Skip to main content

Advertisement

Log in

A critical review of current conversion facilities and research output on carbon dioxide utilization

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Carbon capture and storage (CCS) has struggled over the past few decades to demonstrate the economic viability of CO2 sequestration. Consequently, this study reviewed the existing integrated carbon capture utilization facilities and the published articles on CO2 conversion to building materials, chemical intermediates, fuels, urea, and polymers. Representative sample sizes were determined, and the analysis of the current CO2 conversion facilities and volume of published articles between 2016 and 2022 were done based on a 90% confidence limit within a 9.93% margin of error and a 95% confidence limit within a 5% margin of error, respectively. The results showed that over 90% of global CO2 conversion facilities produce chemical intermediates, urea, polymers, and building materials, and less than 10% produce fuels. More than half of the global CO2 conversion facilities are in South-East Asia (mainly China), with the remaining in Western Europe (23%), North America (20%), and Oceania (3%). The analysis of the research publications within the time under investigation showed that the research focus is currently on CO2 conversion to chemical intermediates, polymers, building materials, and fuels (over 95%) and less on urea.

Graphical abstract

Highlights

  1. 1.

    A literature survey using Cochran’s model on the global CO2 utilization facilities based on location and product type and the recent publications on CO2 conversion to value-added products is presented.

  2. 2.

    Most existing CO2 conversion facilities produce chemical intermediates, polymers, urea, and building materials, while most of the research output focused on CO2 conversion to chemical intermediates, polymers, building materials, and fuels.

  3. 3.

    A future perspective on the need to increase CO2 conversion facilities and research output on fuel synthesis to aid the aviation and maritime sectors' decarbonization was also highlighted.

Discussion

The economic viability of the CCS technology has been on the front burner of every aspect of energy (primarily from fossils) sustainability in recent times. Some experts have stated that more focus should be placed on achieving net-zero emissions than the energy transition. They argue that even the mining and processing of the “finite” metals used for manufacturing the so-called “clean” tech equipment, just like their fossil counterparts, also result in the emission of greenhouse gases. Consequently, producing carbon–neutral fuels is a more realistic pathway for tackling climate change and attaining environmental sustainability. The conversion of CO2 to chemical intermediates, polymers, building materials, and fuels has been identified as a viable way of creating a business case for the CCUS process. However, there is currently no consensus on which products will most likely provide a positive balance sheet for the CCUS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. IEA, Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021 (World Energy Outlook, 2021). https://www.iea.org/reports/world-energy-outlook-2021. Accessed 13 March 2022

  2. Centre for Climate and Energy Solutions, Carbon Capture (2021). https://www.c2es.org/content/carbon-capture/. Accessed 22 October 2022

  3. U.S. Department of Energy, Carbon Sequestration Research and Development; DOE/SC/FE-1 (U.S. Government Printing Office Washington DC, 1999). www.ornl.gov/carbon_sequestration. Accessed 12 April 2022

  4. H. Herzog, E. Drake, E. Adams, CO2 capture, reuse, and storage technologies for mitigating global climate change. A White Paper; DOE Order No. DE-AF22-96PC01257 (U.S. Government Printing Office Washington DC, 1997). http://sequestration.mit.edu/bibliography. Accessed 8 Sept 2021

  5. A. Rafiee, K. Khalilpour, D. Milani, M. Panahi, Trends in carbon-dioxide conversion and utilization: a review from process systems perspective. J. Environ. Chem. Eng. (2018). https://doi.org/10.1016/j.jece.2018.08.065

    Article  Google Scholar 

  6. E. Alper, O.Y. Orhan, CO2 utilization: developments in conversion processes. Petroleum (2017). https://doi.org/10.1016/j.petlm.2016.11.003

    Article  Google Scholar 

  7. B. Hu, C. Guild, S.L. Suib, Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util. 1, 18–27 (2013). https://doi.org/10.1016/j.jcou.2013.03.004

    Article  CAS  Google Scholar 

  8. U.J. Etim, Y. Song, Z. Zhong, Improving the Cu/ZnO-based catalysts for carbon dioxide hydrogenation to methanol, and the use of methanol as a renewable energy storage media. Front. Energy Res. (2020). https://doi.org/10.3389/fenrg.2020.545431

    Article  Google Scholar 

  9. P.R. Yaashikaaa, P.S. Kumar, S.J. Varjani, S. Anbalagan, A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J. CO2 Util. 33, 131–147 (2019). https://doi.org/10.1016/j.jcou.2019.05.017

    Article  CAS  Google Scholar 

  10. R. Guil-López, N. Mota, J. Llorente, E. Millán, B. Pawelec, J.L.G. Fierro, R.M. Navarro, Methanol synthesis from CO2: a review of the latest developments in heterogeneous catalysis. Materials 12(23), 3902 (2019). https://doi.org/10.3390/ma12233902

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. I.U. Din, M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi, A. Naeem, Recent developments on heterogeneous catalytic CO2 reduction to methanol. J. CO2 Util. 34, 20–33 (2019). https://doi.org/10.1016/j.jcou.2019.05.036

    Article  CAS  Google Scholar 

  12. C. Peinado, D. Liuzzi, M. Retuerto, J. Boon, M.A. Peña, S. Rojas, Study of catalyst bed composition for the direct synthesis of dimethyl ether from CO2 -rich syngas. Chem. Eng. J. Adv. (2020). https://doi.org/10.1016/j.ceja.2020.100039

    Article  Google Scholar 

  13. K. Tomishige, Y. Gu, Y. Nakagawa, M. Tamura, Reaction of CO2 With alcohols to linear-, cyclic-, and poly-carbonates using CeO2-based catalysts. Front. Energy Res. (2020). https://doi.org/10.3389/fenrg.2020.00117

    Article  Google Scholar 

  14. N. Han, Y. Wang, J. Deng, J. Zhou, Y. Wu, H. Yang, P. Ding, Y. Li, Self-templated synthesis of hierarchical mesoporous SnO2 nanosheets for selective CO2 reduction. J. Mater. Chem. A (2019). https://doi.org/10.1039/C8TA10959A

    Article  Google Scholar 

  15. D. Du, R. Lan, J. Humphreys, S. Tao, Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. J. Appl. Electrochem. 47(6), 661–678 (2017). https://doi.org/10.1007/s10800-017-1078-x

    Article  CAS  Google Scholar 

  16. Global Roadmap for Implementing CO2 Utilization, CO2 Sciences and the Global CO2 Initiative (Report distributed by the Global CO2 Initiative at the University of Michigan) (2016). https://deepblue.lib.umich.edu/bitstream/handle/2027.42/150624/CO2U_Roadmap_FINAL_2016_12_07%28GCI%29.pdf?sequence=1. Accessed 24 July 2022

  17. W.G. Cochran, Sampling Techniques, 3rd edn. (Wiley, New York, 1977)

    Google Scholar 

  18. International Renewable Energy Agency, Innovation outlook: renewable methanol (2021). https://www.irena.org/publications/2021/Jan/Innovation-Outlook-Renewable-Methanol. Accessed 4 July 2022

  19. Carbon Recycling International, Carbon dioxide to methanol since 2012. http://carbonrecycling.is/. Accessed 21 July 2021

  20. M. Bowker, Methanol synthesis from CO2 hydrogenation. ChemCatChem (2019). https://doi.org/10.1002/cctc.201900401

    Article  PubMed  PubMed Central  Google Scholar 

  21. FReSMe Project ID: 727504, European project under Horizon 2020 Programme. From Residual Steel Gases to Methanol (2020). https://doi.org/10.3030/727504

  22. Carbon2Chem, Carbon2Chem project, Fraunhofer UMSICHT, Carbon2Chem project coordinator (2020). https://www.umsicht.fraunhofer.de/en/lines-of-research/carbon-cycle.html. Accessed 24 July 2021

  23. AChT (Advanced Chemical Technologies) (2020). https://advancedchemicaltech.com/. Accessed 4 March 2021

  24. Mitsubishi Heavy Industries, MHI receives large-scale CO2 recovery facility order from petrochemical company in Qatar, for increased methanol production (2012). https://www.mhi.com/news/1203151511.html. Accessed 24 July 2021

  25. M. Le, World’s largest facility for making methanol fuel from CO2 opens in China (2022). https://www.newscientist.com/article/2345556-worlds-largest-facility-for-making-methanol-fuel-from-co2-opens-in-china/#:~:text=The%20facility%20in%20the%20city,tonnes%20of%20methanol%20per%20year. Accessed on 28 Jan 2023

  26. ENGIE, Port of Antwerp brings different players together to produce sustainable methanol (2020). https://www.engie.com/en/port-antwerp-biomethanol. Accessed 24 July 2021

  27. Swiss Liquid Future, “Fuel from water power, water and CO2”, Swiss Liquid Future AG., (2020), https://www.swiss-liquid-future.ch/technologie/ Accessed 28 May 2022

  28. Bioenergy International, Liquid Wind secures site and carbon dioxide for Sweden’s first e-fuel facility (2020). https://bioenergyinternational.com/biofuels-oils/liquid-wind-secures-site-and-carbon-dioxide-for-swedens-first-e-fuel-facility. Accessed 24 July 2021

  29. Essen, Methanol Technologies of tkIS (2018). https://www.swiss-liquid-future.ch/wp-content/uploads/2018/09/2-Total-Thyssenkrupp-SLF-18-July-2018-Methanol-Technologies.pdf. Accessed 8 May 2022

  30. Fluxys Group, Launch project to significantly reduce carbon-dioxide emissions in North Sea Port (2020). https://www.fluxys.com/en/news/fluxysgroup/2020/201021_news_north_sea_port_launch_project. Accessed 3 April 2021

  31. J. Schmidt, “Large scale renewable methanol—chances and challenges from an industrial producers view”, presentation for the webinar methanol: a sustainable, scalable, storable energy carrier, organised by Lund University/Fastwater Consortium (2020). https://fastwater.eu/methanol_webinar/results.html. Accessed 24 July 2021

  32. Maersk, “Leading Danish companies join forces on an ambitious sustainable fuel project”, (2020) https://www.maersk.com/news/articles/2020/05/26/leading-danish-companies-join-forces-on-an-ambitious-sustainable-fuelproject#:~:text=Copenhagen%20Airports%2C%20A.P.,transport%20in%20the%20Copenhagen%20area. Accessed 25 July 2021

  33. E. Catizzone, G. Bonura, M. Migliori, F. Frusteri, G. Giordano, Carbon-dioxide recycling to dimethyl ether: state-of-the-art and perspectives. Molecules 23(1), 31 (2018). https://doi.org/10.3390/molecules23010031

    Article  CAS  Google Scholar 

  34. T.H. Fleisch, A. Basu, R.A. Sills, Introduction and advancement of a new clean global fuel: the status of DME developments in China and beyond. J. Nat. Gas Sci. Eng. 9, 94–107 (2012). https://doi.org/10.1016/j.jngse.2012.05.012

    Article  CAS  Google Scholar 

  35. I.H. Kim, S. Kim, W. Cho, E.S.Yoon, Simulation of commercial dimethyl ether production facility, in 20th European Symposium on Computer Aided Process Engineering (2010). https://doi.org/10.1016/s1570-7946(10)28134-8

  36. P. Moser, G. Wiechers, S. Schmidt, K. Stahl, C. Kuhr, K. Schroer, S. Schemme, A. Heberle, H. Kakihira, H. Arai, R. Peters, S. Weiske, P. Zapp, S. Troy, B. Lehrheuer, M. Neumann, C. Honecker, S. Glück, J. Pieterse, E. Goetheer, ALIGN-CCUS: production of dimethyl ether from CO2 and its use as an energy carrier—results from the CCU demonstration facility, in 15th International Conference on Greenhouse Gas Control Technologies GHGT-15, Abu Dhabi, UAE (2020). https://ssrn.com/abstract=3812172 or https://doi.org/10.2139/ssrn.3812172. Accessed 23 Nov 2021

  37. Oberonfuels, Oberon Fuels Secures $2.9 Million Grant from State of California for First-Ever Production of Renewable Dimethyl Ether (rDME) in United States (2019) Oberon Fuels. https://www.oberonfuels.com/oberon-fuels-secures-california-grant. Accessed 5 July 2021

  38. BASF and Lutianhua, BASF and Lutianhua plan to pilot a new production process that significantly reduces CO2 emissions (2019). https://www.basf.com/global/en/media/news-releases/2019/06/p-19-249.html Accessed 25 May 2022

  39. Nova Institute, Carbon Dioxide (CO2) as Chemical Feedstock for Polymers—Already Nearly 1 Million Tonnes Production Capacity Installed (nova-Institut GmbH, Hürth, 2021). https://renewable-carbon.eu/news/carbon-dioxide-co2-as-chemical-feedstock-for-polymers-already-nearly-1-million-tonnes-production-capacity-installed/. Accessed 5 April 2022

  40. M. Carus, L. Dammer, A. Raschka, P. Skoczinski, Renewable carbon: key to a sustainable and future-oriented chemical and plastic industry: definition, strategy, measures, and potential. Greenh. Gases Sci. Technol. 10(3), 488–505 (2020). https://doi.org/10.1002/ghg.1992

    Article  CAS  Google Scholar 

  41. Renewable carbon, Carbon Dioxide (CO2) as Chemical Feedstock for Polymers—Already Nearly 1 Million Tonnes Production Capacity Installed (2021). https://renewable-carbon.eu/news/carbon-dioxide-CO2-as-chemical-feedstock-for-polymers-already-nearly-1-million-tonnes-production-capacity-installed/. Accessed 25 July 2021

  42. K. Asahi, Asahi Kasei to construct a new facility for plastic compounds in China (2017). https://www.asahi-kasei.com/news/2017/e170823.html. Accessed 25 July 2021

  43. P. Ruiz, Nova-Institute (2021). http://bioreco2ver.eu/wp-content/uploads/2021/11/02_Pauline-Ruiz-Market_CO2-based-polymers_PR.pdf. Accessed 25 July 2022

  44. Plastics News, Chinese firm builds CO2-based plastics capacity (2017). https://www.plasticsnews.com/article/20170126/NEWS/170129920/chinese-firm-builds-CO2-based-plastics-capacity. Accessed 27 July 2021

  45. Shuangxin, Inner Mongolia Shuangxin Environment-Friendly Material Co., Ltd. (2017). https://shuangxinpva.en.ec21.com/. Accessed 21 July 2021

  46. S. Fukuoka, I. Fukawa, T. Adachi, H. Fujita, N. Sugiyama, T. Sawa, Industrialization and expansion of green sustainable chemical process: a review of non-phosgene polycarbonate from CO2. Org. Process Res. Dev. (2019). https://doi.org/10.1021/acs.oprd.8b00391

    Article  Google Scholar 

  47. Innovation Urea: Saipem Technology Transforms CO2 into a Resource (2021). https://www.saipem.com/en/blog/urea-saipem-technology-transforms-CO2-resource. Accessed 24 July 2022

  48. Mitsubishi Heavy Industry CO2 Recovery Facilities Recent Experience (2021). https://oilandgas.mhi.com/events/ghgt-15/co2_recovery_facilities_recent_experience.pdf. Accessed 25 July 2022

  49. FERTIL, Ruwais Fertilizer Industries (FERTIL) (2018). https://www.epicos.com/company/14455/ruwais-fertilizer-industries-fertil Accessed 28 July 2021

  50. GPIC, Gulf Petrochemical Industries Company (GPIC) (2015). https://www.gpic.com/company/CompanyOverview/. Accessed 28 July 2021

  51. IFFCO, Brief Summary of the ESP Project (2016). http://environmentclearance.nic.in/writereaddata/Online/TOR/0_0_23_Jul_2015_1617444201Annexure-BriefSummaryofProject.pdf. Accessed 28 July 2021

  52. IFFCO, Brief Summary of the ESP Project (2020). https://environmentclearance.nic.in/writereaddata/Online/TOR/0_0_22_Jul_2015_190830667DVX0QBriefSummaryofIFFCOKalol.pdf. Accessed 26 July 2021

  53. Petronas Resilience sustainable growth, Petronas chemicals group berhad integrated report (2020). https://www.petronas.com/pcg/sites/pcg/files/integrated-reports/PCG-2020%E2%80%93Integrated-Report.pdf. Accesed 20 March 2022

  54. P. Kaltim, Global Energy Management System Implementation. Indonesia (2018). https://www.cleanenergyministerial.org/content/uploads/2022/03/cem-em-casestudy-pupuk-kaltim-indonesia.pdf. Accessed 23 Jan 2021

  55. Balance Agri-Nutrients Limited, “Process Heat in New Zealand: Opportunities and barriers to lowering emissions”. Technical Paper (2019). https://www.mbie.govt.nz/dmsdocument/5350-ballance-process-heat-technical-paper-submission. Accessed 27 July 2022

  56. Nicholas Perdaman and Incitec Pivot sign urea off take agreement, World Fertilizer Magazine. Australia (2021). https://www.worldfertilizer.com/project-news/06052021/perdaman-and-incitec-pivot-sign-urea-offtake-agreement/. Accessed 27 July 2022

  57. KAPSOM, 2020. https://www.kapsom.com/avada_portfolio/green-urea facility/. Accessed 27 May 2022

  58. Carbon180 Paving the Way for Low-Carbon Concrete (2020). https://static1.squarespace.com/static/5b9362d89d5abb8c51d474f8/t/5fd95907de113c3cc0f144af/1608079634052/Paving+the+Way+for+Low-Carbon+Concrete. Accessed 3 October 2022

  59. C. Emir, A new method can substantially enhance the conversion of CO2 into concrete It reduces emissions by roughly 5 percent (2022). https://interestingengineering.com/innovation/a-new-method-can-substantially-enhance-the-conversion-of-co2-into-concrete. Accessed 2 October 2022.

  60. Facility Staff, A cure for carbon: Putting CO2 to work in concrete manufacturing (2019). https://www.facility.ca/features/a-cure-for-carbon-putting-co2-to-work-in-concrete-manufacturing/. Accessed 23 October 2022

  61. M. Gallucci, Capture Carbon in Concrete Made With CO2 Researchers vying for a $7.5 million Carbon XPrize will demonstrate their system in Wyoming (2020). https://spectrum.ieee.org/carbon-capture-power-plant-co2-concrete?utm_campaign=climatetechsub#toggle-gdpr. Accessed 24 October 2022

  62. Renewable-carbon, Ozinga Installs CarbonCure CO2 Recycling Technology (2016). https://renewable-carbon.eu/news/ozinga-installs-carboncure-co2-recycling-technology/. Accessed 22 October 2022

  63. J. Owen-Jones, Thomas Concrete adopts CarbonCure technology (2018). https://www.gasworld.com/story/thomas-concrete-adopts-carboncure-technology/. Accessed 23 October 2022

  64. M. Ricci, W. Trewby, C. Cafolla, K. Voïtchovsky, Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions. Sci. Rep. 7(1), 43234 (2017)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sunfire-Synlink Soec Renewable Syngas For E-Fuel And Chemicals Production, Renewables Everywhere (2021). https://www.sunfire.de/en/. Accessed 12 April 2022

  66. Panorama, Twelve produces first batch of E-Jet® fuel from carbon dioxide. Renewable Energy Magazine (2021). https://www.renewableenergymagazine.com/panorama/twelve-produces-first-batch-of-ejet-fuel-20211029. Accessed 22 May 2022

  67. Mergeflow, Companies that are making things from CO2 (2022). https://mergeflow.com/research/companies-making-things-from-co2. Accessed 22 January 2023

  68. S. Leahy, This gasoline is made of carbon sucked from the air (2018). https://www.nationalgeographic.com/science/article/carbon-engineering-liquid-fuel-carbon-capture-neutral-science. Accessed 22 May 2022

  69. M. Guess, Company that sucks CO2 from air announces a new methane-producing facility (2018). https://arstechnica.com/science/2018/10/company-that-sucks-co2-from-air-announces-a-new-methane-producing-plant/. Accessed 23 May 2022

  70. M. Pérez-Fortes, E. Tzimas, Techno-economic and environmental evaluation of CO2 utilisation for fuel production, synthesis of methanol and formic acid (2016). https://publications.jrc.ec.europa.eu/repository/bitstream/JRC99380/ld1a27629enn.pdf. Assessed 14 February 2022

  71. F. Samimi, M.R. Rahimpour, A. Shariati, Development of an efficient methanol production process for direct carbon-dioxide hydrogenation over a Cu/ZnO/Al2O3 catalyst. Catalysts 7(11), 332 (2017). https://doi.org/10.3390/catal7110332

    Article  CAS  Google Scholar 

  72. BS. Adji, Y. Muharam, S. Kartohardjono, Simulation of methanol synthesis in packed bed reactor for utilization of CO2 from acid gas removal unit, in E3S Web of Conferences, vol. 67 (2018), p. 03005. https://doi.org/10.1051/e3sconf/20186703005.

