Skip to main content

Advertisement

Log in

The complete mitochondrial genome of an endemic cichlid Etroplus canarensis from Western Ghats, India (Perciformes: Cichlidae) and molecular phylogenetic analysis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The Indian endemic cichlid Etroplus canarensis (Canara pearl spot) is an endangered fish and is one among the three Indian cichlids (Etroplinae) that had a restricted distribution in the South Canara region of Karnataka, India. Despite considerable investigations, the phylogeny of Indian Cichlids and its biogeographical origin is still ambiguous and remains a question under discussion which is scrutinized based on whole mitogenomes in the present study.

Methods and results

We report the 16,339 bp complete mitochondrial genome of E. canarensis for the first time using the next-generation sequencing methods. Comparison of gene arrangement and genome characterization was found to commensurate with the previous reports on two Indian cichlid fishes, E. suratensis and E. maculatus. ND6 has been identified as a gene with the highest evolutionary rate and COI and COII is the most conserved gene based on p-genetic distance calculation. Substitution rate (ka/ks) was found to be very low indicating a reduced rate of evolution among subfamily Etroplinae accounting for its subsided species divergence of Indian cichlids. Phylogenetic analysis of Indian cichlids based on a combined dataset of 12 protein-coding genes representing cichlids generated high posterior probability values pillaring paraphyletic nature of Indian Malagasy lineage and monophyletic Indian genus Etroplus.

Conclusion

The mitogenome sequence of E. canarensis may provide fundamental molecular data useful for further researches on genetic diversity, endemicity and the conservation of this endangered freshwater fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw sequence data is submitted as SRA (sequence read archives) submission in NCBI (Genbank Accession number SRR10297504) registered under bio project PRJNA575350. Fasta files and annotated sequences submitted through BankIt (Accession number MZ646791). The data information on species selected for phylogenetic analysis is provided in supplementary information.

References

  1. Bloch ME (1790) Naturgeschichte der ausländischen Fische. Berlin, vol 4. i–xii, pp 1–128, pp 217–252

  2. Bloch ME (1795) Naturgeschichte der ausländischen Fische, Merino and Co., Berlin, 9. pp 192

  3. Day F (1877) Geographical distribution of Indian freshwater fishes—part I. The acanthopterygii, spiny-rayed Teleostean fishes. Zool J Linn Soc-Lond. https://doi.org/10.1111/j.1096-3642.1877.tb02377.x

    Article  Google Scholar 

  4. Joseph J, Sreedharan S, Anoop VS, George S, Antony MM (2019) A preliminary investigation on the population genetic structure of Etroplus canarensis day, 1877 of the Western Ghats, India. Asian Fish Sci 32:190–195. https://doi.org/10.33997/j.afs.2019.32.4.007

    Article  Google Scholar 

  5. Menon AGK, Rema Devi K, Burgess WE (1993) On the rediscovery of Etroplus canarensis day. Tropical Fish Hobbyist 41:146–149

    Google Scholar 

  6. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, Hoboken

    Google Scholar 

  7. Broughton RE, Milam JE, Roe BA (2001) The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res 11:1958–1967. https://doi.org/10.1101/gr.156801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen D, Chu W, He Y, Liang XF, Mai K (2016) Characteristics and phylogenetic studies of complete mitochondrial DNA based on the rice field eel (Monopterus albus) from four different areas. Mitochondrial DNA A 27:2419–2420. https://doi.org/10.3109/19401736.2015.1030623

    Article  CAS  Google Scholar 

  9. Williams SM, McDowell JR, Bennett M, Graves JE, Ovenden JR (2018) Analysis of whole mitochondrial genome sequences increases phylogenetic resolution of istiophorid billfishes. Bull Mar Sci 94:73–84. https://doi.org/10.5343/bms.2017.1078

