Skip to main content
Log in

Effects of dietary astaxanthin on chromatic, biochemical, and histological characteristics in juvenile blood parrotfish (Vieja melanurus ♀ × Amphilophus citrinellus ♂)

  • Research
  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

This study investigated the effects of astaxanthin, a carotenoid supplement, on the physiology and coloration of juvenile blood parrotfish cultured in a recirculating aquaculture system. Fish were divided into three groups: a control group fed a basal diet for 84 days, a coloration (ASX) group fed an astaxanthin-enriched diet for 84 days, and a decoloration (ASX-) group initially fed an astaxanthin-enriched diet for 42 days and then switched to a basal diet for another 42 days. The results showed that astaxanthin increased the density of erythrophore cells in the skin of the fish, leading to increased (P < 0.05) redness (a*), yellowness (b*), chroma (Cab*), and hue (H°ab) in the skin and muscle of the ASX group compared to the ASX- and control groups. It also led to increased (P < 0.05) villus height and muscular thickness in the anterior, mid, and posterior intestines, as well as increased production of Kupffer cells in the liver and red pulp in the spleen compared to those fed ASX- and control diets. Additionally, astaxanthin improved the concentration of high-density lipoprotein cholesterol (HDL-C) in the blood plasma and lowered low-density lipoprotein cholesterol (LDL-C) in the liver. The study concluded that astaxanthin significantly improved the concentration of pigment cells, chromatic parameters, villus height, and muscular thickness in blood parrotfish. The differences observed in the groups were attributed to short-term changes in the group that switched from an astaxanthin-enriched diet to a basal diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Abbreviations

a*:

Redness

AI:

Anterior intestine

ASX:

Coloration diet (0.45 g/kg astaxanthin)

ASX-:

Decoloration diet (0.45 g/kg + 0 g/kg)

b*:

Yellowness

CA:

Central arteriole

C ab* :

Chroma

ELISA:

Enzyme-linked immunosorbent assay

HDL-C:

High-density lipoprotein cholesterol

H&E:

Hematoxylin and eosin

HP:

Hepatocytes

KCs:

Kupffer cells

L*:

Lightness

LV:

Liver

LDL-C:

Low-density lipoprotein cholesterol

MI:

Mid-intestine

MS-222:

Tricaine methanesulfonate

MT:

Muscular thickness

ns:

Not significant

OD:

Optical density

PI:

Posterior intestine

RP:

Red pulp

rpm:

Revolution per minute

SD:

Standard deviation

SN:

Sinusoids

SPSS:

Statistical Package for the Social Sciences

VH:

Villus height

VW:

Villus width

WP:

White pulp

References

  • Aas GH, Bjerkeng B, Storebakken T, Ruyter B (1999) Blood appearance, metabolic transformation and plasma transport proteins of C-astaxanthin in Atlantic salmon (Salmo salar L). Fish Physiol Biochem 21:325–334

    Article  CAS  Google Scholar 

  • Abd El-Gawad EA, Wang HP, Yao H (2019) Diet supplemented with synthetic carotenoids: effects on growth performance and biochemical and immunological parameters of yellow perch (Perca flavescens). Front Physiol 10:1–13. https://doi.org/10.3389/fphys.2019.01056

    Article  Google Scholar 

  • Alishahi M, Karamifar M, Mesbah M (2015) Effects of astaxanthin and Dunaliella salina on skin carotenoids, growth performance and immune response of Astronotus ocellatus. Aquacult Int 23(5):1239–1248. https://doi.org/10.1007/s10499-015-9880-0

    Article  CAS  Google Scholar 

  • AOAC (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Arlington, p 1094

    Google Scholar 

  • Bakke-McKellep AM, Nordrum S, Krogdahl A, Buddington RK (2000) Absorption of glucose, amino acids, and dipeptides by the intestines of Atlantic salmon (Salmo salar L). Fish Physiol Biochem 22:33–44. https://doi.org/10.1023/A:1007872929847