  73. P. Borisut, A. Nuchitprasittichai, Process configuration studies of methanol production via carbon dioxide hydrogenation: process simulation-based optimization using artificial neural networks. Energies 13(24), 6608 (2020). https://doi.org/10.3390/en13246608

    Article  CAS  Google Scholar 

  74. P. Borisut, A. Nuchitprasittichai, Methanol production via CO2 hydrogenation: sensitivity analysis and simulation—based optimization. Front. Energy Res. (2019). https://doi.org/10.3389/fenrg.2019.00081

    Article  Google Scholar 

  75. F.N. Rahma, Simulation of CO2 Conversion into Methanol in Fixed-bed Reactors: Comparison of Isothermal and Adiabatic Configurations. Reaktor 19(3), 131–135 (2019). https://doi.org/10.14710/reaktor.19.3.131-135

    Article  Google Scholar 

  76. D. Bellotti, M. Rivarolo, L. Magistri, A.F. Massardo, Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. J. CO2 Util. 21, 132–138 (2017). https://doi.org/10.1016/j.jcou.2017.07.001

    Article  CAS  Google Scholar 

  77. M. Bukhtiyarova, T. Lunkenbein, K. Kähler, K.R. Schlogl, Methanol synthesis from industrial CO2 sources: a contribution to chemical energy conversion. Catal. Lett. 147(2), 416–427 (2017). https://doi.org/10.1007/s10562-016-1960-x

    Article  CAS  Google Scholar 

  78. O. Tursunov, L. Kustov, Z. Tilyabaev, Methanol synthesis from the catalytic hydrogenation of CO2 over CuO-ZnO supported on aluminum and silicon oxides. J. Taiwan Inst. Chem. Eng. 78, 416–422 (2017). https://doi.org/10.1016/j.jtice.2017.06.049

    Article  CAS  Google Scholar 

  79. A. Gonzalez-Garay, M.S. Frei, A. Al-Qahtani, C. Mondelli, G. Guillen-Gosalbez, J. Perez-Ramırez, Plant-to-planet analysis of CO2-based methanol processes. Energy Environ. Sci. 12, 3425–3436 (2019). https://doi.org/10.1039/C9EE01673B

    Article  CAS  Google Scholar 

  80. C. Shi, Process simulation of methanol production from water electrolysis and tri-reforming. Master’s thesis, University of Calgary, Calgary, Canada (2020). http://hdl.handle.net/1880/112061. Assessed 24 June 2021

  81. H. Nieminen, A. Laari, T. Koiranen, CO2 hydrogenation to methanol by a liquid-phase process with alcoholic solvents: a techno-economic analysis. Processes 7(7), 405 (2019). https://doi.org/10.3390/pr7070405

    Article  CAS  Google Scholar 

  82. C. Zhang, K.W. Jun, G. Kwak, Y.J. Lee, H.G. Park, Efficient utilization of carbon dioxide in a gas-to-methanol process composed of CO2/steam–mixed reforming and methanol synthesis. J. CO2 Util. 16, 1–7 (2016)

    Article  Google Scholar 

  83. Y. Hartadi, D. Widmann, R.J. Behm, Methanol synthesis via CO2 hydrogenation over a Au/ZnO catalyst: an isotope labelling study on the role of CO in the reaction process. Phys. Chem. Chem. Phys. 18, 10781–10791 (2016). https://doi.org/10.1039/C5CP06888F

    Article  CAS  PubMed  Google Scholar 

  84. S.F. Tasfy, N.A. Zabidi, M.S. Shaharun, D. Subbarao, A. Elbagir, Carbon dioxide hydrogenation to methanol over Cu/ZnO-SBA-15 catalyst: effect of metal loading. Defect Diffus. Forum 380, 151–160 (2017). https://doi.org/10.4028/www.scientific.net/DDF.380.151

    Article  Google Scholar 

  85. S. Siddig, Design and Simulation of Methanol Production by CO2 Utilization (King Fahd University of petroleum and minerals, Dhahran, Saudi Arabia, 2018). https://eprints.kfupm.edu.sa/id/eprint/140916/1/SIDDIG%27s_THESIS.pdf. Accessed 12 Nov 2021

  86. B. Recioui, N. Settou, A. Khalfi, A. Gouareh, S. Rahmouni, R. Ghedamsi, Valorization of carbon dioxide by conversion into fuel using renewable energy in Algeria. Transp. Res. Part D Transp. Environ. 43, 145–157 (2016). https://doi.org/10.1016/j.trd.2015.11.006

    Article  Google Scholar 

  87. H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev, Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal. 343, 133–146 (2016). https://doi.org/10.1016/j.jcat.2016.03.017

    Article  CAS  Google Scholar 

  88. L. Spadaro, A. Palella, F. Arena, Totally-green fuels via CO2 hydrogenation. Bull. Chem. React. Eng. Catal. 15(2), 390–404 (2020). https://doi.org/10.9767/bcrec.15.2.7168.390-404

    Article  CAS  Google Scholar 

  89. V. Kumaravel, J. Bartlett, P.C. Suresh, Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 5, 486–519 (2020). https://doi.org/10.1021/acsenergylett.9b02585

    Article  CAS  Google Scholar 

  90. K. Atsonios, K.D. Panopoulos, E. Kakaras, Thermocatalytic carbon-dioxide hydrogenation for methanol and ethanol production: process improvements. Int. J. Hydrog. Energy (2016). https://doi.org/10.1016/j.ijhydene.2015.12.001

    Article  Google Scholar 

  91. A. De Lucas-Consuegra, J.C. Serrano-Ruiz, N. Gutiérrez-Guerra, J.L. Valverde, Low-temperature electrocatalytic conversion of carbon-dioxide to liquid fuels: effect of the Cu particle size. Catalysts 8(8), 340 (2018). https://doi.org/10.3390/catal8080340

    Article  CAS  Google Scholar 

  92. G. Leonzio, optimization through response surface methodology of a reactor producing methanol by the hydrogenation of carbon dioxide. Processes 5(4), 62 (2017). https://doi.org/10.3390/pr5040062

    Article  CAS  Google Scholar 

  93. J. Díez-Ramírez, J.A. Díaz, P. Sánchez, F. Dorado, Optimization of the Pd/Cu ratio in Pd–Cu–Zn/SiC catalysts for the carbon-dioxide hydrogenation to methanol at atmospheric pressure. J. CO2 Util. 22, 71–80 (2017). https://doi.org/10.1016/j.jcou.2017.09.012

    Article  CAS  Google Scholar 

  94. B.S. Adji, Y. Muharam, S. Kartohardjono, Simulation of methanol synthesis from CO2 hydrogenation in a packed bed reactor using COMSOL multiphysics. Int. J. Eng. Res. Technol. 12(12), 2592–2599 (2019)

    Google Scholar 

  95. F. Samimi, M. Feilizadeh, M. Ranjbaran, M. Arjmand, M.R. Rahimpour, Phase stability analysis on green methanol synthesis process from CO2 hydrogenation in water cooled, gas cooled and double cooled tubular reactors. Fuel Process. Technol. 181, 375–387 (2018)

    Article  CAS  Google Scholar 

  96. J. Díez-Ramírez, J. Díaz, F. Dorado, P. Sánchez, Kinetics of the hydrogenation of CO2 to methanol at atmospheric pressure using a Pd-Cu-Zn/SiC catalyst. Fuel Process. Technol. 173, 173–181 (2018)

    Article  Google Scholar 

  97. A.A. Kiss, J. Pragt, H. Vos, G. Bargeman, M.T. de Groot, Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem. Eng. J. 284, 260–269 (2016). https://doi.org/10.1016/j.cej.2015.08.101

    Article  CAS  Google Scholar 

  98. M. Matzen, Y. Demirel, Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: alternative fuels production and life-cycle assessment. J. Clean. Prod. 139, 1068–1077 (2016). https://doi.org/10.1016/j.jclepro.2016.08.163

    Article  CAS  Google Scholar 

  99. G. Leonzio, E. Zondervan, P.U. Foscolo, Methanol production by CO2 hydrogenation: analysis and simulation of reactor performance. Int. J. Hydrog. Energy. 44(16), 7915–7933 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.056

    Article  CAS  Google Scholar 

  100. R.J. Da Silva, A.F. Pimentel, R.S. Monteiro, C.J. Mota, Synthesis of methanol and dimethyl ether from the carbon-dioxide hydrogenation over Cu.ZnO supported on Al2O3 and Nb2O5. J. CO2 Util. 15, 83–88 (2016). https://doi.org/10.1016/j.jcou.2016.01.006

    Article  CAS  Google Scholar 

  101. S. Kar, A. Goeppert, S.G. Prakash, Combined CO2 capture and hydrogenation to methanol: amine immobilization enables easy recycling of active elements. ChemSusChem (2019). https://doi.org/10.1002/cssc.201900324

    Article  PubMed  Google Scholar 

  102. Z. Shi, Q. Tan, D. Wu, Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst. Appl. Catal. A (2019). https://doi.org/10.1016/j.apcata.2019.05.019

    Article  Google Scholar 

  103. S. Li, L. Guo, T. Ishihara, Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst. Catal. Today 339, 352–361 (2020). https://doi.org/10.1016/j.cattod.2019.01.015

    Article  CAS  Google Scholar 

  104. E. Moioli, R. Mutschler, A. Züttel, Renewable energy storage via CO2 and H2 conversion to methane and methanol: assessment for small scale applications. Renew. Sustain. Energy Rev. 107, 497–506 (2019). https://doi.org/10.1016/j.rser.2019.03.022

    Article  CAS  Google Scholar 

  105. K. Li, J. Chen, CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy. ACS Catal. 9(9), 7840–7861 (2019). https://doi.org/10.1021/acscatal.9b01943

    Article  CAS  Google Scholar 

  106. H. Bahruji, J.R. Esquius, M. Bowker, G. Hutchings, R.D. Armstrong, W. Jones, Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Top. Catal. 61, 144–153 (2018). https://doi.org/10.1007/s11244-018-0885-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. A. Hankin, N. Shah, Process exploration and assessment for the production of methanol and dimethyl ether from carbon dioxide and water. Sustain. Energy Fuels 1, 1541–1556 (2017). https://doi.org/10.1039/C7SE00206H

    Article  CAS  Google Scholar 

  108. K. Chang, T. Wang, J.G. Chen, Hydrogenation of carbon-dioxide to methanol over CuCeTiO catalysts. Appl. Catal. B Environ. (2017). https://doi.org/10.1016/j.apcatb.2017.01.076

    Article  Google Scholar 

  109. K. Chang, T. Wang, J.G. Chen, Methanol Synthesis from CO2 hydrogenation over CuZnCeTi mixed oxide catalysts. Ind. Eng. Chem. Res. 58, 7922–7928 (2019). https://doi.org/10.1021/acs.iecr.9b00554

    Article  CAS  Google Scholar 

  110. H.Y. Kang, D.H. Nam, K.D. Yang, W. Joo, H. Kwak, H.H. Kim, S.H. Hong, K.T. Nam, Y.C. Joo, Synthetic mechanism discovery of monophase cuprous oxide for record high photoelectrochemical conversion of CO2 to methanol in water. ACS Nano 12(8), 8187–8196 (2018)

    Article  CAS  PubMed  Google Scholar 

  111. H. Lei, Z. Hou, J. Xie, Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine. Fuel 164, 191–198 (2016). https://doi.org/10.1016/j.fuel.2015.09.082

    Article  CAS  Google Scholar 

  112. J. Xiao, D. Mao, G. Wang, X. Guo, J. Yu, CO2 hydrogenation to methanol over CuO–ZnO–TiO2–ZrO2 catalyst prepared by a facile solid-state route: the significant influence of assistant complexing agents. Int. J. Hydrog. Energy 44(29), 14831–14841 (2019)

    Article  CAS  Google Scholar 

  113. M. Mureddu, F. Ferrara, A. Pettinau, Highly efficient CuO/ZnO/ZrO2@SBA-15 nanocatalysts for methanol synthesis from the catalytic hydrogenation of CO2. Appl. Catal. B 258, 117941 (2019)

    Article  CAS  Google Scholar 

  114. Z. Wang, X. Jiao, D. Chen, C. Li, M. Zhang, Porous copper/zinc bimetallic oxides derived from MOFs for efficient photocatalytic reduction of CO2 to methanol. Catalysts 10(10), 1127 (2020). https://doi.org/10.3390/catal10101127

    Article  CAS  Google Scholar 

  115. S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J. Am. Chem. Soc. 138(8), 12440–12450 (2016). https://doi.org/10.1021/jacs.6b05791

    Article  CAS  PubMed  Google Scholar 

  116. M. Li, C. Chen, T. Ayvali, H. Suo, J. Zheng, I.F. Teixeira, L. Ye, H. Zou, D. O’Hare, S.C.E. Tsang, CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors. ACS Catal. (2018). https://doi.org/10.1021/acscatal.8b00474

    Article  PubMed  PubMed Central  Google Scholar 

  117. M. Kourtelesis, K. Kousi, K.I. Dimitris, CO2 hydrogenation to methanol over La2O3-promoted CuO/ZnO/Al2O3 catalysts: a kinetic and mechanistic study. Catalysts 10, 183 (2019)

    Article  Google Scholar 

  118. J. Xiao, D. Mao, G. Wang, X. Guo, J. Yu, CO2 hydrogenation to methanol over CuOeZnOeTiO2eZrO2 catalyst prepared by a facile solid-state route: the significant influence of assistant complexing agents. Int. J. Hydrog. Energy 44(29), 14831–14841 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.051

    Article  CAS  Google Scholar 

  119. M. Stawowy, R. Ciesielski, T. Maniecki, K. Matus, R. Łuzny, J. Trawczynski, J. Silvestre-Albero, A. Łamacz, CO2 hydrogenation to methanol over Ce and Zr containing UiO-66 and Cu/UiO-66. Catalysts 10(1), 39 (2020). https://doi.org/10.3390/catal10010039

    Article  CAS  Google Scholar 

  120. D. Allam, S. Bennici, L. Limousy, S. Hocine, Improved Cu- and Zn-based catalysts for carbon-dioxide hydrogenation to methanol. C. R. Chim. 22(2–3), 227–237 (2019)

    Article  CAS  Google Scholar 

  121. L. Angelo, K. Kobl, L.M. Martínez-Tejada, Y. Zimmermann, K. Parkhomenko, A.C. Roger, Study of CuZnMOx oxides (M = Al, Zr, Ce, CeZr) for the catalytic hydrogenation of carbon-dioxide into methanol. Compt. Rend. Chim. 18, 250–260 (2016)

    Article  Google Scholar 

  122. X. Dong, F. Li, N. Zhao, F. Xiao, J. Wang, Y. Tan, CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Catal. B 191, 8–17 (2016). https://doi.org/10.1016/j.apcatb.2016.03.014

    Article  CAS  Google Scholar 

  123. E.J. Choi, Y.H. Leea, D. Lee, D. Moon, K. Lee, Hydrogenation of CO2 to methanol over Pd–Cu/CeO2 catalysts. Mol. Catal. 434, 146–153 (2017). https://doi.org/10.1016/j.mcat.2017.02.005

    Article  CAS  Google Scholar 

  124. V. Deerattrakul, P. Dittanet, M. Sawangphruk, P. Kongkachuichay, CO2 hydrogenation to methanol using Cu–Zn catalyst supported on reduced grapheme oxide nanosheets. J. CO2 Util. 16, 104–113 (2016)

    Article  CAS  Google Scholar 

  125. J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4, 11 (2017). https://doi.org/10.1002/advs.201700194

    Article  CAS  Google Scholar 

  126. S. Soisuwan, W. Wisaijorn, C. Nimnul, O. Maunghimpan, P. Praserthdam, The combination of calcium oxide and Cu/ZrO2 catalyst and their selective products for CO2 hydrogenation. Eng. J. 20(2), 39–48 (2016)

    Article  CAS  Google Scholar 

  127. S. Tada, F. Watanabe, K. Kiyota, N. Shimoda, R. Hayashi, M. Takahashi, A. Nariyuki, A. Igarashi, S. Satokawa, Ag addition to CuO-ZrO2 catalysts promotes methanol synthesis via CO2 hydrogenation. J. Catal. 351, 107–118 (2017). https://doi.org/10.1016/j.jcat.2017.04.021

    Article  CAS  Google Scholar 

  128. T.A. Atsbha, T. Yoon, B.H. Yoo, C.J. Lee, Techno-economic and environmental analysis for direct catalytic conversion of CO2 to methanol and liquid/high-calorie-SNG fuels. Catalysts 11(6), 687 (2021). https://doi.org/10.3390/catal11060687

    Article  CAS  Google Scholar 

  129. R. Kanega, N. Onishi, S. Tanaka, H. Kishimoto, Y. Himeda, Catalytic hydrogenation of CO2 to methanol using multinuclear iridium complexes in a gas-solid phase reaction. J. Am. Chem. Soc. 143(3), 1570–1576 (2021). https://doi.org/10.1021/jacs.0c11927

    Article  CAS  PubMed  Google Scholar 

  130. Z. Lu, K. Sun, J. Wang, Z. Zhang, C. Liu, A highly active Au/In2O3-ZrO2 catalyst for selective hydrogenation of CO2 to methanol. Catalysts 10(11), 1360 (2020). https://doi.org/10.3390/catal10111360

    Article  CAS  Google Scholar 

  131. P. Li, S. Gong, C. Li, Z. Liu, Analysis of routes for electrochemical conversion of CO2 to methanol. Clean Energy 6(3), 446 (2022). https://doi.org/10.1093/ce/zkac030

    Article  ADS  Google Scholar 

  132. S. Kar, J. Kothandaraman, A. Goeppert, G.K.S. Prakash, Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol. J. CO2 Util. 23, 212–218 (2018). https://doi.org/10.1016/j.jcou.2017.10.023

    Article  CAS  Google Scholar 

  133. A.C. García, J. Moral-Vico, A.A. Markeb, A. Sánchez, Conversion of carbon dioxide into methanol using Cu–Zn nanostructured materials as catalysts. Nanomaterials 12(6), 999 (2022). https://doi.org/10.3390/nano12060999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. G. Lombardelli, S. Consonni, A. Conversano, M. Mureddu, A. Pettinau, M. Gatti, Process design and techno-economic assessment of biogenic CO2 hydrogenation-to-methanol with innovative catalyst. J. Phys. Conf. Ser. 2385, 012038 (2022). https://doi.org/10.1088/1742-6596/2385/1/012038

    Article  Google Scholar 

  135. RG. Santiago, JA. Coelho, SMP. de Lucena, APS. Musse, M. Portilho, E. Rodriguez-Castellón, DCS. de Azevedo, M. Bastos-Neto, Synthesis of MeOH and DME From CO2 Hydrogenation Over Commercial and Modified Catalysts. Frontiers in Chemistry (2022). https://doi.org/10.3389/fchem.2022.903053

  136. G. Lombardelli, M. Mureddu, S. Lai, F. Ferrara, A. Pettinau, L. Atzoric, A. Conversano, M. Gatti, CO2 hydrogenation to methanol with an innovative Cu/Zn/Al/Zr catalyst: experimental tests and process modelling. J. CO2 Util. 65, 102240 (2022). https://doi.org/10.1016/j.jcou.2022.102240

    Article  CAS  Google Scholar 

  137. F. Lonis, V. Tola, G. Cau, Assessment of integrated energy systems for the production and use of renewable methanol by water electrolysis and CO2 hydrogenation. Fuel 285, 119160 (2021). https://doi.org/10.1016/j.fuel.2020.119160

    Article  CAS  Google Scholar 

  138. H. Al-Kalbani, J. Xuan, S. García, H. Wang, Comparative energetic assessment of methanol production from CO2: chemical versus electrochemical process. Appl. Energy 165, 1–13 (2016). https://doi.org/10.1016/j.apenergy.2015.12.027

