Skip to main content

Advertisement

Log in

Printing Methods in the Production of Orodispersible Films

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Orodispersible film (ODF) formulations are promising and progressive drug delivery systems that are widely accepted by subjects across all the age groups. They are traditionally fabricated using the most popular yet conventional method called solvent casting method. The most modern and evolving method is based on printing technologies and such printed products are generally termed as printed orodispersible films (POFs). This modern technology is well suited to fabricate ODFs across different settings (laboratory or industrial) in general and in a pharmacy setting in particular. The present review provides an overview of various printing methods employed in fabricating POFs. Particularly, it provides insight about preparing POFs using inkjet, flexographic, and three-dimensional printing (3DP) or additive manufacturing techniques like filament deposition modeling, hot-melt ram extrusion 3DP, and semisolid extrusion 3DP methods. Additionally, the review is focused on patenting trends in POFs using ESPACENET, a European Patent Office search database. Finally, the review captures future market potential of 3DP in general and ODFs market potential in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ph. Eur 9.3, Oromucosal preparations, in: European Pharmacopoeia Commission (Ed.), European Pharmacopoeia. European Directorate for the Quality of Medicines & Healthcare (EDQM), Strasbourg, France, 2018.

  2. Dixit RP, Puthli SP. Oral strip technology: overview and future potential. J Control Release. 2009;139(2):94–107. https://doi.org/10.1016/j.jconrel.2009.06.014.

    Article  CAS  PubMed  Google Scholar 

  3. https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=ncit&code=C42984. Accessed on 12th May 2020.

  4. Anon. Pharmaceutical dosage forms. In: United States pharmacopoeia, 40-NF35; 2017.

    Google Scholar 

  5. Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8(3):299–316. https://doi.org/10.1517/17425247.2011.553217.

    Article  CAS  PubMed  Google Scholar 

  6. Preis M, Woertz C, Schneider K, Kukawka J, Broscheit J, Roewer N, et al. Design and evaluation of bilayered buccal film preparations for local administration of lidocaine hydrochloride. Eur J Pharm Biopharm. 2014;86(3):552–61. https://doi.org/10.1016/j.ejpb.2013.12.019.

    Article  CAS  PubMed  Google Scholar 

  7. Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D, et al. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv. 2019;16(9):981–93. https://doi.org/10.1080/17425247.2019.1652595.

    Article  CAS  PubMed  Google Scholar 

  8. International PCT Publication No.: WO2020014776; Title: Cannabinoid oral dispersible film strip.

  9. International PCT Publication No.: 2018094037; Title: Oral thin films comprising plant extracts and methods of making and using same.

  10. Gopi S, Amalraj A, Kalarikkal N, Zhang J, Thomas S, Guo Q. Preparation and characterization of nanocomposite films based on gum arabic, maltodextrin and polyethylene glycol reinforced with turmeric nanofiber isolated from turmeric spent. Mater Sci Eng C Mater Biol Appl. 2019;97:723–9. https://doi.org/10.1016/j.msec.2018.12.089.

    Article  CAS  PubMed  Google Scholar 

  11. Daud AS, Sapkal NP, Bonde MN. Development of Zingiber officinale in oral dissolving films: effect of polymers on in vitro, in vivo parameters and clinical efficacy. Asian J Pharm. 2011;5(3):183–9. https://doi.org/10.4103/0973-8398.91995.

    Article  CAS  Google Scholar 

  12. International patent publication No.: WO2012/103464; Title: Oral thin film vaccine preparation.

  13. Saha S, Tomaro-Duchesneau C, Daoud JT, Tabrizian M, Prakash S. Novel probiotic dissolvable carboxymethyl cellulose films as oral health biotherapeutics: in vitro preparation and characterization. Expert Opin Drug Deliv. 2013;10(11):1471–82. https://doi.org/10.1517/17425247.2013.799135.

    Article  CAS  PubMed  Google Scholar 

  14. https://www.curepharmaceutical.com/cure-products/vitamin-d/. Accessed on 10th May 2020.

  15. Han X, Yan J, Ren L, Xue M, Yuan Z, Wang T, et al. Preparation and evaluation of orally disintegrating film containing donepezil for Alzheimer disease. J Drug Deliv Sci Technol. 2019;54:101321. https://doi.org/10.1016/j.jddst.2019.101321.

