberg/New York, pp 173–207

    Google Scholar 

  • Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201

    Google Scholar 

  • Karl DM (2002) Microbiological oceanography – hidden in a sea of microbes. Nature 415:590–591

    CAS  PubMed  Google Scholar 

  • Karl DM (2007) The marine phosphorus cycle. In: Hurst CJ et al (eds) Manual of environmental microbiology, 3rd edn. American Society of Microbiology, Washington, DC, pp 523–539

    Google Scholar 

  • Karl DM, Tilbrook BD (1994) Production and transport of methane in oceanic particulate organic matter. Nature 368:732–734

    CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    CAS  PubMed  Google Scholar 

  • Knittel K, Lösekann T, Boetius A, Kort R, Amann R (2005) Diversity and distribution of methanotrophic Archaea at cold seeps. Appl Environ Microbiol 71:467–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koide K, Osono T, Takeda H (2005) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Google Scholar 

  • Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the réduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640

    PubMed Central  PubMed  Google Scholar 

  • Kvenvolden KA, Rogers B (2005) Gaia’s breathglobal methane exhallations. Mar Petrol Geol 22:579–590

    CAS  Google Scholar 

  • Laughlin RJ, Stevens RJ (2002) Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Sci 66:1540–1548

    CAS  Google Scholar 

  • Lavelle P (2002) Functional domains in soils. Ecol Res 17:441–450

    Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic, Dordrecht/Boston/London

    Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Lehours A-C, Carrias J-F, Amblard C, Sime-Ngando T, Fonty G (2010) les bactéries du Lac Pavin. Pour la Science 387:30–35

    Google Scholar 

  • Lelieveld J, Crutzen PJ, Dentener FJ (1998) Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus 50B:128–150

    CAS  Google Scholar 

  • Lemaitre C, Pébère N, Festy D (1994) Biodétérioration des matériaux. EDP Sciences, Les Ulis

    Google Scholar 

  • Lomans BP, van der Drift C, Pol A, Op den Camp HJM (2002) Microbial cycling of volatile organic sulfur compounds. Cell Mol Life Sci 59:575–588

    CAS  PubMed  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn (IV) reduction. Microbiol Rev 55:259–287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovley DR (2006) Dissimilatory Fe(III)- and Mn(IV)- reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 635–658

    Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(Iv) reduction. Adv Microbiol Physiol 49:219–286

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macdonald GJ (1990) Role of methane clathrates in past and future climates. Clim Change 16:247–281

    Google Scholar 

  • Macfarlane GT, Gibson GR (1994) Metabolic activities of the normal colonic flora. In: Gibson SAW (ed) Human health. The contribution of microorganisms. Springer, London, pp 17–52

    Google Scholar 

  • Madsen EL (2011) Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol 22:456–464

    CAS  PubMed  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Academic, San Diego

    Google Scholar 

  • Majeed MZ et al (2013) Emissions of nitrous oxide from casts of tropical earthworms belonging to different ecological categories. Pedobiologia 56:49–58

    CAS  Google Scholar 

  • Marland G, Boden TA, Andres RJ (2003) Global, regional, and national CO2 emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  • Martinez RJ, Mills HJ, Story S, Sobecky PA (2006) Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico. Environ Microbiol 8:1783–1796

    CAS  PubMed  Google Scholar 

  • Master Y, Shavit U, Shaviv A (2005) Modified isotope pairing technique to study N transformations in polluted aquatic systems: theory. Environ Sci Technol 39:1749–1756

    CAS  PubMed  Google Scholar 

  • Michaelis W et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7:223–229

    CAS  Google Scholar 

  • Mills MMC, Ridame MT, Davey J, La Roche R, Geider J (2005) Iron and phophorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 435:292–294

    Google Scholar 

  • Milucka J et al (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546

    CAS  PubMed  Google Scholar 

  • Minjeaud L, Bonin PC, Michotey VD (2008) Nitrogen fluxes from marine sediments: quantification of the associated co-occurring bacterial processes. Biogeochemistry 90:141–157

    CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to électron and hydrogen transfer by chemi-osmotic type of mechanism. Nature 191:144–148

    CAS  PubMed  Google Scholar 

  • Moran JJ, Beal EJ, Vrentas JM, Orphan VJ, Freeman KH, House CH (2008) Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ Microbiol 10:162–173

    CAS  PubMed  Google Scholar 

  • Morel A, Gentili B, Claustre H, Babin M, Bricaud A, Ras J, Tieche F (2007) Optical properties of the “clearest” natural waters. Limnol Oceanogr 52:217–229