    Article  ADS  CAS  Google Scholar 

  139. T.N. Do, J. Kim, Process development and techno-economic evaluation of methanol production by direct CO2 hydrogenation using solar-thermal energy. J. CO2 Util. 33, 461–472 (2019). https://doi.org/10.1016/j.jcou.2019.07.003

    Article  CAS  Google Scholar 

  140. M. Asif, X. Gao, H. Lv, X. Xi, P. Dong, Catalytic hydrogenation of CO2 from 600 MW supercritical coal power plant to produce methanol: a techno-economic analysis. Int. J. Hydrogen Energy 43(5), 2726–2741 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.086

    Article  CAS  Google Scholar 

  141. A. Pavlišič, M. Huš, A. Prašnikar, B. Likozar, Multiscale modelling of CO2 reduction to methanol over industrial Cu/ZnO/Al2O3 heterogeneous catalyst: linking ab initio surface reaction kinetics with reactor fluid dynamics. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.122958

    Article  Google Scholar 

  142. E. Ghasemi, L. Samiee, Z. Mansourpour, T. Rostami, Optimization of methanol production process from carbon dioxide hydrogenation in order to reduce recycle flow and energy consumption. J. Clean. Prod. 376(20), 134184–86 (2022). https://doi.org/10.1016/j.jclepro.2022.134184

    Article  CAS  Google Scholar 

  143. S. Alsayegh, J.R. Johnson, B. Ohs, M. Wessling, Methanol production via direct carbon dioxide hydrogenation using hydrogen from photocatalytic water splitting: process development and techno-economic analysis. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.10.132

    Article  Google Scholar 

  144. F.N. Rahma, Simulation of carbon-dioxide conversion into methanol in fixed-bed reactors: comparison of isothermal and adiabatic configurations. Reaktor 19(3), 131–135 (2019). https://doi.org/10.14710/reaktor.19.3.131-135

    Article  Google Scholar 

  145. B.S. Adji, S. Kartohardjono, Process simulation of CO2 utilization from acid gas removal unit for dimethyl ether production. J. Environ. Sci. Technol. 10(5), 220–229 (2017). https://doi.org/10.3923/jest.2017.220.229

    Article  CAS  Google Scholar 

  146. S. Kartohardjono, B.S. Adji, Y. Muharam, CO2 utilization process simulation for enhancing production of dimethyl ether (DME). Int. J. Chem. Eng. (2020). https://doi.org/10.1155/2020/9716417

    Article  Google Scholar 

  147. G. Bonura, C. Cannilla, L. Frusteri, A. Mezzapica, F. Frusteri, DME production by carbon-dioxide hydrogenation: key factors affecting the behaviour of CuZnZr/ferrierite catalysts. Catal. Today 281, 337–344 (2017). https://doi.org/10.1016/j.cattod.2016.05.057

    Article  CAS  Google Scholar 

  148. F. Frusteri, M. Migliori, C. Cannilla, L. Frusteri, E. Catizzone, A. Aloise, G. Giordano, G. Bonura, Direct CO2-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield. J. CO2 Util. 18, 353–361 (2017). https://doi.org/10.1016/j.jcou.2017.01.030

    Article  CAS  Google Scholar 

  149. X. Zhou, T. Su, Y. Jiang, Z. Qin, H. Ji, Z. Guo, CuO– Fe2O3–CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis. Chem. Eng. Sci. 153, 10–20 (2016). https://doi.org/10.1016/j.ces.2016.07.007

    Article  CAS  Google Scholar 

  150. M. De Falco, M. Capocelli, G. Centi, Dimethyl ether production from CO2 rich feedstocks in a one-step process: Thermodynamic evaluation and reactor simulation. Chem. Eng. J. 294, 400–409 (2016). https://doi.org/10.1016/j.cej.2016.03.009

    Article  CAS  Google Scholar 

  151. A.C. Parreño, J.D. García, N. Quirante, Carbon CO2 Reuse in Direct DME Synthesis from Syngas (Institute of Chemical Processes Engineering, University of Alicante, Alicante, 2017). https://web.fe.up.pt/~fgm/eurecha/scp/eurecha2017_mainreport_2ndprize.pdf. Assessed 13 April 2022

  152. A. Giuliano, E. Catizzone, C. Freda, Process simulation and environmental aspects of DME production from digestate-derived syngas. Int. J. Environ. Res. Public Health 18(2), 807 (2021). https://doi.org/10.3390/ijerph18020807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. M. Sánchez-Contador, A. Ateka, A.T. Aguayo, J. Bilbao, Direct synthesis of dimethyl ether from CO and CO2 over a core-shell structured CuO-ZnO-ZrO2@SAPO-11 catalyst. Fuel Process. Technol. 179, 258–268 (2018). https://doi.org/10.1016/j.fuproc.2018.07.009

    Article  CAS  Google Scholar 

  154. H.H. Koybasi, A.K. Avci, Numerical analysis of CO2-to-DME conversion in a membrane microchannel reactor. Ind. Eng. Chem. Res. 61(30), 10846–10859 (2022). https://doi.org/10.1021/acs.iecr.2c01764

    Article  CAS  Google Scholar 

  155. P. Rodriguez-Vega, A. Ateka, I. Kumakiri, H. Vicente, J. Ereña, A.T. Aguayo, J. Bilbao, Experimental implementation of a catalytic membrane reactor for the direct synthesis of DME from H2+CO/CO2. Chem. Eng. Sci. 234, 116396 (2021). https://doi.org/10.1016/j.ces.2020.116396

    Article  CAS  Google Scholar 

  156. M. De Falco, M. Capocelli, A. Basile, Selective membrane application for the industrial one-step DME production process fed by CO2 rich streams: modeling and simulation. Int. J. Hydrog. Energy 42(10), 6771–6786 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.047

    Article  CAS  Google Scholar 

  157. W. Prasertsri, R. Frauzem, U. Suriyapraphadilok, R. Gani, Sustainable DME synthesis-design with CO2 utilization, in 26th European Symposium on Computer Aided Process Engineering (2016). https://doi.org/10.1016/b978-0-444-63428-3.50185-5

  158. S. Poto, F. Gallucci, M. Fernanda Neira d’Angelo, Direct conversion of CO2 to dimethyl ether in a fixed bed membrane reactor: influence of membrane properties and process conditions. Fuel 302, 121080 (2021). https://doi.org/10.1016/j.fuel.2021.121080

    Article  CAS  Google Scholar 

  159. T. Witoon, P. Kidkhunthod, M. Chareonpanich, J. Limtrakul, Direct synthesis of dimethyl ether from CO2 and H2 over novel bifunctional catalysts containing CuO–ZnO–ZrO2 catalyst admixed with WOx/ZrO2 catalysts. Chem. Eng. J. 348, 713–722 (2018). https://doi.org/10.1016/j.cej.2018.05.057

    Article  CAS  Google Scholar 

  160. Y. Suwannapichat, T. Numpilai, N. Chanlek, K. Faungnawakij, M. Chareonpanich, J. Limtrakul, T. Witoon, Direct synthesis of dimethyl ether from CO2 hydrogenation over novel hybrid catalysts containing a Cu ZnO ZrO2 catalyst admixed with WOx/Al2O3 catalysts: effects of pore size of Al2O3 support and W loading content. Energy Convers. Manag. 159, 20–29 (2018). https://doi.org/10.1016/j.enconman.2018.01.016

    Article  CAS  Google Scholar 

  161. M. Farsi, S.A. Hallaji, P. Riasatian, Modeling and operability of DME production from syngas in a dual membrane reactor. Chem. Eng. Res. Des. 112, 190–198 (2016). https://doi.org/10.1016/j.cherd.2016.06.019

    Article  CAS  Google Scholar 

  162. M. Sánchez-Contador, A. Ateka, A.T. Aguayo, J. Bilbao, Behavior of SAPO-11 as acid function in the direct synthesis of dimethyl ether from syngas and CO2. J. Ind. Eng. Chem. 63, 245–254 (2018). https://doi.org/10.1016/j.jiec.2018.02.022

    Article  CAS  Google Scholar 

  163. Z. Qin, X. Zhou, T. Su, Y. Jiang, H. Ji, Hydrogenation of CO2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts. Catal. Commun. 75, 78–82 (2016). https://doi.org/10.1016/j.catcom.2015.12.010

    Article  CAS  Google Scholar 

  164. H. Hamedi, T. Brinkmann, Valorization of CO2 to DME using a membrane reactor: a theoretical comparative assessment from the equipment to flowsheet level. Chem. Eng. J. Adv. 10, 100249 (2022). https://doi.org/10.1016/j.ceja.2022.100249

    Article  CAS  Google Scholar 

  165. R. Bhardwaj, M. Feenstra, M. Linders, J. Boon, J. Monteiro, E. Goetheer, Enhanced Conversion of CO2 from Biogas to Dimethyl Ether by In-Situ Water Removal, in 14th Greenhouse Gas Control Technologies Conference (GHGT-14), Melbourne, 21–26 October 2018. https://ssrn.com/abstract=3365774 or https://doi.org/10.2139/ssrn.3365774. Assessed 14 May 2021

  166. L. Li, D. Mao, J. Xiao, L. Li, X. Guo, J. Yu, Facile preparation of highly efficient CuO-ZnO-ZrO2/HZSM-5 bifunctional catalyst for one-step CO2 hydrogenation to dimethyl ether: Influence of calcination temperature. Chem. Eng. Res. Des. 111, 100–108 (2016). https://doi.org/10.1016/j.cherd.2016.04.018

    Article  CAS  Google Scholar 

  167. S. Ren, W.R. Shoemaker, X. Wang, Z. Shang, N. Klinghoffer, S. Li, X. Liang, Highly active and selective Cu-ZnO based catalyst for methanol and dimethyl ether synthesis via CO2 hydrogenation. Fuel 239, 1125–1133 (2019). https://doi.org/10.1016/j.fuel.2018.11.105

    Article  CAS  Google Scholar 

  168. Y. Zhang, Y. Zhang, F. Ding, K. Wang, W. Xiaolei, B. Ren, J. Wu, Synthesis of DME by CO2 hydrogenation over La2O3-modified CuO-ZnO-ZrO2/HZSM-5 catalysts. Chem. Ind. Chem. Eng. Q. 23(1), 49–56 (2017). https://doi.org/10.2298/ciceq150711005z

    Article  CAS  Google Scholar 

  169. S. Liu, X. Wang, Polymers from carbon dioxide: polycarbonates, polyurethanes. Curr. Opin. Green Sustain. Chem. 3, 61–66 (2017). https://doi.org/10.1016/j.cogsc.2016.08.003

    Article  Google Scholar 

  170. C. Fernández-Dacosta, M. van der Spek, C.R. Hung, G.D. Oregionni, R. Skagestad, P. Parihar, D.T. Gokak, A.H. Strømman, A. Ramirez, Prospective techno-economic and environmental assessment of carbon capture at a refinery and carbon-dioxide utilization in polyol synthesis. J. CO Util. 21, 405–422 (2017)

    Article  Google Scholar 

  171. H. Cao, R. Zhang, Z. Zhou, S. Liu, Y. Tao, F. Wang, X. Wang, On-demand transformation of carbon dioxide into polymers enabled by a comb-shaped metallic oligomer catalyst. ACS Catal. 12(1), 481–490 (2022). https://doi.org/10.1021/acscatal.1c04431

    Article  CAS  Google Scholar 

  172. L. Goa, M. Huang, Q. Wu, X. Wan, X. Chen, X. Wei, W. Yang, R. Deng, L. Wang, J. Feng, Enhance poly (propylene carbonate) with thermoplastic network: a cross linking role of maleic anhydride oligomer in CO2/PO polymerization. Polymers 11, 1467 (2019)

    Article  Google Scholar 

  173. C. Martín, A. Kleij, Terpolymers derived from limonene oxide and carbon dioxide: access to cross-linked polycarbonates with improved thermal properties. Macromolecules 49(17), 6285–6295 (2016). https://doi.org/10.1021/acs.macromol.6b01449

    Article  ADS  CAS  Google Scholar 

  174. O. Hauenstein, M. Reiter, S. Agarwal, B. Rieger, A. Greiner, Bio-based polycarbonate from limonene oxide and CO2 with high molecular weight, excellent thermal resistance, hardness and transparency. Green Chem. 18, 760–770 (2016). https://doi.org/10.1039/C5GC01694K

    Article  CAS  Google Scholar 

  175. T. Akune, Y. Morita, S. Shirakawa, K. Katagiri, K. Inumaru, ZrO2 nanocrystals as catalyst for synthesis of dimethyl carbonate from methanol and carbon dioxide: catalytic activity and elucidation of active sites. Langmuir 34, 23–29 (2018)

    Article  CAS  PubMed  Google Scholar 

  176. O.F. Arbeláez-Pérez, S. Domínguez-Cardozo, A.F. Orrego-Romero, A.L. VillaHolguín, F. Bustamante, Gas phase synthesis of dimethyl carbonate from carbon-dioxide and methanol over Cu-Ni/AC. A kinetic study. Rev. Fac. Ingen. Univ. Antioquia 95, 88–99 (2020)

    Google Scholar 

  177. Z.J. Gong, Y.R. Li, H.L. Wu, S.D. Lin, W.Y. Yu, Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst. Appl. Catal. B Environ. 265, 118524 (2020). https://doi.org/10.1016/j.apcatb.2019.118524

    Article  CAS  Google Scholar 

  178. A.A. Greish, E.D. Finashina, O.P. Tkachenko, E.V. Shuvalova, L.M. Kustov, Synthesis of dimethyl carbonate from methanol and carbon-dioxide on the SnO2/Al2O3-based catalyst. Mendeleev Commun. 26(6), 497–499 (2016). https://doi.org/10.1016/j.mencom.2016.11.012

    Article  CAS  Google Scholar 

  179. Y. Gu, K. Matsuda, A. Nakayama, M. Tamura, Y. Nakagawa, K. Tomishige, Direct synthesis of alternating polycarbonates from CO2 and diols by using a catalyst system of CeO2 and 2-furonitrile. ACS Sustain. Chem. Eng. 7, 6304–6315 (2019)

    Article  CAS  Google Scholar 

  180. Y. Gu, A. Miura, M. Tamura, Y. Nakagawa, K. Tomishige, Highly efficient synthesis of alkyl N-arylcarbamates from CO2, anilines, and branched alcohols with a catalyst system of CeO2 and 2-cyanopyridine. ACS Sustain. Chem. Eng. 7, 16795–16802 (2019)

    Article  CAS  Google Scholar 

  181. E. Leino, N. Kumar, P. Mäki-Arvela, A.R. Rautio, J. Dahl, J. Roine, Synthesis and characterization of ceria-supported catalysts for carbon-dioxide transformation to diethyl carbonate. Catal. Today 306, 128–137 (2018). https://doi.org/10.1016/j.cattod.2017.01.016

    Article  CAS  Google Scholar 

  182. A. Li, Y. Pu, F. Li, J. Luo, N. Zhao, F. Xiao, Synthesis of dimethyl carbonate from methanol and CO2 over Fe–Zr mixed oxides. J. CO2 Util. 19, 33–39 (2017). https://doi.org/10.1016/j.jcou.2017.02.016

    Article  CAS  Google Scholar 

  183. J. Liu, Y. Li, J. Zhang, D. He, Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Appl. Catal. A 513, 9–18 (2016). https://doi.org/10.1016/j.apcata.2015.12.030

    Article  CAS  Google Scholar 

  184. A.A. Marciniak, K.J. Lamb, L.P. Ozorio, C. Morta, M. North, Heterogeneous catalysts for cyclic carbonate synthesis from carbon dioxide and epoxides. Curr. Opin. Green Sustain. Chem. (2020). https://doi.org/10.1016/j.cogsc.2020.100365

    Article  Google Scholar 

  185. A. Poungsombate, T. Imyen, P. Dittanet, B. Embley, P. Kongkachuichay, Direct synthesis of dimethyl carbonate from CO2 and methanol by supported bimetallic Cu–Ni/ZIF-8 MOF catalysts. J. Taiwan Inst. Chem. Eng. 80, 16–24 (2017). https://doi.org/10.1016/j.jtice.2017.07.019

    Article  CAS  Google Scholar 

  186. D. Stoian, F. Medina, A. Urakawa, Improving the stability of CeO2 catalyst by rare earth metal promotion and molecular insights in the dimethyl carbonate synthesis from CO2 and methanol with 2-cyanopyridine. ACS Catal. 8, 3181–3193 (2018). https://doi.org/10.1021/acscatal.7b04198

    Article  CAS  Google Scholar 

  187. W. Sun, L. Zheng, Y. Wang, D. Li, Z. Liu, L. Wu, T. Fang, J. Wu, A study for thermodynamics and experiment on direct synthesis of dimethyl carbonate from carbon dioxide and methanol over yttrium oxide. Ind. Eng. Chem. Res. 59(10), 4281–4290 (2020). https://doi.org/10.1021/acs.iecr.9b06092

    Article  CAS  Google Scholar 

  188. A. Tamboli, A. Chaugule, S. Gosavi, H. Kim, CexZr1−−xO2 solid solutions for catalytic synthesis of dimethyl carbonate from CO2: reaction mechanism and the effect of catalyst morphology on catalytic activity. Fuel 216, 245–254 (2018). https://doi.org/10.1016/j.fuel.2017.12.008

    Article  CAS  Google Scholar 

  189. K. Xuan, Y. Pu, F. Li, J. Luo, N. Zhao, F. Xiao, Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol. Chin. J. Catal. 40, 553–566 (2019). https://doi.org/10.1016/S1872-2067(19)63291-2

    Article  CAS  Google Scholar 

  190. K. Xuan, Y. Pu, F. Li, A. Li, J. Luo, L. Li, F. Wang, N. Zhao, F. Xiao, Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66. J. CO2 Util. 27, 272–282 (2018). https://doi.org/10.1016/j.jcou.2018.08.002

    Article  CAS  Google Scholar 

  191. F. Guo, A novel 2D Cu(II)-MOF as a heterogeneous catalyst for the cycloaddition reaction of epoxides and CO2 into cyclic carbonates. J. Mol. Struct. 1184, 557–561 (2019). https://doi.org/10.1016/j.molstruc.2019.02.076

    Article  ADS  CAS  Google Scholar 

  192. N. Sharma, S. Dhankhar, C. Nagaraja, A Mn(II)-porphyrin based metal-organic framework (MOF) for visible-light-assisted cycloaddition of carbon dioxide with epoxides. Microporous Mesoporous Mater. 280, 372–378 (2019). https://doi.org/10.1016/j.micromeso.2019.02.026

    Article  CAS  Google Scholar 

  193. H. Kim, H. Moon, M. Sohail, Y. Yoon, S. Shah, K. Yim, Y. Park, Synthesis of cyclic carbonate by CO2 fixation to epoxides using interpenetrated MOF-5/n-Bu4NBr. J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-019-03702-6

    Article  Google Scholar 

  194. J. Li, W. Li, S. Xu, B. Li, Y. Tang, Z. Lin, Porous metal-organic framework with Lewis acid−base bifunctional sites for high efficient CO2 adsorption and catalytic conversion to cyclic carbonates. Inorg. Chem. Commun. 106, 70–75 (2019). https://doi.org/10.1016/j.inoche.2019.05.031

    Article  CAS  Google Scholar 

  195. J. Kurisingal, Y. Rachuri, Y. Gu, Y. Choe, D. Park, Multi-variate metal-organic framework as efficient catalyst for the cycloaddition of CO2 and epoxides in a gas–liquid–solid reactor. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.05.061

    Article  Google Scholar 

  196. J. Kurisingal, Y. Rachuri, Y. Gu, G. Kim, D. Park, Binary metal-organic frameworks: catalysts for the efficient solvent-free CO2 fixation reaction via cyclic carbonates synthesis. Appl. Catal. A 571, 1–11 (2019). https://doi.org/10.1016/j.apcata.2018.11.035

    Article  CAS  Google Scholar 

  197. X. Zhang, Z. Chen, X. Yang, M. Li, C. Chen, N. Zhang, The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework. Microporous Mesoporous Mater. 258, 55–61 (2018). https://doi.org/10.1016/j.micromeso.2017.08.013

    Article  CAS  Google Scholar 

  198. I. Karamé, S. Zaher, N. Eid, L. Christ, New zinc/tetradentate N4 ligand complexes: efficient catalysts for solvent-free preparation of cyclic carbonates by CO2/epoxide coupling. Mol. Catal. 456, 87–95 (2018). https://doi.org/10.1016/j.mcat.2018.07.001