    Article  Google Scholar 

  10. Zhao L, Dong J, Sun C, Tian Y, Hu J, Ye X (2019) Phylogenetic analysis of sooty grunter and other major freshwater fishes in the suborder Percoidei based on mitochondrial DNA. Mitochondrial DNA A 2730:234–248. https://doi.org/10.1080/24701394.2018.1482283

    Article  CAS  Google Scholar 

  11. Forni G, Puccio G, Bourguignon T, Evans T, Mantovani B, Rota-Stabelli O, Luchetti A (2019) Complete mitochondrial genomes from transcriptomes: assessing pros and cons of data mining for assembling new mitogenomes. Sci Rep 9:14806–21416. https://doi.org/10.1038/s41598-019-51313-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Avise JC, Nelson WS, Sibley CG (1994) DNA sequence support for a close phylogenetic relationship between some storks and New World vultures. Proc Natl Acad Sci USA 91:5173–5177. https://doi.org/10.1073/pnas.91.11.5173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohanta SK, Swain SK, Das SP, Bit A, Das G, Pradhan S (2016) Complete mitochondrial genome sequence of E. suratensis revealed by next generation sequencing. Mitochondrial DNA Part B 1:746–747. https://doi.org/10.1080/23802359.2016.1176877

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sebastian W, Sukumaran S, Gopalakrishnan A (2019) Complete mitochondrial genome phylogeny of the green chromide Etroplus suratensis (Bloch, 1790) from Vembanad Lake, Kerala, and south India. Indian J Fish 66:125–130

    Article  Google Scholar 

  15. Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M (2008) Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Bio 8:215–228. https://doi.org/10.1186/1471-2148-8-215

    Article  CAS  Google Scholar 

  16. Silas EG (2010) Phylogeny and evolutionary aspects of Indian fishes: challenges for the future. Indian J Anim Sci 80(4):8–15

    Google Scholar 

  17. Schedel FDB, Musilova Z, Schliewen UK (2019) East African cichlid lineages (Teleostei: cichlidae) might be older than their ancient host lakes: new divergence estimates for the east African cichlid radiation. BMC Evol Bio 19:94

    Article  Google Scholar 

  18. Reinthal PN, Stiassny MLJ (1991) The freshwater fishes of Madagascar: a study of an endangered fauna with recommendations for a conservation strategy. Conserv Biol 5:231–243. https://doi.org/10.1111/j.1523-1739.1991.tb00128.x

    Article  Google Scholar 

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  Google Scholar 

  20. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N (2009) Genome project data processing subgroup, the sequence alignment/map (SAM) format and SAMtools. Bioinform 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  Google Scholar 

  22. Iwasaki W, Fukunaga T, Isagozawa R, Yamada K, Maeda Y, Satoh TP, Nishida M (2013) MitoFish and MitoAnnotator: a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Mol Biol Evol 30:2531–2540. https://doi.org/10.1093/molbev/mst141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan PP, Lowe TM (2019) TRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol 1962:1–14. https://doi.org/10.1007/978-1-4939-9173-01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  26. Miya M, Nishida M (2000) Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phy Evol 17:437–455. https://doi.org/10.1006/mpev.2000.0839

    Article  CAS  Google Scholar 

  27. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:7–13. https://doi.org/10.1093/nar/gkq291

    Article  CAS  Google Scholar 

  28. Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  PubMed  Google Scholar 

  29. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Bio 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  Google Scholar 

  30. He A, Luo Y, Yang H, Liu LS, Wang C (2011) Complete mitochondrial DNA sequences of the Nile tilapia (Oreochromis niloticus) and Blue tilapia (Oreochromis aureus): genome characterization and phylogeny applications. Mol Bio Rep 38:2015–2021. https://doi.org/10.1007/s11033-010-0324-7

    Article  CAS  Google Scholar 

  31. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465. https://doi.org/10.1038/290457a0

    Article  CAS  PubMed  Google Scholar 

  32. Flook PK, Rowell CHF, Gellissen G (1995) The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome. J Mol Evol 41:928–941. https://doi.org/10.1007/BF00173173

