Skip to main content

Advertisement

Log in

The status and potential distribution of Hydrocotyle umbellata L. and Salvinia auriculata Aubl. under climate change scenarios

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Aquatic ecosystems are susceptible to human-induced disturbance, including climate changes and biological invasions. The aim of this study was to assess the current and future potential distribution of two introduced aquatic species that have become invasive in some places where they were introduced. Hydrocotyle umbellata L. and Salvinia auriculata Aubl. are free-floating macrophytes native to North, Central, and South America. Both can quickly colonize aquatic environments because of their high growth rate and reproductive capacity similar to water hyacinth. Both species were introduced to Egypt for ornamental purposes. We have applied species distribution models using the Maxent approach and bioclimatic variables. Occurrence records from the entire range of the two species were obtained from the Global Biodiversity Information Facility and used for modelling their habitat suitability and assessing the potentiality of their spread in other new habitats. To project future changes in the two macrophytes’ distributions with respect to climate change, we used four representative concentration pathway scenarios (RCP 2.6, 4.5, 6.0 and 8.5) of the IPCC 5th assessment, based on different assumptions of greenhouse gas emissions for the future period of 2050s. The results showed that Maxent approach has successfully predicted the distribution of the two species with test AUC > 0.92. Bioclimatic variables that contributed the most to the prediction of the two species distribution included isothermality, temperature seasonality, mean temperature of the coldest quarter, and minimum temperature of the coldest month. Results showed that the range of S. auriculata is predicted to increase by 2050 under all climatic scenarios. A decline in the current climatically suitable habitats of H. umbellata is projected to occur in its native range, especially in South America, while it is predicted to gain more suitable habitats out of its native range in Europe and Africa. Both species are predicted to gain habitats outside their native range, while their ranges are expected to face a decline in their native region. The study can help in the identification of areas with high potential vulnerability to future invasions by the two studied aquatic macrophytes and thus can assist in prioritization of monitoring actions and management plans. This can reduce any ecological and socio-economic consequences due to invasion by these two aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abotsi KE (2019) The Pteridophytes from Togo (West Africa). Version 1.2. Biodiversity Data Journal. Occurrence dataset http://sci-hub.tw/10.15468/jjecvf accessed via GBIF.org on 06 June 2019. https://www.gbif.org/occurrence/1849033582

  • Afrous A, Goudarzi S, Liaghat A (2010) Phytoremediation by some species of aquatic plants for as and Hg removal. Azad Univ Dezful Iran J Adv Environ Biol 5(11):3629–3635

    Google Scholar 

  • Agami M, Reddy KR (1991) Interrelationships between Eichhornia crassipes (Mart) Solms and Hydrocotyle umbellata L. Aquat Bot 39:147–157

    Article  Google Scholar 

  • Alahuhta J, Heino J, Luoto M (2011) Climate change and the future distributions of aquatic macrophytes across boreal catchments. J Biogeogr 38:383–393

    Article  Google Scholar 

  • Alloche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Baek HJ, Lee J, Lee HS, Hyun YK, Cho C, Kwon WT, Marzin C, Gan S-Y, Kim M-J, Choi D-H, Lee J, Lee J, Boo K-O, Kang H-S, Byun YH (2013) Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia Pac J Atmos Sci 49(5):603–618

    Article  Google Scholar 

  • Bellard C, Thuiller W, Leroy B, Genovesi P, Bakkenes M, Courchamp F (2013) Will climate change promote future invasions? Glob Change Biol 19:3740–3748

    Article  Google Scholar 

  • Bellard C, Leroy B, Thuiller W, Rysman J-F, Courchamp F (2016) Major drivers of invasion risks throughout the world. Ecosphere 7:1–14

    Article  Google Scholar 

  • Bhambie S, Bhardwaj KR (1979) Studies in pteridophytes XVIII use of Salvinia auriculata aublet: an obnoxious weed-in paper industry. Hydrobiologia 65(3):209–211