    Article  CAS  Google Scholar 

  16. El-Setouhy DA, El-Malak NSA. Formulation of a novel tianeptine sodium orodispersible film. AAPS PharmSciTech. 2010;11(3):1018–25. https://doi.org/10.1208/s12249-010-9464-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Manda P, Popescu C, Juluri A, Janga K, Kakulamarri PR, Narishetty S, et al. Micronized zaleplon delivery via orodispersible film and orodispersible tablets. AAPS PharmSciTech. 2018;19(3):1358–66. https://doi.org/10.1208/s12249-017-0924-9.

    Article  CAS  PubMed  Google Scholar 

  18. Talekar SD, Haware RV, Dave RH. Evaluation of self-nanoemulsifying drug delivery systems using multivariate methods to optimize permeability of captopril oral films. Eur J Pharm Sci. 2019;130(December 2018):215–24. https://doi.org/10.1016/j.ejps.2019.01.039.

    Article  CAS  PubMed  Google Scholar 

  19. Łyszczarz E, Hofmanová J, Szafraniec-Szczęsny J, Jachowicz R. Orodispersible films containing ball milled aripiprazole-poloxamer®407 solid dispersions. Int J Pharm. 2020;575(November 2019). https://doi.org/10.1016/j.ijpharm.2019.118955.

  20. Bharti K, Mittal P, Mishra B. Formulation and characterization of fast dissolving oral films containing buspirone hydrochloride nanoparticles using design of experiment. J Drug Deliv Sci Technol. 2019;49(September 2018):420–32. https://doi.org/10.1016/j.jddst.2018.12.013.

    Article  CAS  Google Scholar 

  21. Chonkar AD, Rao JV, Managuli RS, Mutalik S, Dengale S, Jain P, et al. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur J Pharm Biopharm. 2016;103:179–91. https://doi.org/10.1016/j.ejpb.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  22. Musazzi UM, Dolci LS, Albertini B, Passerini N, Cilurzo F. A new melatonin oral delivery platform based on orodispersible films containing solid lipid microparticles. Int J Pharm. 2019;559(October 2018):280–8. https://doi.org/10.1016/j.ijpharm.2019.01.046.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Li Y, Abed M, Davé RN. Incorporation of surface-modified dry micronized poorly water-soluble drug powders into polymer strip films. Int J Pharm. 2018;535(1-2):462–72. https://doi.org/10.1016/j.ijpharm.2017.11.040.

    Article  CAS  PubMed  Google Scholar 

  24. Foo WC, Khong YM, Gokhale R, Chan SY. A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. Int J Pharm. 2018;539:165–74. https://doi.org/10.1016/j.ijpharm.2018.01.047.

    Article  CAS  PubMed  Google Scholar 

  25. Foo WC, Widjaja E, Khong YM, Gokhale R, Chan SY. Application of miniaturized near-infrared spectroscopy for quality control of extemporaneous orodispersible films. J Pharm Biomed Anal. 2018;150:191–8. https://doi.org/10.1016/j.jpba.2017.11.068.

    Article  CAS  PubMed  Google Scholar 

  26. BE Patent No.: 637363; Title: New drugs and process for their preparation.

  27. GB Patent No.:1061557; Title: New impregnated or coated films.

  28. US Patent No. 4136145; Title: Medicament carriers in the form of film having active substance incorporated therein.

  29. Mashru RC, Sutariya VB, Sankalia MG, Parikh PP. Development and evaluation of fast-dissolving film of salbutamol sulphate. Drug Dev Ind Pharm. 2005;31:25–34. https://doi.org/10.1081/DDC-43947.

    Article  CAS  PubMed  Google Scholar 

  30. Cilurzo F, Cupone IE, Minghetti P, Selmin F, Montanari L. Fast dissolving films made of maltodextrins. Eur J Pharm Biopharm. 2008a;70:895–900. https://doi.org/10.1016/j.ejpb.2008.06.032.

    Article  CAS  PubMed  Google Scholar 

  31. Liu C, Chang D, Zhang X, Sui H, Kong Y, Zhu R, et al. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation. AAPS PharmSciTech. 2017;18:2957–64. https://doi.org/10.1208/s12249-017-0777-2.

