We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Unveiling the potential of prodrug and drug-conjugate strategies in treatment of diabetes mellitus and its complications

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The 2021 statistics from the International Diabetes Federation reveals that approximately 537 million adults between the ages of 20 and 79 are currently coping with diabetes, highlighting the pressing demand for innovative treatments. To expedite this process, it is crucial to learn from previous failures in drug development. One established method for enhancing the biological, pharmacokinetic or the physicochemical properties of potent drug candidates is through the use of prodrugs. Prodrugs have demonstrated their effectiveness in surmounting challenges related to a drug’s efficacy during the phases of drug research and development. This review distinctly emphasizes the role of the prodrug strategy in facilitating drug discovery to address concerns associated with diabetes mellitus (DM). It emphasizes the utilization of diverse prodrug approaches in the management of DM and the complications associated with it by categorizing them into ester/ether prodrugs, phosphonic diamide prodrugs, biguanide prodrugs, nitric oxide releasing prodrugs, mutual prodrugs, peptide-linked prodrugs, as well as different types of drug conjugate approaches. It specifically elaborates a range of prodrug systems developed between the years 2000 and 2023 for achieving effective drug delivery in the context of DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother. 2020;131:110708. https://doi.org/10.1016/j.biopha.2020.110708

    Article  CAS  PubMed  Google Scholar 

  2. Etemadi A, Dabaghi P, Hosseini Y, Gholampourdehaki M, Solouki S, Gholamhosseini L, et al. Identifying depressive symptoms in patients with type 2 diabetes mellitus: the role of glucose variability and concomitant hypothyroidism. Int J Diabetes Dev Ctries. 2023;7:1–9. https://doi.org/10.1007/s13410-023-01177-5

    Article  CAS  Google Scholar 

  3. Liu Z, Zhang Q, Liu L, Liu W. Risk factors associated with early postpartum glucose intolerance in women with a history of gestational diabetes mellitus: a systematic review and meta-analysis. Endocr J 2023;16:1–5.

    Google Scholar 

  4. Fedorchenko Y, Mahmudov K, Abenov Z, Zimba O, Yessirkepov M. Diabetes mellitus in rheumatic diseases: clinical characteristics and treatment considerations. Rheumatol Int 2023;17:1–8. https://doi.org/10.1007/s00296-023-05453-9

    Article  Google Scholar 

  5. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21:6275 https://doi.org/10.3390/ijms21176275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27:269–73. https://doi.org/10.5001/omj.2012.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin C, Cai X, Yang W, Lv F, Nie L, Ji L. Age, sex, disease severity, and disease duration difference in placebo response: implications from a meta-analysis of diabetes mellitus. BMC Med. 2020;18:322. https://doi.org/10.1186/s12916-020-01787-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18:525–539. https://doi.org/10.1038/s41574-022-00690-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ke C, Narayan KMV, Chan JCN, Jha P, Shah BR. Pathophysiology, phenotypes and management of Type 2 diabetes mellitus in Indian and Chinese populations. Nat Rev Endocrinol. 2022;18:413–32. https://doi.org/10.1038/s41574-022-00669-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sonmez A, Sabbour H, Echtay A, Rahmah AM, Alhozali AM, Al Sabaan FS, et al. Current gaps in management and timely referral of cardiorenal complications among people with type 2 diabetes mellitus in the Middle East and African countries: expert recommendations. J Diabetes. 2022;14:315–33. https://doi.org/10.1111/1753-0407.13266

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chisalunda A, Ng'ambi WF, Tarimo NS, Banda NPK, Muula AS, Kumwenda J, et al. Quality of life among type 2 diabetes mellitus patients at Kamuzu Central Hospital in Lilongwe, Malawi: a mixed-methods study. PLoS Glob Public Health. 2023;3:e0002367 https://doi.org/10.1371/journal.pgph.0002367

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chawla R, Madhu SV, Makkar BM, Ghosh S, Saboo B, Kalra S, et al. RSSDI-ESI clinical practice recommendations for the management of Type 2 diabetes mellitus 2020. Indian J Endocrinol Metab. 2020;24:1–122. https://doi.org/10.4103/ijem.IJEM_225_20

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roth G, Global Burden of Disease Collaborative Network. Global burden of disease study 2017 (GBD 2017) results. Seattle, United States: institute for health metrics and evaluation (IHME). Lancet. 2018;392:1736–88.