    Article  Google Scholar 

  • Bianchini I, da Cunha-Santino MB (2014) Dynamics of colonization and the collapse of a macrophyte community during the formation of a tropical reservoir. Fundam Appl Limnol 184:141–150

    Article  Google Scholar 

  • Bianchini I, da Cunha-Santino MB (2016) CH4 and CO2 from decomposition of Salvinia auriculata aublet, a macrophyte with high invasive potential. Wetlands 36:557–564

    Article  Google Scholar 

  • Bini LM, Thomaz SM, Murphy KJ, Camargo AFM (1999) Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415:147–154

    Article  Google Scholar 

  • Boschilia SM, Thomaz SM, Piana PA (2006) Plasticidade morfológica de Salvinia herzogii de La Sota em resposta à densidade populacional. Acta Scientiarum Biological Sciences 28:35–39

    Google Scholar 

  • Bowmer KH, Jacobs SWL, Sainty GR (1995) Identification, biology and management of Elodea canadensis, Hydrocharitaceae. J Aquat Plant Manag 33:13–19

    Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Caesar J, Palin E, Liddicoat S, Lowe J, Burke E, Pardaens A, Sanderson M, Kahana R (2013) Response of the HadGEM2 earth system model to future greenhouse gas emissions pathways to the year 2300. J Clim 26:3275–3284

    Article  Google Scholar 

  • Camargo AFM, Esteves FA (1995) Influence of water level variation on fertilization oxbow lake of Rio Mogi-Guaçu, State of São Paulo, Brazil. Hydrobiologia 299:185–193

    Article  CAS  Google Scholar 

  • Carey MP, Sethi SA, Larsen SJ, Rich CF (2016) A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience. Hydrobiologia 777:1–19

    Article  Google Scholar 

  • Cavenaghi AL, Velini ED, Negrisoli E, Carvalho FT, Galo MLBT, Trindade MLB, Corrêa MR, Santo SCA (2005) Monitoring problems with aquatic plants and characterization of water and sediment quality at UHE Mogi-Guaçu. Planta Daninha 23(2):225–231

    Article  Google Scholar 

  • Chavasiri W, Prukchareon W, Sawasdee P, Zungsontiporn S (2005) Allelochemicals from Hydrocotyle umbellata Linn. In: Proceedings of the 4th World Congress on Allellopathy, vol 4, pp 15–18

  • Chen RS, Huang, CC, Li JC, Tsay, JG (2008) First report of Simplicillium lanosoniveum causing brown spot on Salvinia auriculata and S. molesta in Taiwan. Plant Dis 92(11):1589–1589

    Article  PubMed  Google Scholar 

  • Cilliers CJ (1999) Biological control of parrot’s feather, Myriophyllum aquaticum (Vell) Verdc (Haloragaceae), in South Africa. In: Olckers T, Hill MP (eds) Biological control of weeds in South Africa (1990–1998). Entomological Society of Southern Africa, Hatfield, South Africa. African Entomology Memoir, vol 1. pp 113–118

  • Cilliers CJ, Hill MP, Ogwang JA, Ajuonu O (2003) Aquatic weeds in Africa and their control. In: Neuenschwander P, Borgemeister C, Langewald J (eds) Biological control in IPM systems in Africa. CAB International, Wallingford, pp 161–178

    Google Scholar 

  • Coelho FF, Lopes FS, Sperber CF (2000) Density-dependent morphological plasticity in Salvinia auriculata aublet. Aquat Bot 66(4):273–280

    Article  Google Scholar 

  • Cordo HA, DeLoach CJ, Ferrer R (1982) The weevils Lixellus, Tanysphiroideus and Cyrtobagous that feed on Hydrocotyle and Salvinia in Argentina. Coleopterist’s Bull 36:279–286

    Google Scholar 

  • COSEWIC (2014) COSEWIC assessment and status report on water pennywort Hydrocotyle umbellata in Canada Committee on the Status of Endangered Wildlife in Canada, Ottawa