    Article  CAS  Google Scholar 

  199. M. Ahmed, A. Sakthivel, Preparation of cyclic carbonate via cycloaddition of CO2 on epoxide using amine-functionalized SAPO-34 as catalyst. J. CO2 Util. 22, 392–399 (2017). https://doi.org/10.1016/j.jcou.2017.10.021

    Article  CAS  Google Scholar 

  200. K. Yamazaki, T. Moteki, M. Ogura, Carbonate synthesis from carbon dioxide and cyclic ethers over methylated nitrogen-substituted mesoporous silica. Mol. Catal. 454, 38–43 (2018). https://doi.org/10.1016/j.mcat.2018.05.014

    Article  CAS  Google Scholar 

  201. D. Liu, G. Li, J. Liu, Y. Yi, Organic–inorganic hybrid mesoporous titanium silica material as bi-functional heterogeneous catalyst for the CO2 cycloaddition. Fuel 244, 196–206 (2019). https://doi.org/10.1016/j.fuel.2019.01.167

    Article  CAS  Google Scholar 

  202. M. Liu, K. Gao, L. Liang, N. Sun, L. Sheng, M. Arai, Experimental and theoretical insights into binary Zn-SBA-15/KI catalysts for the selective coupling of CO2 and epoxides into cyclic carbonates under mild conditions. Catal. Sci. Technol. 6(16), 6406–6416 (2016). https://doi.org/10.1039/C6CY00725B

    Article  CAS  Google Scholar 

  203. M. Liu, B. Li, L. Liang, F. Wang, L. Shi, M. Sun, Design of bifunctional NH3I-Zn/SBA15 single-component heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. J. Mol. Catal. A Chem. 418–419, 78–85 (2016). https://doi.org/10.1016/j.molcata.2016.03.037

    Article  CAS  Google Scholar 

  204. Q. Zhao, Q. Song, P. Liu, Q. Zhang, J. Gao, K. Zhang, Catalytic conversion of CO2 to cyclic carbonates through multifunctional zinc-modified ZSM-5 zeolite. Chin. J. Chem. 36, 187–193 (2018). https://doi.org/10.1002/cjoc.201700573

    Article  CAS  Google Scholar 

  205. M. Zhang, B. Chu, G. Li, J. Xiao, H. Zhang, Y. Peng, L. Dong, Triethanolamine-modified mesoporous SBA-15: Facile one-pot synthesis and its catalytic application for cycloaddition of CO2 with epoxides under mild conditions. Microporous Mesoporous Mater. (2018). https://doi.org/10.1016/j.micromeso.2018.09.011

    Article  PubMed  Google Scholar 

  206. S. Zhang, X. Liu, M. Li, Y. Wei, G. Zhang, J. Han, H. Wang, Metal-free amino-incorporated organosilica nanotubes for cooperative catalysis in the cycloaddition of CO2 to epoxides. Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  207. J. Noh, Y. Kim, H. Park, J. Lee, M. Yoon, M. Park, Y. Kim, M. Kim, Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition. J. Ind. Eng. Chem. 64, 478–483 (2018). https://doi.org/10.1016/j.jiec.2018.04.010

    Article  CAS  Google Scholar 

  208. X. Li, A. Cheetham, J. Jiang, CO2 cycloaddition with propylene oxide to form propylene carbonate on a copper metal-organic framework: a density functional theory study. Mol. Catal. 463, 37–44 (2019). https://doi.org/10.1016/j.mcat.2018.11.015

    Article  CAS  Google Scholar 

  209. M. Delavari, F. Zadehahmadi, S. Tangestaninejad, M. Moghadam, V. Mirkhani, I. Mohammadpoor-Baltork, R. Kardanpour, Catalytic synthesis of cyclic carbonates from epoxides and carbon dioxide by magnetic UiO-66 under mild conditions. Appl. Organomet. Chem. 31(7), e3656 (2016). https://doi.org/10.1002/aoc.3656

    Article  CAS  Google Scholar 

  210. K. Bhin, J. Tharun, K. Roshan, D. Kim, Y. Chung, D. Park, Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 17, 112–118 (2017). https://doi.org/10.1016/j.jcou.2016.12.001

    Article  CAS  Google Scholar 

  211. Z. Xue, J. Jiang, M. Ma, M. Li, T. Mu, Gadolinium-based metal–organic framework as an efficient and heterogeneous catalyst to activate epoxides for cycloaddition of CO2 and alcoholysis. ACS Sustain. Chem. Eng. 5(3), 2623–2631 (2017). https://doi.org/10.1021/acssuschemeng.6b02972

    Article  CAS  Google Scholar 

  212. X. Li, Y. Li, Y. Yang, L. Hou, Y. Wang, Z. Zhu, Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes. Chem. Commun. 53(96), 12970–12973 (2017). https://doi.org/10.1039/c7cc08298c

    Article  CAS  Google Scholar 

  213. B. Lu, W. Jiang, J. Yang, Y. Liu, J. Ma, Resorcin[4]arene-based microporousmetal–organic framework as an efficient catalyst for CO2 cycloaddition with epoxides and highly selective luminescent sensing of Cr2O72. ACS Appl. Mater. Interfaces. 9(45), 39441–39449 (2017). https://doi.org/10.1021/acsami.7b14179

    Article  CAS  PubMed  Google Scholar 

  214. J. Lan, M. Liu, X. Lu, X. Zhang, J. Sun, Novel 3D nitrogen-rich metal-organic framework for highly efficient CO2 adsorption and catalytic conversion to cyclic carbonates under ambient temperature. ACS Sustain. Chem. Eng. 6(7), 8727–8735 (2018). https://doi.org/10.1021/acssuschemeng.8b01055

    Article  CAS  Google Scholar 

  215. G. Jeong, A. Kathalikkattil, R. Babu, Y. Chung, D. Won Park, Cycloaddition of CO2 with epoxides by using an amino-acid-based Cu(II)–tryptophan MOF catalyst. Chin. J. Catal. 39(1), 63–70 (2018). https://doi.org/10.1016/s1872-2067(17)62916-4

    Article  CAS  Google Scholar 

  216. S. Huh, Direct catalytic conversion of CO2 to cyclic organic carbonates under mild reaction conditions by metal—organic frameworks. Catalysts 9(1), 34 (2019). https://doi.org/10.3390/catal9010034

    Article  CAS  Google Scholar 

  217. P. Tambe, G. Yadav, Heterogeneous cycloaddition of styrene oxide with carbon dioxide for synthesis of styrene carbonate using reusable lanthanum–zirconium mixed oxide as catalyst. Clean Technol. Environ. Policy 20(2), 345–356 (2017). https://doi.org/10.1007/s10098-017-1475-1

    Article  CAS  Google Scholar 

  218. K. Rasal, G. Yadav, R. Koskinen, R. Keiski, Solventless synthesis of cyclic carbonates by direct utilization of CO2 using nanocrystalline lithium promoted magnesia. Mol. Catal. 451, 200–208 (2018). https://doi.org/10.1016/j.mcat.2018.01.012

    Article  CAS  Google Scholar 

  219. Q. Deng, G. He, Y. Pan, X. Ruan, W. Zheng, X. Yan, Bis-ammonium immobilized polystyrenes with co-catalyzing functional end groups as efficient and reusable heterogeneous catalysts for synthesis of cyclic carbonate from CO2 and epoxides. RSC Adv. (2016). https://doi.org/10.1039/C5RA23808K

    Article  Google Scholar 

  220. Z. Dai, Q. Sun, X. Liu, C. Bian, Q. Wu, S. Pan, L. Wand, X. Meng, F. Deng, F. Xiao, Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. J. Catal. 338, 202–209 (2016). https://doi.org/10.1016/j.jcat.2016.03.005

    Article  CAS  Google Scholar 

  221. A.H. Jadhav, G.M. Thorat, K. Lee, A.C. Lim, H. Kang, J.G. Seo, Effect of anion type of imidazolium based polymer supported ionic liquids on the solvent free synthesis of cycloaddition of CO2 into epoxide. Catal. Today 265, 56–67 (2016). https://doi.org/10.1016/j.cattod.2015.09.048

    Article  CAS  Google Scholar 

  222. S. Liu, N. Suematsu, K. Maruoka, S. Shirakawa, Design of bifunctional quaternary phosphonium salt catalysts for CO2 fixation reaction with epoxides under mild conditions. Green Chem. 18, 4611–4615 (2016). https://doi.org/10.1039/C6GC01630H

    Article  CAS  Google Scholar 

  223. Y.A. Rulev, V.A. Larionov, A.V. Lokutova, M.A. Moskalenko, O.L. Lependina, V.I. Maleev, M. North, Y.N. Belokon, Chiral Cobalt(III) complexes as bifunctional Brønsted acid-lewis base catalysts for the preparation of cyclic organic carbonates. ChemSusChem 9, 216–222 (2016). https://doi.org/10.1002/cssc.201501365

    Article  CAS  PubMed  Google Scholar 

  224. A.H. Chowdhury, P. Bhanja, N. Salam, A. Bhaumik, S.M. Islam, Magnesium oxide as an efficient catalyst for CO2 fixation and N-formylation reactions under ambient conditions. Mol. Catal. 450, 46–54 (2018). https://doi.org/10.1016/j.mcat.2018.03.003

    Article  CAS  Google Scholar 

  225. L.Y. Zhao, J.Y. Chen, W.C. Li, A.H. Lu, B2O3: a heterogeneous metal-free Lewis acid catalyst for carbon dioxide fixation into cyclic carbonates. J. CO2 Util. 29, 172–178 (2019). https://doi.org/10.1016/j.jcou.2018.12.006

    Article  CAS  Google Scholar 

  226. V. Middelkoop, T. Slater, M. Florea, F. Neațu, S. Danaci, V. Onyenkeadi, K. Boonen, B. Saha, I. Baragau, S. Kellici, Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production. J. Clean. Prod. 214, 606–614 (2019). https://doi.org/10.1016/j.jclepro.2018.12.274

    Article  CAS  Google Scholar 

  227. D.H. Lan, H.T. Wang, L. Chen, C.T. Au, S.F. Yin, Phosphorous-modified bulk graphitic carbon nitride: facile preparation and application as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition with epoxides. Carbon 100, 81–89 (2016). https://doi.org/10.1016/j.carbon.2015.12.098

    Article  CAS  Google Scholar 

  228. S. Zhang, H. Zhang, F. Cao, Y. Ma, Y. Qu, Catalytic Behavior of Graphene Oxides for Converting CO2 into Cyclic Carbonates at One Atmospheric Pressure. ACS Sustainable Chemistry and Engineering 6(3), 4204–4211 (2018). https://doi.org/10.1021/acssuschemeng.7b04600

    Article  CAS  Google Scholar 

  229. J.L. Vidal, V.P. Andrea, S.L. MacQuarrie, F.M. Kerton, Oxidized biochar as a simple, renewable catalyst for the production of cyclic carbonates from carbon dioxide and epoxides. ChemCatChem (2019). https://doi.org/10.1002/cctc.201900290

    Article  Google Scholar 

  230. C. Wang, Q. Song, K. Zhang, P. Liu, J. Wang, J. Wang, H. Zhang, J. Wang, Atomic zinc dispersed on graphene synthesized for active CO2 fixation to cyclic carbonates. Chem. Commun. (2019). https://doi.org/10.1039/c8cc09449g

    Article  Google Scholar 

  231. M.H. Alkordi, L.J. Weseliński, V. D’Elia, S. Barman, A. Cadiau, M. Hedhili, M. Eddaoudi, CO2 conversion: the potential of porous-organic polymers (POPs) for catalytic CO2–epoxide insertion. J. Mater. Chem. A 4(19), 7453–7460 (2016). https://doi.org/10.1039/c5ta09321j

    Article  CAS  Google Scholar 

  232. H. Zhong, Y. Su, X. Chen, X. Li, R. Wang, Imidazolium- and triazine-based porous organic polymers for heterogeneous catalytic conversion of CO2 into cyclic carbonates. ChemSusChem 10(24), 4855–4863 (2017). https://doi.org/10.1002/cssc.201701821

    Article  CAS  PubMed  Google Scholar 

  233. A. Jawad, F. Rezaei, A. Rownaghi, Porous polymeric hollow fibers as bifunctional catalysts for CO2 conversion to cyclic carbonates. J. CO2 Util. 21, 589–596 (2017). https://doi.org/10.1016/j.jcou.2017.09.007

    Article  CAS  Google Scholar 

  234. S. Ravi, P. Puthiaraj, W. Ahn, Hydroxylamine-anchored covalent aromatic polymer for CO2 adsorption and fixation into cyclic carbonates. ACS Sustain. Chem. Eng. 6(7), 9324–9332 (2018). https://doi.org/10.1021/acssuschemeng.8b01588

    Article  CAS  Google Scholar 

  235. B. Sarmah, R. Srivastava, Activation and utilization of CO2 using ionic liquid or amine-basic nanocrystalline zeolites for the synthesis of cyclic carbonates and quinazoline-2,4(1H,3H)-dione. Ind. Eng. Chem. Res. 56(29), 8202–8215 (2017). https://doi.org/10.1021/acs.iecr.7b01406

    Article  CAS  Google Scholar 

  236. R. Babu, S. Kim, J. Kurisingal, H. Kim, G. Choi, D. Park, A room temperature synthesizable zeolitic imidazolium framework catalyst for the solvent-free synthesis of cyclic carbonates. J. CO2 Util. 25, 6–13 (2018). https://doi.org/10.1016/j.jcou.2018.03.006

    Article  CAS  Google Scholar 

  237. P. Yadav, M. Agrawal, A. Alexander, R. Patel, S. Siddique, S. Saraf, Ajazuddin, Polymer production and processing using supercritical carbon dioxide. Green Sustain. Process Chem. Environ. Eng. Sci. (2020). https://doi.org/10.1016/b978-0-12-817388-6.00001-5

  238. Q. Zhang, H. Yuan, N. Fukaya, J. Choi, Alkali metal salt as catalyst for direct synthesis of carbamate from carbon dioxide. ACS Sustain. Chem. Eng. 6(5), 6675–6681 (2018). https://doi.org/10.1021/acssuschemeng.8b00449

    Article  CAS  Google Scholar 

  239. W.S. Putro, Y. Munakata, S. Ijima, S. Shigeyasu, S. Hamura, S. Matsumoto, T. Mishima, K. Tomishige, J. Choi, N. Fukaya, Synthesis of diethyl carbonate from CO2 and orthoester promoted by a CeO2 catalyst and ethanol. J. CO2 Util. 55, 101818 (2022). https://doi.org/10.1016/j.jcou.2021.101818

    Article  CAS  Google Scholar 

  240. Y. Gu, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, K. Tomishige, Direct synthesis of polycarbonate diols from atmospheric flow CO2 and diols without using dehydrating agents. Green Chem. 23(16), 5786–5796 (2021). https://doi.org/10.1039/d1gc01172c

    Article  CAS  Google Scholar 

  241. M. Buchmann, M. Lucas, M. Rose, Catalytic CO2 esterification with ethanol for the production of diethyl carbonate using optimized CeO2 as catalyst. Catal. Sci. Technol. 11(5), 1940–1948 (2021). https://doi.org/10.1039/d0cy01793k

    Article  CAS  Google Scholar 

  242. J. Wang, Z. Hao, S. Wohlrab, Continuous CO2 esterification to diethyl carbonate (DEC) at atmospheric pressure: application of porous membranes for in situ H2O removal. Green Chem. 19(15), 3595–3600 (2017). https://doi.org/10.1039/c7gc00916j

    Article  CAS  Google Scholar 

  243. H. Ohno, M. Ikhlayel, M. Tamura, K. Nakao, K. Suzuki, K. Morita, Y. Kato, K. Tomishige, Y. Fukushima, Direct dimethyl carbonate synthesis from CO2 and methanol catalyzed by CeO2 and assisted by 2-cyanopyridine: a cradle-to-gate greenhouse gas emission study. Green Chem. (2021). https://doi.org/10.1039/d0gc03349a

    Article  Google Scholar 

  244. Y. Chen, Q. Tang, Z. Ye, Y. Li, Y. Yang, H. Pu, G. Li, Monolithic ZnxCe1xO2 catalysts for catalytic synthesis of dimethyl carbonate from CO2 and methanol. New J. Chem. (2020). https://doi.org/10.1039/d0nj02650f

    Article  PubMed  PubMed Central  Google Scholar 

  245. Q. Zhang, H. Yuan, X. Lin, N. Fukaya, T. Fujitani, K. Sato, J. Choi, Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbonate, and cyclic carbonates from carbon dioxide. Green Chem. (2020). https://doi.org/10.1039/d0gc01402h

    Article  Google Scholar 

  246. J. Bai, L. Lv, J. Liu, Q. Wang, Q. Cheng, M. Cai, S. Sun, Control of CeO2 defect sites for photo- and thermal- synergistic catalysis of CO2 and methanol to DMC. Catal. Lett. (2022). https://doi.org/10.1007/s10562-022-04235-5

    Article  Google Scholar 

  247. Z. Fu, Y. Zhong, Y. Yu, L. Long, M. Xiao, D. Han, S. Wang, Y. Meng, TiO2-doped CeO2 nanorod catalyst for direct conversion of CO2 and CH3OH to dimethyl carbonate: catalytic performance and kinetic study. ACS Omega 3, 198–207 (2018). https://doi.org/10.1021/acsomega.7b01475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. U. Pa, S. Darbha, Direct synthesis of dimethyl carbonate from CO2 and methanol over CeO2 catalysts of different morphologies. J. Chem. Sci. 128, 957–965 (2016). https://doi.org/10.1007/s12039-016-1094-0

    Article  CAS  Google Scholar 

  249. Y. Chen, Y. Yang, S. Tian, Z. Ye, Q. Tang, L. Ye, G. Li, Highly effective synthesis of dimethyl carbonate over CuNi Alloy nanoparticles @porous organic polymers composite. Appl. Catal. A 587, 117275 (2019). https://doi.org/10.1016/j.apcata.2019.117275

    Article  CAS  Google Scholar 

  250. Y. Zhang, M.S. Khalid, M. Wang, G. Li, New strategies on green synthesis of dimethyl carbonate from carbon dioxide and methanol over oxide composites. Molecules 27(17), 5417 (2022). https://doi.org/10.3390/molecules27175417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. M. Zhang, Y. Xu, B. Williams, M. Xiao, S. Wang, D. Han, Y. Meng, Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.123344

    Article  PubMed  PubMed Central  Google Scholar 

  252. T. Chang, M. Tamura, Y. Nakagawa, N. Fukaya, J. Choi, T. Mishima, K. Tomishige, Effective combination catalyst of CeO2 and zeolite for direct synthesis of diethyl carbonate from CO2 and ethanol with 2,2-diethoxypropane as a dehydrating agent. Green Chem. (2020). https://doi.org/10.1039/d0gc02717k

    Article  PubMed  PubMed Central  Google Scholar 

  253. A.A. Pawar, D. Lee, H. Kim, Understanding the synergy between MgO–CeO2 as an effective promoter and ionic liquids for high dimethyl carbonate production from CO2 and methanol. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124970

    Article  Google Scholar 

  254. S. Chaemchuen, O.V. Semyonov, J. Dingemans, W. Xu, S. Zhuiykov, A. Khan, F. Verpoort, Progress on catalyst development for direct synthesis of dimethyl carbonate from CO2 and methanol. Chem. Afr. (2019). https://doi.org/10.1007/s42250-019-00082-x

    Article  Google Scholar 

  255. M.O. Vieira, A.S. Aquino, M.K. Schutz, F.D. Vecchia, R. Ligabue, M. Seferin, S. Einloft, Chemical conversion of CO2:evaluation of diferent ionic liquids as catalysts in dimethyl carbonate synthesis. Energy Procedia 114, 7141–7149 (2017). https://doi.org/10.1016/j.egypro.2017.03.1876

    Article  CAS  Google Scholar 

  256. A.A. Chaugule, A.H. Tamboli, H. Kim, Efcient fxation and conversion of CO2 into dimethyl carbonate catalyzed by an imidazolium containing tri-cationic ionic liquid/super base system. RSC Adv. 6, 42279–42287 (2016). https://doi.org/10.1039/C6RA04084E

