Skip to main content

Plant Morphoanatomical Adaptations to Environmental Conditions of the Pantanal Wetland

  • Chapter
  • First Online:
Flora and Vegetation of the Pantanal Wetland

Abstract

The Pantanal is well-known for its landscape diversity, which is subject to annual inundation followed by periods of drought, during which it is prone to fire. Its flora is diverse, ranging from aquatic macrophytes to woody plants. In this chapter, we present an overview of the morphoanatomical adaptations of aquatic macrophytes and woody species in the Pantanal to extreme environmental conditions. The morphoanatomy of the organs of aquatic macrophytes varies with inundation cycle and within the same individual. In general, variations occur in the amount and distribution of aerenchyma, location and stomatal functionality, and amount and arrangement of chlorenchyma. Inundation in riparian forests leads to sediment anoxia. Responses to anoxia in seedlings vary from the formation of hypertrophied lenticels and development of adventitious roots to reduced plant growth. Periodically, fires occur at the end of water receding, when there is an accumulation of litter in extensive areas previously covered by water and supporting aquatic vegetation. Under such conditions, the persistence of species is guaranteed by diaspores or belowground organs that remain dormant in the soil, sprouting in the subsequent flooding. The numerous morphoanatomical adaptations in aquatic and woody plants are essential features required for their survival in the Pantanal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamec L (2011) Dark respiration and photosynthesis of dormant and sprouting turions of aquatic plants. Fundam Appl Limnol/Archiv für Hydrobiol 179(2):151–158

    Article  CAS  Google Scholar 

  • Adámoli J (1982) O Pantanal e suas relações fitogeográficas com os Cerrados. Anais do Congresso Nacional de Botânica 32:109–119

    Google Scholar 

  • Angeles G (1992) The periderm of flooded and non-flooded Ludwigia octovalvis (Onagraceae). IAWA Bull 13(2):195–200

    Article  Google Scholar 

  • Angeles G, Evert RF, Kozlowski TT (1986) Development of lenticels and adventitious roots in flooded Ulmus americana seedlings. Can J For Res 16:585–590

    Article  Google Scholar 

  • Angyalossy V, Pace M, Evert RF, Marcati CR, Oskolski AA, Terrazas T, Kotina E, Lens F, Mazzoni-Viveiros SC, Angeles G, Machado SR, Crivellaro A, Rao KS, Junikka L, Nicolaeva N, Baas P (2016) IAWA list of microscopic bark features. IAWA J 37:517–615. https://doi.org/10.1163/22941932-20160151

    Article  Google Scholar 

  • Appenroth K, Hertel W, Jungnickel F, Augstenn H (1989) Influence of nutrient deficiency and light on turion formation in Spirodela polyrhiza (L.) Schleiden. Biochem Physiol Pflanzen 184(5-6):395–403

    Article  CAS  Google Scholar 

  • Arruda WS, Oldeland J, Paranhos Filho AC, Pott A, Cunha NL, Ishii IH, Damasceno-Junior GA (2016) Inundation and fire shape the structure of riparian forests in the Pantanal, Brazil. PLoS One 11(6):e0156825. https://doi.org/10.1371/journal.pone.0156825

    Article  CAS  PubMed Central  Google Scholar 

  • Barrat-Segretain MH (1996) Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetation 123(1):13–37

    Article  Google Scholar 

  • Barrat-Segretain MH, Bornette G, Hering-Vilas-Boas A (1998) Comparative abilities of vegetative regeneration among aquatic plants growing in disturbed habitats. Aquat Bot 60(3):201–211

    Article  Google Scholar 

  • Barroso GM, Morim MP, Peixoto AL, Ichaso CLF (1999) Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. UFV, Viçosa, 443 pp

    Google Scholar 

  • Bedoya AM, Madriñán S (2015) Evolution of the aquatic habit in Ludwigia (Onagraceae): Morpho-anatomical adaptive strategies in the Neotropics. Aquat Bot 120:352–362. https://doi.org/10.1016/j.aquabot.2014.10.005

    Article  Google Scholar 

  • Boeger MRT, Poulson ME (2003) Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquat Bot 72:123–135

    Article  Google Scholar 

  • Boesewinkel FD (1987) Ovules and seeds of Trigoniaceae. Acta Bot Neerl 36(1):81–91

