Skip to main content

Advertisement

Log in

Vegetative organs morphological plasticity of Ludwigia grandiflora in flooded and flood-free habitats

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Studies on structural differences of plants in response to environmental dynamics contribute to the understanding of which functional attributes allows their establishment and survival. We describe herein the structural differences of vegetative organs of Ludwigia grandiflora, an amphibious aquatic macrophyte that develops roots, stems and leaves in both flooded and flood-free environment. High density of trichomes, lignified and compacted tissues, and thick cell walls were features often observed in terrestrial vegetative organs. The presence of larger intercellular spaces, and periderm with secondary aerenchyma (polyderm) at the base of the roots and stems were remarkable characteristics in individuals from aquatic environment. The formation of taproot in plants grown in flood-free soil, spongy adventitious roots and pneumatophores in flooded soil suggest that this organ has greater morphological plasticity in response to local water variations. The results demonstrate that the environmental gradients of water availability along seasonal cycles induce important structural responses, which contribute to the success of colonization by L. grandiflora in large wetlands in the Pantanal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd Hamid M, Ismail SN, Mansor M (2021) An overview of macrophytes in the tropical wetland ecosystem. Indones J Limnol 2:25–34. https://doi.org/10.51264/inajl.v2i1.12

    Article  Google Scholar 

  • Abdon MDM, Silva JDS, Pott VJ, Pott A, Da Silva MP (1998) Utilização de dados analógicos do Landsat-TM na discriminação da vegetação de parte da sub-região da Nhecolândia no Pantanal. Pesq Agropecu Brasil 33:1799–1813

    Google Scholar 

  • Angeles G (1992) The periderm of flooded e non-flooded Ludwigia octovalvis (Onagraceae). Iawa 13:195–200

    Article  Google Scholar 

  • Arber AR (1920) Water plants: a study of aquatic angiosperms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Advances Bot Res 7:225–332

    Article  CAS  Google Scholar 

  • Avelar-Mejía JJ, Cárdenas-Soriano E, Téliz-Ortiz D, Del Prado-Vera IC (2003) Efecto del declinamiento del guayabo em la anatomia de rama y raiz de Psidium guayava L. Revista Mex Fitopatol 21:309–315

  • Bakhtiari M, Formenti L, Caggìa V, Glauser G, Rasmann S (2019) Variable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients. Ecol Evol 9:3740–3755. https://doi.org/10.1002/ece3.4999

    Article  PubMed  PubMed Central  Google Scholar 

  • Boeger MRT, Poulson ME (2003) Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquatic Bot 72:123–135. https://doi.org/10.1016/S0304-3770(02)00174-2

  • Boeger MRT, Wisniewski C (2003) Comparação da morfologia foliar de espécies arbóreas de três estádios sucessionais distintos de Floresta Ombrófila Densa (Floresta Atlântica) no sul do Brasil. Revista Brasil Bot 26:61–72. https://doi.org/10.1590/S0100-84042003000100007

    Article  Google Scholar 

  • Bona C, Morretes BL (2003) Anatomia das raízes de Bacopa salzmanii (Benth.) Wettst ex Edwall e Bacopa monnierioides (Cham.) Robinson (Scrophulariaceae) em ambientes aquático e terrestre. Acta Bot Brasil 17:155–170

    Article  Google Scholar 

  • Bradshaw AD (2006) Unravelling phenotypic plasticity – why should we bother? New Phytol 170:644–648. https://doi.org/10.1111/j.1469-8137.2006.01761.x

    Article  PubMed  Google Scholar 

  • Carlquist S (2013) Interxylary phloem: diversity and functions. Britonia 65:477–495. https://doi.org/10.1007/s12228-012-9298-1

    Article  Google Scholar 

  • Castro EM, Pereira FJ, Paiva R (2009) Histologia vegetal: Estrutura e função de órgãos vegetativos. Editora da Universidade Federal de Lavras, Lavras

    Google Scholar 

  • Catian G, Scremin-Dias E (2015) Phenotypic variations in leaf anatomy of Nymphaea gardneriana (Nymphaeaceae) demonstrate its adaptive plasticity. J Torrey Bot Soc 142:18–26. https://doi.org/10.3159/TORREY-D-14-00038.1

  • Catian G, da Silva DM, Suarez YR, Scremin-Dias E (2018) Effects of flood pulse dynamics on functional diversity of macrophyte communities in the Pantanal Wetland. Wetlands 38:975–991. https://doi.org/10.1007/s13157-018-1050-5

