Skip to main content

Gene Banking: The Freezing Strategy

  • Chapter
  • First Online:
Boar Reproduction

Abstract

Genetic resource banking (GRB) or ex situ conservation in livestock species is the storage of genetic material for breeding purposes. Genes are present, with few exceptions, in every cell within an organism but only germ cells have the ability to transmit this information from one individual to another. Germplasm banking is the main tool for directing and enhancing this genetic flow in intensive farming, as it is for preserving the genetic diversity of a livestock population. The only current technique for the storage of germ cells is freezing them in liquid nitrogen (cryobanking). Traits in the breeding goals of a genetic program are retained in this way from the moment of insemination; otherwise, these genetic resources would be lost. Sperm from boars displaying high genetic values can be preserved following either rapid or slow freezing, as it is explained in this chapter together with a complete introduction to the legal issues of animal cryobanking. A new way of sperm preservation in pigs is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdalla H, Hirabayashi M, Hochi S (2009) The ability of freeze-dried bull spermatozoa to induce calcium oscillations and resumption of meiosis. Theriogenology 71:543–552

    PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    PubMed  Google Scholar 

  • Andreeva AA, Sadikova DG, Labbe C, Anan’ev VI, Kurchikov AL (2008) Influence of lipids on ice formation during the freezing of cryoprotective medium. Biofísica 53:598–601

    Google Scholar 

  • Arav A (1999) Device and methods for multigradient directional cooling and warming of biological samples. US Patent 5(873):254

    Google Scholar 

  • Arts EG, Wijchman JG, Jager S, Hoekstra D (1997) Protein involvement in the fusion between the equatorial segment of acrosome-reacted human spermatozoa and liposomes. Biochem J 325:191–198

    PubMed  CAS  Google Scholar 

  • Awda BJ, Mackenzie-Bell M, Buhr MM (2009) Reactive oxygen species and boar sperm function. Biol Reprod 81:553–561

    PubMed  CAS  Google Scholar 

  • Bachiller D, Schellander K, Peli J, Rüther U (1991) Liposome-mediated DNA uptake by sperm cells. Mol Reprod Dev 30:194–200

    PubMed  CAS  Google Scholar 

  • Bailey JL, Bilodeau JF, Cormier N (2000) Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J Androl 21:1–7

    PubMed  CAS  Google Scholar 

  • Baranov VS, Hapala I, Hrijac P, Kovac L, Boda K (1990) The incorporation of macromolecules into the germ cells of male mice via electroporation and dimethyl sulfoxide. Tsitol Genet 24:3–7

    PubMed  CAS  Google Scholar 

  • Baust GJ, Baust JM (2007) Advances in biopreservation. CRC/Taylor & Francis Group, London

    Google Scholar 

  • Berger B, Fischerleitner F (1992) On deep freezing of boar semen: investigations on the effects of different straw volumes, methods of freezing and thawing extenders. Reprod Dom Anim 27:266–270

    Google Scholar 

  • Bernstein AD, Petropavlovsky VV (1937) Effect of non-electrolytes on viability of spermatozoa. Bjull Eksp Biol Med 3:41–43

    Google Scholar 

  • Bhowmick S, Zhu L, McGinnis L, Lawitts J, Nath BD, Toner M, Biggers J (2003) Desiccation tolerance of spermatozoa dried at ambient temperature: production of fetal mice. Biol Reprod 68:1779–1786

    Google Scholar 

  • Biggers JD (2009) Evaporative drying of mouse spermatozoa. Reprod Biomed Online 19:4338

    PubMed  Google Scholar 

  • Blesbois E, Grasseau I, Seigneurin F (2005) Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 129:371–378

    PubMed  CAS  Google Scholar 

  • Boettcher P, Akin O (2010) The status of national programmes for the conservation of animal genetic resources. Anim Genet Res 47:73–84

    Google Scholar 

  • Brockbank KG, Campbell LH, Greene ED, Brockbank MC, Duman JG (2011) Lessons from nature for preservation of mammalian cells, tissues, and organs. In Vitro Cell Dev Biol Anim 47:210–207-210

    PubMed  CAS  Google Scholar 

  • Buhr MM, Curtis EF, Kakuda NS (1994) Composition and behavior of head membrane lipids of fresh and cryopreserved boar sperm. Cryobiology 31:224–238

    PubMed  CAS  Google Scholar 

  • Buitink J, Leprince O (2008) Postgenomic analysis of desiccation tolerance. J Soc Biol 202:213–222

    PubMed  CAS  Google Scholar 

  • Casas I (2010) A practical approach on boar sperm cryodamage. Morphofunctional and immunocytochemical study of cryopreserved boar sperm intended for use in artificial insemination. Doctoral thesis, University of Girona. Available via TDX home. http://www.tdx.cat/handle/10803/7642. Cited 3 Nov 2011

  • Casas I, Sancho S, Briz M, Pinart E, Bussalleu E, Yeste M, Bonet S (2009) Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 72:930–948

    PubMed  CAS  Google Scholar 

  • Casas I, Sancho S, Briz M, Pinart E, Bussalleu E, Yeste M, Bonet S (2010a) Fertility after post-cervical artificial insemination with cryopreserved sperm from boar ejaculates of good and poor freezability. Anim Reprod Sci 118:69–76

    PubMed  CAS  Google Scholar 

  • Casas I, Sancho S, Ballester J, Briz M, Pinart E, Bussalleu E, Yeste M, Fàbrega A, Rodríguez-Gil JE, Bonet S (2010b) The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology 74:940–950

    PubMed  CAS  Google Scholar 

  • CBD (2000) Cartagena protocol on safety to the convention on biological diversity, text and annexes. Montreal, Canada. Available via Text of the Cartagena Protocol. http://www.cbd.int/doc/legal/cartagena-protocol-en.pdf. Cited 27 Oct 2011

  • CBD (2002) Bonn guidelines on access to genetic resources and fair and equitable sharing of the benefits arising out of their utilization. Montreal, Canada. Available via Access and benefit-sharing developments under the Convention of Biological Diversity prior to the Nagoya Protocol http://www.cbd.int/doc/publications/cbd-bonn-gdls-en.pdf. Cited 27 Oct 2011

  • CBD (2010) Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. Text and annexes. Montreal, Canada. Available via Text of the Nagoya Protocol http://www.cbd.int/abs/doc/protocol/nagoya-protocol-en.pdf. Cited 27 Oct 2011

  • Cerolini S, Maldjian A, Pizzi F, Gliozzi TM (2001) Changes in sperm quality and lipid composition during cryopreservation of boar semen. Reproduction 121:395–401

    PubMed  CAS  Google Scholar 

  • Cervera R, Garcia-Ximénez F (2003) Vitrification of zona-free rabbit expanded or hatching blastocyst: a possible model for human blastocysts. Hum Reprod 18:2151–2156

    PubMed  CAS  Google Scholar 

  • CFIA (2011) Veterinary health certificate export of bovine semen to Australia. Available via Canadian Food Inspection Agency. http://www.inspection.gc.ca/english/anima/heasan/export/semen/ha1118_e.pdf. Cited 28 Oct 2011

  • Chakraborty N, Chang A, Elmoazzen H, Menze MA, Hand SC, Toner M (2011) A spin-drying technique for lyopreservation of mammalian cells. Ann Biomed Eng 39:1582–1591

    PubMed  Google Scholar 

  • Chen Y, Liu RZ (2007) Cryopreservation of spermatozoa. Zhonghua Nan Ke Xue 13:734–738