    Article  CAS  PubMed  Google Scholar 

  32. Dinge A, Nagarsenker M. Formulation and evaluation of fast dissolving films for delivery of triclosan to the oral cavity. AAPS PharmSciTech. 2008;9:349–56. https://doi.org/10.1208/s12249-008-9047-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from Theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016;17:20–42. https://doi.org/10.1208/s12249-015-0360-7.

    Article  CAS  PubMed  Google Scholar 

  34. Thakur S, Tyagi LK. Orodispersible films and their patent technology’s as a novel drug delivery systems. Int J Pharm Sci Rev Res. 2019; Article No. 08;58(1):52–60.

    CAS  Google Scholar 

  35. Jani R, Patel D. Hot melt extrusion: an industrially feasible approach for casting orodispersible film. Asian J Pharm Sci. 2014;10:292–305. https://doi.org/10.1016/j.ajps.2015.03.002.

    Article  Google Scholar 

  36. Vasvári G, Kalmár J, Veres P, Vecsernyés M, Bácskay I, Fehér P, et al. Matrix systems for oral drug delivery: Formulations and drug release. Drug Discov Today Technol. 2018;27:71–80. https://doi.org/10.1016/j.ddtec.2018.06.009.

    Article  PubMed  Google Scholar 

  37. Rustemkyzy C, Belton P, Qi S. Preparation and characterization of ultrarapidly dissolving orodispersible films for treating and preventing iodine deficiency in the pediatric population. J Agric Food Chem. 2015;63(44):9831–8. https://doi.org/10.1021/acs.jafc.5b03953.

    Article  CAS  PubMed  Google Scholar 

  38. Illangakoon UE, Gill H, Shearman GC, Parhizkar M, Mahalingam S, Chatterton NP, et al. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int J Pharm. 2014;477(1-2):369–79. https://doi.org/10.1016/j.ijpharm.2014.10.036.

    Article  CAS  PubMed  Google Scholar 

  39. Li X, Kanjwal MA, Lin L, Chronakis IS. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf B: Biointerfaces. 2013;103:182–8. https://doi.org/10.1016/J.COLSURFB.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  40. Thomas C. Leonard, Redeemed by history: Review essay on Thomas K. McCraw, Prophet of innovation: Joseph Schumpeter and creative destruction, 17(1) HISTORY OF ECONOMIC IDEAS 189 (2009), available at https://www.princeton.edu/~tleonard/papers/McCraw.pdf. Accessed on 3rd August 2020.

  41. Basaran OA, Suryo R. Fluid dynamics: the invisible jet. Nat Phys. 2007;3:679–80.

    Article  CAS  Google Scholar 

  42. Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter. 2008;4:703–13.

    Article  CAS  Google Scholar 

  43. de Gans BJ, Schubert US. Inkjet Printing of Well-Defined Polymer Dots and Arrays. Langmuir. 2004;20:7789–93.

    Article  Google Scholar 

  44. Tarcha PJ, Verlee D, Hui HW, Setesak J, Antohe B, Radulescu D, et al. The application of ink-jet technology for the coating and loading of drug-eluting stents. Ann Biomed Eng. 2007;35(10):1791–9. https://doi.org/10.1007/s10439-007-9354-2.

    Article  PubMed  Google Scholar 

  45. Wilson WC Jr, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003;272(2):491–6. https://doi.org/10.1002/ar.a.10057.

    Article  PubMed  Google Scholar 

  46. Cui X, Gao G, Yonezawa T, Dai G. Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp. 2014;(88):51294. Published 2014 Jun 10. https://doi.org/10.3791/51294.

  47. Boehm RD, Miller PR, Daniels J, Stafslein S, Narayan RJ. Inkjet printing for pharmaceutical applications. Mater Today. 2014;17:247–52.

    Article  CAS  Google Scholar 

  48. Okamoto T, Suzuki T, Yamamoto N. Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol. 2000;18(4):438–41. https://doi.org/10.1038/74507.

    Article  CAS  PubMed  Google Scholar 

  49. Zhu X, Zheng Q, Yang H, Cai J, Huang L, Duan Y, et al. Recent advances in inkjet dispensing technologies: applications in drug discovery. Expert Opin Drug Discovery. 2012;7(9):761–70. https://doi.org/10.1517/17460441.2012.697892.