    Article  Google Scholar 

  • Chambers PA, Prepas EE, Hamilton HR, Bothwell ML (1991) Current velocity and its effect on aquatic macrophytes in flowing waters. Ecol Appl 1:249–257. https://doi.org/10.2307/1941754

    Article  CAS  PubMed  Google Scholar 

  • Chiarello SD, Joesting HM (2018) Examination of phenotypic plasticity in Hydrocotyle bonariensis in response to two soil types. BIOS 89:65–73. https://doi.org/10.1893/0005-3155-89.2.65

  • Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. Lewis Publishers, New York

    Google Scholar 

  • De Santana MAC, Catian G, Scremin-Dias E (2019) Respostas morfológicas de Ludwigia helminthorrhiza (Mart.) H. Hara (Onagraceae) à sazonalidade hídrica do Pantanal. Oecol Austral 23:874–890. https://doi.org/10.4257/oeco.2019.2304.12

  • de Sousa DJL, Scatena VL, Giulietti AM, Oriani A (2016) Morphological and anatomical patterns in pontederiaceae (Commelinales) and their evolutionary implications. Aquatic Bot 129:19–30. https://doi.org/10.1016/j.aquabot.2015.11.003

    Article  Google Scholar 

  • Doležal J, Kučerová A, Jandová V, Klimeš A, Říha P, Adamec L, Schweingruber FH (2021) Anatomical adaptations in aquatic and wetland dicot plants disentangling the environmental, morphological and evolutionary signals. Environm Exp Bot 187:104495. https://doi.org/10.1016/j.envexpbot.2021.104495

    Article  CAS  Google Scholar 

  • Dos Santos MR, de Carvalho HV, Murillo RDA, Thomaz SM, Silveira MJ (2021) The anatomy of two species of emergent macrophytes of the genus Polygonum differentially changes in response to water-level fluctuations. Ecohydrology 14:2341. https://doi.org/10.1002/eco.2341

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annual Rev Pl Biol 48:223–250

    Article  CAS  Google Scholar 

  • Evans JR (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104. https://doi.org/10.1046/j.1469-8137.1999.00440.x

  • Evert RF, Eichhorn SE, Raven PH (2012) Biology of plants. WH Freeman, New York

    Google Scholar 

  • Fahn A (1982) Anatomia Vegetal. Ediciones Pirámide, S.A., Madrid

  • Gould KS, Kuhn DN, Lee DW, Oberbauer SF (1995) Why leaves are sometimes red. Nature 378:241–242. https://doi.org/10.1038/378241b0

    Article  CAS  Google Scholar 

  • Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Advances Bot 2014:17. https://doi.org/10.1155/2014/208747

    Article  Google Scholar 

  • Guo WH, Li B, Zhang XS, Wang RQ (2007) Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. J Arid Environm 69:385–399. https://doi.org/10.1016/j.jaridenv.2006.10.003

  • Han S, Xing Z, Jiang H, Li W, Huang W (2021) Biological adaptive mechanisms displayed by a freshwater plant to live in aquatic and terrestrial environments. Environm Exp Bot 191:104623. https://doi.org/10.1016/j.envexpbot.2021.104623

    Article  CAS  Google Scholar 

  • Hess C, Levine JM, Turcotte MM, Hart SP (2022) Phenotypic plasticity promotes species coexistence. Nature Ecol Evol 6:1256–1261. https://doi.org/10.1038/s41559-022-01826-8

    Article  Google Scholar 

  • Hickey LJ (1973) Classification of the architecture of dicotyledonous leaves. Amer J Bot 60:17–33. https://doi.org/10.1002/j.1537-2197.1973.tb10192.x

    Article  Google Scholar 

  • Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, London, pp 47–111

    Chapter  Google Scholar 

  • Keating RC (1982) The evolution and systematics of Onagraceae: leaf anatomy. Ann Missouri Bot Gard 69:770–803

    Article  Google Scholar 

  • Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GM, Hacker SD, Granek EF, Primavera JH, Muthiga N, Polasky S, Halpern BS, Kennedy CJ, Kappel CV, Wolanski E (2009) Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Frontiers Ecol Environm 7:29–37. https://doi.org/10.1890/080126

    Article  Google Scholar 

  • Kooke R, Johannes F, Wardenaar R, Becker F, Etcheverry M, Colot V, Keurentjes JJ (2015) Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Pl Cell 27:337–348. https://doi.org/10.1105/tpc.114.133025