  • Creuwels J (2019) Naturalis Biodiversity Center (NL)—Botany. Naturalis Biodiversity Center. Occurrence dataset http://sci-hub.tw/10.15468/ib5ypt accessed via GBIF.org on 06 June 2019. https://www.gbif.org/occurrence/1138058116

  • Crow GE, Rivera DI, Charpentier C (1987) Aquatic vascular plants of two Costa Rican ponds. Selbyana 10(1):31–35

    Google Scholar 

  • Cueto M, Fuentes-Carretero CJM (2015) About Marsilea strigosa Willd. and Salvinia natans (L.) All. in Andalusia (Spain). (Sobre Marsilea strigosa Willd. y Salvinia natans (L.) All. en Andalucía (España)). Acta Bot Malacit 40:271–276

    Article  Google Scholar 

  • Dierberg FE, Debus TA, Goulet NA (1987) Removal of copper and lead using a thin-film technique. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Magnolia Publishing, New York, pp 497–504

    Google Scholar 

  • Drenovsky RE, Grewell BJ, D’antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012) A functional trait perspective on plant invasion. Ann Bot 110:141–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP 16:5–17

    Article  Google Scholar 

  • Fernández OA, Sutton DL, Lallana VH, Sabbatini MR, Irigoyen FH (1990) Aquatic weeds problems and management in South and Central America. In: Pieterse AH, Murphy KJ (eds) Aquatic weeds The ecology and management of nuisance aquatic vegetation. Oxford University Press, New York, pp 406–425

    Google Scholar 

  • Gallardo B, Aldridge DC (2013) The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. J Appl Ecol 50:757–766

    Article  Google Scholar 

  • GBIFORG (2018a) GBIF occurrence download, 12 Feb 2018. http://sci-hub.tw/10.15468/dlzlaucq

  • GBIFORG (2018b) GBIF occurrence download, 12 Feb 2018. http://sci-hub.tw/10.15468/dlydix2l

  • Gillard M, Thiébaut G, Deleu C, Leroy B (2017) Present and future distribution of three aquatic plants taxa across the world: decrease in native and increase in invasive ranges. Biol Invasions 19(7):2159–2170

    Article  Google Scholar 

  • Gopal B (1990) Nutrient dynamics of aquatic plant communities. In: Gopal B (ed) Ecology and management of aquatic vegetation in the Indian subcontinent. Springer, Dordrecht, pp 177–197

    Chapter  Google Scholar 

  • Grewell BJ, Thomason MJS, Futrell CJ, Iannucci M, Drenovsky RE (2016) Trait responses of invasive aquatic macrophyte congeners: colonizing diploid outperforms polyploidy. AoB PLANTS 8:plw014

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadiuzzaman S, Khondker M (1993) Salvinia auriculata Aublet-a new record of aquatic Pteridophyte from Bangladesh. Bangladesh J Bot 22(2):229–231

    Google Scholar 

  • Hahn MA, Van Kluenen M, Müller-Schärer H (2012) Increased phenotypic plasticity to climate may have boosted the invasion success of polyploid Centaurea stoebe. PLoS ONE 7:e50284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdy SA, Hefnawy HM, Azzam SM, Aboutabl EA (2018) Botanical and genetic characterization of Hydrocotyle umbellata L. cultivated in Egypt. Bull Fac Pharm Cairo Univ 56(1):46–53

    Article  Google Scholar 

  • Heikkinen R, Leikola N, Fronzek S, Lampinen R, Toivonen H (2009) Predicting distribution patterns and recent northward range shift of an invasive aquatic plant: Elodea canadensis in Europe. BioRisk 2:1–32

    Article  Google Scholar 

  • Heneidy SZ, Marzouk RI (2010) Plant Atlas: the botanic garden (ALEX). Monchaat Al-Maaref, Alexandria

    Google Scholar 

  • Henery ML, Bowman G, Mráz P, Treier UA, Gex-Fabry E, Schaffner U, Müller-Schärer H (2010) Evidence for a combination of preadapted traits and rapid adaptive change in the invasive plant Centaurea stoebe. J Ecol 98:800–813

