Skip to main content
Log in

Flow gradient drives morphological divergence in an Amazon pelagic stream fish

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Body shape and size variations are common in stream fishes, and morphological differences can have either a genetic or non-genetic basis. Flow has been indicated as one of the causes of intraspecific variation, and shifts in stream-fish body morphology are related to swimming performance and to individual fitness. Although populations in lotic versus lentic habitats have been compared, the effects of a flow gradient on fish shape are little studied. We tested differences in size, body shape and caudal-peduncle morphology of a pelagic fish that inhabits streams with different velocities in two basins, using geometric morphometrics to evaluate shifts in body morphology. Fish from lower-flow velocities had larger bodies that were deeper posteriorly; fish from higher-flow velocities were smaller and more streamlined. Shape variation among specimens was significantly influenced by the local velocity, with similar responses in fish body shape in the different basins. We showed that selective pressures generated by flow velocities affect fish shape in the same way in both basins. Fish body size, shape and caudal-peduncle morphology affect swimming performance, which could influence the energy costs for survival. Our results with a small pelagic characid help to elucidate questions on morphological predictions for fishes across flow regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Archer, S. D. & I. A. Johnston, 1989. Kinematics of labriform and subcarangiform swimming in the antarctic fish Notothenia neglecta. Journal of Experimental Biology 143: 195–210.

    Google Scholar 

  • Araújo, M. S., Perez, S. I., Magazoni, M. J. C., & Petry, A. C. (2014). Body size and allometric shape variation inthe molly Poecilia vivipara along a gradient of salinity and predation. BMC Evolutionary Biology 14: 251. http://www.biomedcentral.com/1471-2148/14/251 .

    Article  Google Scholar 

  • Blob, R. W. & G. Rivera, 2008. Going with the flow: ecomorphological variation across aquatic flow regimes: an introduction to the symposium. Integrative and Comparative Biology 48: 699–701.

    Article  Google Scholar 

  • Bookstein, F. L., 1991. Morphometric Tools for Landmark Data. Cambridge University Press, New York, Geometry and Biology.

    Google Scholar 

  • Brasil, 2000. Lei no. 9.985/2000, institui o Sistema Nacional de Unidades de Conservação da Natureza (SNUC).

  • Burns, J. G., P. Di Nardo, & F. H. Rodd, (2009). The role of predation in variation in body shape in guppies Poecilia reticulata: a comparison of field and common garden phenotypes. Journal of Fish Biology 75: 1144–1157. https://doi.org/10.1111/j.1095-8649.2009.02314.x.

    Article  CAS  PubMed  Google Scholar 

  • Casatti, L. & R. M. C. Castro, 2006. Testing the ecomorphological hypothesis in a headwater riffles fish assemblage of the rio São Francisco, southeastern Brazil. Neotropical Ichthyology 4: 203–214.

    Article  Google Scholar 

  • Castro, M. A., H. A. Santos, F. A. C. Sampaio & P. S. Pompeu, 2010. Swimming performance of the small characin Bryconamericus stramineus (Characiformes: Characidae). Zoologia 27: 939–944.

    Article  Google Scholar 

  • Cureton II, J. C. & R. E. Broughton, 2014. Rapid morphological divergence of a stream fish in response to changes in water flow. Biology Letters 10: 20140352.

    Article  Google Scholar 

  • Eschmeyer, W. N., R. Fricke & R. van der Laan (eds), 2017. Catalog of fishes: genera, species, references. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic version accessed 15 October 2017.

  • Faradonbe, M. Z., S. Eagderi & M. Moradi, 2015. Patterns of body shape variation in Capoeta gracilis (Pisces: Cyprinidae) in relation to environmental variables in Sefidrud River basin, Iran. Journal of Applied Biological Sciences 9: 36–42.

    Google Scholar 

  • Foster, K., L. Bower & K. Piller, 2015. Getting in shape: habitat-based morphological divergence for two sympatric fishes. Biological Journal of the Linnean Society 114: 152–162.

    Article  Google Scholar 

  • Fox, J. & S. Weisberg. 2011. An R Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

  • Franssen, N. R., 2011. Anthropogenic habitat alteration induces rapid morphological divergence in a native stream fish. Evolutionary Applications 4: 791–804.

    Article  Google Scholar 

  • Franssen, N. R., L. K. Stewart & J. F. Schaefer, 2013. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats. Ecology and Evolution 3: 4648–4657.