    Article  ADS  CAS  Google Scholar 

  257. T. Zhao, X. Hu, D. Wu, R. Li, G. Yang, Y. Wu, Direct synthesis of dimethyl carbonate from CO2 and methanol at room temperature using imidazolium hydrogen carbonate ionic liquid as recyclable catalyst and dehydrant. ChemSusChem 10, 2046–2052 (2017). https://doi.org/10.1002/cssc.201700128

    Article  CAS  PubMed  Google Scholar 

  258. P. Švec, H. Cattey, Z. Růžičková, J. Holub, A. Růžička, L. Plasseraud, Triorganotin(iv) cation-promoted dimethyl carbonate synthesis from CO2 and methanol: solution and solid-state characterization of an unexpected diorganotin(iv)-oxo cluster. New J. Chem. 42, 8253–8260 (2018). https://doi.org/10.1039/C7NJ05058E

    Article  Google Scholar 

  259. R.B. Mujmule, M.P. Raghav Rao, P.V. Rathod, V.G. Deonikar, A.A. Chaugule, H. Kim, Synergistic effect of a binary ionic liquid/base catalytic system for efficient conversion of epoxide and carbon dioxide into cyclic carbonates. J. CO2 Util. 33, 284–291 (2019). https://doi.org/10.1016/j.jcou.2019.06.013

    Article  CAS  Google Scholar 

  260. A.A. Marciniak, O.C. Alves, L.G. Appel, C.J.A. Mota, Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent. J. Catal. 371, 88–95 (2019). https://doi.org/10.1016/j.jcat.2019.01.035

    Article  CAS  Google Scholar 

  261. X. Hu, H. Cheng, X. Kang, L. Chen, X. Yuan, Z. Qi, Analysis of direct synthesis of dimethyl carbonate from methanol and CO2 intensified by in-situ hydration-assisted reactive distillation with side reactor. Chem. Eng. Process. Process Intensif. 129, 109–117 (2018). https://doi.org/10.1016/j.cep.2018.05.007

    Article  CAS  Google Scholar 

  262. Z. He, Y. Sun, Y. Wei, K. Wang, W. Wang, Z. Chen, Z. Wang, Y. Tian, Z. Liu, Synthesis of dimethyl carbonate from CO2 and methanol over CeO2 nanoparticles/CO3O4 nanosheets. Fuel 325, 124945 (2022). https://doi.org/10.1016/j.fuel.2022.124945

    Article  CAS  Google Scholar 

  263. H. Liu, D. Zhu, B. Jia, Y. Huang, Y. Cheng, X. Luo, Z. Liang, Study on catalytic performance and kinetics of high efficiency CeO2 catalyst prepared by freeze drying for the synthesis of dimethyl carbonate from CO2 and methanol. Chem. Eng. Sci. 254, 117614 (2022). https://doi.org/10.1016/j.ces.2022.117614

    Article  CAS  Google Scholar 

  264. D. Stoiana, A. Bansodea, F. Medina, A. Urakawaa, Catalysis under microscope: Unraveling the mechanism of catalyst de- and re-activation in the continuous dimethyl carbonate synthesis from CO2 and methanol in the presence of a dehydrating agent. Catal. Today 283, 2–10 (2017). https://doi.org/10.1016/j.cattod.2016.03.038

    Article  CAS  Google Scholar 

  265. P. Kumar, V. Srivastava, R. Gläser, P. With, I. Mishra, Active ceria-calcium oxide catalysts for dimethyl carbonate synthesis by conversion of CO2. Powder Technol. 309, 13–21 (2017). https://doi.org/10.1016/j.powtec.2016.12.016

    Article  CAS  Google Scholar 

  266. A.H. Tamboli, A.A. Chaugule, S.W. Gosavi, H. Kim, CexZr1−xO2 solid solutions for catalytic synthesis of dimethyl carbonate from CO2: Reaction mechanism and the effect of catalyst morphology on catalytic activity. Fuel 216, 245–254 (2018). https://doi.org/10.1016/j.fuel.2017.12.008

    Article  CAS  Google Scholar 

  267. A.H. Tamboli, A.A. Chaugule, H. Kim, Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem. Eng. J. 323, 530–544 (2017). https://doi.org/10.1016/j.cej.2017.04.112

    Article  CAS  Google Scholar 

  268. S. Xu, Y. Cao, Z. Liu, Dimethyl carbonate synthesis from CO2 and methanol over CeO2–ZrO2 catalyst. Catal. Commun. 162, 106397–98 (2022)

    Article  CAS  Google Scholar 

  269. J. Al-Darwish, M. Senter, S. Lawson, F. Rezaei, A. Rownaghi, Ceria nanostructured catalysts for conversion of methanol and carbon dioxide to dimethyl carbonate. Catal. Today 350, 120–126 (2020). https://doi.org/10.1016/j.cattod.2019.06.013

    Article  CAS  Google Scholar 

  270. A.A. Chaugule, H.A. Bandhal, A.H. Tamboli, W. Chung, H. Ki, Highly efficient synthesis of dimethyl carbonate from methanol and carbon dioxide using IL/DBU/SmOCl as a novel ternary catalytic system. Catal. Commun. 75, 87–91 (2016). https://doi.org/10.1016/j.catcom.2015.12.009

    Article  CAS  Google Scholar 

  271. K. Liu, C. Liu, Synthesis of dimethyl carbonate from methanol and CO2 under low pressure. RSC Adv. 11, 35711–35717 (2021). https://doi.org/10.1039/D1RA06676E

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  272. W.L. Tan, H.F. Tan, A.L. Ahmad, C.P. Leo, Carbon dioxide conversion into calcium carbonate nanoparticles using membrane gas absorption. J. CO2 Util. 48, 101533 (2021)

    Article  CAS  Google Scholar 

  273. M. Ramdin, A.R.T. Morrison, M. de Groen, R. van Haperen, R. de Kler, L. van den Broeke, J.P. Martin Trusler, W. de Jong, J.H. Thijs Vlugt, High pressure electrochemical reduction of CO2 to formic acid/formate: a comparison between bipolar membranes and cation exchange membranes. Ind. Eng. Chem. Res. 58, 1834–1847 (2019). https://doi.org/10.1021/acs.iecr.8b04944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. D.A. Castillo, M. Alvarez-Guerra, J. Solla-Gullon, A. Saez, V. Montiel, A. Irabien, Sn nanoparticles on gas diffusion electrodes: synthesis, characterization and use for continuous carbon-dioxide electroreduction to formate. J. CO2 Util. 18, 222–228 (2017). https://doi.org/10.1016/j.jcou.2017.01.021

    Article  CAS  Google Scholar 

  275. H. Yang, J.J. Kaczur, S.D. Sajjad, R.I. Masel, Electrochemical conversion of CO2 to formic acid utilizing sustainion membranes. J. CO2 Util. 20, 208–217 (2017)

    Article  CAS  Google Scholar 

  276. L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO2 reduction to high concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020). https://doi.org/10.1038/s41467-020-17403-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  277. A. Morrison, V. Beusekom, M. Ramdin, P. van de Broeke, T.J. Vlugt, W. de Jong, Modeling the electrochemical conversion of carbon dioxide to formic acid or formate at elevated pressures. J. Electrochem. Soc. 166(4), E77–E86 (2019). https://doi.org/10.1149/2.0121904jes

    Article  CAS  Google Scholar 

  278. F. Proietto, B. Schiavo, A. Galia, O. Scialdone, Electrochemical conversion of CO2 to HCOOH at tin cathode in a pressurized undivided filter-press cell. Electrochim. Acta 277, 30–40 (2018). https://doi.org/10.1016/j.electacta.2018.04.159

    Article  CAS  Google Scholar 

  279. G. Díaz-Sainz, M. Alvarez-Guerra, A. Irabien, Continuous electrochemical reduction of CO2 to formate: comparative study of the influence of the electrode configuration with Sn and Bi-based electrocatalysts. Molecules 25(19), 4457 (2020). https://doi.org/10.3390/molecules25194457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Y. Chen, A. Vise, W.E. Klein, F.C. Cetinbas, D.J. Myers, W.A. Smith, T.G. Deutsch, K.C. Neyerlin, A robust scalable platform for the electrochemical conversion of CO2 to formate: identifying pathways to higher energy efficiencies. ACS Energy Lett. 5(6), 1825–1833 (2020). https://doi.org/10.1021/acsenergylett.0c00860

    Article  CAS  Google Scholar 

  281. B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen, M. Sunkara, J.M. Spurgeon, Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical carbon-dioxide-into HCOOH conversion. ACS Catal. 9(3), 2164–2168 (2017). https://doi.org/10.1002/anie.201612194

    Article  CAS  Google Scholar 

  282. C. Liang, B. Kim, S. Yang, Y. Liu, C.F. Woellner, Z. Li, R. Vajtai, W. Yang, J. Wu, P.J.A. Kenis, P.M. Ajayan, High efficiency electrochemical reduction of carbon-dioxide beyond twoelectron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. J. Mater. Chem. A 6(22), 10313–10319 (2018). https://doi.org/10.1039/C8TA01367E

    Article  CAS  Google Scholar 

  283. Y. Wang, J. Zhou, W. Lv, H. Fang, W. Wang, Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Appl. Surf. Sci. 362, 394–398 (2016). https://doi.org/10.1016/j.apsusc.2015.11.255

    Article  ADS  CAS  Google Scholar 

  284. E. Irtem, T. Andreua, A. Parra, M.D. Hernandez-Alonso, S. García-Rodríguez, J.M. Riesco-García, G. Penelas-Pérez, J.R. Morante, Low-energy formic acid production from carbon-dioxide using electrodeposited tin on GDE. J. Mater. Chem. A 4, 13582–13588 (2016). https://doi.org/10.1039/C6TA04432H

    Article  CAS  Google Scholar 

  285. F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei, Y. Xie, Metallic tin quantum sheets confined in grapheme toward high efficiency carbon dioxide electro-reduction. Nat. Commun. 7, 12697 (2017)

    Article  ADS  Google Scholar 

  286. S. Sujat, S.M. Brown, M. Leonard, F.R. Brushett, Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes. J. Appl. Electrochem. 49(9), 917–928 (2019). https://doi.org/10.1007/s10800-019-01332-z

    Article  CAS  Google Scholar 

  287. S. Lee, H. Bae, A. Singh, T. Hussain, T. Kaewmaraya, H. Lee, Conversion of CO2 into formic acid on transition metal-porphyrinlike graphene: first principles calculations. ACS Omega 6, 27045–27051 (2021). https://doi.org/10.1021/acsomega.1c03599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. K. Bejtka, J. Zeng, A. Sacco, M. Castellino, S. Hernández, M.A. Farkhondehfal, U. Savino, S. Ansaloni, C.F. Pirri, A. Chiodoni, Chainlike mesoporous SnO2 as a well-performing catalyst for electrochemical CO2 reduction. ACS Appl. Energy Mater. 2(5), 3081–3091 (2019). https://doi.org/10.1021/acsaem.8b02048

    Article  CAS  Google Scholar 

  289. X. Zheng, P. De Luna, F.P. Garcıa de Arquer, B. Zhang, N. Becknell, X. Du, P. Yang, E.H. Sargent, Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1(4), 794–805 (2017). https://doi.org/10.1016/j.joule.2017.09.014

    Article  CAS  Google Scholar 

  290. O. Scialdone, A. Galia, G. Nero, F. Proietto, S. Sabatino, B. Schiavo, Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameters. Electrochim. Acta 199, 332–341 (2016). https://doi.org/10.1016/j.electacta.2016.02.079

    Article  CAS  Google Scholar 

  291. Q. Zhang, Y. Zhang, J. Mao, J. Liu, Y. Zhou, D. Guay, J. Qiao, Electrochemical reduction of CO2 by SnOx nanosheets anchored on multiwalled carbon nanotubes with tunable functional groups. ChemSusChem 12, 1443 (2019). https://doi.org/10.1002/cssc.201802725

    Article  CAS  PubMed  Google Scholar 

  292. L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li 1D SnO2 with Wire-in-Tube Architectures for Highly Selective Electrochemical Reduction of CO2 to C1 Products. Advance Functional Materials, 28, 1706289 (2018). https://doi.org/10.1002/adfm.201706289

  293. S. Zhoa, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Advances in Sn-based catalysts for electrochemical CO2 reduction. Nano-Micro Lett. 11(1), 62 (2018). https://doi.org/10.1007/s40820-019-0293-x

    Article  ADS  Google Scholar 

  294. F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem. 55, 1–6 (2016). https://doi.org/10.1002/anie.201608279

    Article  CAS  Google Scholar 

  295. H. Zhong, Y. Qiu, T. Zhang, X. Li, H.X. Zhang, J. Chen, Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 4, 13746 (2016). https://doi.org/10.1039/C6TA06202D

    Article  CAS  Google Scholar 

  296. S. Kim, W.J. Dong, S. Gim, W. Sohn, J.Y. Park, C.J. Yoo, H.W. Jang, J.L. Lee, Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate. Nano Energy 39, 44 (2017). https://doi.org/10.1016/j.nanoen.2017.05.065

    Article  CAS  Google Scholar 

  297. J.H. Koh, D.H. Won, T. Eom, N.K. Kim, K.D. Jung, H. Kim, Y.J. Hwang, B.K. Min, Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catalyst 7, 5071 (2017). https://doi.org/10.1021/acscatal.7b00707

    Article  CAS  Google Scholar 

  298. Y. Zhang, X. Zhang, Y. Ling, F. Li, A.M. Bond, J. Zhang, Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew. Chem. 57, 13283 (2018). https://doi.org/10.1002/anie.201807466

    Article  CAS  Google Scholar 

  299. N. Han, Y. Wang, H. Yang, J. Deng, Y. Wu, Y. Li, Y. Li, Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  300. N. Han, P. Ding, L. He, Y. Li, Y. Li, Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 57, 14624 (2018). https://doi.org/10.1002/aenm.201902338

    Article  CAS  Google Scholar 

  301. C.W. Lee, J.S. Hong, K.D. Yang, K. Jin, J.H. Lee, H.Y. Ahn, H. Seo, N.E. Sung, K.T. Nam, Selective electrochemical production of formate from carbon dioxide with bismuth-based catalysts in an aqueous electrolyte. ACS Catal. 8, 931 (2018)

    Article  CAS  Google Scholar 

  302. S.X. Guo, Y. Zhang, X. Zhang, C.D. Easton, D.R. MacFarlane, J. Zhang, Phosphomolybdic acid-assisted growth of ultrathin bismuth nanosheets for enhanced electrocatalytic reduction of CO2 to formate. ChemSusChem 12, 1091 (2019). https://doi.org/10.1002/cssc.201802409

    Article  CAS  PubMed  Google Scholar 

  303. Z. Chen, K. Mou, X. Wang, L. Liu, Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region. Angew. Chem. 57, 12790 (2018)

    Article  CAS  Google Scholar 

  304. H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li, J. Lu, Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 8, 1801536 (2018)

    Article  Google Scholar 

  305. Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu, Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  306. W. Luo, W. Xie, M. Li, J. Zhang, A. Züttel, 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. J. Mater. Chem. A 7, 4505 (2019). https://doi.org/10.1039/C8TA11645H

    Article  CAS  Google Scholar 

  307. W. Ma, S. Xie, X. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D. Wu, Y. Wang, Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10, 892 (2019). https://doi.org/10.1038/s41467-019-08805-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  308. Z. Xia, M. Freeman, D. Zhang, B. Yang, L. Lei, Z. Li, Y. Hou, Highly selective electrochemical conversion of CO2 to HCOOH on dendritic indium foams. ChemElectroChem 5, 253 (2018)

    Article  CAS  Google Scholar 

  309. A. Aljabour, H. Coskun, D.H. Apaydin, F. Ozel, A.W. Hassel, P. Stadler, N.S. Sariciftci, M. Kus, Nanofibrous cobalt oxide for electrocatalysis of carbon-dioxide reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Appl. Catal. B 229, 163–170 (2018). https://doi.org/10.1016/j.apcatb.2018.02.017

    Article  CAS  Google Scholar 

  310. M. Rumayor, A. Dominguez-Ramos, A. Irabien, Formic acid manufacture: carbon dioxide utilization alternatives. Appl. Sci. 8, 914 (2018). https://doi.org/10.3390/app8060914

    Article  CAS  Google Scholar 

  311. S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  312. D. Gao, H. Zhou, F. Cai, D. Wang, Y. Hu, B. Jiang, W. Cai, X. Chen, R. Si, F. Yang, S. Miao, J. Wang, G. Wang, X. Bao, Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 10, 2181–2191 (2016). https://doi.org/10.1007/s12274-017-1514-6

    Article  CAS  Google Scholar 

  313. A. Klinkova, P. De Luna, C.T. Dinh, O. Voznyy, E.M. Larin, E. Kumacheva, E.H. Sargent, Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal. 6, 8115–8120 (2016). https://doi.org/10.1021/acscatal.6b01719

    Article  CAS  Google Scholar 

  314. W. Lee, Y.E. Kim, M.H. Youn, S.K. Jeong, K.T. Park, Catholyte-free electrocatalytic CO2 reduction to formate. Angew. Chem. 57, 6883–6887 (2018). https://doi.org/10.1002/anie.201803501

    Article  CAS  Google Scholar 

  315. X. Bai, W. Chen, C. Zhao, S. Li, Y. Song, R. Ge, W. Wei, Y. Sun, Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd–Sn alloy. Angew. Chem. 56(40), 12219–12223 (2017). https://doi.org/10.1002/anie.201707098

    Article  CAS  Google Scholar 

  316. V.S.K. Yadav, Y. Noh, H. Han, W.B. Kim, Synthesis of Sn catalysts by solar electro-deposition method for electrochemical CO2 reduction reaction to HCOOH. Catal. Today 303, 276–281 (2018). https://doi.org/10.1016/j.cattod.2017.09.015

    Article  CAS  Google Scholar 

  317. Z. Chen, S. Yao, L. Liu, 3D hierarchical porous structured carbon nanotube aerogel-supported Sn spheroidal particles: an efficient and selective catalyst for electrochemical reduction of CO2 to formate. J. Mater. Chem. A 5(47), 24651–24656 (2017). https://doi.org/10.1039/c7ta07495f

    Article  CAS  Google Scholar 

  318. R. Shirmohammadi, A. Aslani, R. Ghasempour, L.M. Romeo, CO2 utilization via integration of an industrial post-combustion capture process with a urea facility: process modelling and sensitivity analysis. Processes 8, 1144 (2020)

    Article  CAS  Google Scholar 

  319. P. Siva, P. Prabu, M. Selvam, S. Karthik, V. Rajendran, Electrocatalytic conversion of carbon dioxide to Urea on nano-FeTiO3 surface. Ionics 23(7), 1871–1878 (2017). https://doi.org/10.1007/s11581-017-1985-1

    Article  CAS  Google Scholar 

  320. Y. Feng, H. Yang, Y. Zhang, X. Huang, L. Li, T. Cheng, Q. Shao, Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Lett. 20(11), 8282–8289 (2020). https://doi.org/10.1021/acs.nanolett.0c03400

    Article  ADS  CAS  PubMed  Google Scholar 

  321. G. Bharath, G. Karthikeyan, A. Kumar, J. Prakash, D. Venkatasubbu, A.K. Nadda, V.K. Gupta, M.A. Haija, F. Banat, Surface engineering of Au nanostructures for plasmon-enhanced electrochemical reduction of N2 and CO2 into urea in the visible-NIR region. Appl. Energy 318, 119244 (2022). https://doi.org/10.1016/j.apenergy.2022.119244

    Article  CAS  Google Scholar 

  322. N. Kulal, C. John, G.V. Shanbhag, Rational design of bifunctional catalyst from KF and ZnO combination on alumina for cyclic urea synthesis from CO2 and diamine. Appl. Catal. A 598, 117550 (2020). https://doi.org/10.1016/j.apcata.2020.117550

    Article  CAS  Google Scholar 

  323. D. Sun, J. Ye, Y. Fang, Z. Chao, Green synthesis of N,N′-dialkylureas from carbon-dioxide and amines using metal salts of oxalates as catalysts. Ind. Eng. Chem. Res. 55, 64–70 (2016)

    Article  CAS  Google Scholar 

  324. H. Wang, Z. Xin, Y. Lin, Synthesis of urea from CO2. Top. Curr. Chem. (2017). https://doi.org/10.1007/s41061-017-0137-4