    CAS  Google Scholar 

  • Morel FMM, Kustka AB, Shaked Y (2008) The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol Oceanogr 53:400–404

    CAS  Google Scholar 

  • Moutin T (2000) Cycle biogéochimique du phosphate: rôle dans le contrôle de la production planctonique et conséquences sur l’exportation de carbone de la couche éclairée vers l’océan profond. Océanis 36:643–660

    Google Scholar 

  • Moutin T, Karl DM, Duhamel S, Rimmelin P, Raimbault P, van Mooy BAS, Claustre H (2008) Phosphate availability and the ultimate control of new nitrogen input by nitrogen fixation in the tropical Pacific Ocean. Biogeosciences 5:95–109

    CAS  Google Scholar 

  • Moutin T, van Wambeke F, Prieur L (2012) Introduction to the biogeochemistry from the oligotrophic to the ultraoligotrophic mediterranean (BOUM) experiment. Biogeosciences 9:3817–3825

    CAS  Google Scholar 

  • Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16:177–183

    CAS  Google Scholar 

  • Nauhaus K, Albrecht M, Elvert M, Boetius A, Widdel F (2007) In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulphate. Environ Microbiol 9:187–196

    CAS  PubMed  Google Scholar 

  • Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approches to carbon cycling. Appl Environ Microbiol 58:439–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    CAS  PubMed  Google Scholar 

  • Nielsen LP (1992) Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 86:357–362

    CAS  Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944

    CAS  PubMed  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    CAS  PubMed  Google Scholar 

  • Overmann J, Garcia-Pichel F (2006) The phototrophic way of life. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 32–85

    Google Scholar 

  • Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155

    CAS  Google Scholar 

  • Pancost RD, Sinninghe Damsté JS (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol 195:29–58

    CAS  Google Scholar 

  • Parkin TB, Brock TD (1981) The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnol Oceanogr 26:880–890

    CAS  Google Scholar 

  • Parks JM et al (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335

    CAS  PubMed  Google Scholar 

  • Parsons TR, Takahashi M, Hargrave BT (1984) Biological oceanographic processes. Pergamon Press, Oxford

    Google Scholar 

  • Pedersen H, Dunkin KA, Firestone MK (2002) The relative importance of autotrophic and heterotrophic nitrification in a conifer forest soil as measured by 15N tracer and pool dilution techniques. Biogeochemistry 44:135–150

    Google Scholar 

  • Petermann H, Bleil U (1993) Detection of live magnetotactile bacteria in South Atlantic deep-see sediments. Earth Planet Sci Lett 117:223–228

    Google Scholar 

  • Pfennig N (1975) The phototrophic bacteria and their role in sulfur cycle. Plant and Soil 43:1–16

    CAS  Google Scholar 

  • Pfennig N (1989) Metabolic diversity among the dissimilatory sulfate-reducing bacteria – Albert Jan Kluyver memorial lecture. Ant Leeuw Int J G 56:127–138

    CAS  Google Scholar 

  • Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton J, Ding Y, Griggs DJ, Noguer N, van der Linden PJ, Dai X (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 183–239

    Google Scholar 

  • Raghoebarsing AA et al (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    CAS  PubMed  Google Scholar 

  • Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D, Salvado JC, Guyoneaud R (2009) Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers : implications for environmental studies. Geomicrobiol J 26:1–8

    CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192

    Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    CAS  PubMed  Google Scholar 

  • Risgaard-Petersen N (2003) Coupled nitrification-denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnol Oceanogr 48:93–105

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (2006) The colorless sulfur bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 985–1011

    Google Scholar 

  • Roesch LF et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Rueda O, Hallin S, Baneras L (2009) Structure and function of denitrifying and nitrifying bacterial communities in relation to the plant species in a constructed wetland. FEMS Microbiol Ecol 67:308–319

    CAS  PubMed  Google Scholar 

  • Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 104:10643–10648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Satoh H, Nakamura Y, Okabe S (2007) Influences of infaunal burrows on the community structure and activity of ammonia-oxidizing bacteria in intertidal sediments. Appl Environ Microbiol 73:1341–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schauss K et al (2009) Dynamics and functional relevance of ammonia-oxidizing Archaea in two agricultural soils. Environ Microbiol 11:446–456

    CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. Plos Comput Biol 2:786–793

    CAS  Google Scholar 

  • Schmidt I, van Spanning RJ, Jetten MS (2004) Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 150:4107–4114

