Skip to main content

Advertisement

Log in

Mitogenome analysis of dwarf pufferfish (Carinotetraodon travancoricus) endemic to southwest India and its implications in the phylogeny of Tetraodontidae

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The Tetraodontidae (pufferfishes), is primarily a family of marine and estuarine fishes with a limited number of freshwater species. Freshwater invasions can be observed in South America, Southeast Asia and central Africa. In the present study, we have analysed the complete mitogenome of freshwater pufferfish, Carinotetraodon travancoricus (dwarf pufferfish or Malabar pufferfish) endemic to southwest India. The genome is 16487 bp in length and consist of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one control region like all the other vertebrate mitogenomes. The protein-coding genes ranged from 165 bp (ATP synthase subunit 8) to 1812 bp (NADH dehydrogenase subunit 5) and comprised of 11310 bp in total, constituting 68.5% of the complete mitogenome. Some overlaps have been observed in protein-coding genes by a total of 7 bp. The AT skew (0.032166) and GC skew (−0.29746) of the mitogenome indicated that heavy strand consists equal amount of A and T, but the overall base composition was mainly C skewed. The noncoding D-loop region comprised 869 bp. The conserved motifs ATGTA and its complement TACAT associated with thermostable hairpin structure formation were identified in the control region. The phylogenetic analysis depicted a sister group relationship of C. travancoricus with euryhaline species Dichotomyctere nigroviridis and D. ocellatus with 100% bootstrap value rather than with the other freshwater members of Carinotetraodon species from Southeast Asia. The data from this study will be useful for proper identification, genetic differentiation, management and conservation of the dwarf Indian pufferfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alfaro M. E., Santini F. and Brock C. D. 2007 Do reefs drive diversification in marine teleosts? Evidence from the puffer fish and their allies (order Tetraodontiforms). Evolution 61, 2104–2126.

    Article  Google Scholar 

  • Babicki S., Arndt D., Marcu A., Liang Y., Grant J. R., Maciejewski A. et al. 2016 Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, W147–W153.

    Article  CAS  Google Scholar 

  • Beevi K. S. J. and Ramachandran A. 2009 Checklist of freshwater fishes collected from Ernakulam District, Kerala, India. J. Threat Taxa 1, 493–494.

    Article  Google Scholar 

  • Bernt M., Donath A., Juhling F., Externbrink F., Florentz C., Fritzsch G. et al. 2013 MITOS: improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319.

    Article  Google Scholar 

  • Boore J. L. 1999 Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780.

    Article  CAS  Google Scholar 

  • Boore J. L., Macey J. R. and Medina M. 2005 Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol. 395, 311–348.

    Article  CAS  Google Scholar 

  • Capella-Gutiérrez S., Silla-Martínez J. M and Gabaldon T. 2009 trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.

    Article  Google Scholar 

  • Cheng Y., Xu T., Shi G. and Wang R. 2010 Complete mitochondrial genome of the miiuy croaker Miichthys miiuy (Perciformes, Sciaenidae) with phylogenetic consideration. Mar. Genom. 3, 201–209.

    Article  Google Scholar 

  • Dahanukar N. 2011 Carinotetraodon travancoricus. The IUCN red list of threatened species, e.T166591A6242813 (http://dx.doi.org/10.2305).

  • Duffy N. M., Bui P., Bagherie-Lachidan M. and Kelly S. P. 2011 Epithelial remodelling and claudin mRNA abundance in the gill and kidney of puffer fish (Tetraodon biocellatus) acclimated to altered environmental ion levels. J. Comp. Physiol. B 181, 219–238.

    Article  CAS  Google Scholar 

  • Fraser-Brunner A. 1943 Notes on the plectognath fishes.—VIII. The classification of the suborder Tetraodontoidea, with a synopsis of the genera. J. Nat. Hist. 10, 1–8.

    Google Scholar 

  • Hedges S. B. 2002 The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849.

    Article  CAS  Google Scholar 

  • Hershberg R. and Petrov D. A. 2008 Selection on codon bias. Annu. Rev. Genet. 42, 287–299.

    Article  CAS  Google Scholar 

  • Holcroft N. I. 2005 A molecular analysis of the interrelationships of tetraodontiform fishes (Acanthomorpha: Tetraodontiformes). Mol. Phylogenet. Evol. 34, 525–544.

    Article  CAS  Google Scholar 

  • Hunt M., Gall A., Ong S. H., Brener J., Ferns B., Goulder P. et al. 2015 IVA: accurate de novo assembly of RNA virus genomes. Bioinformatics 31, 2374–2376.