    Article  Google Scholar 

  325. P. Wang, Y. Fei, Y. Deng, Transformation of CO2 into polyureas with 3-amino-1,2,4-triazole potassium as a solid base catalyst. New J. Chem. 42(2), 1202–1207 (2018). https://doi.org/10.1039/C7NJ04197G

    Article  CAS  Google Scholar 

  326. E. Koohestanian, J. Sadeghi, D. Mohebbi-Kalhori, F. Shahraki, A. Samimi, A novel process for carbon-dioxide capture from the flue gases to produce Urea and ammonia. Energy 144, 279–285 (2018). https://doi.org/10.1016/j.energy.2017.12.034

    Article  CAS  Google Scholar 

  327. A. Edrisi, Z. Mansoori, B. Dabir, Urea synthesis using chemical looping process: techno-economic evaluation of a novel facility configuration for a green production. Int. J. Greenh. Gas Control 44, 42–51 (2016). https://doi.org/10.1016/j.ijggc.2015.10.020

    Article  CAS  Google Scholar 

  328. Zero carbon, Rethinking Cement summary. An overview of the research report by Beyond Zero Emissions (2017). https://bze.org.au/wp-content/uploads/2020/12/rethinking-cement-bze-report-summary-2017.pdf. Assessed 24 June 2021

  329. D. Ravikumar, D. Zhang, G. Keoleian, S. Miller, V. Sick, V. Li, Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-21148-w

    Article  PubMed  PubMed Central  Google Scholar 

  330. M. Zajac, J. Skocek, M.B. Haha, J. Deja, CO2 Mineralization Methods in Cement and Concrete Industry. Energies 15, 3597 (2022). https://doi.org/10.3390/en15103597

    Article  CAS  Google Scholar 

  331. S. Monkman, M. MacDonald, On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete. J. Clean. Prod. 167, 365–375 (2017). https://doi.org/10.1016/j.jclepro.2017.08.194

    Article  CAS  Google Scholar 

  332. W. Ashraf, Carbonation of cement-based materials: Challenges and opportunities. Constr. Build. Mater. 120, 558–570 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.080

    Article  CAS  Google Scholar 

  333. H. Hamada, A. Alattar, B. Tayeh, F. Yahaya, I. Almeshal, Influence of different curing methods on the compressive strength of ultra-high-performance concrete: A comprehensive review. Case Stud. Constr. Mater. 17, e01390 (2022). https://doi.org/10.1016/j.cscm.2022.e01390

    Article  Google Scholar 

  334. S. Monkman, M. MacDonald, Carbon dioxide upcycling into industrially produced concrete blocks. Constr. Build. Mater. 124, 127–132 (2016). https://doi.org/10.1016/j.conbuildmat.2016.07.046

    Article  CAS  Google Scholar 

  335. D. Zhang, Z. Ghouleh, Y. Shao, Review on carbonation curing of cement-based materials. J. CO2 Util. 21, 119–131 (2017). https://doi.org/10.1016/j.jcou.2017.07.003

    Article  CAS  Google Scholar 

  336. N. Li, L. Mo, C. Unluer, Emerging CO2 utilization technologies for construction materials: a review. J. CO2 Util. 65, 102237 (2022). https://doi.org/10.1016/j.jcou.2022.102237

    Article  CAS  Google Scholar 

  337. S. Deng, P. Ren, Y. Jiang, X. Shao, T. Ling, Use of CO2-active BOFS binder in the production of artificial aggregates with waste concrete powder. Resour. Conserv. Recycl. 182, 106332 (2022). https://doi.org/10.1016/j.resconrec.2022.106332

    Article  CAS  Google Scholar 

  338. L. Li, M. Wu, An overview of utilizing CO2 for accelerated carbonation treatment in the concrete industry. J. CO2 Util. 60, 102000 (2022). https://doi.org/10.1016/j.jcou.2022.102000

    Article  CAS  Google Scholar 

  339. J.G. Jang, H.K. Lee, Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cem. Concr. Res. 82, 50–57 (2016). https://doi.org/10.1016/j.cemconres.2016.01.001

    Article  CAS  Google Scholar 

  340. W. Liu, L. Teng, S. Rohani, Z. Qin, B. Zhao, C.C. Xu, S. Ren, Q. Liu, B. Liang, CO2 mineral carbonation using industrial solid wastes: a review of recent developments. Chem. Eng. J. 416, 129093 (2021). https://doi.org/10.1016/j.cej.2021.129093

    Article  CAS  Google Scholar 

  341. U. Alicja, M. Eugeniusz, CO2 mineral sequestration with the use of ground granulated blast furnace slag. Mineral Resources Management. 33(1), 111–124 (2017). https://doi.org/10.1515/gospo-2017-0008

    Article  CAS  Google Scholar 

  342. E. Ren, S. Tang, C. Liu, H. Yue, C. Li, B. Liang, Carbon dioxide mineralization for the disposition of blast-furnace slag: reaction intensification using NaCl solutions. Greenh. Gases Sci. Technol. 10(2), 436–448 (2018). https://doi.org/10.1002/ghg.1837

    Article  CAS  Google Scholar 

  343. S. Lee, J. Kim, S. Chae, J. Bang, S. Lee, CO2 sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. J. CO2 Util. 16, 336–345 (2016). https://doi.org/10.1016/j.jcou.2016.09.003

    Article  CAS  Google Scholar 

  344. J. Bang, S. Lee, C. Jeon, S. Park, K. Song, W.J. Jo, S. Chae, Leaching of metal ions from blast furnace slag by using aqua regia for CO2 mineralization. Energies 9(12), 996 (2016). https://doi.org/10.3390/en9120996

    Article  CAS  Google Scholar 

  345. Q. Liu, W. Liu, J. Hu, L. Wang, J. Gao, B. Liang, H. Yue, G. Zhang, D. Luo, C. Li, Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J. Clean. Prod. 197, 242–252 (2018). https://doi.org/10.1016/j.jclepro.2018.06.150

    Article  CAS  Google Scholar 

  346. H. Wu, D. Zhang, B.R. Ellis, V.C. Li, Development of reactive MgO-based engineered cementitious composite (ECC) through accelerated carbonation curing. Constr. Build. Mater. 191, 23–31 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.196

    Article  CAS  Google Scholar 

  347. D. Zhang, X. Cai, Y. Shao, Carbonation curing of precast fly ash concrete. J. Mater. Civ. Eng. 28(11), 04016127 (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001649

    Article  Google Scholar 

  348. X. Li, T. Ling, Instant CO2 curing for dry-mix pressed cement pastes: Consideration of CO2 concentrations coupled with further water curing. J. CO2 Util. 38, 348–354 (2020). https://doi.org/10.1016/j.jcou.2020.02.012

    Article  CAS  Google Scholar 

  349. B.J. Zhan, D.X. Xuan, C.S. Poon, C.J. Shi, S.C. Kou, Characterization of C–S–H formed in coupled CO2–water cured Portland cement pastes. Materials and Structures/Materiaux et Constructions (2018). https://doi.org/10.1617/s11527-018-1211-2

    Article  Google Scholar 

  350. B.J. Zhan, D.X. Xuan, C.S. Poon, C.J. Shi, Mechanism for rapid hardening of cement pastes under coupled CO2–water curing regime. Cement Concr. Compos. 97, 78–88 (2019). https://doi.org/10.1016/j.cemconcomp.2018.12.021

    Article  CAS  Google Scholar 

  351. M. Sereng, A. Djerbi, O. Metalssi, P. Dangla, J. Torrenti, Improvement of recycled aggregates properties by means of CO2 uptake. Appl. Sci. 11(14), 6571 (2021). https://doi.org/10.3390/app11146571

    Article  CAS  Google Scholar 

  352. V.W. Tam, A. Butera, K.N. Le, Carbon-conditioned recycled aggregate in concrete production. J. Clean. Prod. 133, 672–680 (2016). https://doi.org/10.1016/j.jclepro.2016.06.007

    Article  CAS  Google Scholar 

  353. K. Grollier, N.D. Vu, K. Onida, A. Akhdar, S. Norsic, F. D’Agosto, C. Boisson, N. Duguet, A thermomorphic polyethylene-supported imidazolium salt for the fixation of CO2 into cyclic carbonates. Adv. Synth. Catal. (2020). https://doi.org/10.1002/adsc.202000032

    Article  Google Scholar 

  354. S. Monkman, M. MacDonald, R.D. Hooton, P. Sandberg, Properties and durability of concrete produced using CO2 as an accelerating admixture. Cement Concr. Compos. 74, 218–224 (2016). https://doi.org/10.1016/j.cemconcomp.2016.10.007

    Article  CAS  Google Scholar 

  355. V.W. Tam, A. Butera, K.N. Le, W. Li, Utilising CO2 technologies for recycled aggregate concrete: a critical review. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2020.118903

    Article  Google Scholar 

  356. C.M. Pederneiras, C.B. Farinha, R. Veiga, Carbonation potential of cementitious structures in service and post-demolition: a review. Civ. Eng. 3, 211–223 (2020). https://doi.org/10.3390/civileng3020013

    Article  Google Scholar 

  357. C. Shi, Z. Wu, Z. Cao, T.C. Ling, J. Zheng, Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cement Concr. Compos. 86, 130–138 (2018). https://doi.org/10.1016/j.cemconcomp.2017.10.013

    Article  CAS  Google Scholar 

  358. H. Ho, A. Iizuka, E. Shibata, H. Takano, T. Endo, Utilization of CO2 in direct aqueous carbonation of concrete fines generated from aggregate recycling: influences of the solid–liquid ratio and CO2 concentration. J. Clean. Prod. 312(20), 127832 (2021)

    Article  CAS  Google Scholar 

  359. V. Sick, G. Stokes, F.C. Mason, CO2 utilization and market size projection for CO2-treated construction materials. Front. Clim. (2022). https://doi.org/10.3389/fclim.2022.878756

    Article  Google Scholar 

  360. K. Arning, J. Offermann-van Heek, M. Ziefle, What drives public acceptance of sustainable CO2-derived building materials? A conjoint-analysis of eco-benefits vs. health concerns. Renew. Sustain. Energy Rev. 144, 110873 (2021)

    Article  CAS  Google Scholar 

  361. P. Patil, Experimental study of fresh and harden properties of concrete infused with carbon dioxide. Adv. Civ. Eng. Infrastruct. Dev. (2020). https://doi.org/10.1007/978-981-15-6463-5_63

    Article  Google Scholar 

  362. D. Ravikumar, G. Keoleian, S. Miller, V. Sick, Assessing the relative climate impact of carbon utilization for concrete, chemical, and mineral production. Environ. Sci. Technol. 55, 12019–12031 (2021). https://doi.org/10.1021/acs.est.1c01109

    Article  ADS  CAS  PubMed  Google Scholar 

  363. T. Strunge, P. Renforth, M. Van der Spek, Towards a business case for CO2 mineralisation in the cement industry. Commun. Earth Environ. 3, 59 (2022). https://doi.org/10.1038/s43247-022-00390-0

    Article  ADS  Google Scholar 

  364. D. Zhang, V.C. Li, B.R. Ellis, Ettringite-related dimensional stability of CO2-cured Portland cement mortars. ACS Sustain. Chem. Eng. (2021). https://doi.org/10.1021/acssuschemeng.9b03345

    Article  PubMed  PubMed Central  Google Scholar 

  365. D. Zhang, Y. Shao, Early age carbonation curing for precast reinforced concretes. Constr. Build. Mater. 113, 134–143 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.048

    Article  CAS  Google Scholar 

  366. H. Ostovari, A. Sternberg, A. Bardow, Rock ‘n’ use of CO2: carbon footprint of carbon capture and utilization by mineralization. Sustain. Energy Fuels 4, 4482–4496 (2020). https://doi.org/10.1039/D0SE00190B

    Article  CAS  Google Scholar 

  367. H. Ostovari, L. Müller, J. Skocek, A. Bardow, From unavoidable CO2 source to CO2 sink? A cement industry based on CO2 mineralization. Environ. Sci. Technol. 55, 5212–5223 (2020). https://doi.org/10.1021/acs.est.0c07599?rel=cite-as&ref=PDF&jav=VoR

    Article  ADS  Google Scholar 

  368. D. Winters, K. Boakye, S. Simske, Toward carbon-neutral concrete through biochar–cement–calcium carbonate composites: a critical review. Sustainability 14(8), 1–25 (2022)

    Article  Google Scholar 

  369. J. van Deventer, CE. White, & RJ. Myers. A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions. Waste and Biomass Valorization (2021). https://doi.org/10.1007/s12649-020-01180-5

  370. M. Schneider, The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124, 105792 (2019). https://doi.org/10.1016/j.cemconres.2019.105792

    Article  CAS  Google Scholar 

  371. K.L. Scrivener, V.M. John, E.M. Gartner, Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 114, 2–26 (2018). https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  CAS  Google Scholar 

  372. T. Wang, Z. Yi, J. Song, C. Zhao, R. Guo, X. Gao, An industrial demonstration study on CO2 mineralization curing for concrete. iScience 25(5), 104261 (2022). https://doi.org/10.1016/j.isci.2022.104261

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  373. R. Bjørge, K. Gawel, E.A.C. Panduro, M. Torsæter, Carbonation of silica cement at high-temperature well conditions. Int. J. Greenh. Gas Control 82, 261–268 (2019). https://doi.org/10.1016/j.ijggc.2019.01.011

    Article  CAS  Google Scholar 

  374. R. Guo, Q. Chen, H. Huang, X. Hu, T. Wang, Carbonation curing of industrial solid waste-based aerated concretes. Greenh. Gases Sci. Technol. (2019). https://doi.org/10.1002/ghg.1862

    Article  Google Scholar 

  375. Z. Wei, B. Wang, G. Falzone, E.C. La Plante, M.U. Okoronkwo, Z. She, T. Oey, M. Balonis, N. Neithalath, L. Pilon, G. Sant, Clinkering-free cementation by fly ash carbonation. J. CO2 Util. 23, 117–127 (2018)

    Article  CAS  Google Scholar 

  376. J. Jaschik, M. Jaschik, K. Warmuziński, The utilisation of fly ash in CO2 mineral carbonation. Chem. Process Eng. 37(1), 29–39 (2016). https://doi.org/10.1515/cpe-2016-0004

    Article  CAS  Google Scholar 

  377. A. Ebrahimi, M. Saffari, D. Milani, A. Montoya, M. Valix, A. Abbas, Sustainable transformation of fly ash industrial waste into a construction cement blend via CO2 carbonation. J. Clean. Prod. 156, 660–669 (2017)

    Article  CAS  Google Scholar 

  378. Q. Li, L. Zhang, X. Gao, J. Zhang, Effect of pulverized fuel ash, ground granulated blast-furnace slag and CO2 curing on performance of magnesium oxysulfate cement. Constr. Build. Mater. 230, 116990 (2020). https://doi.org/10.1016/j.conbuildmat.2019.116990

    Article  CAS  Google Scholar 

  379. P. He, C.S. Poon, D.C. Tsang, Effect of pulverized fuel ash and CO2 curing on the water resistance of magnesium oxychloride cement (MOC). Cem. Concr. Res. 97, 115–122 (2016)

    Article  Google Scholar 

  380. L. Qin, X. Gao, Q. Li, Upcycling carbon dioxide to improve mechanical strength of Portland cement. J. Clean. Prod. 196, 726–738 (2018)

    Article  CAS  Google Scholar 

  381. W. Wang, X. Wei, X. Cai, H. Deng, B. Li, Mechanical microstructural characteristics of calcium sulfoaluminate cement exposed to early-age carbonation curing. Materials 14, 3515 (2021). https://doi.org/10.3390/ma14133515

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  382. J. Wei, K. Cen, A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitig. Adapt. Strat. Glob. Change 24, 1343–1362 (2019). https://doi.org/10.1007/s11027-019-09848-7

    Article  Google Scholar 

  383. Z. Cao, L. Shen, J. Zhao, L. Liu, S. Zhong, Y. Sun, Y. Yang, Toward a better practice for estimating the CO2 emission factors of cement production: an experience from China. J. Clean. Prod. 139, 527–539 (2016). https://doi.org/10.1016/j.jclepro.2016.08.070

    Article  Google Scholar 

  384. C. Liang, B. Pan, Z. Ma, Z. He, Z. Duan, Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: a review. Cement Concr. Compos. (2020). https://doi.org/10.1016/j.cemconcomp.2019.103446

    Article  Google Scholar 

  385. B.J. Zhan, D.X. Xuan, C.S. Poon, C.J. Shi, Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates. Cement Concr. Compos. 71, 122–130 (2016). https://doi.org/10.1016/j.cemconcomp.2016.05.002

    Article  CAS  Google Scholar 

  386. E.J. Moon, Y.C. Choi, Carbon dioxide fixation via accelerated carbonation of cement-based materials: potential for construction materials applications. Constr. Build. Mater. 199, 676–687 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.078

    Article  CAS  Google Scholar 

  387. S. Luo, S. Ye, J. Xiao, J. Zheng, Y. Zhu, Carbonated recycled coarse aggregate and uniaxial compressive stress–strain relation of recycled aggregate concrete. Constr. Build. Mater. 188, 956–965 (2018)

    Article  Google Scholar 

  388. D. Xuan, B. Zhan, C.S. Poon, W. Zheng, Carbon dioxide sequestration of concrete slurry waste and its valorisation in construction products. Constr. Build. Mater. 113, 664–672 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.109

    Article  CAS  Google Scholar 

  389. Z. Tu, M. Guo, C.S. Poon, C. Shi, Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes. Cement Concr. Compos. 72, 9–16 (2016). https://doi.org/10.1016/j.cemconcomp.2016.05.019

    Article  CAS  Google Scholar 

  390. D. Sharma, S. Goyal, Accelerated carbonation curing of cement mortars containing cement kiln dust: an effective way of CO2 sequestration and carbon footprint reduction. J. Clean. Prod. 192, 844–854 (2018). https://doi.org/10.1016/j.jclepro.2018.05.027

    Article  CAS  Google Scholar 

  391. L. Mo, F. Zhang, M. Deng, Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cem. Concr. Res. 88, 217–226 (2016). https://doi.org/10.1016/j.cemconres.2016.05.013

    Article  CAS  Google Scholar 

  392. P. Tang, D. Xuan, H.W. Cheng, C.S. Poon, D.C. Tsang, Use of CO2 curing to enhance the properties of cold bonded lightweight aggregates (CBLAs) produced with concrete slurry waste (CSW) and fine incineration bottom ash (IBA). J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.120951

    Article  PubMed  PubMed Central  Google Scholar 

  393. Z. Ghouleh, R.I.L. Guthrie, Y. Shao, Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete. J. CO2 Util. 18, 125–138 (2017). https://doi.org/10.1016/j.jcou.2017.01.009

    Article  CAS  Google Scholar 

  394. L. Wang, L. Chen, J.L. Provis, D.C. Tsang, C.S. Poon, Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas. Cement Concr. Compos. 106, 103489 (2020). https://doi.org/10.1016/j.cemconcomp.2019.103489

    Article  CAS  Google Scholar 

  395. B.A. Ghacham, L.C. Pasquier, E. Cecchi, J.F. Blais, G. Mercier, Valorization of waste concrete through CO2 mineral carbonation: Optimizing parameters and improving reactivity using concrete separation. J. Clean. Prod. 166, 869–878 (2017). https://doi.org/10.1016/j.jclepro.2017.08.015

    Article  CAS  Google Scholar 

  396. X. Fang, D. Xuan, P. Shen, C.S. Poon, Fast enhancement of recycled fine aggregates properties by wet carbonation. J. Clean. Prod. 313, 127867 (2021). https://doi.org/10.1016/j.jclepro.2021.127867

    Article  CAS  Google Scholar 

  397. X. Fang, D. Xuan, C.S. Poon, Empirical modelling of CO2 uptake by recycled concrete aggregates under accelerated carbonation conditions. Mater. Struct. (2017). https://doi.org/10.1617/s11527-017-1066-y

    Article  Google Scholar 

  398. N.L. Ukwattage, P.G. Ranjith, X. Li, Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation. Measurement 97, 15–22 (2017). https://doi.org/10.1016/j.measurement.2016.10.057

    Article  ADS  Google Scholar 

  399. S.Y. Abate, K.I. Song, J.K. Song, B.Y. Lee, H.K. Kim, Internal curing effect of raw and carbonated recycled aggregate on the properties of high-strength slag-cement mortar. Constr. Build. Mater. 165, 64–71 (2018). https://doi.org/10.1016/j.conbuildmat.2018.01.035