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoveka LN, Bezeng BS, Yessoufou K, Boatwright JS, Van der Bank M (2006) Effects of climate change on the future distributions of the top five freshwater invasive plants in South Africa South African. J Bot 102:33–38

    Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Hume NP, Fleming MS, Horne AJ (2002) Plant carbohydrate limitation on nitrate reduction in wetland microcosms. Water Res 36:577–584

    Article  CAS  PubMed  Google Scholar 

  • Hussner A (2012) Alien aquatic plant species in European countries. Weed Res 52:297–306

    Article  Google Scholar 

  • Hussner A, Champion PD (2012) Myriophyllum aquaticum (Vell) Verdcourt (parrot feather). In: Francis RA (ed) A Handbook of global freshwater invasive species. Routledge, New York, pp 103–111

    Google Scholar 

  • Hussner A, Stiers I, Verhofstad MJJM, Bakker ES, Grutters BMC, Haury J, van Valkenburg JLCH, Brundu G, Newman J, Clayton JS, Anderson LWJ, Hofstra D (2017) Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat Bot 136:112–137

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacono CC, Davern TR, Center TD (2001) The adventive status of Salvinia minima and S molesta in the Southern United States and the related distribution of the weevil Cyrtobagous salviniae. Castanea 66:214–226

    Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo K-O, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570

    Article  Google Scholar 

  • Julien MH, Center TD Tipping, PW (2002) Floating fern (Salvinia). In: Driesche RV, Blossey B, Hoddle M, Lyon S, Reardon R (eds) Reardon Biological control of invasive plants in the eastern United States. USDA Forest Service Publication, USA, pp 17–32

    Google Scholar 

  • Kelly R, Leach K, Cameron A, Christine AM, Reid N (2014) Combining global climate and regional landscape models to improve prediction of invasion risk. Divers Distrib 20:884–894

    Article  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1–22

    Article  Google Scholar 

  • Leroy B, Paschetta M, Canard A, Bakkenes M, Isaia M, Ysnel F (2013) First assessment of effects of global change on threatened spiders: potential impacts on Dolomedes plantarius (Clerck) and its conservation plans. Biol Conserv 161:155–163

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805

    Google Scholar 

  • Magill B, Solomon J, Stimmel H (2016) Tropicos specimen data. Missouri Botanical Garden. Occurrence dataset http://sci-hub.tw/10.15468/hja69f accessed via GBIF.org on 06 June 2019. https://www.gbif.org/occurrence/1260595246

  • Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T (2012) Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytol 193(3):797–805

    Article  PubMed  Google Scholar 

  • Martin GM, Levine RC (2012) The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family. Earth Syst Dyn 3:245–261

    Article  Google Scholar 

  • Medeiros JCC, Coelho FF, Teixeira E (2016) Biomass allocation and nutrients balance related to the concentration of nitrogen and phosphorus in Salvinia auriculata (Salviniaceae). Braz J Biol 76(2):461–468

    Article  CAS  PubMed  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241

    Article  CAS  Google Scholar 

  • Mitas CM, Clement A (2006) Recent behavior of the Hadley cell and tropical thermodynamics in climate models and re-analyses. Geophys Res Lett 33:L01810

    Article  Google Scholar 

  • Mitchell DS, Tur NM (1975) The rate of growth of Salvinia molesta (S. auriculata Auct) in laboratory and natural conditions. J Appl Ecol 12:213–225

    Article  Google Scholar 

  • New Zealand Plant Conservation Network (2013) Flora: Hydrocotyle umbellata http://www.nzpcnorgnz/flora_detailsaspx?ID=4202. Accessed 22 Feb 2018

  • Okada M, Grewell BJ, Jasieniuk M (2009) Clonal spread of invasive Ludwigia hexapetala and L. grandiflora in freshwater wetlands of California. Aquat Bot 91(3):123–129

