Skip to main content
Log in

Feeder cell–dependent primary culture of single blastula–derived embryonic cell lines from marine medaka (Oryzias dancena)

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Fish embryonic stem cells (ESCs) are derived from blastomeres that have been cultured from blastula embryos. The most widely used method for derivation of fish ESCs is the culture of blastomeres that have been isolated from approximately 10 blastula embryos under feeder-free conditions. However, this method leads to intercellular genetic heterogeneity among the cultured cells, which is a major obstacle to the development of stable ESC culture conditions. In this study, to establish ESC lines with intercellular genetic homogeneity at the early stage of culture, we attempted to derive embryonic cell lines from single blastula–derived blastomeres of marine medaka (Oryzias dancena) in a feeder cell culture system. Using basic fibroblast growth factor–expressing feeder cells during primary culture, we successfully established 22 single blastula–derived embryonic cell lines that could be subcultured more than 20 times. In contrast, we were unable to efficiently derive cell lines using wild-type feeder cells and under feeder-free conditions. The established cell lines exhibited ESC-like cell characteristics in terms of alkaline phosphatase activity, pluripotency-related gene expression, and embryoid body formation. The results of this study will contribute to the development of methods for derivation of fish ESCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Alvarez MC, Bejar J, Chen S, Hong Y (2007) Fish ES cells and applications to biotechnology. Mar Biotechnol 9:117–127

    Article  CAS  Google Scholar 

  • Bialkowska AB, Yang VW, Mallipattu SK (2017) Krüppel-like factors in mammalian stem cells and development. Development 144:737–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryja V, Bonilla S, Arenas E (2006) Derivation of mouse embryonic stem cells. Nat Protoc 1:2082–2087

    Article  CAS  PubMed  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Gong SP (2018) Effects of temperatures and basal media on primary culture of the blastomeres derived from the embryos at blastula stage in marine medaka Oryzias Dancena. J Embryo Transfer 33:343–348

    Google Scholar 

  • Guo G, von Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A, Nichols J (2016) Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6:437–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiselleova L, Peterkova I, Neradil J, Slaninova I, Hampl A, Dvorak P (2008) Comparative study of mouse and human feeder cells for human embryonic stem cells. Int J Dev Biol 52:353–363

    Article  CAS  PubMed  Google Scholar 

  • Elling U, Woods M, Forment JV, Fu B, Yang F, Ng BL, Vicente JR, Adams DJ, Doe B, Jackson SP, Penninger JM, Balmus G (2019) Derivation and maintenance of mouse haploid embryonic stem cells. Nat Protoc 14:1991–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Liu L, Huang X, Zhao Y, Zhou L, Wang D, Wei J (2017) Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Develop Growth Differ 59:83–93

    Article  CAS  Google Scholar 

  • Freshney RI (2010) Culture of animal cells: a manual of basic technique and specialized applications. Wiley-Liss, New York

    Book  Google Scholar 

  • Gong SP, Kim H, Lee EJ, Lee ST, Moon S, Lee HJ, Lim JM (2009) Change in gene expression of mouse embryonic stem cells derived from parthenogenetic activation. Hum Reprod 24:805–814

    Article  CAS  PubMed  Google Scholar 

  • Greber B, Lehrach H, Adjaye J (2007) Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25:455–464

    Article  CAS  PubMed  Google Scholar 

  • Ho SY, Goh CW, Gan JY, Lee YS, Lam MK, Hong N, Hong Y, Chan WK, Shu AC (2014) Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 11:407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Schartl M (2006) Isolation and differentiation of medaka embryonic stem cells. Methods Mol Biol 329:3–16

    PubMed  Google Scholar 

  • Hu B, Lefort K, Qiu W, Nguyen BC, Rajaram RD, Castillo E, He F, Chen Y, Angel P, Brisken C, Dotto GP (2010) Control of hair follicle cell fate by underlying mesenchyme through a CSL-Wnt5a-FoxN1 regulatory axis. Genes Dev 24:1519–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YY, Oh SK, Choi YM (2007) Feeder cells for culture of human embryonic stem cells. Korean J Reprod Med 34:219–277