    PubMed  CAS  Google Scholar 

  • Chen S, Lien Y, Cheng Y, Chen H, Ho H, Yang Y (2001) Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Repod 16:2350–2356

    CAS  Google Scholar 

  • Chen B, Fowler A, Bhowmick S (2006) Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of mammalian cells. J Biomech Eng 128:335–346

    PubMed  Google Scholar 

  • Chian RC, Quinn P (2010) Fertility cryopreservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Choi Y, Varner D, Love C, Hartman D, Hinrichs K (2011) Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction 142:529–553

    PubMed  CAS  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    PubMed  CAS  Google Scholar 

  • Cornette R, Kikawada T (2011) The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge. IUBMB Life 63:419–429

    PubMed  CAS  Google Scholar 

  • Courtens JL, Paquignon M, Blaise F, Ekwall H, Ploen L (1989) Nucleus of the boar spermatozoon: structure and modifications in frozen, frozen-thawed and sodium dodecylsulphate-treated cells. Mol Reprod Dev 1:264–277

    PubMed  CAS  Google Scholar 

  • Coy P, Cánovas S, Mondéjar I, Saavedra MD, Romar R, Grullón L, Matás C, Avilés M (2008) Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc Natl Acad Sci U S A 105:15809–15814

    PubMed  CAS  Google Scholar 

  • Cremades T, Roca J, Rodríguez-Martínez H, Abaigar T, Vázquez JM, Martínez EA (2005) Kinematic changes during the cryopreservation of boar spermatozoa. J Androl 26:610–608

    PubMed  Google Scholar 

  • Crichton EG, Hinton BT, Pallone TL, Hammerstedt RH (1994) Hyperosmolality and sperm storage in hibernating bats: prolongation of sperm life by dehydration. Am J Physiol 267:R1363–R1370

    PubMed  CAS  Google Scholar 

  • Critser JK, Huse-Benda AR, Aaker DV, Arneson BW, Ball GD (1988) Cryopreservation of human spermatozoa, III. The effect of cryopreservation on motility. Fertil Steril 50:314–320

    PubMed  CAS  Google Scholar 

  • Curry MR, Kleinhans FW, Watson PF (2000) Measurement of the water permeability of the membranes of boar, ram, and rabbit spermatozoa using concentration-dependent self-quenching of an entrapped fluorophore. Cryobiology 41:167–173

    PubMed  CAS  Google Scholar 

  • Czarny NA, Harris MS, De Iuliis GN, Rodger JC (2009) Acrosomal integrity viability, and DNA damage of sperm from dasyurid marsupials after freezing or freeze drying. Theriogenology 72:817–825

    PubMed  CAS  Google Scholar 

  • Davis BK, Byrne R (1980) Interaction of lipids with the plasma membrane of sperm cells, III Antifusigenic effect by phosphatidylserine. Arch Androl 5:263–266

    PubMed  CAS  Google Scholar 

  • Day JG, Stacey G (2007) Cryopreservation and freeze-drying protocols, 2nd edn. Humana Press, New Jersey

    Google Scholar 

  • Dayong G, Critser JK (2000) Mechanisms of cryoinjury in living cells. ILAR J 41:187–196

    Google Scholar 

  • Debenedetti PG (1996) Metastable liquids. Concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  • Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267

    PubMed  CAS  Google Scholar 

  • De Leeuw FE, Chen HC, Colenbrander B, Verkleij AJ (1990) Cold induced ultrastructural changes in bull and boar sperm plasma membranes. Criobiology 27:171–183

    Google Scholar 

  • DJC (2011) Health of animals regulations 2010–2011. Available via Department of Justice Canada. http://laws.justice.gc.ca/eng/regulations/C.R.C.%2C_c._296/. Cited 27 Oct 2011

  • Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437

    PubMed  CAS  Google Scholar 

  • Eastman JT, DeVries AL (1986) Antarctic fishes. Sci Am 254:106–114

    Google Scholar 

  • Ekwall H (2009) Cryo-scanning electron microscopy discloses differences in dehydration of frozen boar semen stored in large containers. Reprod Domest Anim 44:62–68

    PubMed  CAS  Google Scholar 

  • Elmoazzen HY, Lee GY, Li MW, McGinnis LK, Lloyd KC, Toner M, Biggers JD (2009) Further optimization of mouse spermatozoa evaporative drying techniques. Cryobiology 59:113–115

    PubMed  Google Scholar 

  • ERFP (2003) Guidelines for the Constitution of National Cryopreservation Programmes for Farm Animals. In: Hiemstra SJ (ed) Publication No. 1 of the European regional focal point on animal genetic resources. Available via Turkhaygen http://www.turkhaygen.gov.tr/doc/Guidelinest.pdf. Cited 27 Oct 2011

  • Eriksson BM, Rodriguez-Martinez H (2000) Effect of freezing and thawing rates on the post-thaw viability of boar spermatozoa frozen in FlatPacks and Maxi-straws. Anim Reprod Sci 63:205–220

    PubMed  CAS  Google Scholar 

  • Eriksson BM, Vazquez JM, Martinez EA, Roca J, Lucas X, Rodriguez-Martinez H (2001) Effects of holding time during cooling and of type of package on plasma membrane integrity, motility and in vitro oocyte penetration ability of frozen-thawed boar spermatozoa. Theriogenology 55:1593–1605

    PubMed  CAS  Google Scholar 

  • Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz JM, Fahmy K, Kurzchalia TV (2011) Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol 21:1331–1336

    PubMed  CAS  Google Scholar 

  • Evans RW, Setchell BP (1978) Association of exogenous phospholipids with spermatozoa. J Reprod Fertil 53:357–362

    PubMed  CAS  Google Scholar 

  • FABISnet (2011) An integrated network of decentralized country biodiversity and genebank database. http://efabisnet.tzv.fal.de/. Cited 3 Nov 2011

  • Fahy GM (1986) The relevance of cryoprotectant ‘toxicity’ to cryobiology. Cryobiology 23:1–13

    PubMed  CAS  Google Scholar 

  • Fahy GM (1988) Vitrification. In: McGrath JJ, Diller KR (eds) Progress in low temperature biotechnology: emerging applications and engineering contributions. Am Soc Mech Eng (New York), pp 165–188

    Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:407–426

    PubMed  CAS  Google Scholar 

  • Fahy GM, Levy DI, Ali SE (1987) Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology 24:196–213

    PubMed  CAS  Google Scholar 

  • FAO (2007) Global plan of action for animal genetic resources and the interlaken declaration. Available via FAO Corporate document repository http://www.fao.org/docrep/010/a1404e/a1404e00.htm. Cited 3 Nov 2011, Rome

  • FAO (2009) Status and trends report on animal genetic resources—2008. Available via FAO Corporate document repository, Animal Production and Health Division. Documents of Intergovernmental Technical Working Group on (ITWG) 5th Session. Document Code CGRFA/WG-AnGR-5/09/Inf. 7 ftp://ftp.fao.org/docrep/fao/meeting/016/ak220e.pdf. Cited 3 Nov 2011, Rome

  • FAO (2011) Draft guidelines supporting the implementation of the global plan of action for animal genetic resources. In: Progress report on the implementation of the global plan of action for animal genetic resources. Comission on genetic resources for food and agriculture. Thirteenth regular session, Rome. Available via FAO Corporate document repository. http://www.fao.org/docrep/meeting/022/mb180e.pdf. Cited 3 Nov 2011

  • Farrant JM, Lehner A, Cooper K (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57:65–79 (Erratum in: Plant J 58:538)