    Article  Google Scholar 

  14. Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th edition. Brussels: International Diabetes Federation; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581934/

  15. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022;18:525–39. https://doi.org/10.1038/s41574-022-00690-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raghavan S, Vassy JL, Ho YL, Song RJ, Gagnon DR, Cho K, et al. Diabetes mellitus-related all-cause and cardiovascular mortality in a National Cohort of adults. J Am Heart Assoc. 2019;8:e011295. https://doi.org/10.1161/JAHA.118.011295

    Article  PubMed  PubMed Central  Google Scholar 

  17. Øyen N, Diaz LJ, Leirgul E, Boyd HA, Priest J, Mathiesen ER, et al. Prepregnancy diabetes and offspring risk of congenital heart disease: a nationwide Cohort study. Circ 2016;133:2243–53. https://doi.org/10.1161/CIRCULATIONAHA.115.017465

    Article  Google Scholar 

  18. LeRoith D, Biessels GJ, Braithwaite SS, Casanueva FF, Draznin B, Halter JB, et al. Treatment of diabetes in older adults: an endocrine society* clinical practice guideline. J Clin Endocrinol Metab. 2019;104:1520–74. https://doi.org/10.1210/jc.2019-00198

    Article  PubMed  PubMed Central  Google Scholar 

  19. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in Type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation. 2016;133:2459–502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L. Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol. 2020;17:585–607. https://doi.org/10.1038/s41569-020-0339-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: implications for Type 2 diabetes mellitus management. Front Endocrinol (Lausanne). 2017;8:6 https://doi.org/10.3389/fendo.2017.00006

    Article  PubMed  Google Scholar 

  22. Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for Type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12:566–92. https://doi.org/10.1038/nrendo.2016.86

    Article  CAS  PubMed  Google Scholar 

  23. Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Review of the case reports on metformin, sulfonylurea, and thiazolidinedione therapies in Type 2 diabetes mellitus patients. Med Sci Res. 2023;11:50 https://doi.org/10.3390/medsci11030050

    Article  Google Scholar 

  24. Moon MK, Hur KY, Ko SH, Park SO, Lee BW, Kim JH, et al. Combination therapy of oral hypoglycemic agents in patients with Type 2 diabetes mellitus. Diabetes Metab J. 2017;41:357–66. https://doi.org/10.4093/dmj.2017.41.5.357

    Article  PubMed  PubMed Central  Google Scholar 

  25. Veelen A, Erazo-Tapia E, Oscarsson J, Schrauwen P. Type 2 diabetes subgroups and potential medication strategies in relation to effects on insulin resistance and beta-cell function: A step toward personalised diabetes treatment?. Mol Metab. 2021;46:101158. https://doi.org/10.1016/j.molmet.2020.101158.

    Article  CAS  PubMed  Google Scholar 

  26. Chen K, Yao X, Tang T, Chen LM, Xiao C, Wang JY, et al. Thiazole-based and thiazolidine-based protein tyrosine phosphatase 1B inhibitors as potential anti-diabetes agents. Med Chem Res. 2021;30:519–34. https://doi.org/10.1007/s00044-020-02668-4

    Article  CAS  Google Scholar 

  27. Mor S, Sindhu S. Synthesis, Type II diabetes inhibitory activity, antimicrobial evaluation and docking studies of indeno [1, 2-c] pyrazol-4 (1 H)-ones. Med Chem Res. 2020;29:46–62. https://doi.org/10.1007/s00044-019-02457-8