    Article  CAS  Google Scholar 

  50. de Gans BJ, Duineveld PC, Schubert US. Adv Mater. 2004;16:203–13.

    Article  Google Scholar 

  51. How inkjet printers work? By: Jeff Tyson. https://computer.howstuffworks.com/inkjet-printer.htm. Accessed on 4th August 2020.

  52. Delaney JT, Smith PJ, Schubert US. Inkjet printing of proteins. Soft Matter. 2009;5(24):4866–77. The Royal Society of Chemistry. https://doi.org/10.1039/B909878J.

    Article  CAS  Google Scholar 

  53. Wang Y, Bokor J. Ultra-high-resolution monolithic thermal bubble inkjet print head. J Micro/Nanolith MEMS MOEMS. 2007;6:43009.

    Article  Google Scholar 

  54. Priest JW, Smith C, DuBois P. Liquid metal jetting for printing metal parts solid freeform fabrication proceedings. TX: University of Texas at Austin; 1997.

    Google Scholar 

  55. Sadeghian H, Hojjat Y, Ghodsi M, Sheykholeslami MR. An approach to design and fabrication of a piezo-actuated microdroplet generator. Int J Adv Manuf Technol. 2014;70:1091–9. https://doi.org/10.1007/s00170-013-5371-5.

    Article  Google Scholar 

  56. Burgold J, Weise F, Fischer M, Schlingloff G, Henkel T, Albert J, et al. Evolution and operating experiences with different drop-on-demand systems. Macromol Rapid Commun. 2005;26:265–80. https://doi.org/10.1002/marc.200590007.

    Article  CAS  Google Scholar 

  57. Hirshfield L, Giridhar A, Taylor LS, Harris MT, Reklaitis GV. Dropwise additive manufacturing of pharmaceutical products for solvent-based dosage forms. J Pharm Sci. 2014;103:496–506.

    Article  CAS  Google Scholar 

  58. US Patent No.: 6591122; Title: Electrostatic mechanism for inkjet printers resulting in improved image quality; Assignee: Hewlett Packard Development Company.

  59. Rung W. in Proc. IS&T’s 8th Int’l. Congress on Adv. in Non-Impact Printing Technologies, IS&T, Springfield, VA, 1992, p. 229.

  60. Meléndez PA, Kane KM, Ashvar CS, Albrecht M, Smith PA. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci. 2008;97:2619–36.

    Article  Google Scholar 

  61. Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, et al. Piezoelectric ink jet processing of materials for medical and biological applications. Biotechnol J. 2006;1:976–87.

    Article  CAS  Google Scholar 

  62. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156:179–85.

    Article  CAS  Google Scholar 

  63. Hue P. Le, Progress and trends in ink-jet printing technology, Oregon Journal of Imaging Science and Technology — Volume 42, Number 1, January/February 1998.

  64. Lee BK, Yun YH, Choi JS, Choi YC, Kim JD, Cho YW. Fabrication of drug-loaded polymer microparticles with arbitrary geometries using a piezoelectric inkjet printing system. Int J Pharm. 2012;427(2):305–10. https://doi.org/10.1016/j.ijpharm.2012.02.011.

    Article  CAS  PubMed  Google Scholar 

  65. Vuddanda PR, Alomari M, Dodoo CC, Trenfield SJ, Velaga S, Basit AW, et al. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80–7. https://doi.org/10.1016/j.ejps.2018.02.002.

    Article  CAS  PubMed  Google Scholar 

  66. Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013b;85:1075–83. https://doi.org/10.1016/j.ejpb.2013.03.017.

    Article  CAS  PubMed  Google Scholar 

  67. Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates - effect of print density in inkjet printing. Int J Pharm. 2013a;453:488–97. https://doi.org/10.1016/j.ijpharm.2013.06.003.

    Article  CAS  PubMed  Google Scholar 

  68. Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28:2386–92. https://doi.org/10.1007/s11095-011-0450-5.

    Article  CAS  PubMed  Google Scholar 

  69. Pardeike J, Strohmeier DM, Schrödl N, Voura C, Gruber M, Khinast JG, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420:93–100. https://doi.org/10.1016/j.ijpharm.2011.08.033.