    CAS  PubMed  Google Scholar 

  • Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23(6):1256–1263

    Google Scholar 

  • Straub KL, Benz B, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378

    CAS  Google Scholar 

  • Strong A, Chisholm S, Miller C, Cullen J (2009) Iron fertilization: time to move on. Nature 461:347–348

    CAS  PubMed  Google Scholar 

  • Strous M, Jetten SM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117

    CAS  PubMed  Google Scholar 

  • Tabatabai MA (1974) Determination of sulfate in water samples. Sulphur Inst J 10:11–14

    CAS  Google Scholar 

  • Tebo BM, Johson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13:421–428

    CAS  PubMed  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Deker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Microbiol Mol Biol Rev 41:100–180

    CAS  Google Scholar 

  • Thingstad TF, Hagstrom A, Rassoulzadegan F (1997) Accumulation of degradable DOC in surface waters: is it caused by a malfunctioning microbial loop? Limnol Oceanogr 42:398–404

    CAS  Google Scholar 

  • Thompson IA, Huber DM, Guest CA, Schulze DG (2005) Fungal manganese oxidation in a reduced soil. Environ Microbiol 7:1480–1487

    CAS  PubMed  Google Scholar 

  • Tiedje JM, Sextone AJ, Myrold DD, Robinson JA (1982) Denitrification, ecological niches competition and survival. Ant Leeuw Int J G 48:569–583

    CAS  Google Scholar 

  • Tréguer P, Nelson DM, Van Bennekom AJ, Demaster DJ, Quéguiner B, Leynaert A (1995) The silica budget of the World Ocean: a re-estimate. Science 268:375–379

    PubMed  Google Scholar 

  • Trimmer M, Risgaard-Petersen N, Nicholls J-C, Engstrom P (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Mar Ecol Prog Ser 326:37–47

    CAS  Google Scholar 

  • Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484

    CAS  PubMed  Google Scholar 

  • van Gemerden H (1993) Microbial mats, a joint venture. Mar Geol 113:3–25

    Google Scholar 

  • van Herwijnen R, Laverye T, Poole J, Hodson ME, Hutchings TR (2007) The effect of organic materials on the mobility and toxicity of metals in contaminated soils. Appl Geochem 22:2422–2434

    Google Scholar 

  • van Mooy BAS et al (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    PubMed  Google Scholar 

  • van Niftrik LA, Fuerst JA, Damste JSS, Kuenen JG, Jetten MSM, Strous M (2004) The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiol Lett 233:7–13

    PubMed  Google Scholar 

  • van Wambeke F, Nedoma J, Duhamel S, Lebaron P (2008) Alkaline phosphatase activity of marine bacteria studied with ELF97 phosphate: success and limits in P-limited Mediterranean Sea. Aquat Microb Ecol 52:245–251

    Google Scholar 

  • Vandecasteele J-P (2008) Petroleum microbiology, vols 1 and 2. Editions Technip, Paris

    Google Scholar 

  • Von Wolzogen Kur CAH, van der Vlugt IS (1934) De graphiteering van gietijzer ais electrobiochemisch proces in anaerobe gronden. Water 18:147–165

    Google Scholar 

  • Wagner M, Loy A, Klein M, Lee N, Ramsing NB, Stahl DA, Friedrich MW (2005) Functional marker genes for identification of sulfate-reducing prokaryotes. Methods Enzymol 397:469–489

    CAS  PubMed  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature 277:293–294

    Google Scholar 

  • Weisskopf L, Fromin N, Tomasi N, Aragno M, Martinoia E (2005) Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure. Plant and Soil 268:181–194

    CAS  Google Scholar 

  • Widdel F, Pfennig N (1992) The genus Desulfuromonas and other Gram negative sulfur-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 3379–3389

    Google Scholar 

  • Williams PJB, del Giorgio PA (2005) Respiration in aquatic ecosystems: history and background. In: del Giorgio PA, Williams PJB (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 1–17

    Google Scholar 

  • Wolin MJ (1974) Metabolic interactions among intestinal microorganisms. Am J Clin Nutr 27:1320–1328

    CAS  PubMed  Google Scholar 

  • Yoshinari T, Knowles R (1976) Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem Biophys Res Commun 69:705–711

    CAS  PubMed  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–589

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Claude Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bertrand, JC. et al. (2015). Biogeochemical Cycles. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_14

Download citation

Publish with us

Policies and ethics