Skip to main content
Log in

Evaluation of Freshwater Mussel (Anodonta cygnea) Protein Hydrolysates in Terms of Antibacterial Activity and Functional Properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Bioactive peptides from dietary proteins are used as nutraceuticals. The objective of the investigation is to produce enzymatically hydrolyzed bioactive peptides from the freshwater mussel Anodonta cygnea using commercial food-grade proteases (Alcalase® 2.4 L, and Pepsin). Antibacterial activity of protein hydrolysates against (Escherichia coli, Salmonella typhi, Bacillus subtilis, Staphylococcus aureus, Listeria monocytogenes), FTIR, molecular weight, functional characteristics (protein solubility at different pH, fat absorption, water holding capacities) were evaluated. The degree of hydrolysis increased in higher enzyme concentrations. Hydrolyzed mussel proteins could inhibit some bacterial growth. The hydrolyzed samples by 1 and 6% enzymes showed the highest oil absorption capacity and the 3% treatment had the highest water absorption capacity. By increasing the percentage of enzymes, the solubility of protein increased. The SDS-page results appeared bands less than 2 kD. Our results suggest that swan mussel hydrolysate may be useful as an antibacterial agent, but further studies are needed to exact hydrolysate conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data mentioned in this paper.

References

  1. Li, Q.Z., Zhou, Z.R., Hu, C.Y., Li, X.B., Chang, Y.Z., Liu, Y., Wang, Y.L., Zhou, X.W.: Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci. Biotechnol. 32, 265–282 (2023). https://doi.org/10.1007/S10068-022-01233-6

    Article  Google Scholar 

  2. Auestad, N., Layman, D.K.: Dairy bioactive proteins and peptides: a narrative review. Nutr. Rev.. Rev. (2021). https://doi.org/10.1093/nutrit/nuab097

    Article  Google Scholar 

  3. Chelliah, R., Wei, S., Banan-MwineDaliri, E., Elahi, F., Yeon, S.-J., Tyagi, A., Liu, S., Hasan Madar, I., Sultan, G., Oh, D.-H., Kim, W.: The role of bioactive peptides in diabetes and obesity. Foods (2021). https://doi.org/10.3390/foods10092220

  4. Haldar, A., Das, M., Chatterjee, R., Dey, T.K.: Functional properties of protein hydrolysates from fresh water mussel Lamellidens marginalis (Lam.). https://www.researchgate.net/publication/325286634_Functional_properties_of_protein_hydrolysates_from_fresh_water_mussel_Lamellidens_marginalis_Lam

  5. Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Shahidi, F.: Inhibition of angiotensin converting enzyme, human LDL cholesterol and DNA oxidation by hydrolysates from blacktip shark gelatin. LWT 51, 177–182 (2013). https://doi.org/10.1016/J.LWT.2012.10.011

    Article  Google Scholar 

  6. Jayaprakash, R., Perera, C.O.: Partial purification and characterization of bioactive peptides from cooked New Zealand Green-Lipped Mussel (Perna canaliculus) protein hydrolyzates. Foods (2020). https://doi.org/10.3390/foods9070879

  7. Zhang, H., Xia, W.S., Xu, Y.S., Jiang, Q.X., Wang, C.X., Wang, W.J.: Effects of spray-drying operational parameters on the quality of freshwater mussel powder. Food Bioprod. Process.Bioprod. Process. 91, 242–248 (2013). https://doi.org/10.1016/J.FBP.2012.10.006

    Article  Google Scholar 

  8. Zhou, Y., Yi, X., Wang, J., Yang, Q., Wang, S.: Optimization of the ultrasonic-microwave assisted enzymatic hydrolysis of freshwater mussel meat. Int. J. Agric. Biol. Eng. 11, 236–242 (2018). https://doi.org/10.25165/IJABE.V11I5.4104

    Article  Google Scholar 

  9. Hinzmann, M., Bessa, L.J., Teixeira, A., Da Costa, P.M., MacHado, J.: Antimicrobial and antibiofilm activity of unionid mussels from the North of Portugal. J. Shellfish Res. 37, 121–129 (2018). https://doi.org/10.2983/035.037.0110

    Article  Google Scholar 

  10. Wang, X., Yu, H., Xing, R., Li, P.: Characterization, preparation, and purification of marine bioactive peptides. Biomed. Res. Int. (2017). https://doi.org/10.1155/2017/9746720

    Article  Google Scholar 

  11. Zhang, C., Yang, M., Ericsson, A.C.: Antimicrobial peptides: potential application in liver cancer. Front. Microbiol.Microbiol. (2019). https://doi.org/10.3389/FMICB.2019.01257/FULL

    Article  Google Scholar 

  12. AOAC International Official methods of analysis, 18th ed, 2005; Current through revision 2,(On-line). AOAC International, Gaithersburg, MD. (2007).