    PubMed  Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    PubMed  CAS  Google Scholar 

  • Flores E, Cifuentes D, Fernández-Novell JM, Medrano A, Bonet S, Briz MD, Pinart E, Peña A, Rigau T, Rodríguez-Gil JE (2008a) Freeze-thawing induces alterations in the protamine-1/DNA overall structure in boar sperm. Theriogenology 69:1083–1094

    PubMed  CAS  Google Scholar 

  • Flores E, Taberner E, Rivera MM, Peña A, Rigau T, Miró J, Rodríguez-Gil JE (2008b) Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates. Theriogenology 70:936–945

    PubMed  CAS  Google Scholar 

  • Flores E, Fernández-Novell JM, Peña A, Rodríguez-Gil JE (2009) The degree of resistance to freezing-thawing is related to specific changes in the structures of motile sperm subpopulations and mitochondrial activity in boar spermatozoa. Theriogenology 72:784–797

    PubMed  CAS  Google Scholar 

  • Flores E, Fernández-Novell JM, Peña A, Rigau T, Rodríguez-Gil JE (2010) Cryopreservation-induced alterations in boar spermatozoa mitochondrial function are related to changes in the expression and location of midpiece mitofusin-2 and actin network. Theriogenology 74:354–363

    PubMed  CAS  Google Scholar 

  • Flores E, Ramió-Lluch L, Bucci D, Fernández-Novell JM, Peña A, Rodríguez-Gil JE (2011) Freezing-thawing induces alterations in histone H1-DNA binding and the breaking of protein-DNA disulfide bonds in boar sperm. Theriogenology 76:1450–1464

    PubMed  CAS  Google Scholar 

  • Fonseca F, Passot S, Cunin O, Marin M (2004) Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media. Biotechnol Prog 20:229–238

    PubMed  CAS  Google Scholar 

  • Fuller BJ, Grout BWW (1991) Clinical applications of cryobiology. CRC/Taylor & Francis Group, London

    Google Scholar 

  • Fuller BJ, Benson EE, Lane N (2004) Life in the frozen state. CRC/Taylor & Francis Group, London

    Google Scholar 

  • Gadea J (2004) Use of frozen boar sperm. Mundo ganadero 169:60–62

    Google Scholar 

  • Gamzu R, Yogev L, Paz G, Yavetz H, Lichtenberg D (1997) Reduction of sperm cholesterol: phospholipid ratio is a possible mechanism for enhancement of human sperm binding to the zona pellucida following incubation with phosphatidylcholine liposomes. Biol Reprod 57:539–546

    PubMed  CAS  Google Scholar 

  • Gao DY, Liu C, McGann LE, Watson PF, Kleinhans FW, Mazur P, Critser ES, Critser JK (1995) Prevention of osmotic injury to human spermatozoa during addition and removal of glycerol. Hum Reprod 10:1109–1122

    PubMed  CAS  Google Scholar 

  • García-Herreros M, Barón FJ, Aparicio IM, Santos AJ, García-Marín LJ, Gil MC (2008) Morphometric changes in boar spermatozoa induced by cryopreservation. Int J Androl 31:490–498

    PubMed  Google Scholar 

  • Garrett FE, Goel S, Yasul J, Koch RA (1999) Liposomes fuse with sperm cells and induce activation by delivery of impermeant agents. Biochim Biophys Acta 1417:77–88

    PubMed  CAS  Google Scholar 

  • Gilmore JA, Du J, Tao J, Peter AT, Critser JK (1996) Osmotic properties of boar spermatozoa and their relevance to cryopreservation. J Reprod Fertil 107:87–95

    PubMed  CAS  Google Scholar 

  • Gilmore JA, Liu J, Gao DY, Critser JK (1997) Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod 12:112–118

    PubMed  CAS  Google Scholar 

  • Giovambattista N, Angell CA, Sciortino F, Stanley HE (2004) Glass-transition temperature of water: a simulation study. Phys Rev Lett 93:047801

    PubMed  Google Scholar 

  • Graham JK, Foote RH, Hough SR (1987) Penetration of zona-free hamster eggs by liposome-treated sperm from the bull, ram, stallion, and boar. Biol Reprod 37:181–188

    PubMed  CAS  Google Scholar 

  • Green CE, Watson PF (2001) Comparison of the capacitation-like state of cooled boar spermatozoa with true capacitation. Reproduction 122:889–898

    PubMed  CAS  Google Scholar 

  • Groeneveld E, Duchev ZI, Imialek M, Soltys L, Wieczorek M, Scherf B, Distl O, Gandini G, Jaszczynska M, Rosati A (2007) FABISnet- A web based network of farm animal biodiversity information systems. In: proc. GIL Jahrestagung 2007, Stuttgart, pp 91–94. Available via The Electronic Library of Mathematics. http://subs.emis.de/LNI/Proceedings/Proceedings101/gi-proc-101-019.pdf. Cited 3 Nov 2011

  • Groeneveld E, Nguyen HT, Kues W, Nguyen TV (2008) A protocol for the cryoconservation of breeds by low-cost emergency cell banks—a pilot study. Animal 2:1–8

    PubMed  CAS  Google Scholar 

  • Guthrie HD, Welch GR, Long JA (2008) Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology 70:1209–1215

    PubMed  CAS  Google Scholar 

  • Han B, Bischof JC (2004) Direct cell injury associated with eutectic crystallization during freezing. Cryobiology 48:8–21

    PubMed  Google Scholar 

  • He L, Bailey JL, Buhr MM (2001) Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential. Biol Reprod 64:69–79

    PubMed  CAS  Google Scholar 

  • Hengherr S, Heyer AG, Brümmer F, Schill RO (2011) Trehalose and vitreous states: desiccation tolerance of dormant stages of the crustaceans triops and daphnia. Physiol Biochem Zool 84:147–153

    PubMed  CAS  Google Scholar 

  • Hernández M, Roca J, Ballester J, Vazquez JM, Martinez EA, Johannisson A, Saravia F, Rodríguez-Martínez H (2006) Differences in SCSA outcome among boars with different sperm freezability. Int J Androl 29:583–591

    PubMed  Google Scholar 

  • Hernández M, Roca J, Gil MA, Vázquez JM, Martínez EA (2007) Adjustments on the cryopreservation conditions reduce the incidence of boar ejaculates with poor sperm freezability. Theriogenology 67:1436–1445

    PubMed  Google Scholar 

  • Hiemstra SJ (2011) Cryopreservation strategies for farm animal genetic resources in Europe. In: Proceedings of the RBI 8th global conference on the conservation of animal genetic resources, Tekirdag, Turkey

    Google Scholar 

  • Hirabayashi M, Kato M, Ito J, Hochi S (2005) Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13:79–85

    PubMed  Google Scholar 

  • Hoagland H, Pincus G (1942) Revival of mammalian sperm after immersion in liquid nitrogen. J Gen Physiol 25:337–344

    PubMed  CAS  Google Scholar 

  • Hochi S, Watanabe K, Kato M, Hirabayashi M (2008) Live rats resulting from injection of oocytes with spermatozoa freeze-dried and stored for one year. Mol Reprod Dev 75:890–894

    PubMed  CAS  Google Scholar 

  • Hoffman I, Scherf B (2010) Implementing the global plan of action for animal genetic resources. Anim Gen Res 47:1–10

    Google Scholar 

  • Holt WV (1997) Alternative strategies for the long-term preservation of spermatozoa. Reprod Fertil Dev 9:309–319

