Skip to main content
Log in

Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The semi-aquatic plant Water-Wisteria is suggested as a new model to study heterophylly due to its many advantages and typical leaf phenotypic plasticity in response to environmental factors and phytohormones.

Abstract

Water-Wisteria, Hygrophila difformis (Acanthaceae), is a fast growing semi-aquatic plant that exhibits a variety of leaf shapes, from simple leaves to highly branched compound leaves, depending on the environment. The phenomenon by which leaves change their morphology in response to environmental conditions is called heterophylly. In order to investigate the characteristics of heterophylly, we assessed the morphology and anatomy of Hygrophila difformis in different conditions. Subsequently, we verified that phytohormones and environmental factors can induce heterophylly and found that Hygrophila difformis is easily propagated vegetatively through either leaf cuttings or callus induction, and the callus can be easily transformed by Agrobacterium tumefaciens. These results suggested that Hygrophila difformis is a good model plant to study heterophylly in higher aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amano R, Nakayama H, Morohoshi Y, Kawakatsu Y, Ferjani A, Kimura S (2015) A decrease in ambient temperature induces post-mitotic enlargement of palisade cells in North American lake cress. PLoS One 10:340–351

    Google Scholar 

  • Anderson LW (1978) Abscisic acid induces formation of floating leaves in the heterophyllous aquatic angiosperm Potamogeton nodosus. Science 201:1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Bodkin PC, Spence DHN, Weeks DC (1980) Photoreversible control of heterophylly in Hippuris vulgaris. New Phytol 84:533–542

    Article  Google Scholar 

  • Cook CDK (1969) On the determination of leaf form in Ranunculus aquatilis. New Phytol 68:469–480

    Article  Google Scholar 

  • Deschamp PA, Cooke TJ (1984) Causal mechanisms of leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. Am J Bot 71:319–329

    Article  Google Scholar 

  • Deschamp PA, Cooke TJ (1985) Leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. Am J Bot 72:1377–1387

    Article  Google Scholar 

  • Gaudet JJ (1963) Marsilea vestita: conversion of the water form to the land form by darkness and by far-red light. Science 140:975–976

    Article  CAS  PubMed  Google Scholar 

  • Goliber TE, Feldman LJ (1989) Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris. Plant Cell Environ 12:163–171

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 38:942–947

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB (2008) Ethylene-promoted elongation: an adaptation to submergence stress. Ann Bot 101:229–248

    Article  CAS  PubMed  Google Scholar 

  • Jo IS, Dong UH, Yong JC, Lee EJ (2010) Effects of light, temperature, and water depth on growth of a rare aquatic plant, Ranunculus kadzusensis. J Plant Biol 53:88–93

    Article  Google Scholar 

  • Johnson MP (1967) Temperature dependent leaf morphogenesis in Ranunculus flabellaris. Nature 214:1354–1355

    Article  Google Scholar 

  • Kane ME, Albert LS (1989) Abscisic-acid induction of aerial leaf development in Myriophyllum and Proserpinaca species cultured in vitro. J Aquat Plant Manage 27:102–111

    Google Scholar 

  • Keener CS, Gifford EM, Foster AS (1990) Morphology and evolution of vascular plants. Syst Bot 15:348

    Article  Google Scholar 

  • Kimura S, Koenig D, Kang J, Fei YY, Sinha N (2008) Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18:672–677

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara A, Tsukaya H, Nagata T (2001) Identification of factors that cause heterophylly in Ludwigia arcuata Walt. (Onagraceae). Plant Biol 3:98–105

    Article  Google Scholar 

  • Kuwabara A, Ikegami K, Koshiba T, Nagata T (2003) Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217:880–887

    Article  CAS  PubMed  Google Scholar 

  • Lin BL, Abrams SR (2005) Abscisic acid regulation of heterophylly in marsilea quadrifolia: effects of r-(−) and s-(+) isomers. J Exp Bot 56:2935–2948

    Article  CAS  PubMed  Google Scholar 

  • Lin BL, Yang WJ (1999) Blue light and abscisic acid independently induce heterophyllous switch in Marsilea quadrifolia. Plant Physiol 119:429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCully ME, Dale HM (1961) Heterophylly in Hippuris, a problem in identification. Can J Bot 39:1099–1116

    Article  CAS  Google Scholar 

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama H, Nakayama N, Nakamasu A, Sinha N, Kimura S (2012) Toward elucidating the mechanisms that regulate heterophylly. Plant Morphol 24:57–63

    Article  Google Scholar 

  • Nakayama H, Nakayama N, Seiki S, Kojima M, Sakakibara H, Sinha N, Kimura S (2014) Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. Plant Cell 26:4733–4748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal D, Samanta K (2011) CNS activities of ethanol extract of aerial parts of Hygrophila difformis in mice. Acta Pol Pharm 68:75–81

    PubMed  Google Scholar 

  • Rascio N, Cuccato F, Vecchia FD, Rocca NL, Larcher W (1999) Structural and functional features of the leaves of Ranunculus trichophyllus, Chaix., a freshwater submerged macrophophyte. Plant Cell Environ 22:205–212

    Article  Google Scholar 

  • Sato M, Tsutsumi M, Ohtsubo A, Nishii K, Kuwabara A, Nagata T (2008) Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (onagraceae). Planta 228:27–36

    Article  CAS  PubMed  Google Scholar 

  • Schiller P, Heilmeier H, Hartung W (1997) Abscisic acid (ABA) relations in the aquatic resurrection plant Chamaegigas intrepidus under naturally fluctuating environmental conditions. New Phytol 136:603–611

    Article  CAS  Google Scholar 

  • Schmidt BL, Millington WF (1968) Regulation of leaf shape in Proserpinaca palustris. Bull Torrey Bot Club 95:264–286

    Article  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, London

    Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    Article  CAS  PubMed  Google Scholar 

  • Titus JE, Sullivan PG (2001) Heterophylly in the yellow waterlily, nuphar variegata (Nymphaeaceae): effects of [CO2], natural sediment type, and water depth. Am J Bot 88:1469

    Article  CAS  PubMed  Google Scholar 

  • Wanke D (2011) The ABA-mediated switch between submersed and emersed life-styles in aquatic macrophytes. J Plant Res 124:467–475

    Article  CAS  PubMed  Google Scholar 

  • Wissler L, Codoñer FM, Gu J, Reusch TB, Olsen JL, Procaccini G, Bornberg BE (2011) Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evol Biol 11:76–92

    Article  Google Scholar 

  • Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—a review. Bot Rev 77:109–151

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Seisuke Kimura from Kyoto Sangyo University for his generous help on H. difformis genome survey. We also offer our thanks to Dr. Lei Chen from the South China Botanical Garden, the Chinese Academy of Sciences for his helpful discussions. This work was supported by grants to Prof. Hongwei Hou from the Project of the State Key Laboratory of Freshwater Ecology and Biotechnology (2016FB04) and the project of the Natural Science Foundation of Hubei Province (2015CFB488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Xian Sheng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Hu, S., Yang, J. et al. Water-Wisteria as an ideal plant to study heterophylly in higher aquatic plants. Plant Cell Rep 36, 1225–1236 (2017). https://doi.org/10.1007/s00299-017-2148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2148-6

Keywords

Navigation