  13. MOOPAM: Regional Organization for the Protection of the Marine Environment. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Moopam+%28Manual+of+oceanographic+observation+and+pollution+analysis%29.1999.+Regional+organization+for+the+protection+of+marine+environment+%28ROPME%2C+Kuwait%29.+220P&btnG=

  14. Shahidi, F., Han, X.Q., Synowiecki, J.: Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 53, 285–293 (1995). https://doi.org/10.1016/0308-8146(95)93934-J

    Article  Google Scholar 

  15. Diniz, F.M., Martin, A.M.: Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate. LWT Food Sci. Technol. 30, 266–272 (1997). https://doi.org/10.1006/FSTL.1996.0184

    Article  Google Scholar 

  16. Chatterjee, R., Dey, T.K., Ghosh, M., Dhar, P.: Enzymatic modification of sesame seed protein, sourced from waste resource for nutraceutical application. Food Bioprod. Process.Bioprod. Process. 94, 70–81 (2015). https://doi.org/10.1016/J.FBP.2015.01.007

    Article  Google Scholar 

  17. Yin, H., Wan, Y., Pu, J., Bechtel, P.J., Sathivel, S.: Functional properties of protein fractions of channel catfish (Ictalurus punctatus) and their effects in an emulsion system. J. Food Sci. 76, E283–E290 (2011). https://doi.org/10.1111/J.1750-3841.2011.02057.X

    Article  Google Scholar 

  18. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  Google Scholar 

  19. Ghorbanalizadeh, A., Moshfegh, A., Setorki, M.: Evaluation of antimicrobial activity of peptides isolated from cerastoderma and didacta bivalves habitat in the southern shores of the Caspian Sea. Iran. J. Aquat. Anim. Heal. 4, 1–12 (2018). https://doi.org/10.29252/ijaah.4.1.1

    Article  Google Scholar 

  20. Wald, M., Schwarz, K., Rehbein, H., Bußmann, B., Beermann, C.: Detection of antibacterial activity of an enzymatic hydrolysate generated by processing rainbow trout by-products with trout pepsin. Food Chem. 205, 221–228 (2016). https://doi.org/10.1016/J.FOODCHEM.2016.03.002

    Article  Google Scholar 

  21. Cheong, S.H., Lee, S.-H., Jeon, Y.-J., Lee, D.-S.: Sci-Hub | Mussel (Mytilus coruscus) water extract containing taurine prevents LPS-induced inflammatory responses in zebrafish model. Taurine 10, 931–942 (2017). https://doi.org/10.1007/978-94-024-1079-2_74

    Article  Google Scholar 

  22. Cherifi, H., ChebilAjjabi, L., Sadok, S.: Nutritional value of the Tunisian mussel Mytilus galloprovincialis with a special emphasis on lipid quality. Food Chem. 268, 307–314 (2018). https://doi.org/10.1016/J.FOODCHEM.2018.06.075

    Article  Google Scholar 

  23. Gheorghe, S., Stoica, C., Vasile, G.G., Nita-Lazar, M., Stanescu, E., Lucaciu, I.E.: Metals toxic effects in aquatic ecosystems: modulators of water quality. In: Hlanganani, T. (ed.) Water quality. InTech, London (2017)

    Google Scholar 

  24. Iftikhar Khan, M., Khisroon, M., Khan, A., Gulfam, N., Siraj, M., Zaidi, F., Hira Fatima, S., Noreen, S., Ali Shah, Z., Qadir, F.: Research article bioaccumulation of heavy metals in water, sediments, and tissues and their histopathological effects on Anodonta cygnea (Linea, 1876) in Kabul River. BioMed Res Int (2018). https://doi.org/10.1155/2018/1910274

    Article  Google Scholar 

  25. Pourang, N., Richardson, C.A., Mortazavi, M.S.: Heavy metal concentrations in the soft tissues of swan mussel (Anodonta cygnea) and surficial sediments from Anzali wetland. Iran. Environ. Monit. Assess. 163, 195–213 (2010). https://doi.org/10.1007/S10661-009-0827-7

    Article  Google Scholar 

  26. Yabanlı, M., Katalay, S., Yozukmaz, A., İnanan, B.E.: İzmir Körfezi’nden (Türkiye) yakalanan Mytilus galloprovincialis (Lamarck, 1819)’un sindirim bezi ve solungaçlarındaki ağır metal ve selenyum içeriklerinin karşılaştırması. Turk. J. Biochem. 40, 140–148 (2015). https://doi.org/10.5505/tjb.2015.32448

    Article  Google Scholar 

  27. Cilbiz, N., Hanol, Z.: Evaluation of fisheries wastes as protein hydrolyzate. J. Surv. Fish. Sci. 2, 21–30 (2015). https://doi.org/10.18331/SFS2015.2.1.3

    Article  Google Scholar 

  28. Alahmad, K., Xia, W., Jiang, Q., Xu, Y.: Effect of the degree of hydrolysis on nutritional, functional, and morphological characteristics of protein hydrolysate produced from bighead carp (Hypophthalmichthys nobilis) using ficin enzyme. Foods (2022). https://doi.org/10.3390/foods11091320