    Article  CAS  PubMed  Google Scholar 

  70. Alomari M, Vuddanda PR, Trenfield SJ, Dodoo CC, Velaga S, Basit AW, et al. Printing T3and T4oral drug combinations as a novel strategy for hypothyroidism. Int JPharm. 2018;549:363–9. https://doi.org/10.1016/j.ijpharm.2018.07.062.

    Article  CAS  Google Scholar 

  71. Edinger M, Bar-Shalom D, Sandler N, Rantanen J, Genina N. QR encoded smart oral dosage forms by inkjet printing. Int J Pharm. 2018;536:138–45. https://doi.org/10.1016/j.ijpharm.2017.11.052.

    Article  CAS  PubMed  Google Scholar 

  72. Planchette C, Pichler H, Wimmer-Teubenbacher M, Gruber M, Gruber-Woelfler H, Mohr S, et al. Printing medicines as orodispersible dosage forms: Effect of substrate on the printed micro-structure. Int J Pharm. 2016;509:518–27. https://doi.org/10.1016/j.ijpharm.2015.10.054.

    Article  CAS  PubMed  Google Scholar 

  73. Eleftheriadis GK, Monou PK, Bouropoulos N, Fatouros DG. In vitro evaluation of 2Dprinted edible films for the buccal delivery of diclofenac sodium. Materials (Basel). 2018;11:1–14. https://doi.org/10.3390/ma11050864.

    Article  CAS  Google Scholar 

  74. Buanz ABM, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: effect on mechanical properties and physical stability. Int J Pharm. 2015;494:611–8. https://doi.org/10.1016/j.ijpharm.2014.12.032.

    Article  CAS  PubMed  Google Scholar 

  75. Wickström H, Nyman JO, Indola M, Sundelin H, Kronberg L, Preis M, et al. Colorimetry as quality control tool for individual inkjet-printed pediatric formulations. AAPS PharmSciTech. 2017;18:293–302. https://doi.org/10.1208/s12249-016-0620-1.

    Article  CAS  PubMed  Google Scholar 

  76. Dodoo CC, Stapleton P, Basit AW, Gaisford S. The potential of Streptococcus salivarius oral films in the management of dental caries: an inkjet printing approach. Int J Pharm. 2020;591:119962.

    Article  CAS  Google Scholar 

  77. Raijada D, Genina N, Fors D, Wisaeus E, Peltonen J, Rantanen J, et al. A step toward development of printable dosage forms for poorly soluble drugs. J Pharm Sci. 2013;102(10):3694–704. https://doi.org/10.1002/jps.23678.

    Article  CAS  PubMed  Google Scholar 

  78. Preis M, Gronkowsky D, Grytzan D, Breitkreutz J. Comparative study on novel test systems to determine disintegration time of orodispersible films. J Pharm Pharmacol. 2014;66(8):1102–11. https://doi.org/10.1111/jphp.12246.

    Article  CAS  PubMed  Google Scholar 

  79. HP Thermal Inkjet vs piezo printheads the technology behind HP Latex printing https://www.youtube.com/watch?v=wnfkOHUup2Q– Accessed on 20th January 2021.

  80. Carreira L, Agbezuge L, Gooray A. Correlation between drying time and ink jet print quality parameters. Recent Prog Ink Jet Technol. 1996:1–4.

  81. Costello A, Doherty D, LeBeau J, Warren R. Multilayer polymer inkjet printing: Worcester Polytechnic Institute Bachelor Thesis; 2010.

  82. Sandler N, Määttänen A, Ihalainen P, Kronberg L, Meierjohann A, Viitala T, et al. Inkjet printing of drug substances and use of porous substrates-towards individualized dosing. J Pharm Sci. 2011;100(8):3386–95. https://doi.org/10.1002/jps.22526.

    Article  CAS  PubMed  Google Scholar 

  83. Dimatix materials printer DMP2800 series user manual, 2010. FUJIFILM Dimatix, Inc., Santa Clara, California.

  84. Thabet Y, Breitkreutz J. Printing pharmaceuticals by inkjet technology: proof of concept for stand-alone and continuous in-line printing on orodispersible films. J Manuf Process. 2018;35:205–15.

    Article  Google Scholar 

  85. Thabet Y, Lunter D, Breitkreutz J. Continuous inkjet printing of enalapril maleate onto orodispersible film formulations. Int J Pharm. 2018;546(1-2):180–7.