    Article  CAS  Google Scholar 

  • Igarashi Y., Doi H., Yamanoue Y., Kinoshita S., Ishibashi T., Ushio H. et al. 2013 Molecular phylogenetic relationship of Tetraodon puffer fish based on mitochondrial DNA analysis. Fish Sci. 79, 243–250.

    Article  CAS  Google Scholar 

  • Jaillon O., Aury J. M., Brunet F., Petit J. L., Stange-Thomann N., Mauceli E. et al. 2004 Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431, 946.

    Article  Google Scholar 

  • Jayalal L. and Ramachandran A. 2013 Linking sustainability indicators of Indian wild caught ornamental fish industry. Int. J. Environ. Sci. 3, 1891.

    Google Scholar 

  • Katoh K. and Standley D. M. 2013 MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.

    Article  CAS  Google Scholar 

  • Kottelat M. 2013 The fishes of the inland waters of southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull. Zool. Suppl. 27, 1–663.

    Google Scholar 

  • Kumar S., Stecher G. and Tamura K. 2016 MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Lowe T. M. and Chan P. P. 2016 tRNAscan-SE On-line: search and contextual analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–W57.

    Article  CAS  Google Scholar 

  • Matsura K. 2015 Taxonomy and systematics of tetraodontiform fishes: a review focusing primarily on progress in the period from 1980 to 2014. Ichthyol. Res. 62, 72–113.

    Article  Google Scholar 

  • Oh D. J., Kim J. Y., Lee J. A., Yoon W. J., Park S. Y. and Jung Y. H. 2007 Complete mitochondrial genome of the rabbit fish Siganus fuscescens (Perciformes, Siganidae) full length research paper. DNA Seq. 18, 295–301.

    Article  CAS  Google Scholar 

  • Ojala D., Montoya J. and Attardi G. 1981 tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470– 474.

    Article  CAS  Google Scholar 

  • Phillips M. J. and Penny D. 2003 The root of the mammalian tree inferred from whole mitochondrial genomes. Mol. Phylogenet. Evol. 28, 171–185.

    Article  CAS  Google Scholar 

  • Prasad G., Sabu K. and Prathibhakumari P. V. 2012 The first report of the Malabar puffer, Carinotetraodon travancoricus (Hora & Nair, 1941) from the Neyyar wildlife sanctuary with a note on its feeding habit and length-weight relationship. J. New Biol. Rep. 1, 42–46.

    Google Scholar 

  • Ronen R., Boucher C., Chitsaz H. and Pevzner P. 2012 SEQuel: improving the accuracy of genome assemblies. Bioinformatics 28, i188–i196.

    Article  CAS  Google Scholar 

  • Santini F., Nguyen M. T. T., Sorenson L., Waltzek T. B., Lynch Alfaro J. W., Eastman J. M. et al. 2013 Do habitat shifts drive diversification in teleost fishes? An example from the puffer fishes (Tetraodontidae). J. Evol. Biol. 26, 1003–1018.

    Article  CAS  Google Scholar 

  • Stamatakis A. 2014 RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.

    Article  CAS  Google Scholar 

  • Suissa S., Wang Z., Poole J., Wittkopp S., Feder J., Shutt T. E. et al. 2009 Ancient mtDNA genetic variants modulate mtDNA transcription and replication. PLoS Genet5, e1000474.

    Article  Google Scholar 

  • Tyler J. C. 1980 Osteology, phylogeny, and higher classification of the fishes of the order Plectognathi (Tetraodontiformes). NOAA Tech. Rep. NMFS Circ434, 1–422.

    Google Scholar 

  • Winterbottom R. 1974 The familial phylogeny of the Tetraodontiformes (Acanthopterygii: Pisces) as evidenced by their comparative myology, vol. 155, pp. 1–201. Smithsonian Institution Press.

  • Yamanoue Y., Miya M., Doi H., Mabuchi K., Sakai H. and Nishida M. 2011 Multiple invasions into freshwater by puffer fishes (Teleostei: Tetraodontidae): a mitogenomic perspective. PLoS One 6, e17410.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Centre of Excellence in Sustainable Aquaculture and Aquatic Health Management (CAAHM), Plan fund, Kerala University of Fisheries and Ocean Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rejish Kumar Vattiringal Jayadradhan.

Additional information

Corresponding editor: H. A. Ranganath

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyajith, C., Yamanoue, Y., Yokobori, SI. et al. Mitogenome analysis of dwarf pufferfish (Carinotetraodon travancoricus) endemic to southwest India and its implications in the phylogeny of Tetraodontidae. J Genet 98, 105 (2019). https://doi.org/10.1007/s12041-019-1151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1151-9

Keywords

Navigation