    Article  Google Scholar 

  • Froese, R. & D. Pauly (eds), 2017. FishBase. Accessed on October 15, 2017. http://www.fishbase.org/.

  • Gaither, M. R., M. A. Bernal, R. R. Coleman, B. W. Bowen, S. A. Jones, W. B. Simison & L. A. Rocha, 2015. Genomic signatures of geographic isolation and natural selection in coral reef fishes. Molecular Ecology 24: 1543–1557.

    Article  CAS  Google Scholar 

  • García-Alzate, C. A., C. Román-Valencia & M. González, 2010. Morfogeometría de los peces del género Hyphessobrycon (Characiformes: Characidae), grupo heterorhabdus, en Venezuela. Revista de Biología Tropical 58: 801–811.

    PubMed  Google Scholar 

  • Gatz Jr., A. J., 1979. Ecological morphology of freshwater stream fishes. Tulane Studies in Zoology and Botany 21: 91–124.

    Google Scholar 

  • Ghalambor, C. K., D. N. Reznick & J. A. Walker, 2004. Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). The American Naturalist 164: 38–50.

    Article  Google Scholar 

  • Gomes Jr., J. L. & L. R. Monteiro, 2007. Size and fecundity variation in populations of Poecilia vivipara Block & Schneider (Teleostei; Poeciliidae) inhabiting an environmental gradient. Journal of Fish Biology 71: 1799–1809.

    Article  Google Scholar 

  • Gomes Jr., J. L. & L. R. Monteiro, 2008. Morphological divergence patterns among populations of Poecilia vivipara (Teleostei Poeciliidae): test of an ecomorphological paradigm. Biological Journal of the Linnean Society 93: 799–812.

    Article  Google Scholar 

  • Habel, K., R. Grasman, R. B. Gramacy, A. Stahel & D. C. Sterratt, 2015. Geometry: mesh generation and surface tesselation. R package version 0.3-6. https://CRAN.R-project.org/package=geometry.

  • Jacobson, B., F. Dubois & P. R. Peres-Neto, 2017. Phenotype-dependent selection underlies patterns of sorting across habitats: the case of stream-fishes. Oikos 126: 1660–1671.

    Article  Google Scholar 

  • Keenleyside, M. H. A., 1979. Diversity and Adaptation in Fish Behavior. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.

    Article  Google Scholar 

  • Langerhans, R. B., 2008. Predictability of phenotypic differentiation across flow regimes in fishes. Integrative and Comparative Biology 48: 750–768.

    Article  Google Scholar 

  • Langerhans, R. B. & T. J. DeWitt, 2004. Shared and unique features of evolutionary diversification. The American Naturalist 164: 335–349.

    Article  Google Scholar 

  • Langerhans, R. B., C. A. Layman, A. K. Langerhans & T. J. DeWitt, 2003. Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society 80: 689–698.

    Article  Google Scholar 

  • Lauder, G. V. & P. G. A. Madden, 2006. Learning from fish: kinematics and experimental hydrodynamics for roboticists. International Journal of Automation and Computing 3: 325–335.

    Article  Google Scholar 

  • Lazzarotto, H., T. Barros, J. Louvise & E. P. Caramaschi, 2017. Morphological variation among populations of Hemigrammus coeruleus (Characiformes: Characidae) in a Negro River tributary, Brazilian Amazon. Neotropical Ichthyology 15: e160152.

    Article  Google Scholar 

  • Liao, J. C., D. N. Beal, G. V. Lauder & M. S. Triantafyllou, 2003. Fish exploiting vortices decrease muscle activity. Science 302: 1566–1569.

    Article  CAS  Google Scholar 

  • Lowe-McConnell, R. H., 1999. Estudos Ecológicos de Comunidades de Peixes Tropicais. EDUSP, São Paulo.

    Google Scholar 

  • Malato, G., V. R. Shervette, R. N. Amaya, J. V. Rivera, F. N. Salazar, P. C. Delgado, K. C. Karpan & W. E. Aguirre, 2017. Parallel body shape divergence in the Neotropical fish genus Rhoadsia (Teleostei: Characidae) along elevational gradients of the western slopes of the Ecuadorian Andes. PLoS ONE 12: e0179432.