    Article  CAS  PubMed  Google Scholar 

  28. Markovic M, Ben-Shabat S, Dahan A. Prodrugs for improved drug delivery: lessons learned from recently developed and marketed products. Int J Pharm. 2020;12:1031 https://doi.org/10.3390/pharmaceutics12111031

    Article  CAS  Google Scholar 

  29. Bhilare NV, Dhaneshwar SS, Mahadik KR, Dasgupta A, Zende T, Kapoor S. Hepatoprotective bile acid co-drug of isoniazid: synthesis, kinetics and investigation of antimycobacterial potential. Pharm Chem J. 2020;54:678–88. https://doi.org/10.1007/s11094-020-02256-1

    Article  CAS  Google Scholar 

  30. Bhilare NV, Marulkar VS, Kumar D, Chatap VK, Patil KS, Shirote PJ. An insight into prodrug strategy for the treatment of Alzheimer’s disease. Med Chem Res. 2022;31:383–99. https://doi.org/10.1007/s00044-022-02859-1

    Article  CAS  Google Scholar 

  31. Bhosle D, Bharambe S, Gairola N, Dhaneshwar SS. Mutual prodrug concept: fundamentals and applications. Indian J Pharm Sci. 2006;68:286–94. https://doi.org/10.4103/0250-474X.26654

    Article  CAS  Google Scholar 

  32. Dhaneshwar SS, Gairola N, Kandpal M, Vadnerkar G, Bhatt L, Rathi B, et al. Synthesis, kinetic studies and pharmacological evaluation of mutual azo prodrugs of 5-aminosalicylic acid for colon-specific drug delivery in inflammatory bowel disease. Eur J Med Chem. 2009;44:3922–9. https://doi.org/10.1016/j.ejmech.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  33. Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev. 2007;59:677–94. https://doi.org/10.1016/j.addr.2007.05.013

    Article  CAS  PubMed  Google Scholar 

  34. Stella VJ. Prodrugs: Some thoughts and current issues. J Pharm Sci. 2010;99:4755–65. https://doi.org/10.1002/jps.22205

    Article  CAS  PubMed  Google Scholar 

  35. Han HK, Amidon GL Targeted prodrug design to optimize drug delivery. AAPS Pharmsci. 2000; 48-58. https://doi.org/10.1208/ps020106

  36. Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach. Expert Opin Drug Deliv. 2012;9:1001–13. https://doi.org/10.1517/17425247.2012.697055

    Article  CAS  PubMed  Google Scholar 

  37. Giang I, Boland EL, Poon GM. Prodrug applications for targeted cancer therapy. AAPS J. 2014;16:899–913. https://doi.org/10.1208/s12248-014-9638-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of Type 2 diabetes mellitus. Int J Mol Sci 2020;21:6275 https://doi.org/10.3390/ijms21176275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014;15:6184–223. https://doi.org/10.3390/ijms15046184

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  40. Young DA, Ho RS, Bell PA, Cohen DK, McIntosh RH, Nadelson J, et al. Inhibition of hepatic glucose production by SDZ 51641. Diabetes. 1990;39:1408–13. https://doi.org/10.2337/diabetes.39.11.1408

    Article  CAS  PubMed  Google Scholar 

  41. Bebernitz GR, Dain JG, Deems RO, Otero DA, Simpson WR, Strohschein RJ. Reduction in glucose levels in STZ diabetic rats by 4-(2, 2-dimethyl-1-oxopropyl) benzoic acid: a prodrug approach for targeting the liver. J Med Chem. 2001;44:512–23. https://doi.org/10.1021/jm000264w

    Article  CAS  PubMed  Google Scholar 

  42. Moretto AF, Kirincich SJ, Xu WX, et al. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1b inhibitors. Bioorg Med Chem. 2006;14:2162–77. https://doi.org/10.1016/j.bmc.2005.11.005

    Article  CAS  PubMed  Google Scholar 

  43. Wilson DP, Wan Z-K, Xu W-X, et al. Structure-based optimization of protein tyrosine phosphatase 1b inhibitors: from the active site to the second phosphotyrosine binding site. J Med Chem. 2007;50:4681–98. https://doi.org/10.1021/jm0702478