    Article  CAS  Google Scholar 

  86. Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm. 2020;576:118963. https://doi.org/10.1016/j.ijpharm.2019.118963.

    Article  CAS  PubMed  Google Scholar 

  87. Janssen EM, Schliephacke R, Breitenbach A, Breitkreutz J. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films. Int J Pharm. 2013;441(1-2):818–25. https://doi.org/10.1016/j.ijpharm.2012.12.023.

    Article  CAS  PubMed  Google Scholar 

  88. US Patent Publication No. US 2014/0186427 A1; Title: Orodispersible films for the manufacturing of individualised medicine or for large scale production

  89. US Patent No. 9539206; Title: Method for producing and monitoring oral active ingredient films.

  90. Genina N, Fors D, Vakili H, Ihalainen P, Pohjala L, Ehlers H, et al. Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. Eur J Pharm Sci. 2012;47(3):615–23. https://doi.org/10.1016/j.ejps.2012.07.020.

    Article  CAS  PubMed  Google Scholar 

  91. Assaifan AK, Al habis Nuha, Ahmad, I., Alshehri, N. A., & Alharbi, H. F. Scaling-up medical technologies using flexographic printing. Talanta. 2020;121236:121236. https://doi.org/10.1016/j.talanta.2020.121236.

    Article  CAS  Google Scholar 

  92. President Barack Obama, State of the Union Address (Feb. 12, 2013) (transcript available at the White House website: Office of the Press Secretary, available at http://www.whitehouse.gov/the-press-office/2013/02/12/remarks-president-state-union-address, archived at http://perma.cc/KES9-7KBX) (accessed on 3rd August 2020).

  93. 3-D printing: the printed world, THE ECONOMIST, Feb. 12, 2011, at 77–79, available at http://www.economist.com/node/18114221/. Accessed on 3rd August 2020.

  94. Ventola CL. Medical applications for 3D printing: current and projected uses. P T. 2014;39(10):704–11.

    PubMed  PubMed Central  Google Scholar 

  95. Asad Ali and Usama Ahmad and Juber Akhtar, 3D printing in pharmaceutical sector: an overview, pharmaceutical formulation design, IntechOpen, Rijeka, 2020, doi https://doi.org/10.5772/intechopen.90738.

  96. Matt Petronzio, How 3D printing actually works, MASHABLE (Mar. 28, 2013), http://mashable.com/2013/03/28/3-D-printing-explained, archived at http://perma.cc/8GTA-UVXB; see also Rebecca Matulka, How 3D Printers Work, U.S. DEPARTMENT OF ENERGY (June 19, 2014, 9:28 AM), http://energy.gov/articles/how-3d-printers-work, archived at http://perma.cc/6CFR-UJSR (accessed on 3rd August 2020).

  97. Elizabeth Palermo. Fused deposition modeling: most common 3D printing method, LIVESCIENCE (Sept. 19, 2013, 6:28 PM), http://www.livescience.com/39810-fused-deposition-modeling.html, archived at http://perma.cc/6FSV-AAEE (accessed on 3rd August 2020).

  98. West TG, Bradbury TJ. 3D printing: a case of ZipDose® technology - world’s first 3D printing platform to obtain FDA approval for a pharmaceutical product. 3D and 4D Printing in Biomedical Applications. 2018:53–79. https://doi.org/10.1002/9783527813704.ch3.

  99. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018b;23:1547–55. https://doi.org/10.1016/J.DRUDIS.2018.05.025.

    Article  CAS  PubMed  Google Scholar 

  100. Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499:376–94. https://doi.org/10.1016/j.ijpharm.2015.12.071.

    Article  CAS  PubMed  Google Scholar 

  101. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50. https://doi.org/10.1016/j.addr.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  102. Gioumouxouzis CI, Karavasili C, Fatouros DG. Recent advances in pharmaceutical dosage forms and devices using additive manufacturing technologies. Drug Discov Today. 2019;24:636–43. https://doi.org/10.1016/j.drudis.2018.11.019.

    Article  CAS  PubMed  Google Scholar 

  103. Liang K, Carmone S, Brambilla D, Leroux J-C. 3D printing of a wearable personalized oral delivery device: a first-in-human study. Sci Adv. 2018;4:eaat2544. https://doi.org/10.1126/sciadv.aat2544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur J Pharm Sci. 2018;118:134–43. https://doi.org/10.1016/J.EJPS.2018.03.010.