  • Köppen W (1948) Climatología: con un estudio de los climas de la tierra. Fondo de Cultura Economica, México

    Google Scholar 

  • Kozlowski TT (1984) Responses of woody plants to flooding. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, London, pp 129–163

    Chapter  Google Scholar 

  • Kraus JE, Arduim M (1997) Manual Básico de Métodos em Morfologia Vegetal. Editora da Universidade Federal Rural do Rio de Janeiro, Seropédica

    Google Scholar 

  • Kuwabara A, Ikegami K, Koshiba T, Nagata T (2003) Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217:880–887. https://doi.org/10.1007/s00425-003-1062-z

    Article  CAS  PubMed  Google Scholar 

  • Langeron M (1949) Précis de Microscopie. Masson et Ciencie, Paris

    Google Scholar 

  • Larcher W (2006) Ecofisiologia vegetal. Rima, São Carlos

    Google Scholar 

  • LAWG (1999) Manual of leaf architecture: morphological description and categorization of dicotyledonous and net-veinde monocotyledonous angiosperms. Smithsonian Institution, Washington

    Google Scholar 

  • Leandro TD, Holsback ZDR, Scremin-Dias E (2021) The aquatic species Pontederia azurea and P. crassipes (Pontederiaceae) in the Pantanal, Brazil: evidence of how plant structure can simultaneously reflect phylogeny and ecology. Acta Bot Brasil 35:79–91. https://doi.org/10.1590/0102-33062020abb0278

  • Li G, Hu S, Hou H, Kimura S (2019) Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants. Plants 8:420. https://doi.org/10.3390/plants8100420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liakoura V, Stefanou M, Manetas Y, Cholevas C, Karabourniotis G (1997) Trichome density and its UV-B protective potential are affected by shading and leaf position on the canopy. Environm Exp Bot 38:223–229. https://doi.org/10.1016/S0098-8472(97)00005-1

    Article  Google Scholar 

  • Lillie RD (1965) Histopathologic technic and practical histochemistry, 3rd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Luque R, Sousa HC, Kraus JE (1996) Métodos de coloração de Roeser (1972) – modificado – e Kropp (1972) visando a substituição do azul de Astra por azul de Alcião 8GS e 8GX. Acta Bot Brasil 10:199–212. https://doi.org/10.1590/S0102-33061996000200001

    Article  Google Scholar 

  • Lusa MG, Bona C (2011) Caracterização morfoanatômica e histoquímica de Cuphea carthagenensis (Jacq.) JF Macbr. (Lythraceae). Acta Bot Brasil 25:517–527. https://doi.org/10.1590/S0102-33062011000200027

  • Macedo NA (1997) Manual de técnicas em histologia vegetal. Universidade Estadual Feira de Santana, Feira de Santana

    Google Scholar 

  • Maidana DPFDL, da Silva JR, de Aquino Ribas AC, Scremin-Dias E (2021) Do six-year-old Eucalyptus clones maintain uniformity in growth and wood quality in different soils? Pl Soil 471:261–272. https://doi.org/10.1007/s11104-021-05216-0

  • Metcalfe CR, Chalk L (1950) Anatomy of the Dicotyledons: wood structure and conclusion of the general introduction, vol. 2. Clarendon Press, Oxford

    Google Scholar 

  • Metcalfe CR, Chalk L (1972) Anatomy of the Dicotyledons, vol. 2. Oxford University Press, London

    Google Scholar 

  • Metcalfe CR, Chalk L (1983) Ecological anatomy and morphology general survey. In: Metcalfe CR, Chalk L (eds) Anatomy of the Dicotyledons: wood structure and conclusion of general introductions, vol. 2. Claredon Press, Oxford, pp 126–152

    Google Scholar 

  • Mikshina P, Chernova T, Chemikosova S, Ibragimova N, Mokshina N, Gorshkova T (2013) Cellulosic fibers: role of matrix polysaccharides in structure and function. In: Van De Ven TGM (ed) Cellulose: Fundamental Aspects. InTech, London, pp 91–112

  • Molnár A, Toth JP, Sramko G, Horvath O, Popiela A, Mesterhazy A, Lukacs BA (2015) Flood induced phenotypic plasticity in amphibious genus Elatine (Elatinaceae). PeerJ 3:e1473. https://doi.org/10.7717/peerj.1473

    Article  CAS  Google Scholar 

  • Navas ML, Garnier E (2002) Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability. Acta Oecol 23:375–383. https://doi.org/10.1016/S1146-609X(02)01168-2