    Article  Google Scholar 

  • Bona C, Morretes BL (2003) Anatomia das raízes de Bacopa salzmannii (Benth.) Wettst. ex Edwall e Bacopa monnierioides (Cham.) Robinson (Scrophulariaceae) em ambientes aquático e terrestre. Acta Bot Bras 17(1):155–170

    Article  Google Scholar 

  • Bonilla-Barbosa J, Novelo A, Hornelas Orozco Y, Márquez-Guzmán J (2000) Comparative seed morphology of Mexican Nymphaea species. Aquat Bot 68(3):189–204

    Article  Google Scholar 

  • Brock MA (2011) Persistence of seed banks in Australian temporary wetlands. Freshw Biol 56:1312–1327

    Article  Google Scholar 

  • Carpenter KJ (2006) Specialized structures in the leaf epidermis of basal angiosperms: morphology, distribution, and homology. Am J Bot 93(5):665–681. https://doi.org/10.3732/ajb.93.5.665

    Article  PubMed  Google Scholar 

  • Catian G (2015) Efeitos da dinâmica de inundação nas estratégias reprodutivas, na estrutura do banco de sementes e na diversidade funcional de comunidades de macrófitas aquáticas em lagoas do Pantanal. Tese de doutorado pelo programa de Pós-graduação Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul, 115p

    Google Scholar 

  • Catian G, Scremin-Dias E (2015) Phenotypic variations in leaf anatomy of Nymphaea gardneriana (Nymphaeaceae) demonstrate its adaptive plasticity. J Torrey Bot Soc 142(1):18–26. https://doi.org/10.3159/TORREY-D-14-00038.1

    Article  Google Scholar 

  • Catian G, Silva DM, Súarez YR, Scremin-Dias E (2018) Effects of flood pulse dynamics on functional diversity of macrophyte communities in the Pantanal wetland. Wetlands 38(5):975–991. https://doi.org/10.1007/s13157-018-1050-5

    Article  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70(1):1–9

    Article  CAS  Google Scholar 

  • Chambers PA, Spence DHN, Weeks DC (1985) Photocontrol of turion formation by Potamogeton crispus L. in the laboratory and natural water. New Phytol 99(2):183–194

    Article  Google Scholar 

  • Chambers RM, Meyerson LA, Saltonstall K (1999) Expansion of Phragmites australis into tidal wetlands of North America. Aquat Bot 64(3–4):261–273

    Article  Google Scholar 

  • Compton RH (1909) The morphology and anatomy of Utricularia brachiata, Oliver. New Phytol 8(4):117–130

    Article  Google Scholar 

  • Conard HS (1905) The waterlilies: a monograph of the genus Nymphaea (No. 4). Published by the Carnegie Institution of Washington.

    Google Scholar 

  • Cutter EG (1987) Anatomia vegetal, vol 1. Roca, São Paulo

    Google Scholar 

  • Damasceno-Junior GA, Semir J, Santos MFA, Leitão-Filho HF (2005) Structure, distribution of species and inundation in a riparian forest of Rio Paraguai, Pantanal, Brazil. Flora 200(2):119–135. https://doi.org/10.1016/j.flora.2004.09.002

    Article  Google Scholar 

  • Demetrio GR, Barbosa MEA, Coelho FF (2014) Water level-dependent morphological plasticity in Sagittaria montevidensis Cham. and Schl. (Alismataceae). Braz J Biol 74(3):S199–S206

    Article  CAS  PubMed  Google Scholar 

  • DNOS (1974) Estudos Hidrológicos da Bacia do Alto Paraguai. Programa das Nações Unidas para o Desenvolvimento (Relatório Técnico), Rio de Janeiro

    Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Biol 48(1):223–250

    Article  CAS  Google Scholar 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol Plantarum 111(1): 46-54. doi:https://doi.org/10.1034/j.1399-3054.2001.1110107.x.