    Article  CAS  Google Scholar 

  • Ben JD, Mark AB, Geoff LA, Paul LJ (2009) Effects of dietary astaxanthin concentration and feeding period on the skin pigmentation of Australian snapper Pagrus auratus (Bloch & Schneider, 1801). Aquac Res 40:60–68

    Google Scholar 

  • Bjerkeng B (2008) Carotenoids in aquaculture: fish and crustaceans. In: Britton G, LiaaenJensen HCS, Pfander H (eds) Carotenoids, Natural Functions. Basel, Switzerland

  • Bjerkeng B, Berg GM (2000) Apparent digestibility coefficients and accumulation of astaxanthin E/Z isomers in Atlantic salmon (Salmo salar L.) and Atlantic halibut (Hippoglossus hippoglossus L). Comp Biochem Physiol 127B:423–432

    Article  CAS  Google Scholar 

  • Buddington RK, Diamond JM (1987) Pyloric ceca of fish: a new absorptive organ. Am J Physiol 252:G65–G76

    CAS  PubMed  Google Scholar 

  • Cejas JR, Almansa E, Jérez S, Bolaños A, Felipe B, Lorenzo A (2004) Changes in lipid class and fatty acid composition during development in white seabream (Diplodus sargus) eggs and larvae. Comp Biochem Physio - B Biochem Mol Biol 139(2):209–216. https://doi.org/10.1016/j.cbpc.2004.07.010

    Article  CAS  Google Scholar 

  • Chatzifotis S, Vas J, Kyriazi P, Divanach P, Pavlidis M (2011) Dietary carotenoids and skin melanin content influence the colouration of farmed red porgy (Pagrus pagrus). Aquacult Nutr 17:e90–e100

    Article  Google Scholar 

  • Choubert G, Heinrich O (1993) Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112:217–226

    Article  CAS  Google Scholar 

  • CIE (1976) Colorimetry. Publication No. 15. Bureau Central de la CIE, Vienna

    Google Scholar 

  • Collie NL (1985) Intestinal nutrient transport in coho salmon (Oncorhynchus kisutch) and the effects of development, starvation, and seawater adaptation. J Comp Physiol B 156:163–174. https://doi.org/10.1007/BF00695770

    Article  CAS  Google Scholar 

  • Dabrowski K (1990) Absorption of ascorbic acid and ascorbic sulfate and ascorbate metabolism in stomachless fish, common carp. J Comp Physiol B 160:549–561

    Article  CAS  PubMed  Google Scholar 

  • Elbahnaswy S, Elshopakey GE (2023) Recent progress in practical applications of a potential carotenoid astaxanthin in aquaculture industry: a review. Fish Physiol Biochem. https://doi.org/10.1007/s10695-022-01167-0

  • Erdman JW, Bierer TL, Gugger ET (1993) Absorption and transport of carotenoids. Annals New York Acad Sci 691:76–85

    Article  ADS  CAS  Google Scholar 

  • Ferri S, Sesso A (1981) Ultrastructural study of the endothelial cells in teleost liver sinusoid under normal and experimental conditions. Cell Tissue Res 219:649–657

    Article  CAS  PubMed  Google Scholar 

  • Firdaus-Nawi M, Zamri-Saad M, Nik-Haiha NY, Bakar Zuki MA, Mohd Effendy AW (2013) Histological assessments of intestinal immuno-morphology of tiger grouper juvenile, Epinephelus fuscoguttatus. SpringerPlus 2(1):1–13. https://doi.org/10.1186/2193-1801-2-611

  • Flores EE, Chien YH (2011) Chromatosomes in three phenotypes of neocaridina denticulata kemp, 1918: morphological and chromatic differences measured non-invasively. J Crustac Biol 31(4):590–597. https://doi.org/10.1651/11-3457.1