    Article  Google Scholar 

  • Marques, D. A., K. Lucek, J. I. Meier, S. Mwaiko, C. E. Wagner, L. Excoffier & O. Seehausen, 2016. Genomics of rapid incipient speciation in sympatric threespine stickleback. PLoS Genetics 12: e1005887.

    Article  Google Scholar 

  • Mendonça, F. P., W. E. Magnusson & J. Zuanon, 2005. Relationships between habitat characteristics and fish assemblages in small streams of Central Amazonia. Copeia 2005: 751–764.

    Article  Google Scholar 

  • Meyers, P. J. & M. C. Belk, 2014. Shape variation in a benthic stream fish across flow regimes. Hydrobiologia 738: 147–154.

    Article  Google Scholar 

  • Monteiro, L. R. & S. F. Reis, 1999. Princípios de Morfometria Geométrica. Editora Holos, Ribeirão Preto.

    Google Scholar 

  • Moreira, C. R. & F. C. T. Lima, 2017. Two new Hyphessobrycon (Characiformes: Characidae) species from Central Amazon basin, Brazil. Zootaxa 4318: 123–134.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2015. vegan: Community Ecology Package. R package version 2.3-0. https://CRAN.R-project.org/package=vegan.

  • Ohlberger, J., G. Staaks & F. Hölker, 2006. Swimming efficiency and the influence of morphology on swimming costs in fishes. Journal of Comparative Physiology B 176: 17–25.

    Article  CAS  Google Scholar 

  • Pettersson, L. B. & A. Hedenström, 2000. Energetics, cost reduction and functional consequences of fish morphology. Proceedings of the Royal Society of London B 267: 759–764.

    Article  CAS  Google Scholar 

  • Piggott, M. P., N. L. Chao & L. B. Beheregaray, 2011. Three fishes in one: cryptic species in an Amazonian floodplain forest specialist. Biological Journal of the Linnean Society 102: 391–403.

    Article  Google Scholar 

  • Price, T. D., A. Qvarnström & D. E. Irwin, 2003. The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London B 270: 1433–1440.

    Article  Google Scholar 

  • R Core Team, 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Restrepo-Escobar, N., J. C. Hurtado-Alarcón, N. J. Mancera-Rodríguez & E. J. Márquez, 2016. Variations of body geometry in Brycon henni (Teleostei: Characiformes, Bryconidae) in different rivers and streams. Journal of Fish Biology 89: 522–528.

    Article  CAS  Google Scholar 

  • Rohlf, F. J., 2011. TpsRegr, Version 1.38. Department of Ecology and Evolution, State University of New York, Stony Brook, NY. http://life.bio.sunysb.edu/morph/.

  • Rohlf, F. J., 2015. TpsDig, Version 2.22. Department of Ecology and Evolution, State University of New York, Stony Brook, NY. http://life.bio.sunysb.edu/morph/.

  • Rohlf, F. J. & D. E. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39: 40–59.

    Article  Google Scholar 

  • Sampaio, F. A. C., P. S. Pompeu, H. A. Santos & R. L. Ferreira, 2012. Swimming performance of epigeal and hypogeal species of Characidae, with an emphasis on the troglobiotic Stygichthys typhlops Brittan & Böhlke, 1965. International Journal of Speleology 41: 9–16.

    Article  Google Scholar 

  • Santos, G. M. & E. J. G. Ferreira, 1999. Peixes da Bacia Amazônica. In Lowe-McConnell, R. H. (ed.), Estudos Ecológicos de Comunidades de Peixes Tropicais. EDUSP, São Paulo: 345–373.

    Google Scholar 

  • Schlichting, C. D. & M. Pigliucci, 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sinauer, Sutherland, MA.

    Google Scholar 

  • Schlichting, C. D. & H. Smith, 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology 16: 189–211.

    Article  Google Scholar 

  • Senay, C., D. Boisclair & P. R. Peres-Neto, 2015. Habitat-based polymorphism is common in stream fishes. Journal of Animal Ecology 84: 219–227.

    Article  Google Scholar 

  • Sfakiotakis, M., D. M. Lane & J. B. C. Davies, 1999. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering 24: 237–252.

    Article  Google Scholar 

  • Sidlauskas, B., B. Chernoff & A. Machado-Allison, 2006. Geographic and environmental variation in Bryconops sp. cf. melanurus (Ostariophysi: Characidae) from the Brazilian Pantanal. Ichthyological Research 53: 24–33.