    Article  Google Scholar 

  • Oliveira F, Akisue G (1989) Fundamentos de Farmacobotânica. Atheneu, Rio de Janeiro

  • Paviani TI, Ferreira ML (1974) Anatomia foliar de Plathymenia reticulata Benth. Revista Brasil Biol 34:159–176

  • Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardized measurement of plant functional traits worldwide. Austral J Bot 61:167–234

    Article  Google Scholar 

  • Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. Centro de pesquisa Agropecuária do Pantanal (Corumbá, MS), Embrapa, Brasília

    Google Scholar 

  • Pugnaire FI, Valladares F (2007) Functional plant ecology. CRC Press, New York

    Book  Google Scholar 

  • Puijalon S, Bornette G (2004) Morphological variation of two taxonomically distant plant species along a natural flow velocity gradient. New Phytol 163:651–660. https://doi.org/10.1111/j.1469-8137.2004.01135.x

    Article  PubMed  Google Scholar 

  • Resende UM (1996) Análise estrutural de Neptunia plena (L) Benth. (Mimosaceae) em ambiente inundado e livre de inundação, no pantanal Mato-Grossense, município de Corumbá, Mato Grosso do Sul. MSc Thesis, Universidade Federal do Paraná, Curitiba

  • Reut MS, Płachno BJ (2020) Unusual developmental morphology and anatomy of vegetative organs in Utricularia dichotomya — Leaf, shoot and root dynamics. Protoplasma 257:371–390. https://doi.org/10.1007/s00709-019-01443-6

  • Rich SM, Ludwig M, Colmer TD (2012) Aquatic adventitious root development in partially and completely submerged wetland plants Cotula coronopifolia and Meionectes brownie. Ann Bot (Oxford) 110:405–414. https://doi.org/10.1093/aob/mcs051

  • Ridge I (1987) Ethylene and growth control in amphibious plants. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell Science Publishing, Oxford, pp 53–76

    Google Scholar 

  • Ridley M (2006) Evolução. Ed. Artmed, Porto Alegre

  • Rizzini CT (1997) Tratado de fitogeografia do Brasil: aspectos ecológicos, sociológicos e florísticos, 2nd edn. Âmbito Cultural Edições, Rio de Janeiro

    Google Scholar 

  • Rodrigues S, Scremin-Dias E, de Medeiros HCS, Souza MC (2007) Alterações estruturais do caule e da folha de Ludwigia inclinata (L.F.) M. Gómez, desenvolvidos emersos e submersos. Revista Brasil Bioci 5:174–176

  • Ruelle J (2014) Morphology, anatomy and ultrastructure of reaction wood. In: Gardiner B, Barnett J, Saranpää P, Gril J (eds) The biology of reaction wood. Springer-Verlag, Berlin Heidelberg, pp 13–35

    Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annual Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Schrenk J (1889) On the floating tissue of Nesaea verticillata (L.) H.B.K. Bull Torrey Bot Club 16:315–323

    Article  Google Scholar 

  • Schweingruber FH, Kučerová A, Adamec L, Doležal J (2020) Anatomic atlas of aquatic and wetland plant stems. Springer Nature, Birmensdorf

    Book  Google Scholar 

  • Scremin-Dias E (1999) O retorno à origem aquática. In: Scremin-Dias E, Pott VJ, Hora RC, Souza PR (eds) Nos jardins submersos da Bodoquena: guia para identificação das plantas aquáticas de Bonito e região. Universidade Federal de Mato Grosso do Sul, Campo Grande, pp 25–41

    Google Scholar 

  • Scremin-Dias E, Pott VJ, Da Hora RC, De Souza PR (1999) Nos jardins submersos da Bodoquena: guia para identificação das plantas aquáticas de Bonito e região, 1st edn. Universidade Federal de Mato Grosso do Sul, Campo Grande

    Google Scholar 

  • Scremin-Dias E, Lorenz-Lemke AP, Oliveira AKM (2011) The floristic heterogeneity of Pantanal and the occurrence of species with different adaptive strategies to water stress. Brazil J Biol 71:275–282. https://doi.org/10.1590/s1519-69842011000200006