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Evert R (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken

    Book  Google Scholar 

  • Evert RF, Eichhorn SE, Raven PH (2012) Biology of plants. W. H. Freeman, New York

    Google Scholar 

  • Fahn A (1982) Plant anatomy, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Fauth A (1903) Beiträge zur Anatomie und Biologie der Früchte und Samen einiger einheimischer Wasser-und Sumpfpflanzen. Jena, G. Fischer

    Google Scholar 

  • Ferreira-Júnior WG, Schaefer CEGR, Cunha CN, Duarte TG, Chieregatto LC, Carmo FMS (2016) Flood regime and water table determines tree distribution in a forest-savanna gradient in the Brazilian Pantanal. Anais da Academia Brasileira de Ciências 88:719–731. https://doi.org/10.1590/0001-3765201620150341

    Article  PubMed  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of confer bark against bark beetles and other pests. New Phytol 167(2):353–375. https://doi.org/10.1111/j.1469-8137.2005.01436.x

    Article  CAS  Google Scholar 

  • Gessner F, Hammer L (1962) Ökologisch-physiologische Untersuchungen an den Podostemonaceen des Caroni. Int Revue ges Hydrobiol Hydrogr 47(4):497–514

    Article  Google Scholar 

  • Gould KS, Kuhn DN, Lee DW, Oberbauer SF (1995) Why leaves are sometimes red. Nature 378:241–242. https://doi.org/10.1038/378241b0

    Article  CAS  Google Scholar 

  • Gravatt DA, Kirby CJ (1998) Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. Tree Physiol 18:411–417. https://doi.org/10.1093/treephys/18.6.411

    Article  PubMed  Google Scholar 

  • Holsback-Menegucci ZR (2008) Estudo comparativo de respostas ao alagamento em plantas jovens de espécies arbóreas provenientes do Pantanal, Mato Grosso do Sul, Brasil. Dissertação de Mestrado, Programa de Pós-Graduação em Biologia Vegetal. Universidade Federal de Mato Grosso do Sul

    Google Scholar 

  • Hutchinson GE (1975) A treatise on limnology, v. 3. Limnological botany. John Wiley & Sons, New York, London, Sydney, and Toronto, xii + 660 p

    Google Scholar 

  • Idestam-Almquist J, Kautsky L (1995) Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions at two sites in the northern Baltic proper. Aquat Bot 52(3):205–216

    Article  Google Scholar 

  • Irgang BE, Pedralli G, Waechter JL (1984) Macrófitos aquáticos da Estação Ecológica do Taim, Rio Grande do Sul, Brasil. Roessléria 6(1):395–404

    Google Scholar 

  • Joly CA (1996) The role of oxygen diffusion to the root system on the flooding tolerance of tropical trees. Rev Brasil Biol 56(2):375–382

    Google Scholar 

  • Junk WJ, Nunes C, Wantzen KM, Petermann P, Strüssmann C, Marques MI, Adis J (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68:278–309. https://doi.org/10.1007/s00027-006-0851-4

    Article  Google Scholar 

  • Kawase MI, Whitmoyer RE (1980) Aerenchyma development in waterlogged plants. Am J Bot 67(1):18–22

    Article  Google Scholar 

  • Knipling ED, West SH, Haller WT (1970) Growth characteristics, yield potential, and nutritive content of water hyacinth. Proc Soil Crop Sci Soc Fl 30:51–63

    Google Scholar 

  • Kolb RM, Medri ME, Bianchini E, Pimenta JA, Giloni PC, Correa GT (1998) Anatomia ecológica de Sebastiania commersoniana (Baillon) Smith & Downs (Euphorbiaceae) submetida ao alagamento. Rev Brasil Bot 21(3). https://doi.org/10.1590/S0100-84041998000300010

  • Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol 1(1):1–29. https://doi.org/10.1080/07352680091139196

    Article  Google Scholar 

  • Kozlowski TT (2002) Physiological-ecological impacts of flooding on riparian ecosystems. Wetlands 22(3):12

    Article  Google Scholar 

  • Kufner DCL, Scremin-Dias E, Guglieri-Caporal A (2011) Composição florística e variação sazonal da biomassa de macrófitas aquáticas em lagoa de meandro do Pantanal. Rodriguésia 62(4):803–812

    Article  Google Scholar 

  • Landolt E, Kandeler R (1987) The family of Lemnaceae – a monographic study, vol. 2. Veroff. Geobot. ETH, Stiftung Rübel, Zürich, 95 Heft

    Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164(4):1556–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Martin LT, Pezeshki SR, Shields FD (2005) Responses of black willow (Salix nigra) cuttings to simulated herbivory and flooding. Acta Oecol 28:173–180. https://doi.org/10.1016/j.actao.2005.03.009

    Article  Google Scholar 

  • Madsen TV, Maberly SC (1991) Diurnal variation in light and carbon limitation of photosynthesis by two species of submerged freshwater macrophyte with a differential ability to use bicarbonate. Freshw Biol 26:175–187