    PubMed  CAS  Google Scholar 

  • Holt WV (2000) Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology 53:47–58

    PubMed  CAS  Google Scholar 

  • Holt WV, North RD (1984) Partially irreversible cold-induced lipid phase transitions in mammalian sperm plasma membrane domains: freeze-fracture study. J Exp Zool 230:473–483

    PubMed  CAS  Google Scholar 

  • Holt WV, North RD (1988) The role of membrane-active lipids in the protection of ram spermatozoa during cooling and storage. Gamete Res 19:77–89

    PubMed  CAS  Google Scholar 

  • Hong SW, Chung HM, Lim JM, Ko JJ, Yoon TK, Yee B, Cha KY (1999) Improved human oocyte development after vitrification: a comparison of thawing methods. Fertil Steril 72:142–146

    PubMed  CAS  Google Scholar 

  • Hoshi K, Yanagida K, Katayose H, Yazawa H (1994) Pronuclear formation and cleavage of mammalian eggs after microsurgical injection of freeze-dried sperm nuclei. Zygote 2:237–242

    PubMed  CAS  Google Scholar 

  • IETS-CANDES 2012. Companion Animals, Non-Domestic and Endangered Species Commitee of the International Embryo Transfer Society. http://www.iets.org/comm_candes.asp. Cited 13 Jul 2012

  • IISD (2007) International Institute for Sustainable Development—ABS management tool. Best practice standard and handbook for implementing genetic resource access and benefit-sharing activities. State Secretariat for Economic Affairs, Switzerland. Available via IISD. http://www.iisd.org/pdf/2007/abs_mt.pdf. Cited 3 Nov 2011

  • Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F (2003) Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod Biomed Online 6:191–200

    PubMed  Google Scholar 

  • Isachenko V, Isachenko E, Katkov II, Montag M, Dessole S, Nawroth F, van der Ven H (2004a) Cryoprotectant-free cryopreservation of human spermatozoa by vitrification and freezing in vapour: Effect on motility, DNA integrity, and fertilization ability. Biol Reprod 71:1167–1173

    PubMed  CAS  Google Scholar 

  • Isachenko E, Isachenko V, Katkov II, Rahimi G, Schöndorf T, Mallmann P, Dessole S, Nawroth F (2004b) DNA integrity and motility of human spermatozoa after standard slow freezing versus cryoprotectant-free vitrification. Hum Reprod 19:932–939

    PubMed  CAS  Google Scholar 

  • Isachenko V, Isachenko E, Montag M, Zaeva V, Krivokharchenko A, Nawroth F, Dessole S, Katkov I, van der Ven H (2005) Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reprod Biomed Online 10:350–354

    PubMed  Google Scholar 

  • Isachenko E, Isachenko V, Katkov II, Sanchez R, van der Ven H, Nawroth F (2007) Cryoprotectant-free vitrification of spermatozoa. In: Tucker MJ, Liebermann J (eds) Vitrification in assisted reproduction. Informa Healthcare, London, pp 87–105

    Google Scholar 

  • Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, Lulat AG, Risopatrón MJ, Sánchez R (2008) Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction 136:167–173

    PubMed  CAS  Google Scholar 

  • Isachenko V, Maettner R, Petrunkina AM, Sterzik K, Mallmann P, Rahimi G, Sánchez R, Risopatrón J, Damjanoski I, Isachenko E (2011) Vitrification of human ICSI/IVF spermatozoa without cryoprotectants: new capillary technology. J Androl doi. doi:10.2164/jandrol.111.013789

    Google Scholar 

  • Isom SC, Stevens JR, Li R, Spate LD, Spollen WG, Prather RS (2011) 143 transcriptional profiling by high-throughput sequencing of porcine pre- and peri-implantation embryos. Reprod Fertil Dev 24:184

    Google Scholar 

  • Jahnel F (1938) About the resistance of human spermatozoa against cold-shock. Klinische Wochenshrift 17:1273–1274

    Google Scholar 

  • Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36

    PubMed  CAS  Google Scholar 

  • Jeyendran RS, Graham EF, Schmehl MK (1981) Fertility of dehydrated bull semen. Cryobiology 18:292–300

    PubMed  CAS  Google Scholar 

  • Johnson LA, Aalbers JG, Willems CM, Sybesma W (1981) Use of boar spermatozoa for artificial insemination, I. Fertilizing capacity of fresh and frozen spermatozoa in sows on 36 farms. J Anim Sci 52:1130–1136

    PubMed  CAS  Google Scholar 

  • Johnson LA, Weitze KF, Fiser P, Maxwell WM (2000) Storage of boar semen. Anim Reprod Sci 62:143–172

    PubMed  CAS  Google Scholar 

  • Juarez JD, Parrilla I, Vazquez JM, Martinez EA, Roca J (2011) Boar semen can tolerate rapid cooling rates prior to freezing. Reprod Fertil Dev 23:681–690

    PubMed  Google Scholar 

  • Kaneko T, Nakagata N (2006) Improvement in the long-term stability of freeze-dried mouse spermatozoa by adding of a chelating agent. Cryobiology 53:279–282

    PubMed  CAS  Google Scholar 

  • Kaneko T, Kimura S, Nakagata N (2007) Offspring derived from oocytes injected with rat sperm, frozen or freeze-dried without cryoprotection. Theriogenology 68:1017–1021

    PubMed  CAS  Google Scholar 

  • Karlsson JOM, Cravalho EG (1994) A model of diffusion-limited ice growth inside biological cells during freezing. J Appl Phys 75:4442–4455

    Google Scholar 

  • Katkov II (2002) The point of maximum cell water volume excursion in case of presence of an impermeable solute. Cryobiology 44:193–203

    PubMed  CAS  Google Scholar 

  • Katkov II, Katkova N, Critser JK, Mazur P (1998) Mouse spermatozoa in high concentrations of glycerol: chemical toxicity vs osmotic shock at normal and reduced oxygen concentration. Cryobiology 37:235–338

    Google Scholar 

  • Kawai H, Sakurai M, Inoue I, Chûjô R, Kobayashi S (1992) Hydration of oligosaccharides: anomalous hydration ability of trehalose. Cryobiology 29:599–606

    PubMed  CAS  Google Scholar 

  • Kawase Y, Suzuki H (2011) A study on freeze-drying as a method of preserving mouse sperm. J Reprod Dev 57:176–182

    PubMed  Google Scholar 

  • Kawase Y, Hani T, Kamada N, Jishage K, Suzuki H (2007) Effect of pressure at primary drying of freeze-drying mouse sperm reproduction ability and preservation potential. Reproduction 133:841–846

    PubMed  CAS  Google Scholar 

  • Keskintepe L, Pacholczyk G, Machnicka A, Norris K, Curuk MA, Khan I, Brackett BG (2002) Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol Reprod 67:409–415

    PubMed  CAS  Google Scholar 

  • Kheirolomoom A, Satpathy GR, Török Z, Banerjee M, Bali R, Novaes RC, Little E, Manning DM, Dwyre DM, Tablin F, Crowe JH, Tsvetkova NM (2005) Phospholipid vesicles increase the survival of freeze-dried human red blood cells. Cryobiology 51:290–305

    PubMed  CAS  Google Scholar 

  • Klooster KL, Burruel VR, Meyers SA (2011) Loss of fertilization potential of desiccated rhesus macaque spermatozoa following prolonged storage. Cryobiology 62:161–166