    Article  Google Scholar 

  • Furr HC, Clark RM (1997) Intestinal absorption and tissue distribution of carotenoids. Nutr Biochem 8:64–377

    Article  Google Scholar 

  • Gouveia L, Rema P (2005) Effect of microalgal biomass concentration and temperature on ornamental goldfish (Carassius auratus) skin pigmentation. Aqua Nutr 11:19–23

    Article  Google Scholar 

  • Grung M, Metzger P (1994) Algal carotenoids 53; secondary carotenoids of algae 4; secondary carotenoids in the green alga Botryococcus braunii, race L, new strain. Biochem Syst Ecol 22(1):25–29

    Article  CAS  Google Scholar 

  • Ha BS, Kang DS, Kim JH, Choi OS, Ryu HY (1993) Metabolism of dietary carotenoids and effects to improve the body color of cultured founder and red seabream. Bull Korean Fish Soc 26:91–101

    CAS  Google Scholar 

  • Ho ALFC, Oshea SK, Pomeroy HF (2013) Dietary esterified astaxanthin effects on color, carotenoid concentrations, and compositions of clown anemonefish, Amphiprion ocellaris, skin. Aquacult Int 21:361–374. https://doi.org/10.1007/s10499-012-9558-9

    Article  CAS  Google Scholar 

  • Inayah Y, Qin JQ (2010) Effect of dietary carotenoids on skin color and pigments of false clownfish, Amphiprion ocellaris, cuvier. J World Aquac Soc 41:308–318

    Article  Google Scholar 

  • Johnson RD, Bergmann HL (1984) Use of histopathology in aquatic toxicology: a critique. In: Cairns VW, Hodson PV, Nriagu JO (eds) Contaminant effects on fisheries. Wiley, New York, pp 19–36

    Google Scholar 

  • Jutfelt F, Olsen RE, Björnsson BTH, Sundell K (2007) Parr-smolt transformation and dietary vegetable lipids affect intestinal nutrient uptake, barrier function and plasma cortisol levels in Atlantic salmon. Aquaculture 273:298–311. https://doi.org/10.1016/j.aquaculture.2007.10.012

    Article  CAS  Google Scholar 

  • Kalinowski CT, Izquierdo MS, Schuchardt D, Robaina LE (2007) Dietary supplementation time with shrimp shell meal on red porgy (Pagrus pagrus) skin colour and carotenoid concentration. Aquaculture 272(1–4):451–457. https://doi.org/10.1016/j.aquaculture.2007.06.008

    Article  Google Scholar 

  • Katsumata T, Ishibashi T, Kyle D (2014) A sub-chronic toxicity evaluation of a natural astaxanthin-rich carotenoid extract of Paracoccus carotinifaciens in rats. Toxicol Rep 1:582–588. https://doi.org/10.1016/j.toxrep.2014.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kop A (2008) The effect of synthetic and natural pigments on the colour of the cichlids (Cichlasoma severum Sp). Aquac Int 16:117–122. https://doi.org/10.1007/s10499-007-9130-1

    Article  Google Scholar 

  • Li J, Zhu DL, Niu J, Shen SD, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis Biotechnol Adv 29:568–574

    Article  CAS  PubMed  Google Scholar 

  • Li M, Rahman MM, Wu B (2016a) Effects of dietary canthaxanthin on growth and body colour of blood parrot cichlid Amphilophus citrinellus × Paraneetroplus synspilus. https://doi.org/10.1007/s10499-016-0068-z

  • Li T, He C, Ma Z, Xing W, Jiang N, Li W, Sun X, Luo L (2016b) Effects of different carotenoids on pigmentation of blood parrot (Cichlasoma synspilum × Cichlasoma citrinellum). J Aquac Res Dev 07(03). https://doi.org/10.4172/2155-9546.1000414