    Article  CAS  PubMed  Google Scholar 

  105. Jamróz W, Kurek M, Łyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, et al. 3D printed orodispersible films with Aripiprazole. Int J Pharm. 2017;533:413–20. https://doi.org/10.1016/J.IJPHARM.2017.05.052.

    Article  PubMed  Google Scholar 

  106. Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci. 2018;107(4):1076–85. https://doi.org/10.1016/j.xphs.2017.11.019.

    Article  CAS  PubMed  Google Scholar 

  107. Fuenmayor E, Forde M, Healy AV, et al. Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics. 2018;10(2):44. Published 2018 Apr 2. https://doi.org/10.3390/pharmaceutics10020044.

    Article  CAS  PubMed Central  Google Scholar 

  108. Musazzi UM, Selmin F, Ortenzi MA, Mohammed GK, Franzé S, Minghetti P, et al. Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm. 2018;551:52–9. https://doi.org/10.1016/J.IJPHARM.2018.09.013.

    Article  CAS  PubMed  Google Scholar 

  109. Öblom H, Sjöholm E, Rautamo M, Sandler N. Towards printed pediatric medicines in hospital pharmacies: Comparison of 2d and 3d-printed orodispersible warfarin films with conventional oral powders in unit dose sachets. Pharmaceutics. 2019;11(7):334.

    Article  Google Scholar 

  110. Sjöholm E, Sandler N. Additive manufacturing of personalized orodispersible warfarin films. Int J Pharm. 2019;564:117–23. https://doi.org/10.1016/j.ijpharm.2019.04.018.

    Article  CAS  PubMed  Google Scholar 

  111. Elbl J, Gajdziok J, Kolarczyk J. 3D printing of multilayered orodispersible films with in-process drying. Int J Pharm. 2020;575:118883. https://doi.org/10.1016/j.ijpharm.2019.118883.

    Article  CAS  PubMed  Google Scholar 

  112. Cho H-W, Baek S-H, Lee B-J, Jin H-E. Orodispersible polymer films with the poorly water-soluble frug, olanzapine: hot-melt pneumatic extrusion for single-process 3D printing. Pharmaceutics. 2020;12(8):692.

    Article  CAS  Google Scholar 

  113. Patel A, Prajapati DS, Raval JA. Fast dissolving films (Fdfs) as a newer venture in fast dissolving dosage forms. Int J Drug Dev Res. 2010;2:232–46.

    Google Scholar 

  114. Kalyan S, Bansal M. Recent trends in the development of oral dissolving film. International Journal of Pharmtech Research. 2012;4:725–33.

    CAS  Google Scholar 

  115. Pathare YS, Hastak VS, Bajaj AN. Polymers used for fast disintegrating oral films: a review. Int J Pharm Sci Rev Res. 2013; no. 29;21(1):169–78.

    CAS  Google Scholar 

  116. International patent publication no.: WO2019198105A1; Title: Composition of active ingredient loaded edible ink and methods of making suitable substrates for active ingredient printing on orodispersible films; Applicant: ZIM Laboratories, India.

  117. US Patent Publication No. US2011114532; Title: Method of manufacturing cellular films directly; Assignee: Roquette Freres SA

  118. US Patent Publication No. US2020016092; Title: Low moisture rapidly disintegrating oral dissolvable film; Assignee: Cure Pharmaceutical, USA.

  119. https://www.marketresearchfuture.com. Accessed on: 19th September 2019.

  120. https://www.transparencymarketresearch.com/pressrelease/thin-film-drug-manufacturing-market.htm. Accessed on: 21st September 2019.

  121. Patents and additive manufacturing: trends in 3D printing technologies – European Patent Office Report can be accessed from https://www.epo.org/about-us/services-and-activities/chief-economist/studies.html. Accessed on: 14th August 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maram Suresh Gupta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M.S., Kumar, T.P., Davidson, R. et al. Printing Methods in the Production of Orodispersible Films. AAPS PharmSciTech 22, 129 (2021). https://doi.org/10.1208/s12249-021-01990-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01990-3

KEY WORDS

Navigation