    PubMed  Google Scholar 

  • Knight CA, DeVries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296

    PubMed  CAS  Google Scholar 

  • Koo DB, Kim YJ, Yu I, Kim HN, Lee KK, Han YM (2005) Effects of in vitro fertilization conditions on preimplantation development and quality of pig embryos. Anim Reprod Sci 90:101–110

    PubMed  Google Scholar 

  • Kusakabe H, Yanagimachi R, Kamiguchi Y (2008) Mouse and human spermatozoa can be freeze-dried without damaging their chromosomes. Hum Reprod 23:233–239

    PubMed  CAS  Google Scholar 

  • Kuwayama M, Kato O (2000) Successful vitrification of human oocytes [abstract 127]. Fertil Steril 74(3):49

    Google Scholar 

  • Kwon IK, Park KE, Niwa K (2004) Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol Reprod 71:1430–1436

    PubMed  CAS  Google Scholar 

  • Lane M, Schoolcraft WB, Gardner DK, Phil D (1999) Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertil Steril 72:1073–1078

    PubMed  CAS  Google Scholar 

  • Larson EV, Graham EF (1976) Freeze-drying of spermatozoa. Dev Biol Stand 36:343–348

    PubMed  CAS  Google Scholar 

  • Larsson K, Einarsson S (1975) Fertility and post-thawing characteristics of deep frozen boar spermatozoa. Andrologia 7:25–30

    PubMed  CAS  Google Scholar 

  • Lee KB, Niwa K (2006) Fertilization and development in vitro of bovine oocytes following intracytoplasmic injection of heat-dried sperm heads. Biol Reprod 74:146–152

    PubMed  CAS  Google Scholar 

  • Leffler KS, Walters CA (1996) A comparison of time, temperature, and refreezing variables on frozen sperm motility recovery. Fertil Steril 65:272–274

    PubMed  CAS  Google Scholar 

  • Leibo SP (1989) Equilibrium and nonequilibrium cryopreservation of embryos. Theriogenology 31:85–93

    Google Scholar 

  • Leibo SP, Mazur P (1971) The role of cooling rates in low-temperature preservation. Cryobiology 8:447–452

    PubMed  CAS  Google Scholar 

  • Leibo SP, Songsasen N (2002) Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57:303–326

    PubMed  CAS  Google Scholar 

  • Li MW, Willis BJ, Griffey SM, Spearow JL, Lloyd KC (2009) Assessment of three generations of mice derived by ICSI using freeze-dried sperm. Zygote 17:239–251

    PubMed  Google Scholar 

  • Liebermann J, Tucker M, Graham J, Han T, Davis A, Levy MJ (2002) Blastocyst development after vitrification of multipronucleate zygotes using the flexipet denuding pipette (FDP). Reprod Biomed Online 4:148–152

    Google Scholar 

  • Liu JL, Kusakabe H, Chang CC, Suzuki H, Schmidt DW, Julian M, Pfeffer R, Bormann CL, Tian XC, Yanagimachi R, Yang X (2004) Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol Reprod 70:1776–1781

    PubMed  CAS  Google Scholar 

  • Liu QC, Chen TE, Huang XY, Sun FZ (2005) Mammalian freeze-dried sperm can maintain their calcium oscillation-inducing ability when microinjected into mouse eggs. Biochem Biophys Res Commun 328:824–830

    PubMed  CAS  Google Scholar 

  • Liu Y, Du Y, Lin L, Li J, Kragh PM, Kuwayama M, Bolund L, Yang H, Vajta G (2008) Comparison of efficiency of open pulled straw (OPS) and cryotop vitrification for cryopreservation of in vitro matured pig oocytes. Cryo Letters 29:315–320

    PubMed  CAS  Google Scholar 

  • Lloyd RE, Romar R, Matás C, Gutiérrez-Adán A, Holt WV, Coy P (2009) Effects of oviductal fluid on the development, quality, and gene expression of porcine blastocysts produced in vitro. Reproduction 137:679–687

    PubMed  CAS  Google Scholar 

  • Loi P, Matsukawa K, Ptak G, Clinton M, Fulka J Jr, Nathan Y, Arav A (2008) Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS ONE 3:e2978

    PubMed  Google Scholar 

  • Lopaczynski W, Chung V, Moore T, Guidry J, Merritt L, Cosentino M, Shea K (2002) Increasing sample storage temperature above −132 °C (glass transition temperature of water [gttw] induces apoptosis in cryopreserved human peripheral blood mononuclear cells. In: Proceedings of the ISBER Annual meeting, Danvers, USA

    Google Scholar 

  • Lovell-Badge R (1998) A freeze-dryer and a fertile imagination. Nat Biotechnol 16:618–619

    PubMed  CAS  Google Scholar 

  • Lubzens E, Cerdà J, Clark MS (2010) Dormancy and resistance in harsh environments. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Luyet BJ (1937) The vitrification of organic colloids and of protoplasm. Biodynamica 1:1–14

    Google Scholar 

  • Luyet BJ, Hodapp A (1938) Revival of frog’s spermatozoa vitrified in liquid air. Proc Meet Soc Exp Biol 39:433–434

    Google Scholar 

  • MAF (2011) Review 2010 of live animal and germplasm export certification charges. Available via Ministry of Agriculture and Forestry, New Zealand. http://www.biosecurity.govt.nz/files/biosec/consult/review-live-animal-germplasm-export-certification-charges.pdf. Cited 2 Nov 2011

  • Maldjian A, Pizzi F, Gliozzi T, Cerolini S, Penny P, Noble R (2004) Changes in sperm quality and lipid composition during cryopreservation of boar semen. Theriogenology 63:411–421

    Google Scholar 

  • Martino A, Pollard JA, Leibo SP (1996) Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev 45:503–512

    PubMed  CAS  Google Scholar 

  • Martins CF, Báo SN, Dode MN, Correa GA, Rumpf R (2007a) Effects of freeze-drying on cytology, ultrastructure, DNA fragmentation, and fertilizing ability of bovine sperm. Theriogenology 67:1307–1315

    PubMed  CAS  Google Scholar 

  • Martins CF, Dode MN, Báo SN, Rumpf R (2007b) The use of the acridine orange test and the TUNEL assay to assess the integrity of freeze-dried bovine spermatozoa DNA. Genet Mol Res 6:94–104

    PubMed  CAS  Google Scholar 

  • Matsumoto H, Jiang JY, Tanaka T, Sasada H, Sato E (2001) Vitrification of large quantities of immature bovine oocytes using nylon mesh. Cryobiology 42:139–144

    PubMed  CAS  Google Scholar 

  • Maxwell WMC, Johnson LA (1997) Membrane status of boar spermatozoa after cooling or cryopreservation. Theriogenology 48:209–219

    PubMed  CAS  Google Scholar 

  • Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369

    PubMed  CAS  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 143:C125–C142

    Google Scholar 

  • Mazur P, Koshimoto C (2002) Is intracellular ice formation the cause of death of mouse sperm frozen at high cooling rates? Biol Reprod 66:1485–1490

    PubMed  CAS  Google Scholar 

  • Mazur P, Leibo SP, Chu EH (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:345–355

    PubMed  CAS  Google Scholar 

  • Mazur P, Katkov II, Katkova N, Critser JK (2000) The enhancement of the ability of mouse sperm to survive freezing and thawing by the use of high concentrations of glycerol and the presence of an Escherichia coli membrane preparation (Oxyrase) to lower the oxygen concentration. Cryobiology 40:187–209