    Article  CAS  PubMed  Google Scholar 

  33. Yang H, Xia J, Zhang JE, Yang J, Zhao H, Wang Q (2018) Characterization of the complete mitochondrial genome sequences of three croakers (Perciformes, Sciaenidae) and novel insights into the phylogenetics. Int J Mol Sci 19:1741–1765. https://doi.org/10.3390/ijms19061741

    Article  CAS  PubMed Central  Google Scholar 

  34. Bbole I, Zhao JL, Tang SJ, Katongo C (2018) Mitochondrial genome annotation and phylogenetic placement of Oreochromis andersonii and O. macrochir among the cichlids of Southern Africa. PLoS ONE 13:e02039035. https://doi.org/10.1371/journal.pone.0203095

    Article  CAS  Google Scholar 

  35. Zhu KC, Liang YY, Wu N, Guo HY, Zhang N, Jiang SG, Zhang DC (2017) Sequencing and characterization of the complete mitochondrial genome of Japanese swellshark (Cephalloscyllium umbratile). Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-15702-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao B, Peng C, Chen Q, Zhang J, Shi Q (2018) Mitochondrial genome sequencing of a vermivorous cone snail Conus quercinus supports the correlative analysis between phylogenetic relationships and dietary types of Conus species. PLoS ONE. https://doi.org/10.1371/journal.pone.0193053

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sparks JS (2008) Phylogeny of the cichlid subfamily Etroplinae and taxonomic revision of the Malagasy cichlid genus Paretroplus (Teleostei: Cichlidae). Bull Am Mus Nat Hist 314:1–151. https://doi.org/10.1206/314.1

    Article  Google Scholar 

  38. McMahan CD, Chakrabarty P, Sparks JS, Smith WM, Davis MP (2013) Temporal patterns of diversification across global cichlid biodiversity (Acanthomorpha: Cichlidae). PLoS ONE 8:e71162. https://doi.org/10.1371/journal.pone.0071162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34. https://doi.org/10.1093/oxfordjournals.molbev.a040335

    Article  CAS  PubMed  Google Scholar 

  40. Yue GH, Liew WC, Orban L (2006) The complete mitochondrial genome of a basal teleost, the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Gen 7:242. https://doi.org/10.1186/1471-2164-7-242

    Article  CAS  Google Scholar 

  41. Villela LC, Alves AL, Varela ES, Yamagishi ME, Giachetto PF, da Silva NM, Ponzetto JM, Paiva SR, Caetano AR (2017) Complete mitochondrial genome from South American catfish Pseudoplatystoma reticulatum (Eigenmann & Eigenmann) and its impact in Siluriformes phylogenetic tree. Genetica 145:51–66. https://doi.org/10.1007/s10709-016-9945-7

    Article  CAS  PubMed  Google Scholar 

  42. Alexander KN, Li M, An L, Cui M, Wang C, Wang A, Gao Y (2019) Comparative analysis of the complete mitochondrial genomes for development application. Front Genet 9:651. https://doi.org/10.3389/fgene.2018.00651

    Article  CAS  Google Scholar 

  43. Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1993) Role of the D arm and the anticodon arm in tRNA recognition by eubacterial and eukaryotic RNase P enzymes. Biochemistry 32:13046–13053. https://doi.org/10.1021/bi00211a014

    Article  CAS  PubMed  Google Scholar 

  44. Jühling F, Pütz J, Bernt M, Donath A, Middendorf M, Florentz C, Stadler PF (2012) Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 40:2833–2845. https://doi.org/10.1093/nar/gkr1131

    Article  CAS  PubMed  Google Scholar 

  45. Miya M, Friedman M, Satoh TP, Takeshima H, Sado T, Iwasaki W, Yamanoue Y, Nakatani M, Mabuchi K, Inoue JG, Poulsen JY, Fukunaga T, Sato Y, Nishida M (2013) Evolutionary origin of the Scombridae (tunas and mackerels): members of a Paleogene adaptive radiation with 14 other pelagic fish families. PLoS ONE 8:(9)1–19. https://doi.org/10.1371/journal.pone.0073535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stiassny MLJ (1991) Phylogenetic interrelationships of the family Cichlidae: an overview. Cichlid fishes. Behav Ecol Evol. 1–35