    Article  CAS  PubMed  Google Scholar 

  • Scremin-Dias E, da Silva JR, Catian G, Fabiano VS, Arruda RCO (2021) Plant Morphoanatomical Adaptations to Environmental Conditions of the Pantanal Wetland. In: Damasceno-Junior GA, Pott A (eds) Flora and Vegetation of the Pantanal Wetland. Plant and Vegetation. Springer Nature, Switzerland 16:609–636. https://doi.org/10.1007/978-3-030-83375-6_17

  • Scremin-Dias E (1992) Morfoanatomia dos órgãos vegetativos de Ludwigia sedoides (Humb. & Bonpl.) Hara (Onagraceae) ocorrente no Pantanal Sul-Mato-Grossense. MSc Thesis, Setor de Ciências biológicas, Universidade Federal do Paraná, Curitiba

  • Scremin-Dias E (2000) A plasticidade fenotípica das macrófitas aquáticas em resposta à dinâmica ambiental. In: Cavalcanti TC, WALTER BMT (eds) Tópicos atuais em botânica: palestras convidadas do 51º Congresso Nacional de Botânica. Embrapa Recursos Genéticos e Biotecnologia/Sociedade Botânica do Brasil, Brasília, pp 189–193

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold Ltd., London

    Google Scholar 

  • Silva JSV, Abdon MM (1998) Delimitação do Pantanal Brasileiro e suas sub-regiões. Pesq Agropecu Brasil 33(n. especial):1703–1711

  • Solereder H (1908) Systematic anatomy of the Dicotyledons, vols 1 and 2. Clarendon Press, Oxford

    Google Scholar 

  • Somavilla NS, Graciano-Ribeiro D (2011) Análise comparativa da anatomia foliar de Melastomataceae em ambiente de vereda e cerrado sensu stricto. Acta Bot Brasil 25:764–775

  • Soriano BMA, Clarke RT, Catella AC (2001) Evolução da erosividade das cheias na bacia do rio Taquari. Corumbá: Embrapa Pantanal. Bol Pesq Desenvolv 25:18

    Google Scholar 

  • Stevens KJ, Peterson RL, Reader RJ (2002) The aerenchymatous phellem of Lythrum salicaria L. a pathway for gas transport e its role in flood tolerance. Ann Bot (Oxford) 89:621–625. https://doi.org/10.1093/aob/mcf088

  • Stotz GC, Salgado-Luarte C, Escobedo VM, Valladares F, Gianoli E (2021) Global trends in phenotypic plasticity of plants. Ecol Lett 24:2267–2281. https://doi.org/10.1111/ele.13827

    Article  PubMed  Google Scholar 

  • Sultan SE (1987) Evolutionary implications of phenotypic plasticity in plants. In: Hecht MK, Wallace B, Prance GT (eds) Evolutionary Biology. Plenum Press, New York, pp 127–178

    Chapter  Google Scholar 

  • Thomaz SM (2021) Ecosystem services provided by freshwater macrophytes. Hydrobiologia 2021. https://doi.org/10.1007/s10750-021-04739-y

    Article  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763. https://doi.org/10.1111/j.1469-8137.2007.02275.x

    Article  PubMed  Google Scholar 

  • Wei GW, Chen YH, Sun XS, Matsubara S, Luo FL, Yu FH (2021) Elevation-dependent selection for plasticity in leaf and root traits of Polygonum hydropiper in response to flooding. Environm Exp Bot 182:104331. https://doi.org/10.1016/j.envexpbot.2020.104331

  • Xu F, Guo W, Xu W, Wang R (2008) Habitat effects on leaf morphological plasticity. Acta Biol Cracov Ser Bot 50:19–26

    Google Scholar 

  • Yang Y, Yu D, Li Y, Xie Y, Geng X (2004) Phenotypic plasticity of two submersed plants in response to flooding. J Freshwater Ecol 19:69–76. https://doi.org/10.1080/02705060.2004.9664514

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

The authors thank Pedro Henrique Ruppel de Medeiros for preparing the illustrations of the species habit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edna Scremin-Dias.

Ethics declarations

Ethical approval

The authors declare no funding was received for conducting this study; the authors have no relevant financial or non-financial interests to disclose. There was no funding for the project; there are no potential conflicts of interest. Research doesn't involve human participants and/or animals. All authors agree with the development and publication of the work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Mike Thiv.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scremin-Dias, E., Silveira, B.B., Fabiano, V.S. et al. Vegetative organs morphological plasticity of Ludwigia grandiflora in flooded and flood-free habitats. Plant Syst Evol 309, 14 (2023). https://doi.org/10.1007/s00606-023-01844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-023-01844-4

Keywords

Navigation