    PubMed  CAS  Google Scholar 

  • Mazur P, Leibo SP, Seidel GE (2008) Cryopreservation of the germplasm of animals used in biological and biomedical research: importance, impact, status and future directions. Biol Reprod 78(1):2–12

    PubMed  CAS  Google Scholar 

  • McGinnis LK, Zhu L, Lawitts JA, Bhowmick S, Toner M, Biggers JD (2005) Mouse sperm desiccated and stored in trehalose medium without freezing. Biol Reprod 73:627–633

    PubMed  CAS  Google Scholar 

  • Medrano A, Holt WV (1998) Inter-individual boar sperm susceptibility to freezing-thawing protocols. Arch Zootec 47:319–327

    Google Scholar 

  • Medrano A, Holt WV, Watson PF (2009) Controlled freezing studies on boar sperm cryopreservation. Andrologia 41:246–250

    PubMed  CAS  Google Scholar 

  • Meng X, Gu X, Wu C, Dai J, Zhang T, Xie Y, Wu Z, Liu L, Ma H, Zhang D (2010) Effect of trehalose on the freeze-dried boar spermatozoa. Sheng Wu Gong Cheng Xue Bao 26:1143–1149

    PubMed  CAS  Google Scholar 

  • Meryman HT (1971) Osmotic stress as a mechanism of freezing injury. Cryobiology 8:489–500

    PubMed  CAS  Google Scholar 

  • Meryman HT, Kafig E (1963) Freeze-drying of bovine spermatozoa. J Reprod Fertil 5:87–94

    PubMed  CAS  Google Scholar 

  • Meyers SA (2006) Dry storage of sperm: applications in primates and domestic animals. Reprod Fertil Dev 18:1–5

    PubMed  Google Scholar 

  • Meyers SA, Li MW, Enders AC, Overstreet JW (2009) Rhesus macaque blastocysts resulting from intracytoplasmic sperm injection of vacuum-dried spermatozoa. J Med Primatol 38:310–307

    PubMed  Google Scholar 

  • Miller FP, Vandome AF, McBrewster J (2009) Cryopreservation. VDM Publishing House Ltd, Saarbrücken

    Google Scholar 

  • Milovanov VK, Selivanova O (1932) Dilutors for sperm of livestock. Probl zhiwotn 2:75–86

    Google Scholar 

  • Morris J (2007) Asymptote guide to cryopreservation, 2nd edn. Available via Asymptote Ltd., St. Johns Innovation Centre, Cambridge. http://www.asymptote.co.uk/Publications%20+%20PDF%20Links/Asymptote%20Guide%20to%20Cryopreservation.pdf. Cited 4 Nov 2011

  • Morris GJ, Acton E, Avery S (1999) A novel approach to sperm cryopreservation. Hum Reprod 14:1013–1021

    PubMed  CAS  Google Scholar 

  • Muiño-Blanco T, Pérez-Pé R, Cebrián-Pérez JA (2008) Seminal plasma proteins and sperm resistance to stress. Reprod Domest Anim 43:18–31

    PubMed  Google Scholar 

  • Mukaida T, Nakamura S, Tomiyama T, Wada S, Kasai M, Takahashi K (2001) Successful birth after transfer of vitrified human blastocysts with use of a cryoloop containerless technique. Fertil Steril 76:618–620

    PubMed  CAS  Google Scholar 

  • Muldrew K, McGann LE (1994) The osmotic rupture hypothesis of intracellular freezing injury. Biophysical J 66:532–541

    CAS  Google Scholar 

  • Muneto T, Horiuchi T (2011) Full-term development of hamster embryos produced by injecting freeze-dried spermatozoa into oocytes. J Mammal Ova Res 28:32–39

    Google Scholar 

  • Nail SL, Jiang S, Chongprasert S, Knopp SA (2002) Fundamentals of freeze-drying. Pharm Biotechnol 14:281–360

    PubMed  CAS  Google Scholar 

  • Nakai M, Kashiwazaki N, Takizawa A, Maedomari N, Ozawa M, Noguchi J, Kaneko H, Shino M, Kikuchi K (2007) Effects of chelating agents during freeze-drying of boar spermatozoa on DNA fragmentation and on developmental ability in vitro and in vivo after intracytoplasmic sperm head injection. Zygote 15:15–24

    PubMed  CAS  Google Scholar 

  • Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, Mallmann P, Dattena M, Capobianco G, Peters D, Orth I, Isachenko E (2002) Vitrification of human spermatozoa without cryoprotectants. Cryo Lett 23:93–102

    CAS  Google Scholar 

  • Nawroth F, Rahimi G, Isachenko E, Isachenko V, Liebermann M, Tucker MJ, Liebermann J (2005) Cryopreservation in assisted reproductive technology: new trends. Semin Reprod Med 23:325–335

    PubMed  Google Scholar 

  • Nikolopoulou M, Soucek DA, Vary JC (1985) Changes in the lipid content of boar sperm plasma membranes during epididymal maturation. Biochim Biophys Acta 815:486–498

    PubMed  CAS  Google Scholar 

  • Oberstein N, O’Donovan MK, Bruemmer JE (2001) Cryopreservation of equine embryos by open pulled straws, cryoloop, or conventional cooling methods. Theriogenology 55:607–613

    PubMed  CAS  Google Scholar 

  • Oetjen GW, Haseley P (2004) Freeze-drying. Wiley-VCH, Weinheim

    Google Scholar 

  • OIE (2011) Terrestrial animal health code (TAHC). Available via World Organisation for Animal Health (Office International des Epizooties). http://www.oie.int/publications-and-documentation/general-information/. Cited 25 Nov 2011

  • Okazaki T, Abe S, Yoshida S, Shimada M (2009) Seminal plasma damages sperm during cryopreservation, but its presence during thawing improves semen quality and conception rates in boars with poor post-thaw semen quality. Theriogenology 71:491–498

    PubMed  CAS  Google Scholar 

  • Oliver AE, Jamil K, Crowe JH, Tablin F (2004) Loading human mesenchymal stem cells with trehalose by fluid-phase endocytosis. Cell Preserv Tech 2:35–49

    CAS  Google Scholar 

  • Padilla AW, Tobback C, Foote RH (1991) Penetration of frozen-thawed, zona-free hamster oocytes by fresh and slow-cooled stallion spermatozoa. J Reprod Fertil Suppl 44:207–212

    PubMed  CAS  Google Scholar 

  • Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340:17–18

    PubMed  CAS  Google Scholar 

  • Papis K, Shimizu M, Izaike Y (2001) Factors affecting the survivability of bovine oocytes vitrified in droplets. Theriogenology 15:651–658

    Google Scholar 

  • Parkes AS (1945) Preservation of human spermatozoa at low temperatures. Br Med J 2:212–213

    PubMed  CAS  Google Scholar 

  • Parks JE, Lynch DV (1992) Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29:255–266

    PubMed  CAS  Google Scholar 

  • Parks JE, Meacham TN, Saacke RG (1981) Cholesterol and phospholipids of bovine spermatozoa, II. Effect of liposomes prepared from egg phosphatidylcholine and cholesterol on sperm cholesterol, phospholipids, and viability at 4 and 37 °C. Biol Reprod 24:399–404

    PubMed  CAS  Google Scholar 

  • Pegg DE, Diaper MP (1988) On the mechanism of injury to slowly frozen erythrocytes. Biophys J 54:471–488

    PubMed  CAS  Google Scholar 

  • Peña FJ, Saravia F, García-Herreros M, Núñez-Martínez I, Tapia JA, Johannisson A, Wallgren M, Rodríguez-Martínez H (2005) Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality. J Androl 26:716–723