  47. Farias IP, Ortí G, Sampaio I, Schneider H, Meyer A (1999) Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the neotropical assemblage. J Mol Evol 48:703–711. https://doi.org/10.1007/pl00006514

    Article  CAS  PubMed  Google Scholar 

  48. Sparks JS, Smith WL (2004) Phylogeny and biogeography of the Malagasy and Australasian rainbowfishes (Teleostei: Melanotaenioidei): Gondwanan vicariance and evolution in freshwater. Mol Phylogenet Evol 33:719–734. https://doi.org/10.1016/j.ympev.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  49. Pethiyagoda R, Maduwage K, Manamendra-Arachchi K (2014) Validation of the South Asian cichlid genus Pseudetroplus Bleeker (Pisces: Cichlidae). Zootaxa 3838(5):595–600. https://doi.org/10.11646/zootaxa.3838.5.9

    Article  PubMed  Google Scholar 

  50. Chakrabarty P (2004) Cichlid biogeography: comment and review. Fish Fish 5:97–119. https://doi.org/10.1111/j.1467-2979.2004.00148.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Beena P.S., OmicsGen Life Sciences Pvt Ltd. and Director, Rajiv Gandhi Centre for Biotechnology for providing the facilities for this work. JJ is also thankful to Director, Trivandrum Natural History Museum for providing facility for depositing specimen.

Funding

JJ thanks Council of Scientific and Industrial research, Govt. of India for a research fellowship (Grant No. 08/450(0008)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Contributions

JJ developed the theory conducted experiments, computation analysis and wrote the manuscript. SS helped in performing experiments, bioinformatics analysis and sample collection. SG supervised findings of the work, provided technical support and helped in the manuscript design. MM conceived the present idea, designed manuscript, provided critical feedback and assisted in data interpretation. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Mano Mohan Antony.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest with any person or institution on subject matter or materials discussed in this manuscript.

Research involving human and animal participants

All applicable institutional and university guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors. The Departmental Doctoral Committee, Dept. of Zoology, University of Kerala, reviewed, discussed, and granted permission for the present study as part of the Ph.D. program of the principal author, Joelin Joseph under the guidance of Dr. Mano Mohan Antony, Assistant professor, University College, recognized research Centre, University of Kerala, under the Ph.D. dissertation entitled “Karyotyping and chromosomal banding pattern of Etroplus species of South India with special reference to its phylogenetic interrelationships’’ as per UGC (University Grants Commission) and Govt. of India guidelines on 29.03.2017 (Order: No. AcE VI/3/117/ZOO/15146/2017) at Dept. of Zoology, University of Kerala, Kariavattom Campus. The consent for the conduct of research was further approved based on the committee’s report by the Registrar and Vice-chancellor, the University of Kerala on 27/07/2017.

Statement regarding fish collection

The protocol mentioned in the study does not involve any slaughtering of fish and the fish was not collected from any protected area. A portion of the tail fin from a single individual was sufficient to carry out all the experiments and fish was released back to the wild. E. canarensis, though endangered, is an edible fish not protected by any law. Hence no permission was required from the state of Karnataka and Gov. of India for collection. The fish was collected from an open fishing area with the help of local fishermen.

Consent to participate

The authors declare their consent to participate in the study.

Consent for publication

The authors declare their consent for publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 524 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Sreeedharan, S., George, S. et al. The complete mitochondrial genome of an endemic cichlid Etroplus canarensis from Western Ghats, India (Perciformes: Cichlidae) and molecular phylogenetic analysis. Mol Biol Rep 49, 3033–3044 (2022). https://doi.org/10.1007/s11033-022-07130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07130-9

Keywords

Navigation