Skip to main content
Log in

Cytogenetics of Alismataceae and Limnocharitaceae: CMA/DAPI banding and 45S rDNA sites

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Species belonging to the Alismataceae (Echinodorus) and Limnocharitaceae (Hydrocleys and Limnocharis) families were analysed by banding with CMA/DAPI fluorochromes, C/CMA/DAPI banding, and in situ hybridization (FISH) with probes that recognise 45S rDNA. All species of Echinodorus presented 2n = 22, but only in E. lanceolatus were DAPI+ telomeric bands in seven chromosome pairs observed. A bimodal karyotype and GC-rich heterochromatin preferably located in two smaller acrocentric pairs that generally corresponded to the number of sites of 45S rDNA. A similar pattern of bands was observed in both Limnocharis species (2n = 20), but the two differed with respect to 45S rDNA, with L. laforestii showing only two sites. Hydrocleys nymphoides and H. martii had a chromosome number of 2n = 16, but the position of the GC-rich heterochromatin associated with the satellite differed among chromosomal types. In this work, the cytotaxonomic implications of these patterns are discussed and correlated with previous data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Ann Missouri Bot Gard 85:531–553

    Article  Google Scholar 

  • Angiosperm Phylogeny Group II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Buznego M, Perez-Saad H (2006) Behavioral and antiepileptic effect of acute administration of the extract of the aquatic plant Echinodorus berteroi Sprengel. Epilepsy Behav 9:40–45

    Article  PubMed  Google Scholar 

  • Carvalho R, Soares Filho WS, Brasileiro-Vidal AC, Guerra M (2005) The relationship among lemons, limes and citron: a chromosomal comparison. Cytogenet Genome Res 109:276–282

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Soltis De Soltis PS, Rudall PJ, Fay MF, Hahn WH, Sullivan S, Joseph J, Molvray M, Kores PJ, Givnish TJ, Sytsma KJ, Pires JC (2000) Higher-level systematic of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 3–16

  • Chen JM, Chen D, Robert W, Wang GF, Guo YH (2004) Evolution of apocarpy in Alismatidae using phylogenetic evidence from chloroplast rbcL gene sequence data. Bot Bull Acad Sim 45:33–40

    Google Scholar 

  • Costa YJ, Forni-Martins ER (2003) Karyology of some Brazilian species of Alismataceae. Bot J Linn Soc 143:159–164

    Article  Google Scholar 

  • Costa YJ, Forni-Martins ER (2004) A triploid cytotype of Echinodorus Tennellus. Aquat Bot 79:325–332

    Article  CAS  Google Scholar 

  • Costa YJ, Forni-Martins ER, Vanzela ALL (2006) Karyotype characterization of five Brazilian species of Echinodorus (Alismatales) with chromosomal banding and 45s DNAr FISH. Pl Syst Evol 257:119–127

    Article  CAS  Google Scholar 

  • Costa YJ, Vanzela ALL, Forni-Martins ER (2007) Variação cromossômica interpopulacional no número de sítios 45S de DNAr de Sagitária rhombifolia (Alismataceae). II Simpósio Latinoamericano de Citogenética y Evolución, Colômbia

    Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1981) The families of the monocotyledons. Springer, Berlin

    Google Scholar 

  • Feitoza LL, Felix LP, Castro AAJF, Carvalho R (2009) Cytogenetics of Alismatales s.s.: chromosomal evolution and C-banding. Plant Syst Evol 280:119–131

  • Forni-Martins ER, Calligaris KP (2002) Chromosomal studies on Neotropical Limnocharitaceae (Alismatales). Aquat Bot 74:33–41

    Article  CAS  Google Scholar 

  • Galasso L, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L.) Walp: the physical organization and characterization of 18s-5.8s-25s rRNA genes, 5s rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91:928–935

    Article  CAS  Google Scholar 

  • Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041

    Google Scholar 

  • Harada I (1956) Cytological studies in Helobiae. Part I. Numbers in seven families. Cytologia 21:306–328

    Google Scholar 

  • Haynes RR, Holm-Nielsen LB (1986) Notes on Echinodorus (Alismataceae). Brittonia 38:325–332

    Article  Google Scholar 

  • Haynes RR, Holm-Nielsen LB (1992) The Limnocharitaceae. Flora Neotropica. Monograph 62. The New York Botanical Garden, New York

    Google Scholar 

  • Haynes RR, Holm-Nielsen LB (1994) The Alismataceae. Flora Neotropica, monograph 64. The New York Botanical Garden, New York

    Google Scholar 

  • Judd WS, Campbell CS, Kellogg EA, Stevens PF (1999) Plant systematics: a phylogenetic approach. Sinauer Associates, Sunderland

    Google Scholar 

  • Kenton A (1981) A Robertsonian relationship in the chromosomes of two species of Hydrocleys. Kew Bull 36:487–492

    Article  Google Scholar 

  • Lehtonen S (2006) Phylogenetics of Echinodorus (Alismataceae) based on morphological data. Bot J Linn Soc 150:291–305

    Article  Google Scholar 

  • Morawetz W (1986) Remarks on karyological differentiation patterns in tropical woody plants. Pl Syst Evol 152:49–100

    Article  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236

    Article  CAS  Google Scholar 

  • Sato S, Yoshioka T (1984) Heterogeneity of heterochromatin segments in Nothoscordum fragrans chromosomes. Caryologia 37:197–205

    Google Scholar 

  • Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297

    Article  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome-banding with chromomycin A and DAPI. Chromosoma 58(4):307–324

    Article  CAS  PubMed  Google Scholar 

  • Souza VC, Lorenzi H (2005) Botânica Sistemática: Guia ilustrado para identificação das famílias de Angiospermas da Flora Brasileira, baseado em APG II. Instituto Plantarum de Estudos da Flora, São Paulo

  • Yamamoto M, Tominaga S (2003) High chromosomal variability of mandarins (Citrus spp.) revealed by CMA banding. Euphytica 129:267–274

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the CNPq for the fellowship award to the first author, Prof. Marcelo Guerra of the Botany Department of Federal University of Pernambuco for allowing the use of the photomicroscope and TROPEN Institute (Núcleo de Referência em Ciências Ambientais do Trópico Ecotonal do Nordeste) for providing plant material and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feitoza, L.L., Martins, M.I.G., Castro, A.A.J.F. et al. Cytogenetics of Alismataceae and Limnocharitaceae: CMA/DAPI banding and 45S rDNA sites. Plant Syst Evol 286, 199–208 (2010). https://doi.org/10.1007/s00606-010-0300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0300-7

Keywords

Navigation