    Article  CAS  Google Scholar 

  400. L. Li, C.S. Poon, J. Xiao, D. Xuan, Effect of carbonated recycled coarse aggregate on the dynamic compressive behavior of recycled aggregate concrete. Constr. Build. Mater. 151, 52–62 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.043

    Article  Google Scholar 

  401. L. Li, J. Xiao, D. Xuan, C.S. Poon, Effect of carbonation of modeled recycled coarse aggregate on the mechanical properties of modeled recycled aggregate concrete. Cement Concr. Compos. 89, 169–180 (2018). https://doi.org/10.1016/j.cemconcomp.2018.02.018

    Article  CAS  Google Scholar 

  402. J.A. Díaz, H. Akhavan, A. Romero, A.M. Garcia-Minguillan, R. Romero, A. Giroir-Fendle, Cobalt and iron supported on carbon nanofibers as catalysts for Fischer–Tropsch synthesis. Fuel Process. Technol. 128, 417–424 (2014)

    Article  Google Scholar 

  403. R.A. El-Nagar, A.A. Ghanem, Syngas production, properties, and its importance. Sustain. Altern. Syngas Fuel (2018). https://doi.org/10.5772/intechopen.89379

    Article  Google Scholar 

  404. R.T. Rashid, Y. Chen, X. Liu, B. Zhou, Tunable green syngas generation from CO2 and H2O with sunlight as the only energy input. PNAS 119(26), e2121174119 (2022). https://doi.org/10.1073/pnas.212117411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. H. Xu, S. You, Z. Lang, Y. Sun, C. Sun, Z. Jie, X. Wang, Z. Kang, Z. Su, Highly efficient photoreduction of low-concentration CO2 to syngas by using a polyoxometalates/Ru II composite. Chemistry 26(12), 2735–2740 (2020). https://doi.org/10.1002/chem.201905155

    Article  CAS  PubMed  Google Scholar 

  406. J. Zhou, M. Dong, Y. Sun, G. Shan, C. Sun, S. You, X. Wang, Z. Kang, Z. Su, Dynamic interface with enhanced visible-light absorption and electron transfer for direct photoreduction of flue gas to syngas. ACS Appl. Mater. Interfaces 14(5), 6476–6483 (2022). https://doi.org/10.1021/acsami.1c17113

    Article  CAS  PubMed  Google Scholar 

  407. G. Qian, W. Lyu, X. Zhao, J. Zhou, R. Fang, F. Wang, Y. Li, Efficient photoreduction of diluted CO2 to tunable syngas by Ni−Co dual sites through d-band center manipulation. Angew. Chem. (2022). https://doi.org/10.1002/anie.202210576

    Article  Google Scholar 

  408. M. Wei, X. Xu, J. Song, M. Pan, C. Su, A 2D layered cobalt-based metal–organic framework for photoreduction of CO2 to syngas with a controllable wide ratio range. J. Mater. Chem. A (2022). https://doi.org/10.1039/D2TA08092C

    Article  Google Scholar 

  409. J. Zhao, Q. Wang, C. Sun, T. Zheng, L. Yan, M. Li, K. Shao, X. Wang, Z. Su, Hexanuclear cobalt metal-organic frameworks for efficient CO2 reduction under visible light. J. Mater. Chem. A 5, 12498–12505 (2017). https://doi.org/10.1039/c7ta02611k

    Article  CAS  Google Scholar 

  410. M. Liu, Y.F. Mu, S. Yao, S. Guo, X. Guo, Z. Zhang, T. Lu, Photosensitizing single-site metal−organic framework enabling visible-light-driven CO2 reduction for syngas production. Appl. Catal. B (2019). https://doi.org/10.1016/j.apcatb.2019.01.014

    Article  Google Scholar 

  411. R.M. Irfan, T. Wang, T. Jiang, Q. Yue, L. Zhang, H. Cao, Y. Pan, P. Du, Homogeneous molecular iron catalysts for direct photocatalytic conversion of formic acid to syngas (CO + H2). Angew. Chem. 59(35), 14818–14824 (2020). https://doi.org/10.1002/anie.202002757

    Article  CAS  Google Scholar 

  412. S. Aoi, K. Mase, K. Ohkubo, S. Fukuzumi, Photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt chlorine complex adsorbed on multi-walled carbon nanotubes. Catal. Sci. Technol. 6, 4077–4080 (2016). https://doi.org/10.1039/C6CY00376A

    Article  CAS  Google Scholar 

  413. K. Deepak, S. Neha, K. Kamalakannan, A critical review on emerging photocatalysts for syngas generation via CO2 reduction under aqueous media: a sustainable paradigm. Mater. Adv. (2022). https://doi.org/10.1039/d2ma00334a

    Article  Google Scholar 

  414. H. Wang, S. Bai, P. Zhao, L. Tan, C. Ning, G. Liu, J. Wang, T. Shen, Y. Zhao, Y. Song, Green light (550 nm) driven tunable syngas synthesis from CO2 photoreduction using heterostructured layered double hydroxide/TiC photocatalysts. Catal. Sci. Technol. 11, 7091–7097 (2021). https://doi.org/10.1039/D1CY01366A

    Article  CAS  Google Scholar 

  415. L. Tan, K. Peter, J. Ren, B. Du, X. Hao, Y. Zhao, Y. Song, Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Front. Chem. Sci. Eng. 15, 99–108 (2021). https://doi.org/10.1007/s11705-020-1947-4

    Article  CAS  Google Scholar 

  416. X. Wang, Z. Wang, Y. Bai, L. Tan, Y. Xu, X. Hao, Y.F. Song, Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible-light up to 600 nm. J. Energy Chem. (2019). https://doi.org/10.1016/j.jechem.2019.10.004

    Article  Google Scholar 

  417. B. Han, X. Ou, Z. Zhong, S. Liang, X. Yan, H. Deng, Z. Lin, Photoconversion of anthropogenic CO2 into tunable syngas over industrial wastes derived metal-organic frameworks. Appl. Catal. B (2020). https://doi.org/10.1016/j.apcatb.2020.119594

    Article  Google Scholar 

  418. Z. Wang, J. Yang, J. Cao, W. Chen, G. Wang, F. Liao, Y. Wu, Room-temperature synthesis of single iron site by electrofiltration for photoreduction of CO2 into tunable syngas. ACS Nano 14(5), 6164–6172 (2020). https://doi.org/10.1021/acsnano.0c02162

    Article  CAS  PubMed  Google Scholar 

  419. Y. Yao, Y. Gao, L. Ye, H. Chen, L. Sun, Highly efficient photocatalytic reduction of CO2 and H2O to CO and H2 with a cobalt bipyridyl complex. J. Energy Chem. 27(2), 502–506 (2018). https://doi.org/10.1016/j.jechem.2017.11.012

    Article  Google Scholar 

  420. A. Li, T. Wang, X. Chang, Z. Zhao, C. Li, Z. Huang, J. Gong, Tunable syngas production from photocatalytic CO2 reduction with mitigated charge recombination driven by spatially separated cocatalysts. Chem. Sci. 9(24), 5334–5340 (2018). https://doi.org/10.1039/c8sc01812j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. D. Li, S. Ouyang, H. Xu, D. Lu, M. Zhao, X. Zhang, J. Ye, Synergistic effect of Au and Rh on SrTiO3 in significantly promoting visible-light-driven syngas production from CO2 and H2O. Chem. Commun. 52(35), 5989–5992 (2016). https://doi.org/10.1039/c6cc00836d

    Article  CAS  Google Scholar 

  422. C. Chen, J. Hu, X. Yang, T. Yang, J. Qu, C. Guo, C. Li, Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces. 13(17), 20162–20173 (2021). https://doi.org/10.1021/acsami.1c03482

    Article  CAS  PubMed  Google Scholar 

  423. B. Pan, L. Zhou, J. Qin, M. Liao, C. Wang, Modulating CoFeOX nanosheets towards enhanced CO2 photoreduction to syngas: effect of calcination temperature and mixed-valence multi-metals. Chemistry (2022). https://doi.org/10.1002/chem.202201992

    Article  PubMed  PubMed Central  Google Scholar 

  424. W. Liao, W. Chen, S. Lu, S. Zhu, Y. Xia, L. Qi, S. Liang, Alkaline Co(OH)2-decorated 2D monolayer titanic acid nanosheets for enhanced photocatalytic syngas production from CO2. ACS Appl. Mater. Interfaces 13(32), 38239–38247 (2021). https://doi.org/10.1021/acsami.1c08251

    Article  CAS  PubMed  Google Scholar 

  425. H. Yang, D. Yang, X. Wang, POM-incorporated CoO nanowires for enhanced photocatalytic syngas production from CO2. Angew. Chem. 59(36), 15527–15531 (2020). https://doi.org/10.1002/anie.202004563

    Article  CAS  Google Scholar 

  426. X. Wang, J. Chen, Q. Li, L. Li, Z. Zhuang, F. Chen, Y. Yu, Light-driven syngas production over defective ZnIn2S4 nanosheets. Chemistry (2020). https://doi.org/10.1002/chem.202004520

    Article  PubMed  PubMed Central  Google Scholar 

  427. L. Delafontaine, T. Asset, P. Atanassov, Metal–nitrogen–carbon electrocatalysts for CO2 reduction towards syngas generation. Chemsuschem (2020). https://doi.org/10.1002/cssc.201903281

    Article  PubMed  Google Scholar 

  428. B.M. Tackett, J.H. Lee, J.G. Chen, Electrochemical conversion of CO2 to syngas with palladium-based electrocatalysts. Acc. Chem. Res. (2020). https://doi.org/10.1021/acs.accounts.0c00277

    Article  PubMed  Google Scholar 

  429. Y. Liu, D. Tian, A.N. Biswas, Z. Xie, S. Hwang, J.H. Lee, J.G. Chen, Transition metal nitrides as novel catalyst supports for tuning CO/H2 syngas production from electrochemical CO2 reduction. Angew. Chem. (2020). https://doi.org/10.1002/anie.202003625

    Article  Google Scholar 

  430. Q. He, D. Liu, J.H. Lee, Y. Liu, Z. Xie, S. Hwang, J.G. Chen, Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem. 59(8), 3033–3037 (2020). https://doi.org/10.1002/anie.201912719

    Article  CAS  Google Scholar 

  431. R. Daiyan, R. Chen, P.V. Kumar, N.M. Bedford, J. Qu, J.M. Cairney, R. Amal, Tuneable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.9b21216

    Article  PubMed  Google Scholar 

  432. H. Xie, S. Chen, F. Ma, J. Liang, Z. Miao, T. Wang, Q. Li, Boosting tunable syngas formation via electrochemical CO2 reduction on Cu/In2O3 core/shell nanoparticles. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b12747

    Article  PubMed  PubMed Central  Google Scholar 

  433. J. Shen, L. Wang, X. He, S. Wang, J. Chen, J. Wang, H. Jin, Amorphization-activated copper indium core-shell nanoparticles for stable syngas production from electrochemical CO2 reduction. Chemsuschem (2022). https://doi.org/10.1002/cssc.202201350

    Article  PubMed  Google Scholar 

  434. S. Hernández, M. Amin Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Syngas production from electrochemical reduction of CO2: current status and prospective implementation. Green Chem. 19(10), 2326–2346 (2017). https://doi.org/10.1039/c7gc00398f

    Article  CAS  Google Scholar 

  435. I. Hannula, N. Kaisalo, P. Simell, Preparation of synthesis gas from CO2 for Fischer–Tropsch synthesis—comparison of alternative process configurations. J. Carbon Res. 6(3), 55 (2020). https://doi.org/10.3390/c6030055

    Article  CAS  Google Scholar 

  436. P.K. Yadav, T. Das, Production of syngas from carbon dioxide reforming of methane by using LaNixFe1−xO3 perovskite type catalysts. Int. J. Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.11.108

    Article  Google Scholar 

  437. L.G. Luciani, A. Di Benedetto, Syngas production through H2O/CO2 thermochemical splitting over doped ceria-zirconia materials. Front. Energy Res. (2020). https://doi.org/10.3389/fenrg.2020.00204

    Article  Google Scholar 

  438. S. Bac, S. Keskin, A.K. Avci, Recent advances in sustainable syngas production by catalytic CO2 reforming of ethanol and glycerol. Sustain. Energy Fuels (2019). https://doi.org/10.1039/c9se00967a

    Article  Google Scholar 

  439. N. Harun, J. Gimbun, M.T. Azizan, S.Z. Abidin, Characterization of Ag-promoted Ni/SiO2 catalysts for syngas production via carbon dioxide (CO2) dry reforming of glycerol. Bull. Chem. React. Eng. Catal. 11(2), 220–229 (2016)

    Article  CAS  Google Scholar 

  440. B. Yao, T. Xiao, O.A. Makgae, X. Jie, S. Gonzalez-Cortes, S. Guan, P.P. Edwards, Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe–Mn–K catalyst. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-20214-z

    Article  PubMed  PubMed Central  Google Scholar 

  441. Y.H. Choi, Y.J. Jang, H. Park, W.Y. Kim, Y.H. Lee, S.H. Choi, J.S. Lee, Carbon dioxide Fischer–Tropsch synthesis: a new path to carbon-neutral fuels. Appl. Catal. B 202, 605–610 (2017). https://doi.org/10.1016/j.apcatb.2016.09.072

    Article  CAS  Google Scholar 

  442. Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo, M.T. Koper, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4(9), 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y

    Article  ADS  CAS  Google Scholar 

  443. J. Wei, J. Sun, Z. Wen, C. Fang, Q. Ge, H. Xu, New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins. Catal. Sci. Technol. 6(13), 4786–4793 (2016). https://doi.org/10.1039/c6cy00160b

    Article  CAS  Google Scholar 

  444. J. Wei, R. Yao, Q. Ge, Z. Wen, X. Ji, C. Fang, J. Sun, Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catal. (2018). https://doi.org/10.1021/acscatal.8b02267

    Article  PubMed  PubMed Central  Google Scholar 

  445. M. Albrecht, U. Rodemerck, M. Schneider, M. Bröring, D. Baabe, E.V. Kondratenko, Unexpectedly efficient CO2 hydrogenation to higher hydrocarbons over non-doped Fe2O3. Appl. Catal. B Environ. 204, 119–126 (2017). https://doi.org/10.1016/j.apcatb.2016.11.017

    Article  CAS  Google Scholar 

  446. Z. He, M. Cui, Q. Qian, J. Zhang, H. Liu, B. Han, Synthesis of liquid fuel via direct hydrogenation of CO2. Proc. Natl Acad. Sci. U.S.A. 116(26), 12654–12659 (2019). https://doi.org/10.1073/pnas.1821231116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  447. X. Wang, G. Yang, J. Zhang, S. Chen, Y. Wu, Q. Zhang, Y. Tan, Synthesis of isoalkanes over a core (Fe–Zn–Zr)–shell (zeolite) catalyst by CO2 hydrogenation. Chem. Commun. 52(46), 7352–7355 (2016). https://doi.org/10.1039/c6cc01965j

    Article  CAS  Google Scholar 

  448. A. Wuttig, M. Yaguchi, K. Motobayashi, M. Osawa, Y. Surendranath, Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl. Acad. Sci. 113(32), E4585–E4593 (2016). https://doi.org/10.1073/pnas.1602984113

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  449. R. Kortlever, I. Peters, C. Balemans, R. Kas, Y. Kwon, G. Mul, M.T. Koper, Palladium–gold catalyst for the electrochemical reduction of CO2 to C1–C5 hydrocarbons. Chem. Commun. 52(67), 10229–10232 (2016). https://doi.org/10.1039/c6cc03717h

    Article  CAS  Google Scholar 

  450. K.U.D. Calvinho, A.B. Laursen, K.M.K. Yap, T.A. Goetjen, S. Hwang, B. Mejia-Sosa, A. Lubarski, K.M. Teeluck, N. Murali, E.S. Hall, E. Garfunkel, M. Greenblatt, G.C. Dismukes, Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ. Sci. (2018). https://doi.org/10.1039/c8ee00936h

    Article  Google Scholar 

  451. Q. Fan, M. Zhang, M. Jia, S. Liu, J. Qiu, Z. Sun, Electrochemical CO2 reduction to C2+ species: Heterogeneous electrocatalysts, reaction pathways, and optimization strategies. Mater. Today Energy 10, 280–301 (2018). https://doi.org/10.1016/j.mtener.2018.10.003

    Article  Google Scholar 

  452. K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee, M.H. Lee, K.T. Nam, Morphology-Directed Selective Production of Ethylene or Ethane from CO2 on a Cu Mesopore Electrode. Angew. Chem. 56(3), 796–800 (2016). https://doi.org/10.1002/anie.201610432

    Article  CAS  Google Scholar 

  453. S.Y. Lee, H. Jung, N.K. Kim, H.S. Oh, B.K. Min, Y.J. Hwang, Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 140(28), 8681–8689 (2018). https://doi.org/10.1021/jacs.8b02173

    Article  CAS  PubMed  Google Scholar 

  454. D. Kim, C.S. Kley, Y. Li, P. Yang, Copper nanoparticle ensembles for selective electroreduction of CO2 to C2–C3 products. Proc. Natl. Acad. Sci. U.S.A. 114(40), 10560–10565 (2017). https://doi.org/10.1073/pnas.1711493114

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  455. C. Reller, R. Krause, E. Volkova, B. Schmid, S. Neubauer, A. Rucki, G. Schmid, Selective electroreduction of CO2 toward ethylene on nano dendritic copper catalysts at high current density. Adv. Energy Mater. 7(12), 1602114 (2017). https://doi.org/10.1002/aenm.201602114

    Article  CAS  Google Scholar 

  456. M. Padilla, O. Baturina, J.P. Gordon, K. Artyushkova, P. Atanassov, A. Serov, Selective CO2 electroreduction to C2H4 on porous Cu films synthesized by sacrificial support method. J. CO2 Util. 19, 137–145 (2017). https://doi.org/10.1016/j.jcou.2017.03.006

    Article  CAS  Google Scholar 

  457. F.S. Ke, X.C. Liu, J. Wu, P.P. Sharma, Z.Y. Zhou, J. Qiao, X.D. Zhou, Selective formation of C2 products from the electrochemical conversion of CO2 on CuO-derived copper electrodes comprised of nanoporous ribbon arrays. Catal. Today 288, 18–23 (2017). https://doi.org/10.1016/j.cattod.2016.10.001

    Article  CAS  Google Scholar 

  458. Z. Han, R. Kortlever, H.Y. Chen, J.C. Peters, T. Agapie, CO2 reduction selective for C ≥ 2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent. Sci. 3(8), 853–859 (2017). https://doi.org/10.1021/acscentsci.7b00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. T.T. Hoang, S. Verma, S. Ma, T. Fister, J. Timoshenko, A.I. Frenkel, A.A. Gewirth, Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140(17), 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868

    Article  CAS  PubMed  Google Scholar 

  460. C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo, F.P. García de Arquer, E.H. Sargent, CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360(6390), 783–787 (2018). https://doi.org/10.1126/science.aas9100

    Article  CAS  PubMed  Google Scholar 

  461. C.H. Vo, C. Mondelli, H. Hamedi, J. Pérez-Ramírez, S. Farooq, I.A. Karimi, Sustainability assessment of thermocatalytic conversion of CO2 to transportation fuels, methanol, and 1-propanol. ACS Sustain. Chem. Eng. 9(31), 10591–10600 (2021). https://doi.org/10.1021/acssuschemeng.1c02805

    Article  CAS  Google Scholar 

  462. W. Li, H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo, C. Song, A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 8(14), 7651–7669 (2018). https://doi.org/10.1039/c7ra13546g

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  463. Y. Yan, Y. Dai, H. He, Y. Yu, Y. Yang, A novel W-doped Ni–Mg mixed oxide catalyst for CO2 methanation. Appl. Catal. B 196, 108–116 (2016). https://doi.org/10.1016/j.apcatb.2016.05.016

    Article  CAS  Google Scholar 

  464. R. Soumyabrata, C. Arjun, C. Sebastian, Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett. 3(8), 1938–1966 (2018). https://doi.org/10.1021/acsenergylett.8b00740

    Article  CAS  Google Scholar 

  465. J. Ashok, M.L. Ang, S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2–ZrO2 catalysts: influence of preparation methods. Catal. Today 281, 304–311 (2017). https://doi.org/10.1016/j.cattod.2016.07.020

