Skip to main content
Log in

Using the Juice of Water Lettuce (Pistia stratiotes) as Culture Medium to Increase the Cell Density and the Production of Microbial Lipid

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Water lettuce (Pistia stratiotes) is one of the most well-known aquatic weeds as it causes problems in watercourses all over the world. This invasive species is fast-growing and thus has the potential for its use in preparing growth medium of microorganisms. Toward it, the pretreatment and enzymatic saccharification are positively the decisive processes. But there are other crucial processes, which are usually ignored by researchers. To the best of my knowledge, this presented work is the first time discovering that the juice obtained from water lettuce is valuable. Except for sterilization, no treatment is needed for the water lettuce’s juice and it can be directly served for cell growth. For Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Bacillus subtilis, Lactococcus Lactis, Lactobacillus rhamnosus, and Lactobacillus plantarum, the cell density in the broth of water lettuce’s juice as the only carbon source is 10–60% higher than that in LB, YPD, BHI, M17, MRS. We then examined the production of microbial lipid by YM prepared in the juice of water lettuce. In comparison to commercial medium YM broth, the YM with juice caused 84% increase in the production of microbial lipid. A simple process of collecting juice notably increased productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menon, V. and M. Rao (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Progress in Energy and Combustion Science 38: 522–50.

    Article  CAS  Google Scholar 

  2. Phitsuwan, P., K. Sakka, and K. Ratanakhanokchai (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass and Bioenergy 58: 390–405.

    Article  CAS  Google Scholar 

  3. Eklund, R. and G. Zacchi (1995) Simultaneous saccharification and fermentation of steam-pretreated willow. Enzyme and Microbial Technology 17: 255–9.

    Article  CAS  Google Scholar 

  4. Sreenath, H. K., R. G. Koegel, A. B. Moldes, T. W. Jeffries, and R. J. Straub (2001) Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochemistry 36: 1199–204.

    Article  CAS  Google Scholar 

  5. Martin, C., M. Galbe, C. F. Wahlbom, B. Hahn-Hägerdal, and L. J. Jönsson (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial Technology 31: 274–82.

    Article  CAS  Google Scholar 

  6. Mishima, D., M. Kuniki, K. Sei, S. Soda, M. Ike, and M. Fujita (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technology 99: 2495–500.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, K.-Y., Y. Zheng, and Y.-S. Cheng (2015) Integrated alkali pretreatment and preservation of wet lettuce (Pistia stratiotes) by lactic acid bacteria for fermentable sugar production. Biomass and Bioenergy 81: 249–55.

    Article  CAS  Google Scholar 

  8. Day, M. (2012) Pistia stratiotes L.-water lettuce. Biological Control of Weeds in Australia CSIRO Publishing, Collingwood, Victoria. 2012: 472–6.

    Google Scholar 

  9. Wilkie, A. C. and J. M. Evans (2010) Aquatic plants: an opportunity feedstock in the age of bioenergy. Biofuels 1: 311–21.

    Article  CAS  Google Scholar 

  10. Anderson, L. W. (2003) A review of aquatic weed biology and management research conducted by the United States Department of Agriculture—Agricultural Research Service. Pest Management Science 59: 801–13.

    Article  CAS  PubMed  Google Scholar 

  11. Alvira, P., E. Tomás-Pejó, M. Ballesteros, and M. Negro (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology 101: 4851–61.

    Article  CAS  PubMed  Google Scholar 

  12. Lin, Y. and S. Tanaka (2006) Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology 69: 627–42.

    Article  CAS  PubMed  Google Scholar 

  13. Cereghino, J. L. and J. M. Cregg (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews 24: 45–66.

    Article  CAS  PubMed  Google Scholar 

  14. Kunst, F., N. Ogasawara, I. Moszer, A. Albertini, G. Alloni, V. Azevedo, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–56.

    Article  CAS  PubMed  Google Scholar 

  15. Braat, H., P. Rottiers, D. W. Hommes, N. Huyghebaert, E. Remaut, J. P. Remon, et al. (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clinical Gastroenterology and Hepatology 4: 754–9.

    Article  CAS  PubMed  Google Scholar 

  16. Näse, L., K. Hatakka, E. Savilahti, M. Saxelin, A. Pönkä, T. Poussa, et al. (2001) Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Research 35: 412–20.

    Article  PubMed  Google Scholar 

  17. Reid, G., D. Charbonneau, J. Erb, B. Kochanowski, D. Beuerman, R. Poehner, et al. (2003) Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunology & Medical Microbiology 35: 131–4.

    Article  CAS  Google Scholar 

  18. Kleerebezem, M., J. Boekhorst, R. van Kranenburg, D. Molenaar, O. P. Kuipers, R. Leer, et al. (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences 100: 1990–5.

    Article  CAS  Google Scholar 

  19. Yen, H.-W., Y.-C. Yang, and Y.-H. Yu (2012) Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis. Journal of Bioscience and Bioengineering 114: 453–6.

    Article  CAS  PubMed  Google Scholar 

  20. Noble, J. E. and M. J. Bailey (2009) Quantitation of protein. Methods in Enzymology 463: 73–95.

    Article  CAS  PubMed  Google Scholar 

  21. Sun, S.-W., Y.-C. Lin, Y.-M. Weng, and M.-J. Chen (2006) Efficiency improvements on ninhydrin method for amino acid quantification. Journal of Food Composition and Analysis 19: 112–7.

    Article  CAS  Google Scholar 

  22. González-García, Y., L. M. Rábago-Panduro, T. French, D. I. Camacho-Córdova, P. Gutiérrez-González, and J. Córdova (2017) High lipids accumulation in Rhodosporidium toruloides by applying single and multiple nutrients limitation in a simple chemically defined medium. Annals of Microbiology 67: 519–27.

    Article  CAS  Google Scholar 

  23. Jacob, S. and R. Banerjee (2016) Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm. Bioresource Technology 214: 386–95.

    Article  CAS  PubMed  Google Scholar 

  24. Borrero, J., Y. Chen, G. M. Dunny, and Y. N. Kaznessis (2014) Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synthetic Biology. 4: 299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Jun-Yi Leu at Academia Sinica for the gift of S. cerevisiae R1158, Prof. Cheng-Kang Lee at National Taiwan University of Science and Technology for L. lactis MG1363, Prof. Ai-Yu Wang at National Taiwan University for P. pastoris X-33, Prof. Shiuh-Bin Fang at Taipei Medical University for L. rhamnosus GG and L. plantarum, and Prof. Yaw-Nan Chang in Formosa University for Rhodotorula glutinis.

The authors acknowledge Prof. Gary M. Dunny and Prof. Yiannis Kaznessis at the University of Minnesota for the gift of E. faecalis OG1RF and L. lactis MG1363 (pBK1:Bac), respectively.

The authors acknowledge Prof. Cheng-Che Hsu at National Taiwan University for the use of HPLC.

This work was supported by grants (MOST 107-2221-E-027-037 -) from the Ministry of Science and Technology, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che-Chi Shu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lien, YH., Liu, FY., Chen, JN. et al. Using the Juice of Water Lettuce (Pistia stratiotes) as Culture Medium to Increase the Cell Density and the Production of Microbial Lipid. Biotechnol Bioproc E 24, 395–400 (2019). https://doi.org/10.1007/s12257-018-0404-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0404-4

Keywords

Navigation