  • Li F, Huang S, Lu X, Wang J, Lin M, An Y, Wu S, Cai M (2018a) Effects of dietary supplementation with algal astaxanthin on growth, pigmentation, and antioxidant capacity of the blood parrot (Cichlasoma citrinellum × Cichlasoma synspilum). J Oceanol Limnol 36(5):1851–1859. https://doi.org/10.1007/s00343-019-7172-7

    Article  CAS  Google Scholar 

  • Li M, Rahman MM, Lin YC, Chiu K (2018b) Effect of dietary lipid on growth, expression of canthaxanthin-based coloration, digestive enzymes activities and immunity in blood parrot cichlid Amphilophus citrinellus × Paraneetroplus synspilus. Aquac Nutr 24(1):277–284. https://doi.org/10.1111/anu.12556

    Article  CAS  Google Scholar 

  • Ligon RA, Mccartney KL (2016) Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms. Curr Zool 62(3):237–252. https://doi.org/10.1093/cz/zow051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KC, Yusoff FM, Shariff M, Kamarudin MS (2018) Astaxanthin as feed supplement in aquatic animals. Rev Aquac 10(3):738–773. https://doi.org/10.1111/raq.12200

    Article  Google Scholar 

  • Liu F, Shi HZ, Guo QS, Yu YB, Wang AM, Lv F, Shen WB (2016) Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol 51:125–135

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Li H, Zou Y, Liu H, Yang L (2021) Astaxanthin as a microalgal metabolite for aquaculture: a review on the synthetic mechanisms, production techniques, and practical application. Algal Res 54:102178

    Article  Google Scholar 

  • Maiti M, Bora D, Nandeesha TL, Sahoo S, Adarsh BK, Kumar S (2017) Effect of dietary natural carotenoid sources on colour enhancement of Koi carp, Cyprinus carpio L. Int J Fish Aquat Stud 5(4):340–345

    Google Scholar 

  • March BE, MacMillan C (1996) Muscle pigmentation and plasma concentrations of astaxanthin in rainbow trout, chinook salmon, and Atlantic salmon in response to different dietary levels of astaxanthin. Progr Fish-Cult 58:178–186

    Article  Google Scholar 

  • Merhan O (2017) The biochemistry and antioxidant properties of carotenoids. Carotenoids 5:51

    Google Scholar 

  • Milani A, Basirnejad M, Shahbazi S, Bolhassan A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290–1324. https://doi.org/10.1111/bph.13625

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa K, Kiko T, Miyazawa T, Burdeos GC, Kimura F, Satoh A, Miyazawa T (2011) Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes. Br J Nutr 105:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Zhao W, Lu DQ, Xie JJ, He XS, Fang HH, Liao SY (2020) Dual-function analysis of Astaxanthin on Golden Pompano (Trachinotus ovatus) and its role in the regulation of gastrointestinal immunity and retinal mitochondrial dysfunction under Hypoxia conditions. Front Physiol 11:1–18. https://doi.org/10.3389/fphys.2020.568462

    Article  CAS  Google Scholar 

  • Nogueira N, Canada P, Caboz J, Andrade C, Cordeiro N (2021) Effect of different levels of synthetic astaxanthin on growth, skin color and lipid metabolism of commercial sized red porgy (Pagrus pagrus). Anim Feed Sci Technol 276:114916. https://doi.org/10.1016/J.ANIFEEDSCI.2021.114916

    Article  CAS  Google Scholar 

  • Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi JF (2019) Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar Drugs 17:640

    Article  PubMed  PubMed Central  Google Scholar 

  • Page GI, Russell PM, Davies SJ (2005) Dietary carotenoid pigment supplementation influences hepatic lipid and mucopolysaccharide levels in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol - B Biochem Mol Biol 142(4):398–402. https://doi.org/10.1016/j.cbpb.2005.09.001

  • Parker RS (1996) Absorption, metabolism, and transport of carotenoids. FASEB J 10:542–551