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful. Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Pinsupa J, Zungsontiporn S (2007) Hydrocotyle umbrellata L: A new invasive aquatic plant in Thailand. In: Marambe B, Sangakkara UR, De Costa WAJM, Abeysekara ASK (eds) Proceedings of the 21st Asian Pacific Weed Science Society conference, 2–6 Oct 2007, Colombo, Sri Lanka, pp 367–372

  • Rahel FJ, Olden JD (2008) Assessing the effects of climate change on aquatic invasive species. Conserv Biol 22(3):521–533

    Article  PubMed  Google Scholar 

  • Raizer J, Amaral MEC (2001) Does the structural complexity of aquatic macrophytes explain the diversity of associated spider assemblages? J Arachnol 29(2):227–237

    Article  Google Scholar 

  • Riefner R, Smith A (2009) Salvinia minima and S. oblongifolia (Salviniaoeae) new to California, with notes on the S. auriculata complex. J Bot Res Inst Tex 3(2):855–866

    Google Scholar 

  • Schwoerer T, Morton J (2018) Human dimension of aquatic invasive species in Alaska: lessons learned while integrating economics, management, and biology to incentivize early detection and rapid response. In: Lewis T (ed) Alaska economic, environmental, and social issues. Nova Science Publishers Inc, Hauppauge, pp 1–46

    Google Scholar 

  • Simpson DA (1984) A short history of the introduction and spread of Elodea Michx in the British Isles. Watsonia 15:1–9

    Google Scholar 

  • Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22:27–42

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • The HadGEM2 Development Team: Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4:765–841

    Article  Google Scholar 

  • Thomas R, Kane A, Bierwagen BG (2008) Effects of climate change on aquatic invasive species and implications for management and research. US Environmental Protection Agency, Washington, DC, EPA/600/R-08/014

  • Thomaz SM, Bini LM, Souza MC, Kita KK, Camargo AFM (1999) Aquatic macrophytes of Itaipu Reservoir, Brazil: survey of species and ecological considerations. Braz Arch Biol Technol 42:15–22

    Article  Google Scholar 

  • Thouvenot L, Haury J, Thiebaut G (2013) A success story: water primroses, aquatic plant pests. Aquat Conserv Mar Freshw Ecosyst 23:790–803

    Google Scholar 

  • Toft JD, Simenstad CA, Cordell JR, Grimaldo LF (2003) The effects of introduced water hyacinth on habitat structure, invertebrate assemblages, and fish diets. Estuaries 26(3):746–758

    Article  Google Scholar 

  • Turbelin AJ, Malamud BD, Francis RA (2017) Mapping the global state of invasive alien species: patterns of invasion and policy responses. Glob Ecol Biogeogr 26(1):78–92

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Viana DS (2017) Can aquatic plants keep pace with climate change? Front Plant Sci 8:1906

    Article  PubMed  PubMed Central  Google Scholar 

  • Vila M, Basnou C, Pysek P (2009) How well do we understood the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8:135–144

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Yongpisanphop J, Kruatrachue M, Pokethitlyook P (2005) Toxicity and accumulation of lead and chromium in Hydrocotyle umbellata. J Environ Biol 26:79–89

    CAS  PubMed  Google Scholar 

  • Ziska LH, George K, Frenz DA (2007) Establishment and persistence of common ragweed (Amb artemisiifolia L.) in disturbed soil as a function of an urban n-rural macro-environment. Glob Change Biol 13(1):266–274

    Article  Google Scholar 

  • Zungsontiporn S (2006) Global invasive plants in Thailand and its status and a case study of Hydrocotyle umbellata L. In: Proceedings of international workshop on the development of database (APASD) for biological invasion, Taichung, Taiwan ROC, Sept 18–22

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Waseem A. Halmy.

Additional information

Handling Editor: Kevin Murphy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heneidy, S.Z., Halmy, M.W.A., Fakhry, A.M. et al. The status and potential distribution of Hydrocotyle umbellata L. and Salvinia auriculata Aubl. under climate change scenarios. Aquat Ecol 53, 509–528 (2019). https://doi.org/10.1007/s10452-019-09705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09705-4

Keywords

Navigation