    Article  Google Scholar 

  • Sidlauskas, B. L., J. H. Mol & R. P. Vari, 2011. Dealing with allometry in linear and geometric morphometrics: a taxonomic case study in the Leporinus cylindriformis group (Characiformes: Anostomidae) with description of a new species from Suriname. Zoological Journal of the Linnean Society 162: 103–130.

    Article  Google Scholar 

  • Sioli, H., 1985. Amazônia: Fundamentos da Ecologia da Maior Região de Florestas Tropicais. Vozes, Petrópolis.

    Google Scholar 

  • Soares, B. E., R. O. Marques, T. Barros, D. C. O. Rosa, N. C. Silva, J. C. Silva & E. P. Caramaschi, 2015. Lago Sapucuá (Oriximiná, PA): os peixes e o homem em área de mineração. Boletim da Sociedade Brasileira de Ictiologia 116: 25–30.

    CAS  Google Scholar 

  • Sutherland, W. J., R. P. Freckleton, H. C. J. Godfray, S. R. Beissinger, T. Benton, D. D. Cameron, Y. Carmel, D. A. Coomes, T. Coulson, M. C. Emmerson, R. S. Hails, G. C. Hays, D. J. Hodgson, M. J. Hutchings, D. Johnson, J. P. G. Jones, M. J. Keeling, H. Kokko, W. E. Kunin, X. Lambin, O. T. Lewis, Y. Malhi, N. Mieszkowska, E. J. Milner-Gulland, K. Norris, A. B. Phillimore, D. W. Purves, J. M. Reid, D. C. Reuman, K. Thompson, J. M. J. Travis, L. A. Turnbull, D. A. Wardle & T. Wiegand, 2013. Identification of 100 fundamental ecological questions. Journal of Ecology 101: 58–67.

    Article  Google Scholar 

  • Torres-Dowdall, J., C. A. Handelsman, D. N. Reznick & C. K. Ghalambor, 2012. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata). Evolution 66: 3432–3443.

    Article  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S, 4th ed. Springer, New York.

    Book  Google Scholar 

  • Walsh, M. R. & D. N. Reznick, 2008. Interactions between the direct and indirect effects of predators determine life history evolution in a killifish. Proceedings of the National Academy of Sciences of the United States of America 105: 594–599.

    Article  CAS  Google Scholar 

  • Webb, P. W. (1982). Locomotor patterns in the evolution of actinopterygian fishes. American Zoologist, 22, 329–342.

    Article  Google Scholar 

  • Webb, P. W. & D. Weihs, 1986. Functional locomotor morphology of early life history stages of fishes. Transactions of the American Fisheries Society 115: 115–127.

    Article  Google Scholar 

  • Zelditch, M. L., D. L. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, New York and London.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Henrique Lazzarotto and MSc. Ana Clara Franco, who reviewed earlier versions of this manuscript; Janet Reid, who reviewed the final English version of the manuscript; and, to three anonymous reviewers who made valuable contributions to final revision of the manuscript. To Ane Mello and Heloisa Barreto for their assistance in laboratory work; to Rafael de Oliveira Marques, the researchers and students from the Laboratório de Ecologia de Peixes—UFRJ, the Laboratório de Limnologia—UFRJ and the Laboratório de Ecologia Aquática—NUPEM/UFRJ for their help during fieldwork; and to Ronilson Picanço and Mineração Rio do Norte (MRN) employees for logistical help with fieldwork. We are grateful to Dr. Cristiano Moreira, curator of fish collection of the Museu Nacional do Rio de Janeiro—UFRJ, for examination and deposition of voucher specimens in the Ichthyological Collection, and also to describe H. ericae as a homage to EPC. We also thank Dr. Brian Sidlauskas from the Oregon State University, for the encouragement to publish the data, preliminarily presented as a poster during the XXI EBI. This study is dedicated to the people of Moura, Água Fria and Boa Nova Communities (Oriximiná, Pará, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Fonseca de Barros.

Additional information

Handling editor: David Hoeinghaus

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Barros, T.F., Louvise, J. & Caramaschi, É.P. Flow gradient drives morphological divergence in an Amazon pelagic stream fish. Hydrobiologia 833, 217–229 (2019). https://doi.org/10.1007/s10750-019-3902-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-3902-2

Keywords

Navigation