    PubMed  Google Scholar 

  • Peña FJ, Rodríguez Martínez H, Tapia JA, Ortega Ferrusola C, González Fernández L, Macías García B (2009) Mitochondria in mammalian sperm physiology and pathology: a review. Reprod Domest Anim 44:345–349 (Review)

    Google Scholar 

  • Pérez-Sánchez F, Cooper TG, Yeung CH, Nieschlang E (1994) Improvement in quality of cryopreserved human spermatozoa by swim-up before freezing. Int J Androl 17:115–120

    PubMed  Google Scholar 

  • Pesch S, Bergmann M (2006) Structure of mammalian spermatozoa in respect to viability, fertility and cryopreservation. Micron 37:597–612

    PubMed  Google Scholar 

  • Petrunkina AM, Jebe E, Töpfer-Petersen E (2005a) Regulatory and necrotic volume increase in boar spermatozoa. J Cell Physiol 204:508–521

    PubMed  CAS  Google Scholar 

  • Petrunkina AM, Volker G, Weitze KF, Beyerbach M, Töpfer-Petersen E, Waberski D (2005b) Detection of cooling-induced membrane changes in the response of boar sperm to capacitating conditions. Theriogenology 63:2278–2299

    PubMed  CAS  Google Scholar 

  • Pillet E, Labbe C, Batellier F, Duchamp G, Beaumal V, Anton M, Desherces S, Schmitt E, Magistrini M (2011) Liposomes as an alternative to egg yolk in stallion freezing extender. Theriogenology (in press). doi:10.1016/j.theriogenology.2011.08.001

  • Poleo GA, Godke RR, Tiersch TR (2005) Intracytoplasmic sperm injection using cryopreserved, fixed, and freeze-dried sperm in eggs of Nile tilapia. Mar Biotechnol (NY) 7:104–111

    CAS  Google Scholar 

  • Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666

    PubMed  CAS  Google Scholar 

  • Polge C, Salamon S, Wilmut I (1970) Fertilizing capacity of frozen boar semen following surgical insemination. Vet Rec 87:424–429

    PubMed  CAS  Google Scholar 

  • Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9(11):553–559

    PubMed  CAS  Google Scholar 

  • Potts M, Slaughter SM, Hunneke FU, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: application of principles to human cells. Integr Comp Biol 45:800–809

    PubMed  CAS  Google Scholar 

  • Pursel VG, Johnson LA (1975) Freezing of boar spermatozoa: fertilizing capacity with concentrated semen and a new thawing procedure. J Anim Sci 40:99–102

    PubMed  CAS  Google Scholar 

  • Pursel VG, Johnson LA, Schulman LL (1973) Effect of dilution, seminal plasma and incubation period on cold shock susceptibility of boar spermatozoa. J Anim Sci 37:528–531

    PubMed  CAS  Google Scholar 

  • Quinn PJ (1985) A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 22:128–146

    PubMed  CAS  Google Scholar 

  • Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313:573–575

    PubMed  CAS  Google Scholar 

  • Rama Raju GA, Murali Krishna K, Prakash GJ, Madan K (2006) Vitrification: an emerging technique for cryopreservation in assisted reproduction programmes. Embryo Talk 1:210–227

    Google Scholar 

  • Rapatz G, Luyet B (1959) Recrystallization at high sub-zero temperatures in gelatin gels subjecte to various cooling treatments. Biodynamica 8:85–105

    PubMed  CAS  Google Scholar 

  • Rodríguez L (2005) Reconstitution of cryopreserved hematopoietic products: quality control, osmotic stability and DMSO washing. Doctoral thesis, Autonomous University of Barcelona. Available via TDX home. http://tdx.cat/handle/10803/4471. Cited 4 Nov 2011

  • Röpke T, Oldenhof H, Leiding C, Sieme H, Bollwein H, Wolkers WF (2011) Liposomes for cryopreservation of bovine sperm. Theriogenology 76(8):1465–1472

    PubMed  Google Scholar 

  • Saacke RG, Almquist JO (1961) Freeze-drying of bovine spermatozoa. Nature 192:995–996

    PubMed  CAS  Google Scholar 

  • Saki G, Rahim F, Zergani MJ (2009) Vitrification of small volume of normal human sperms: use of open pulled straw carrier. J Med Sci 9:30–35

    Google Scholar 

  • Sánchez R, Risopatrón J, Schulz M, Villegas J, Isachenko V, Kreinberg R, Isachenko E (2011) Canine sperm vitrification with sucrose: effect on sperm function. Andrologia 43:233–241

    PubMed  Google Scholar 

  • Sánchez-Partida LG, Simerly CR, Ramalho-Santos J (2008) Freeze-dried primate sperm retains early reproductive potential after intracytoplasmic sperm injection. Fertil Steril 89:742–745

    PubMed  Google Scholar 

  • Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19

    PubMed  CAS  Google Scholar 

  • SCBD (2001–2011) Biosafety clearing-house laws and regulations. http://bch.cbd.int/database/laws/. Cited 4 Nov 2011

  • Schaffner CS (1942) Longevity of fowl spermatozoa in frozen condition. Science 96:337

    Google Scholar 

  • Schulz M, Muñoz M, Risopatrón J, Sánchez R (2006) Cryopreservation of human spermatozoa by vitrification. Int J Morphology 24:31

    Google Scholar 

  • Shaw JM, Jones GM (2003) Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum Reprod Update 9:583–605

    PubMed  CAS  Google Scholar 

  • Shaw J, Oranratnachai A, Trounson A (2000) Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53:59–72

    PubMed  CAS  Google Scholar 

  • Sherman JK (1954) Freezing and freeze-drying of human spermatozoa. Fertil Steril 5:357–371

    PubMed  CAS  Google Scholar 

  • Sherman JK (1957) Freezing and freeze-drying of bull spermatozoa. Am J Physiol 190:281–286

    PubMed  CAS  Google Scholar 

  • Sherman JK (1973) Synopsis of the use of frozen human sperm since 1964: state of the art of human semen banking. Fertil Steril 24:397–412

    PubMed  CAS  Google Scholar 

  • Shirakashi R, Köstner CM, Müller KJ, Kürschner M, Zimmermann U, Sukhorukov VL (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J Membr Biol 189:45–54

    PubMed  CAS  Google Scholar 

  • Shulkin PM, Seltzer SE, Davis MA, Adams DF (1984) Lyophilized liposomes: a new method for long-term vesicular storage. J Microencapsul 1:73–80

    PubMed  CAS  Google Scholar 

  • Silva ME, Berland M (2004) Vitrificación de blastocitos bovinos producidos in vitro con el método open pulled straw (OPS): primer reporte. Arch Med Vet 36:79–85

    Google Scholar 

  • Simpson AM, Swan MA, White IG (1987) Susceptibility of epididymal boar sperm to cold shock and protective action of phosphatidylcholine. Gamete Res 17:355–373

    PubMed  CAS  Google Scholar 

  • Sitaula R, Elmoazzen H, Toner M, Bhowmick S (2009) Desiccation tolerance in bovine sperm: a study of the effect of intracellular sugars and the supplemental roles of an antioxidant and a chelator. Cryobiology 58:322–330

    PubMed  CAS  Google Scholar 

  • Sitaula R, Fowler A, Toner M, Bhowmick S (2010) A study of the effect of sorbitol on osmotic tolerance during partial desiccation of bovine sperm. Cryobiology 60:331–336