    Article  CAS  Google Scholar 

  466. W. Stafford, Electrochemical methane production from CO2 for orbital and interplanetary refueling. iScience 24, 102230 (2021). https://doi.org/10.1016/j.isci.2021.102230

    Article  ADS  CAS  Google Scholar 

  467. S. Danaci, L. Protasova, J. Lefevere, L. Bedel, R. Guilet, P. Marty, Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts. Catal. Today 273, 234–243 (2016). https://doi.org/10.1016/j.cattod.2016.04.019

    Article  CAS  Google Scholar 

  468. R. Zhou, N. Rui, Z. Fan, C. Liu, Effect of the structure of Ni/TiO2 catalyst on CO2 methanation. Int. J. Hydrogen Energy 41(47), 22017–22025 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.093

    Article  CAS  Google Scholar 

  469. H. Zhang, X. Chang, J.G. Chen, W.A. Goddard, B. Xu, M.J. Cheng, Q. Lu, Computational and experimental demonstrations of one-pot tandem catalysis for electrochemical carbon dioxide reduction to methane. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-11292-9

    Article  PubMed  PubMed Central  Google Scholar 

  470. L. Xu, F. Wang, M. Chen, D. Nie, X. Lian, Z. Lu, P. Ge, CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity. Int. J. Hydrogen Energy 42(23), 15523–15539 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.027

    Article  CAS  Google Scholar 

  471. M. Schubert, S. Pokhrel, A. Thomé, V. Zielasek, T.M. Gesing, F. Roessner, M. Bäumer, Highly active Co–Al2O3-based catalysts for CO2 methanation with very low platinum promotion prepared by double flame spray pyrolysis. Catal. Sci. Technol. 6(20), 7449–7460 (2016). https://doi.org/10.1039/c6cy01252c

    Article  CAS  Google Scholar 

  472. T. Kulandaivalu, A.R. Mohamed, K.A. Ali, M. Mohammadi, Photocatalytic carbon dioxide reforming of methane as an alternative approach for solar fuel production—a review. Renew. Sustain. Energy Rev. 134, 110363 (2020). https://doi.org/10.1016/j.rser.2020.110363

    Article  CAS  Google Scholar 

  473. G. Zhan, H.C. Zeng, ZIF-67-derived nanoreactors for controlling product selectivity in CO2 hydrogenation. ACS Catal. 7(11), 7509–7519 (2017). https://doi.org/10.1021/acscatal.7b01827

    Article  CAS  Google Scholar 

  474. R. Patricia, F. Fernando, E. Freddy, A. Víctor, Improved methane production by photocatalytic CO2 conversion over Ag/In2O3/TiO2 heterojunctions. Materials 15(3), 843–45 (2022). https://doi.org/10.3390/ma15030843

    Article  CAS  Google Scholar 

  475. A. Kim, C. Sanchez, G. Patriarche, O. Ersen, S. Moldovan, A. Wisnet, D.P. Debecker, Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure. Catal. Sci. Technol. 6(22), 8117–8128 (2016). https://doi.org/10.1039/c6cy01677d

    Article  CAS  Google Scholar 

  476. J.A.H. Dreyer, P. Li, L. Zhang, G.K. Beh, R. Zhang, P.H.L. Sit, W.Y. Teoh, Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Catal. B Environ. 219, 715–726 (2017). https://doi.org/10.1016/j.apcatb.2017.08.011

    Article  CAS  Google Scholar 

  477. L. Torrente-Murciano, R.S.L. Chapman, A. Narvaez-Dinamarca, D. Mattia, M.D. Jones, Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons. Phys. Chem. Chem. Phys. 18(23), 15496–15500 (2016). https://doi.org/10.1039/c5cp07788e

    Article  CAS  PubMed  Google Scholar 

  478. W. Li, A. Zhang, X. Jiang, M.J. Janik, J. Qiu, Z. Liu, C. Song, The anti-sintering catalysts: Fe–Co–Zr polymetallic fibers for CO2 hydrogenation to C2 = –C4 = –rich hydrocarbons. J. CO2 Util. 23, 219–225 (2018)

    Article  CAS  Google Scholar 

  479. C. Xie, C. Chen, Y. Yu, J. Su, Y. Li, G.A. Somorjai, P. Yang, Tandem catalysis for CO2 hydrogenation to C2–C4 hydrocarbons. Nano Lett. 17(6), 3798–3802 (2017). https://doi.org/10.1021/acs.nanolett.7b01139

    Article  ADS  CAS  PubMed  Google Scholar 

  480. X. Liu, M. Wang, C. Zhou, W. Zhou, K. Cheng, J. Kang, Y. Wang, Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34. Chem. Commun. 54(2), 140–143 (2018). https://doi.org/10.1039/c7cc08642c

    Article  CAS  Google Scholar 

  481. Z. Li, J. Wang, Y. Qu, H. Liu, C. Tang, S. Miao, C. Li, Highly selective conversion of carbon dioxide to lower olefins. ACS Catal. 7(12), 8544–8548 (2017). https://doi.org/10.1021/acscatal.7b03251

    Article  CAS  Google Scholar 

  482. P. Gao, S. Li, X. Bu, S. Dang, Z. Liu, H. Wang, Y. Sun, Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem. 9(10), 1019–1024 (2017). https://doi.org/10.1038/nchem.2794

    Article  CAS  PubMed  Google Scholar 

  483. P. Gao, S. Dang, S. Li, X. Bu, Z. Liu, M. Qiu, Y. Sun, Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catal. 8(1), 571–578 (2017). https://doi.org/10.1021/acscatal.7b02649

    Article  CAS  Google Scholar 

  484. J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, J. Sun, Directly converting CO2 into a gasoline fuel. Nat. Commun. 8, 15174 (2017). https://doi.org/10.1038/ncomms15174

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  485. M. Ravi, M. Ranocchiari, J.A. van Bokhoven, The direct catalytic oxidation of methane to methanol—a critical assessment. Angew. Chem. 56, 16464–16483 (2017)

    Article  CAS  Google Scholar 

  486. H.D. Gesser, N.R. Hunter, C.B. Prakash, The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85(4), 235–244 (1985). https://doi.org/10.1021/cr00068a001

    Article  CAS  Google Scholar 

  487. J. Baltrusaitis, W.L. Luyben, Methane conversion to syngas for gas-to-liquids (GTL): is sustainable CO2 reuse via dry methane reforming (DMR) cost competitive with SMR and ATR processes? ACS Sustain. Chem. Eng. 3(9), 2100–2111 (2015). https://doi.org/10.1021/acssuschemeng.5b0036

    Article  CAS  Google Scholar 

  488. H.W. Lee, H.T. Dang, H. Kim, U. Lee, J.M. Ha, J. Jae, M. Cheong, H. Lee, Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4–SO3. J. Catal. 374, 230–236 (2019). https://doi.org/10.1016/j.jcat.2019.04.042

    Article  CAS  Google Scholar 

  489. H.T. Dang, H.W. Lee, J. Lee, H. Choo, S.H. Hong, M. Cheong, H. Lee, Enhanced catalytic activity of (DMSO)2PtCl2 at the methane oxidation in SO3–H2SO4 system. ACS Catal. (2018). https://doi.org/10.1021/acscatal.8b04101

    Article  Google Scholar 

  490. V.C. Hoang, T.S. Bui, H.T.D. Nguyen, T.T. Hoang, G. Rahman, Q.V. Le, D.L.T. Nguyen, Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: fundamental mechanisms and recent progress. Environ. Res. (2021). https://doi.org/10.1016/j.envres.2021.111781

    Article  PubMed  Google Scholar 

  491. IPCC Global Greenhouse Gas Emissions Data, Global Emissions by Gas (2014). https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data. Accessed 14 June 2022

  492. X. Luyi, X. Yang, L. Fangyuan, L. Yuwei, W. Shengjie, Research progress in conversion of CO2 to valuable fuels. Molecules 25, 3653 (2020). https://doi.org/10.3390/molecules25163653

    Article  CAS  Google Scholar 

  493. Z. Zhang, Z.X. Hang, X. Ji, Developing and regenerating cofactors for sustainable enzymatic CO2 conversion. Processes. 10, 230 (2022). https://doi.org/10.3390/pr10020230

    Article  CAS  Google Scholar 

  494. A. Saravanan, P. Senthil Kumar, D. Vo, S. Jeevanantham, V. Bhuvaneswari, V. Anantha Narayanan, B. Reshma, A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci. 236, 116515–16 (2021). https://doi.org/10.1016/j.ces.2021.116515

    Article  CAS  Google Scholar 

  495. Z. Jian, L. Hong, W. Haiqing, Photothermal catalysis for CO2 conversion. Chin. Chem. Lett. 34(2), 10742 (2023). https://doi.org/10.1016/j.cclet.2022.04.018

    Article  CAS  Google Scholar 

  496. N.J. Azhari, D. Erika, S. Mardiana, T. Ilmi, M.L. Gunawan, I.G.B.N. Makertihartha, G.T.M. Kadja, Methanol synthesis from CO2: a mechanistic overview. Results Eng. 16, 100711 (2022). https://doi.org/10.1016/j.rineng.2022.100711

    Article  CAS  Google Scholar 

  497. S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  498. S. Kattel, P.J. Ramirez, J.G. Chen, J.A. Rodriguez, P. Liu, Response to Comment on “Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts.” Science 357, 2 (2017)

    Article  Google Scholar 

  499. J. Nakamura, T. Fujitani, S. Kuld, S. Helveg, I. Chorkendorff, J. Sehested, Comment on “Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts.” Science 357, 2 (2017)

    Article  Google Scholar 

  500. S. Kuld, M. Thorhauge, H. Falsig, C.F. Elkjaer, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352, 969–974 (2016). https://doi.org/10.1126/science.aaf0718

    Article  ADS  CAS  PubMed  Google Scholar 

  501. L. Guil, N. Mota, J. Llorente, E. Millán, F. Pawelec, R. Navarro, Methanol synthesis from CO2: a review of the latest developments in heterogeneous catalysis. Materials 12, 3902 (2019). https://doi.org/10.3390/ma12233902

    Article  ADS  CAS  Google Scholar 

  502. X. Xu, K. Shuai, B. Xu, Review on copper and palladium based catalysts for methanol steam reforming to produce hydrogen. Catalysts 7(6), 183 (2017). https://doi.org/10.3390/catal7060183

    Article  CAS  Google Scholar 

  503. G. Liu, H. Hagelin-Weaver, B. Welt, a concise review of catalytic synthesis of methanol from synthesis gas. Waste 1, 228–248 (2023). https://doi.org/10.3390/waste1010015

    Article  Google Scholar 

  504. C. Liu, Z. Liu, Perspective on CO2 hydrogenation for dimethyl ether economy. Catalysts 12(11), 1375 (2022). https://doi.org/10.3390/catal12111375

    Article  CAS  Google Scholar 

  505. R. Chu, C. Song, W. Hou, X. Meng, Z. Miao, X. Li, G. Wu, Y. Wan, L. Bai, Improved stability of Pd/HZSM-5 bifunctional catalysts by the addition of promoters (CeO2, CaO) for the one-step synthesis of dimethyl ether from sulfur-containing CO2 hydrogenation. J. Taiwan Inst. Chem. Eng. 80, 1041–1047 (2017). https://doi.org/10.1016/j.jtice.2017.09.032

    Article  CAS  Google Scholar 

  506. Y. Qin, X. Wang, Conversion of CO2 into polymers. Encycl. Sustain. Sci. Technol. (2018). https://doi.org/10.1007/978-1-4939-2493-6_1013-1

    Article  Google Scholar 

  507. F. Milocco, G. Chiarioni, P.P. Pescarmona, Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates. Adv. Catal. 70, 151–187 (2022). https://doi.org/10.1016/bs.acat.2022.07.001

    Article  CAS  Google Scholar 

  508. A.Z. Fadhel, P. Pollet, C.L. Liotta, C.A. Eckert, Combining the benefits of homogeneous and heterogeneous catalysis with tunable solvents and nearcritical water. Molecules 15(11), 8400–8424 (2010). https://doi.org/10.3390/molecules15118400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. D. An, S. Nishioka, S. Yasuda, T. Kanazawa, Y. Kamakura, T. Yokoi, S. Nozawa, K. Maeda, Alumina-supported alpha-iron(III) oxyhydroxide as a recyclable solid catalyst for CO2 photoreduction under visible light. Angew. Chem. (2022). https://doi.org/10.1002/anie.202204948

    Article  Google Scholar 

  510. K. Chen, X. Zhang, T. Williams, L. Bourgeois, D. MacFarlane, Electrochemical reduction of CO2 on core-shell Cu/Au nanostructure arrays for syngas production. Electrochim. Acta 239, 84–89 (2017)

    Article  CAS  Google Scholar 

  511. Z. Yin, D. Gao, S. Yao, B. Zhao, F. Cai, L. Lin, P. Tang, P. Zhai, G. Wang, D. Ma, X. Bao, Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy 27, 35–43 (2016). https://doi.org/10.1016/j.nanoen.2016.06.035

    Article  CAS  Google Scholar 

  512. S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch, J.I. Gold, M. Yamauchi, P. Kenis, Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soci. 139(1), 47–50 (2017). https://doi.org/10.1021/jacs.6b10740

    Article  CAS  Google Scholar 

  513. H. Tang, Y. Liu, Y. Zhou, Y. Qian, B. Lin, Boosting the electroreduction of CO2 to ethanol via the synergistic effect of Cu–Ag bimetallic catalysts. ACS Appl. Energy Mater. 5(11), 14045–14052 (2022). https://doi.org/10.1021/acsaem.2c02595

    Article  CAS  Google Scholar 

  514. X. Ma, Y. Shen, S. Yao, C. An, W. Zhang, J. Zhu, R. Si, C. Guo, C. An, Core–shell nanoporous AuCu3@Au monolithic electrode for efficient electrochemical CO2 reduction. J. Mater. Chem. A 8, 3344–3350 (2020). https://doi.org/10.1039/C9TA09471G

    Article  CAS  Google Scholar 

  515. S. Zhu, X. Qin, Q. Wang, T. Li, R. Tao, M. Gu, M. Shao, Composition-dependent CO2 electrochemical reduction activity and selectivity on Au–Pd core-shell nanoparticles. J. Mater. Chem. A 2019(7), 16954–16961 (2019). https://doi.org/10.1039/C9TA05325E

    Article  Google Scholar 

  516. F. Liu, C. Wu, S. Yang, Strain and ligand effects on CO2 reduction reactions over Cu–metal heterostructure catalysts. J. Phys. Chem. C 121(40), 22139–22146 (2017). https://doi.org/10.1021/acs.jpcc.7b07081

    Article  CAS  Google Scholar 

  517. J. Shan, K. Sun, H. Li, P. Xu, J. Sun, Z. Wang, Composition regulation and defects introduction via amorphous CuEu alloy shell for efficient CO2 electroreduction toward methane. J. CO2 Util. 41, 101285–86 (2020). https://doi.org/10.1016/j.jcou.2020.101285

    Article  CAS  Google Scholar 

  518. Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li, Y. Zhang, Y. Sheng, X. Yang, Z. Geng, J. Zeng, Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv. Sci. 7, 1902989 (2020). https://doi.org/10.1002/advs.201902989

    Article  CAS  Google Scholar 

  519. D. Moreno, A. Omosebi, B.W. Jeon, K. Abad, Y.H. Kim, J. Thompson, K. Liu, Electrochemical CO2 conversion to formic acid using engineered enzymatic catalysts in a batch reactor. J. CO2 Util. 70, 102441 (2023). https://doi.org/10.1016/j.jcou.2023.102441

    Article  CAS  Google Scholar 

  520. W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang, L.C. Sim, An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 27, 2522–2565 (2020). https://doi.org/10.1007/s11356-019-07193-5

    Article  CAS  Google Scholar 

  521. Z. Liang, C. Lee, J. Liu, Y. Hu, D. Han, L. Niu, Q. Yan, Booming electrocatalysts for urea synthesis via nitrogen-integrated carbon dioxide reduction reaction. Mater. Today Catal. 2, 100011 (2023). https://doi.org/10.1016/j.mtcata.2023.100011

    Article  Google Scholar 

  522. Y. Huang, R. Yang, C. Wang, N. Meng, Y. Shi, Y. Yu, B. Zhang, Direct electrosynthesis of urea from carbon dioxide and nitric oxide. ACS Energy Lett. 7, 284–291 (2022). https://doi.org/10.1021/acsenergylett.1c02471

    Article  CAS  Google Scholar 

  523. S. Zhang, J. Geng, Z. Zhao, M. Jin, W. Li, Y. Ye, K. Li, G. Wang, Y. Zhang, H. Yin, H. Zhang, H. Zhao, High-efficiency electrosynthesis of urea over bacterial cellulose regulated Pd–Cu bimetallic catalyst. EES Catal. 1, 45–53 (2023). https://doi.org/10.1039/D2EY00038E

    Article  CAS  Google Scholar 

  524. M.A.A. Aziz, H.D. Setiabudi, L.P. Teh, N.H.R. Annuar, A.A. Jalil, A review of heterogeneous catalysts for syngas production via dry reforming. J. Taiwan Inst. Chem. Eng. 101, 139–58 (2019). https://doi.org/10.1016/j.jtice.2019.04.047

    Article  CAS  Google Scholar 

  525. N. Yusuf, F. Almomani, H. Qiblawey, Catalytic CO2 conversion to C1 value-added products: review on latest catalytic and process developments. Fuel 345, 128178 (2023). https://doi.org/10.1016/j.fuel.2023.128178

    Article  CAS  Google Scholar 

  526. S. Renda, A. Ricca, V. Palma, Precursor salts influence in Ruthenium catalysts for CO2 hydrogenation to methane. Appl. Energy 279, 115767 (2020). https://doi.org/10.1016/j.apenergy.2020.115767

    Article  CAS  Google Scholar 

  527. J. Guilera, J. del Valle, A. Alarcón, J.A. Díaz, T. Andreu, Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts. J. CO2 Util. (2019). https://doi.org/10.1016/j.jcou.2019.01.003

    Article  Google Scholar 

  528. H. Shin, L. Lu, Z. Yang, C. Kiely, S. McIntosh, Cobalt catalysts decorated with platinum atoms supported on barium zirconate provide enhanced activity and selectivity for CO2 methanation. ACS Catal. 6(5), 2811–2818 (2016). https://doi.org/10.1021/acscatal.6b00005

    Article  CAS  Google Scholar 

  529. T. Franken, A. Heel, Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure? J. CO2 Util. 39, 10117 (2020). https://doi.org/10.1016/j.jcou.2020.101175

    Article  CAS  Google Scholar 

  530. W.L. Tan, H.F. Tan, A.L. Ahmad, C.P. Leo, Carbon dioxide conversion into calcium carbonate nanoparticles using membrane gas absorption. J. CO2 Util. 48, 101533 (2021). https://doi.org/10.1016/j.jcou.2021.101533

    Article  CAS  Google Scholar 

  531. B. Wang, An economical way to convert carbon dioxide into calcium carbonate (2013). https://www.nextbigfuture.com/2013/02/an-economical-way-to-convert-carbon.html. Accessed 21 April 2022

  532. A. Trafton, Putting carbon dioxide to good use (2010). https://news.mit.edu/2010/belcher-carbon-0922. Accessed 21 June 2022

  533. M. Liu, G. Gadikota, Integrated CO2 capture, conversion, and storage to produce calcium carbonate using an amine looping strategy. Energy Fuels 33(3), 1722–1733 (2019). https://doi.org/10.1021/acs.energyfuels.8b02803

    Article  CAS  Google Scholar 

  534. B. Wang, Z. Pan, H. Cheng, H. Guan, CO2 sequestration: high conversion of gypsum into CaCO3 by ultrasonic carbonation. Environ. Chem. Lett. (2020). https://doi.org/10.1007/s10311-020-00997-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the final version of this manuscript. Adeyemi, MA, did the formal analysis and wrote the first draft. Aimikhe, VJ reviewed and edited the first and final manuscript drafts and did research conceptualization, theoretical framework, and supervision.

Corresponding author

Correspondence to Victor Joseph Aimikhe.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aimikhe, V.J., Adeyemi, M.A. A critical review of current conversion facilities and research output on carbon dioxide utilization. MRS Energy & Sustainability 11, 1–64 (2024). https://doi.org/10.1557/s43581-023-00073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-023-00073-z

Keywords

Navigation