    Article  Google Scholar 

  • Marimon BS, Felfili JM (2006) Chuva de sementes em uma floresta monodominante de Brosimum rubescens Taub. e em uma floresta mista adjacente no Vale do Araguaia, MT, Brasil. Acta Bot Brasil 20(2):423–432

    Article  Google Scholar 

  • Martins L, Silva WRD (2001) Dormancy performance of Brachiaria brizantha seeds submitted to thermal and chemical treatments. Pesqui Agropecu Bras 36(7):997–1003

    Google Scholar 

  • Medri ME, Bianchini E, Pimenta JA, Delgado MF, Correa GT (1998) Aspectos morfo-anatômicos e fisiológicos de Peltophorum dubium (Spr.) Taub. submetida ao alagamento e à aplicação de etrel. Rev Brasil Bot 21(3):261–267. https://doi.org/10.1590/S0100-84041998000300004

    Article  Google Scholar 

  • Metcalfe CR, Chalk L (1979) Anatomy of the dicotyledons. Vol I. Systematic anatomy of leaf and stem, with a brief history of the subject, 2nd edn. Anatomy of the dicotyledons

    Google Scholar 

  • Murphy K, Efremov A, Davidson TA, Molina-Navarro E, Fidanza K, Betiol TCC, Chambers P, Grimaldo JT, Martins SV, Springuel I, Kennedy M, Mormul RP, Dibble E, Hofstra D, Lukács BA, Gebler D, Baastrup-Spohr L, Estrada-Urrutia J (2019) World distribution, diversity and endemism of aquatic macrophytes. Aquat Bot 158:103127

    Article  Google Scholar 

  • Okamoto JM, Joly CA (2000) Ecophysiology and respiratory metabolism during the germination of Inga sessilis (Vell.) Mart. (Mimosaceae) seeds subjected to hypoxia and anoxia. Braz J Bot 23(1):51–57. https://doi.org/10.1590/S0100-84042000000100006

    Article  CAS  Google Scholar 

  • Paillisson JM, Marion L (2006) Can small water level fluctuations affect the biomass of Nymphaea alba in large lakes? Aquat Bot 84(3):259–266

    Article  Google Scholar 

  • Paine CET, Stahl C, Courtois EA, Patiño S, Sarmiento C, Baraloto C (2010) Functional explanations for variation in bark thickness in tropical rain forest trees. Funct Ecol 24(6):1202–1210. https://doi.org/10.1111/j.1365-2435.2010.01736.x

    Article  Google Scholar 

  • Parad GA, Kouchaksaraei MT, Striker GG (2016) Growth, morphology and gas exchange responses of two-year-old Quercus castaneifolia seedlings to flooding stress. Scand J For Res 31(5):458–466. https://doi.org/10.1080/02827581.2015.1072240

    Article  Google Scholar 

  • Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B, Fidelis A (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytol 217:1435–1448

    Article  PubMed  Google Scholar 

  • Pedralli G (2000) Padrões florísticos como subsídios à conservação da biodiversidade de macrófitas aquáticas. Tópicos Atuais em Botânica, Palestras convidadas do 51 Congresso Nacional de Botânica, Brasília-DF. Brasília, EMBRAPA

    Google Scholar 

  • Pontara V (2010) Efeitos do alagamento em plântulas de Triplaris americana L. e Triplaris gardneriana Wedd. (Polygonaceae). Dissertação de Mestrado. Programa de Pós graduação em Biologia vegetal, Universidade Federal de Mato Grosso do Sul

    Google Scholar 

  • Pontara V, Bueno ML, Scremin-Dias E (2016) Flooding avoidance Triplaris gardneriana Wedd. (Polygonaceae): growth and morpho-anatomical aspects. Acta Sci Biol Sci 38(3):341–346. https://doi.org/10.4025/actascibiolsci.v38i3.31267

    Article  Google Scholar 

  • Poorter L, Mcneil A, Hurtado VH, Prins HHT, Putz FE (2014) Bark traits and life-history strategies of tropical dry and moist forest trees. Funct Ecol 28(1):232–242. https://doi.org/10.1111/1365-2435.12158