    Article  CAS  PubMed  Google Scholar 

  • Poolsawat L, Li X, Xu X, Rahman MM, Boonpeng N, Leng X (2021) Dietary xylooligosaccharide improved growth, nutrient utilization, gut microbiota and disease resistance of tilapia (Oreochromis niloticus x O. aureus). J Anim Feed Sci Technol 275:1–12. https://doi.org/10.1016/j.anifeedssci.2021.114872

  • Qin S, Liu GX, Hu ZY (2008) The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem 43(8):795–802. https://doi.org/10.1016/j.procbio.2008.03.010

    Article  CAS  Google Scholar 

  • Rahman MM, Khosravi S, Chang KH, Lee SM (2016) Effects of dietary inclusion of astaxanthin on growth, muscle pigmentation and antioxidant capacity of juvenile rainbow trout (Oncorhynchus mykiss). Prev Nutr Food Sci 21(3):281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sales CF, Silva RF, Amaral MGC, Domingos FFT, Ribeiro RIMA, Thome RG, Santos HB (2017) Comparative histology in the liver and spleen of three species of freshwater teleost. Neotrop Ichthyol 15(11):1–12. https://doi.org/10.1590/1982-0224-20160041

    Article  Google Scholar 

  • Salvador AM, Allonds-Damián A, Choubert G, Milicua JCG (2009) Impact of different dietary phospholipid levels on cholesterol and canthaxanthin lipoprotein-serum transport and muscle deposition in rainbow trout. J Agric Food Chem 57(5):2016–2021. https://doi.org/10.1021/jf802954t

    Article  CAS  PubMed  Google Scholar 

  • Sathyaruban S, Uluwaduge DI, Yohi S, Kuganathan S (2021) Potential natural carotenoid sources for the colouration of ornamental fish: a review. Aquacul Int 29:1507–1528. https://doi.org/10.1007/s10499-021-00689-3

    Article  Google Scholar 

  • Schuchardt D, Izquierdo MS (2005) Effect of different carotenoid sources and their dietary levels on red porgy (Pagrus pagrus) growth and skin colour. 244:223–231. https://doi.org/10.1016/j.aquaculture.2004.11.001

  • Segner H, Arend P, Von Poeppinghausen K, Schmidt H (1989) The effect of feeding astaxanthin to Oreochromis niloticus and Colisa labiosa on the histology of the liver. Aquaculture 79(1–4):381–390. https://doi.org/10.1016/0044-8486(89)90480-8

  • Song H, Wei M, Mou X, Liu Y, Wang X, Liu C, Hu Y (2016) Efficacy of alfalfa saponins on promoting pigmentation by astaxanthin in blood parrotfish (Vieja synspila × Amphilophus citrinellus). Isr J Aqua-Bamidgeh, IJA_68.2016.1247, 10 pages

  • Song X, Wang L, Li X, Chen Z, Liang G, Leng X (2017) Dietary astaxanthin improved the body pigmentation and antioxidant function, but not the growth of discus fish (Symphysodon spp). Aquac Res 48(4):1359–1367. https://doi.org/10.1111/are.13200

    Article  CAS  Google Scholar 

  • Stokes M, Brill MH (1992) Efficient computation of H°ab Color Res Appl 17:410–411

    Article  Google Scholar 

  • Storebakken T, No HK (1992) Pigmentation of rainbow trout. Aquaculture 100:209–229

    Article  CAS  Google Scholar 

  • Sui Y, Huang X, Kong H, Lu W, Wang Y (2016) Physiological responses to salinity increase in blood parrotfish (Cichlasoma Synspilum ♀ × Cichlasoma citrinellum ♂). Springerplus 5:1246. https://doi.org/10.1186/s40064-016-2930-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrissen OJ (1995) Strategies for salmonid pigmentation. J Appl Ichthyol 11:276–281