    PubMed  CAS  Google Scholar 

  • Smith AU (1961) Biological Effects of Freezing and Supercooling: a monograph of the physiological society. Edward Arnold, London

    Google Scholar 

  • Sørensen E (1940) Insemination with gelatinized semen in paraffined cellophane tubes. Medlernsbl Danske Dyrlaegeforen 23:166–169

    Google Scholar 

  • Spallanzani L (1776) Osservazioni e spezienze interno ai vermicelli spermatici dell’ uomo e degli animali. Opusculi di Fisica Animale e Vegetabile, Modena

    Google Scholar 

  • Stoll C, Wolkers WF (2011) Membrane Stability during biopreservation of blood cells. Transfus Med Hemother 38:89–97

    PubMed  Google Scholar 

  • Storey KB, Storey JM (1990) Frozen and alive. Sci Am 263:92–97

    PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Ice formation in higher-plant cells. In: Plant physiology online 5th edn, chapter 26, topic 26.3. Sinauer Associates Inc., Sunderland. Available via Plant Phisiology companion website. http://5e.plantphys.net/article.php?ch=26&id=254. Cited 4 Nov 2011

  • Tamuli MK, Watson PF (1994) Cold resistance of live boar spermatozoa during incubation after ejaculation. Vet Rec 135:160–162

    PubMed  CAS  Google Scholar 

  • Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Carranco R, Hiratsu K, Ohme-Takagi M, Jordano J (2010) Loss of function of the HSFA9 seed longevity program. Plant Cell Environ 33:1408–1417

    PubMed  CAS  Google Scholar 

  • Thurston LM, Watson PF, Mileham AJ, Holt WV (2001) Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J Androl 22:382–394

    PubMed  CAS  Google Scholar 

  • Thurston LM, Watson PF, Holt WV (2002a) Semen cryopreservation: a genetic explanation for species and individual variation? Cryo Lett 23:255–262

    Google Scholar 

  • Thurston LM, Siggins K, Mileham AJ, Watson PF, Holt WV (2002b) Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability cryopreservation. Biol Reprod 66:545–554

    PubMed  CAS  Google Scholar 

  • Thurston LM, Holt WV, Watson PF (2003) Post-thaw functional status of boar spermatozoa cryopreserved using three controlled rate freezers: a comparison. Theriogenology 60:101–113

    PubMed  Google Scholar 

  • Tolleter D, Hincha DK, Macherel D (2010) A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Biochim Biophys Acta 1798:1926–1933

    PubMed  CAS  Google Scholar 

  • Tucker MJ, Liebermann J (2007) Vitrification in assisted reproduction: a user’s manual and trouble-shooting guide. Informa Healthcare, London

    Google Scholar 

  • Vajta G, Booth PJ, Holm P, Callesen H (1997) Successful vitrification of early stage bovine in vitro produced embryos with the open pulled straw (OPS) method. CryoLetters 18:191–195

    Google Scholar 

  • Vajta G, Kuwayama M, Holm P, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58

    PubMed  CAS  Google Scholar 

  • Vajta G, Nagy ZP, Cobo A, Conceicao J, Yovich J (2009) Vitrification in assisted reproduction: myths, mistakes, disbeliefs and confusion. Reprod Biomed Online 19:1–7

    PubMed  Google Scholar 

  • Vanderzwalmen P, Bertin G, Debauche C, Standaart V, Schoysman E (2000) “In vitro” survival of metaphase II oocytes (MII) and blastocysts after vitrification in a hemi-straw (HS) system. Fertility and Sterility 74:S215–S216 (abstract)

    Google Scholar 

  • Vazquez JM, Roca J, Gil MA, Cuello C, Parrilla I, Vazquez JL, Martínez EA (2008) New developments in low-dose insemination technology. Theriogenology 70:1216–1224

    PubMed  CAS  Google Scholar 

  • Waberski D, Weitze KF, Gleumes T, Schwarz M, Willmen T, Petzoldt R (1994) Effect of time of insemination relative to ovulation on fertility with liquid and frozen boar semen. Theriogenology 42:831–840

    PubMed  CAS  Google Scholar 

  • Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 16:639–641

    PubMed  CAS  Google Scholar 

  • Watanabe H, Asano T, Abe Y, Fukui Y, Suzuki H (2009) Pronuclear formation of freeze-dried canine spermatozoa microinjected into mouse oocytes. J Assist Reprod Genet 26:531–536

    PubMed  Google Scholar 

  • Waterhouse KE, Hofmo PO, Tverdal A, Miller RR Jr (2006) Within and between breed differences in freezing tolerance and plasma membrane fatty acid composition of boar sperm. Reproduction 131:887–894

    PubMed  CAS  Google Scholar 

  • Watson PF (1979) The preservation of semen in mammals. In: Finn CA (ed) Oxford reviews of reproductive biology. Oxford University Press, Oxford, pp 283–350

    Google Scholar 

  • Watson PF (1981) The roles of lipid and protein in the protection of ram spermatozoa at 5 °C by egg-yolk lipoprotein. J Reprod Fértil 62:483–492

    PubMed  CAS  Google Scholar 

  • Watson PF (2000) The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 60–61:481–492

    PubMed  Google Scholar 

  • Watson PF, Holt WV (2001) Cryobanking the genetic resource: wildlife conservation for the future?. Taylor & Francis Group, London

    Google Scholar 

  • WAZA (2005) Building a future for wildlife: the world zoo and aquarium conservation strategy. Available via World Association of Zoos and Aquariums (WAZA) conservation strategies. http://www.waza.org/files/webcontent/documents/wzacs/wzacs-en.pdf. Cited 4 Nov 2011

  • Westendorf P, Richter L, Treu H (1975) Deep freezing of boar sperm. Laboratory and insemination results using the Hülsenberger straw method. Dtsch Tierarztl Wochenschr 82:261–267

    PubMed  CAS  Google Scholar 

  • White IG (1993) Lipids and calcium uptake of sperm preservation: a review. Reprod Fertil Dev 5:639–658

    PubMed  CAS  Google Scholar 

  • Wilhelm KM, Graham JK, Squires EL (1996) Effects of phosphatidylserine and cholesterol liposomes on the viability, motility, and acrosomal integrity of stallion spermatozoa prior to and after cryopreservation. Cryobiology 33:320–329

    PubMed  CAS  Google Scholar 

  • Yang G, Gilstrap K, Zhang A, Xu LX, He X (2010) Collapse temperature of solutions important for lyopreservation of living cells at ambient temperature. Biotechnol Bioeng 106:247–259

    PubMed  CAS  Google Scholar 

  • Zavos PM, Graham EF (1983) Effects of various degrees of supercooling and nucleation temperatures on fertility of frozen turkey spermatozoa. Cryobiology 20:553–559

    PubMed  CAS  Google Scholar 

  • Zeron Y, Tomczak M, Crowe J, Arav A (2002) The effect of liposomes on thermotropic membrane phase transitions of bovine spermatozoa and oocytes: implications for reducing chilling sensitivity. Cryobiology 45:143–152

    PubMed  CAS  Google Scholar 

  • Zhmakin A (2009) Fundamentals of cryobiology. Physical phenomena and mathematical models. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Zondervan R, Kulzer F, Berkhout GCG, Orrit M (2007) Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. PNAS 104:12628–12633

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Casas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casas, I., Flores, E. (2013). Gene Banking: The Freezing Strategy. In: Bonet, S., Casas, I., Holt, W., Yeste, M. (eds) Boar Reproduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35049-8_11

Download citation

Publish with us

Policies and ethics