    Article  Google Scholar 

  • Pott A (1994) Ecosistema Pantanal. In: Puignau JP (ed) Utilizacion y Manejo de Pastizales. IICA-PROCISUR, Montevideo, pp 31–44

    Google Scholar 

  • Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. EMBRAPA Comunicação para transferência de Tecnologia, Brasília

    Google Scholar 

  • Pott VJ, Pott A (2003) Dinâmica da vegetação aquática do Pantanal. In: Thomaz SM, Bini LM (eds) Ecologia e manejo de macrófitas aquáticas. Editora da Universidade Estadual de Maringá, Maringá, pp 145–162

    Google Scholar 

  • Pozer CG, Nogueira F (2004) Flooded native pastures of the northern region of the Pantanal of Mato Grosso: biomass and primary productivity variations. Braz J Biol 64(4):859–866

    Article  CAS  PubMed  Google Scholar 

  • Rich SM, Ludwig M, Colmer TD (2012) Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownii. Ann Bot 110(2):405–414. https://doi.org/10.1093/aob/mcs051

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridge I (1987) Ethylene and growth control in amphibious plants. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Science Publishing, Oxford, pp 53–76

    Google Scholar 

  • Rodrigues S, Scremin-Dias S, Medeiros SCH, Souza MC (2007) Alterações estruturais do caule e da folha de Ludwigia inclinata (L. f.) M. Gómez, desenvolvidos emersos e submersos no Pantanal Sul-Mato-Grossense. Revista Brasileira de Biociências 5(S1):174–176

    Google Scholar 

  • Romero C, Bolker BM, Edwards CE (2009) Stem responses to damage: the evolutionary ecology of Quercus species in contrasting fire regimes. New Phytol 182(1):261–271. https://doi.org/10.1111/j.1469-8137.2008.02733.x

    Article  PubMed  Google Scholar 

  • Roth I (1981) Structural patterns of tropical barks. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Santana MAC, Catian G, Scremin-Dias E (2019) Respostas morfológicas de Ludwigia helminthorrhiza (Mart.) H. Hara (Onagraceae) à sazonalidade do Pantanal. Oecol Aust 23(4):874–890

    Article  Google Scholar 

  • Sastroutomo SS (1981) Turion formation, dormancy and germination of curly pondweed, Potamogeton crispus L. Aquat Bot 10:161–173

    Article  Google Scholar 

  • Scremin-Dias E (1992) Morfoanatomia dos órgãos vegetativos de Ludwigia sedoides (Humb. & Bonpl.) Hara (Onagraceae) ocorrente no Pantanal Sul-Mato-Grossense. Dissertação de mestrado. Universidade Federal do Paraná, Curitiba

    Google Scholar 

  • Scremin-Dias E (2000) A plasticidade fenotípica das macrófitas aquáticas em resposta à dinâmica ambiental. In: Tópicos Atuais em Botânica: Palestras convidadas do 51 Congresso Nacional de Botânica, Brasília-DF, BR, pp 189–193

    Google Scholar 

  • Scremin-Dias E (2009) Tropical aquatic plants: morphoanatomical adaptations. In: Del-Claro K, Rico-Gray (eds) Encyclopedia of tropical biology and conservation management. UNESCO/EOLSS, Paris, pp 84–132

    Google Scholar 

  • Scremin-dias E, Pott VJ, Hora RC, Souza PR (1999) Nos jardins submersos da Bodoquena: guia para identificação de plantas aquáticas de Bonito e região. ECOA-Ecologia e Ação. Editora UFMS, Campo Grande

    Google Scholar 

  • Scremin-Dias E, Lorenz-Lemke AP, Oliveira AKM (2011) The floristic heterogeneity of the Pantanal and the occurrence of species with different adaptive strategies to water stress. Braz J Biol 71:275–282. https://doi.org/10.1590/S1519-69842011000200006

    Article  CAS  PubMed  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, London, 620p

    Google Scholar 

  • Souza AHA, Rivaben RC, Batalha AM, Casagrande C, Assunção VA, Pott A, Damasceno-Junior GA (2019) Fire can weaken or trigger functional responses of trees to flooding in wetland forest patches. J Veg Sci 30:521–532. https://doi.org/10.1111/jvs.12719

    Article  Google Scholar 

  • Staniforth RJ, Cavers PB (1976) An experimental study of water dispersal in Polygonum spp. Can J Bot 54(22):2587–2596. https://doi.org/10.1139/b76-278