    Article  CAS  Google Scholar 

  • Torrissen OJ, Hardy RW, Shearer KD (1989) Pigmentation of salmonids - carotenoid deposition and metabolism. CRC Crit Rev Aquat Sci 1:209–225

    CAS  Google Scholar 

  • Van den Berg H (1999) Carotenoid interactions. Nutr Rev 57:1–10

    Article  PubMed  Google Scholar 

  • Wang YJ, Chien YH, Pan CH (2006) Effects of dietary supplementation of carotenoids on survival, growth, pigmentation, and antioxidant capacity of characins, Hyphessobrycon callistus Aquaculture 261:641–648. https://doi.org/10.1016/j.aquaculture.2006.08.040

    Article  CAS  Google Scholar 

  • Wang Z, Cai CF, Cao XM, Zhu J-M, He J, Wu P, Ye YT (2018) Supplementation of dietary astaxanthin alleviated oxidative damage induced by chronic high pH stress, and enhanced carapace astaxanthin concentration of Chinese mitten crab Eriocheir sinensis. Aquaculture 483:230–237

    Article  CAS  Google Scholar 

  • White DA, Page GI, Swaile J, Moody JA, Davies SJ (2002) Effect of esterification on the absorption of astaxanthin in rainbow trout, Oncorhynchus mykiss (Walbaum). Aqua Res 33:343–350

    Article  CAS  Google Scholar 

  • Wyszecki G, Stiles WS (1967) Color science. Wiley, New York

    Google Scholar 

  • Xie J, Chen X, Niu J, Wang J, Wang Y, Liu QQ (2017) Effects of astaxanthin on antioxidant capacity of golden pompano (Trachinotus ovatus) in vivo and in vitro. Fish Aquat Sci 20(1):1–8. https://doi.org/10.1186/s41240-017-0052-1

    Article  CAS  Google Scholar 

  • Yadavalli R, Ratnapuram H, Peasari JR, Reddy CN, Ashokkumar V, Kuppam C (2021) Simultaneous production of astaxanthin and lipids from Chlorella sorokiniana in the presence of reactive oxygen species: a biorefinery approach. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01276-5

    Article  Google Scholar 

  • Yusuf A, Huang X, Chen N, Li S, Apraku A, Wang W, David MA (2021) Growth and metabolic responses of juvenile largemouth bass (Micropterus salmoides) to dietary vitamin C supplementation levels. Aquaculture 534(July 2020):736243. https://doi.org/10.1016/j.aquaculture.2020.736243

  • Zhang JJ, Li XQ, Leng XJ, Han ZY, Zhang EG, Wu SL (2012) The study of deposition and degradation of astaxanthin on rainbow trout Oncorhynchus mykiss. J Fish China 36:1872–1879

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the technical support provided by Mr. Pingfan Zhou for the intestinal photomicrograph analysis. This work was funded by the Shanghai Sailing Program, China (19YF1419400) and the Natural Science Foundation of Shanghai (20ZR1423600).

Funding

This work was funded by the Shanghai Sailing Program, China (19YF1419400), and the Natural Science Foundation of Shanghai (20ZR1423600).

Author information

Authors and Affiliations

Authors

Contributions

Zai-Zhong Chen, BW, and JZG: funding acquisition, conceptualization, project administration, review and editing, and supervision. ADM: investigation, data curation, formal analysis, methodology, software, and original draft. AY: methodology, analysis, and validation. MMO and SOA: review and editing.

Corresponding authors

Correspondence to Adekunle David Micah, Bin Wen or Zai-Zhong Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling editor: Brian Austin.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 396 K)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micah, A.D., Wen, B., Yusuf, A. et al. Effects of dietary astaxanthin on chromatic, biochemical, and histological characteristics in juvenile blood parrotfish (Vieja melanurus ♀ × Amphilophus citrinellus ♂). Aquacult Int (2024). https://doi.org/10.1007/s10499-024-01451-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10499-024-01451-1

Keywords

Navigation