    Article  Google Scholar 

  • Kueh J, Richards M, Ng SW, Chan WK, Bongso A (2006) The search for factors in human feeders that support the derivation and propagation of human embryonic stem cells: preliminary studies using transcriptome profiling by serial analysis of gene expression. Fertil Steril 85:1843–1846

    Article  CAS  PubMed  Google Scholar 

  • Laslett AL, Filipczyk AA, Pera MF (2003) Characterization and culture of human embryonic stem cells. Trends Cardiovasc Med 13:295–301

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Kim MS, Nam YK, Kim DS, Gong SP (2013) Establishment and characterization of permanent cell lines from Oryzias dancena embryos. Fish Aquat Sci 16:177–185

    Google Scholar 

  • Lee DW, Ryu JH, Lee ST, Nam YK, Kim DS, Gong SP (2015) Identification of embryonic stem cell activities in an embryonic cell line derived from marine medaka (Oryzias dancena). Fish Physiol Biochem 41:1569–1576

    Article  CAS  PubMed  Google Scholar 

  • Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, Thomson JA (2006) Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 24:568–574

    Article  CAS  PubMed  Google Scholar 

  • Llames S, García-Pérez E, Meana Á, Larcher F, Río M (2015) Feeder layer cell actions and applications. Tissue Eng Part B Rev 21:345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namba M, Fukushima F, Kimoto T (1982) Effects of feeder layers made of human, mouse, hamster, and rat cells on the cloning efficiency of transformed human cells. In Vitro 18:469–475

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa S, Jakt LM, Era T (2007) Embryonic stem-cell culture as a tool for developmental cell biology. Nat Rev Mol Cell Biol 8:502–507

    Article  CAS  PubMed  Google Scholar 

  • Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Krzykwa E, Lemieux R, Néron S (2001) Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res 10:873–880

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Gong SP (2017) Effects of the developmental stage of extract donor embryos on the culture of marine medaka Oryzias dancena embryonic stem cell-like cells. Korean J Fish Aquat Sci 50:160–168

    CAS  Google Scholar 

  • Ryu JH, Gong SP (2020) Effects of feeder cells on the primary culture of ovarian cell populations from adult Japanese medaka (Oryzias latipes). J Anim Reprod Biotechnol 35:65–72

    Article  Google Scholar 

  • Scheper W, Copray S (2009) The molecular mechanism of induced pluripotency: a two-stage switch. Stem Cell Rev Rep 5:204–223

    Article  CAS  PubMed  Google Scholar 

  • Schwartz PH, Brick DJ, Nethercott HE, Stover AE (2011) Traditional human embryonic stem cell culture. In: Schwartz P., Wesselschmidt R (eds) Human pluripotent stem cells. Methods in Molecular Biology (Methods and Protocols), vol 767. Humana Press.

  • Stojkovic P, Lako M, Stewart R, Przyborski S, Armstrong L, Evans J, Murdoch A, Strachan T, Stojkovic M (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23:306–314

    Article  CAS  PubMed  Google Scholar 

  • Song HY, Nam YK, Bang IC, Kim DS (2009) Embryogenesis and early ontogenesis of a marine medaka, Oryzias dancena. Kor J Ichthyol 21:227–238

    Google Scholar 

  • Wang ZX, The CHL, Chan CMY, Chu C, Rossbach M, Kunarso G, Allapitchay TB, Wong KY, Stanton LW (2008) The transcription factor Zfp281 controls embryonic stem cell pluripotency by direct activation and repression of target genes. Stem Cells 26:2791–2799

    Article  CAS  PubMed  Google Scholar 

  • Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433

    Article  CAS  PubMed  Google Scholar 

  • Yi M, Hong N, Hong Y (2010) Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nat Protoc 5:1418–1430

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, Ng HH, Lufkin T, Robson P, Lim B (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8:1114–1123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant of Pukyong National University (2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Pyo Gong.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, M.J., Gong, S.P. Feeder cell–dependent primary culture of single blastula–derived embryonic cell lines from marine medaka (Oryzias dancena). In Vitro Cell.Dev.Biol.-Animal 58, 840–850 (2022). https://doi.org/10.1007/s11626-022-00727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00727-1

Keywords

Navigation