    Article  Google Scholar 

  • Stevens KJ, Peterson RL, Reader RJ (2002) The aerenchymatous phellem of Lythrum salicaria (L.): a pathway for gas transport and its role in flood tolerance. Ann Bot 89:621–625

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson K (1992) The functional ecology of seed banks. In: Seeds: the ecology of regeneration in plant communities. CAB International, Wallingford, pp 231–258

    Google Scholar 

  • Tozin LRS, Rodrigues TM (2020) Revisiting hydropotes of Nymphaeaceae: ultrastructural features associated with glandular functions. Acta Bot Brasil 34(1):31–39. https://doi.org/10.1590/0102-33062019abb0120

    Article  Google Scholar 

  • Tur NM (1972) Un caso de epifitismo acuático. Boletin de la Sociedad Argentina de Botánica 10(4):323–327

    Google Scholar 

  • Van der Pijl L (1982) Ecological dispersal classes, established on the basis of the dispersing agents. In: Principles of dispersal in higher plants. Springer, Berlin/Heidelberg, pp 22–90

    Chapter  Google Scholar 

  • Vartaperian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79(1):3–20

    Article  Google Scholar 

  • Vergílio PCB, Silva JR, Blagitz M, Longo LR, Marcati CR (2017) Structural differences in the secondary phloem suggest higher support and storage potential in stems than roots of Citharexylum myrianthum Cham. (Verbenaceae). Botany 8(July):1–8

    Google Scholar 

  • Waldhoff D, Saint-Paul U, Furch B (1996) Value of fruits and seeds from the floodplain forests of Central Amazonia as food resource for fish. Ecotropica 2(2):143–156

    Google Scholar 

  • Weber JA, Noodén LD (1976) Environmental and hormonal control of turion formation in Myriophyllum verticillatum. Plant Cell Physiol 17(4):721–731

    Article  CAS  Google Scholar 

  • Wetzel RG (1993) Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism, and high sustained aquatic primary production. Neth J Aquat Ecol 27(1):3–9

    Article  Google Scholar 

  • Wiersema JH (1987) A monograph of Nymphaea subgenus Hydrocallis (Nymphaeaceae). Syst Bot Monogr:1–112

    Google Scholar 

  • Xu YL, Fangac Y, Li Q, Yang GL, Guo L, Che GK, Tan L, He KZ, Jin YL, Zhao H (2018) Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind Crops Prod 124:108–114

    Article  CAS  Google Scholar 

  • Yamamoto F, Kozlowski TT (1987a) Effect of flooding of soil on growth, stem anatomy, and ethylene production of Cryptomeria japonica seedlings. Scand J For Res 2(1–4):45–58. https://doi.org/10.1080/02827588709382445

    Article  Google Scholar 

  • Yamamoto F, Kozlowski TT (1987b) Effect of flooding on growth, stem anatomy, and ethylene production of Pinus halepensis seedlings. Can J For Res 17(1):69–79

    Article  CAS  Google Scholar 

  • Yáñez-Espinosa L, Terrazas T (2001) Wood and bark anatomy variation of Annona glabra L. under flooding. Agrociencia 35(1):51–63

    Google Scholar 

  • Yáñez-Espinosa L, Terrazas T, Angeles G (2008) The effect of prolonged flooding on the bark of mangrove trees. Trees 22(1):77–86. https://doi.org/10.1007/s00468-007-0171-x

    Article  CAS  Google Scholar 

  • Zhu X, Chen J, Qiu K, Kuai B (2017) Phytohormone and light regulation of chlorophyll degradation. Front Plant Sci 8:1911

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Rede de Sementes do Pantanal for support during the fieldwork that made this research project possible; to the Instituto Nacional de Áreas Úmidas (INAU) and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul - FUNDECT (Edital PAPOS) for financial support, and to Dr. Arnildo Pott and Dra. Vali Joana Pott for English language review and plant identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Scremin-Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scremin-Dias, E., da Silva, J.R., Catian, G., Fabiano, V.S., do Carmo de Oliveira Arruda, R. (2021). Plant Morphoanatomical Adaptations to Environmental Conditions of the Pantanal Wetland. In: Damasceno-Junior, G.A., Pott, A. (eds) Flora and Vegetation of the Pantanal Wetland. Plant and Vegetation, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-83375-6_16

Download citation

Publish with us

Policies and ethics