  29. Beva, M., Foh, K., Amadou, I., Foh, B.M., Kamara, M.T., Xia, W.: Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. Int. J. Mol. Sci. 11, 1851–1869 (2010). https://doi.org/10.3390/ijms11041851

    Article  Google Scholar 

  30. Halim, N.R.A., Yusof, H.M., Sarbon, N.M.: Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol. 51, 24–33 (2016). https://doi.org/10.1016/J.TIFS.2016.02.007

    Article  Google Scholar 

  31. Fasihnia, S.H., Peighambardoust, S.H., Peighambardoust, S.J.: Nanocomposite films containing organoclay nanoparticles as an antimicrobial (active) packaging for potential food application. J. Food Process. Preserv.Preserv. 42, e13488 (2018). https://doi.org/10.1111/JFPP.13488

    Article  Google Scholar 

  32. Peighambardoust, S.H., Karami, Z., Pateiro, M., Lorenzo, J.M.: Biomolecules a review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules (2021). https://doi.org/10.3390/biom11050631

    Article  Google Scholar 

  33. GolshanTafti, A., Peighambardoust, S.H., Hejazi, M.A., Moosavy, M.H.: Diversity of Lactobacillus strains in Iranian traditional wheat sourdough. J. Food Qual. Hazards Control. 1, 41–45 (2014)

    Google Scholar 

  34. Sen, K., Chattoraj, S.: A comprehensive review of glyphosate adsorption with factors influencing mechanism: kinetics, isotherms, thermodynamics study. Intell. Environ. Data Monit. Pollut. Manag. (2021). https://doi.org/10.1016/B978-0-12-819671-7.00005-1

    Article  Google Scholar 

  35. Andrushchenko, V.V., Vogel, H.J., Prenner, J.: Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy. Biomembranes (2006). https://doi.org/10.1016/j.bbamem.2006.07.013

    Article  Google Scholar 

  36. Kafle, B., Böcker, U.B., Wubshet, S.G., Dankel, K., Måge, I., Farrell, M., Afseth, N.K.: Fourier-transform infrared spectroscopy for characterization of liquid protein solutions: a comparison of two sampling techniques enhanced reader. Vib. Spectrosc. Spectrosc 124, 103490 (2023)

    Article  Google Scholar 

  37. Ma, F., Chen, C., Sun, G., Wang, W., Fang, H., Han, Z.: Effects of high pressure and CaCl2 on properties of salt-soluble meat protein gels containing locust bean gum. Innov. Food Sci. Emerg. Technol.. Food Sci. Emerg. Technol. 14, 31–37 (2012). https://doi.org/10.1016/J.IFSET.2011.12.001

    Article  Google Scholar 

  38. Carbonaro, M., Nucara, A.: Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 38, 679–690 (2010). https://doi.org/10.1007/S00726-009-0274-3/METRICS

    Article  Google Scholar 

  39. Goormaghtigh, E., de Meutter, J.: FTIR imaging of protein microarrays for high throughput secondary structure determination. Anal. Chem. 93, 3733–3741 (2021). https://doi.org/10.1021/acs.analchem.0c03677

    Article  Google Scholar 

  40. Margulis, B.A., Pinaev, G.P.: The species specificity of the contractile protein composition of the bivalve molluscs. Comp. Biochem. Physiol. Part B Comp. Biochem. 55, 189–194 (1976). https://doi.org/10.1016/0305-0491(76)90228-5

    Article  Google Scholar 

  41. Annamalai, N., Anburaj, R., Jayalakshmi, S., Thavasi, R.: Antibacterial activities of green mussel (Perna viridis) and edible oyster (Crassostrea madrasensis). Res. J. Microbiol.Microbiol. 2, 978–982 (2007). https://doi.org/10.3923/JM.2007.978.982

    Article  Google Scholar 

  42. Grienke, U., Silke, J., Tasdemir, D.: Bioactive compounds from marine mussels and their effects on human health. Food Chem. 142, 48–60 (2014). https://doi.org/10.1016/J.FOODCHEM.2013.07.027

    Article  Google Scholar 

  43. Tsankova, G., Todorova, T., Ermenlieva, N., Merdzhanova, A., Panayotova, V., Dobreva, D., Peytcheva, K.: Antibacterial activity of different extracts of black mussel (Mytilus Galloprovincialis) from the Black Sea. Bulgaria. J. IMAB Annu. Proc. 27, 3506–3509 (2021). https://doi.org/10.5272/jimab.2021271.3506

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by Iran National Science Foundation (INSF).

Funding

This study was funded by Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parastoo Pourashouri.

Ethics declarations

Conflict of Interest

The authors declare that they have no known conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, S., Pourashouri, P., Shabanpour, B. et al. Evaluation of Freshwater Mussel (Anodonta cygnea) Protein Hydrolysates in Terms of Antibacterial Activity and Functional Properties. Waste Biomass Valor (2023). https://doi.org/10.1007/s12649-023-02301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-023-02301-6

Keywords

Navigation