    Article  CAS  PubMed  Google Scholar 

  44. Wan ZK, Lee J, Xu W, et al. Monocyclic thiophenes as protein tyrosine phosphatase 1b inhibitors: capturing interactions with Asp48. Bioorg Med Chem Lett. 2006;16:4941–5. https://doi.org/10.1016/j.bmcl.2006.06.051

    Article  CAS  PubMed  Google Scholar 

  45. Erbe DV, Klaman LD, Wilson DP, Wan Z, Kirincich SJ, Will S, et al. Prodrug delivery of novel PTP1B inhibitors to enhance insulin signalling. Pharmacol Ther. 2009; 579-88. https://doi.org/10.1111/j.1463-1326.2008.01022.x

  46. Thielen LA, Chen J, Jing G, Moukha-Chafiq O, Xu G, Jo S, et al. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab. 2020;32:353–365.e8. https://doi.org/10.1016/j.cmet.2020.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wagner BK. Small-molecule discovery in the pancreatic beta cell. Curr Opin Chem Biol. 2022;68:102150 https://doi.org/10.1016/j.cbpa.2022.102150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen M, Yang Z, Wu R, Nadler JL. Lisofylline, a novel antiinflammatory agent, protects pancreatic beta-cells from proinflammatory cytokine damage by promoting mitochondrial metabolism. J Endocrinol. 2002;143:2341–8. https://doi.org/10.1210/endo.143.6.8841

    Article  CAS  Google Scholar 

  49. Yang Z, Chen M, Nadler JL. Lisofylline: a potential lead for the treatment of diabetes. Biochem Pharm. 2005;69:1–5. https://doi.org/10.1016/j.bcp.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  50. Italiya KS, Mazumdar S, Sharma S, Chitkara D, Mahato RI, Mittal A Self-assembling lisofylline-fatty acid conjugate for effective treatment of diabetes mellitus. Nanomed: Nanotechnol Biol Med. 2019. 175-87 p. https://doi.org/10.1016/j.nano.2018.09.014

  51. Singh AK, Italiya KS, Narisepalli S, Chitkara D, Mittal A. Role of chain length and degree of unsaturation of fatty acids in the physicochemical and pharmacological behavior of drug-fatty acid conjugates in diabetes. J Med Chem. 2021;64:14217–29. https://doi.org/10.1021/acs.jmedchem.1c00391

    Article  CAS  PubMed  Google Scholar 

  52. Schmitz JM, Green CE, Hasan KM, Vincent J, Suchting R, Weaver MF, et al. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: a double-blind randomized controlled pilot trial. J Addict. 2017;112:1861–8. https://doi.org/10.1111/add.13868

    Article  Google Scholar 

  53. Alam F, Islam MA, Mohamed M, Ahmad I, Kamal MA, Donnelly R, et al. Efficacy and safety of pioglitazone monotherapy in Type 2 diabetes mellitus: a systematic review and meta-analysis of randomised controlled trials. Sci Rep. 2019;9:5389 https://doi.org/10.1038/s41598-019-41854-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanrame CN, Remenar JF, Blumberg LC, Waters J, Dean RL, Dong N, et al. Prodrugs of pioglitazone for extended-release (XR) injectable formulations. Mol Pharm. 2014;11:3617–23. https://doi.org/10.1021/mp500359a

    Article  CAS  PubMed  Google Scholar 

  55. Gizak A, Duda P, Wisniewski J, Rakus D. Fructose-1, 6-bisphosphatase: from a glucose metabolism enzyme to multifaceted regulator of a cell fate. Adv Biol Regul. 2019;72:41–50. https://doi.org/10.1016/j.jbior.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  56. Kaur R, Dahiya L, Kumar M. Fructose-1, 6-bisphosphatase inhibitors: a new valid approach for management of Type 2 diabetes mellitus. Eur J Med Chem. 2017;141:473–505. https://doi.org/10.1016/j.ejmech.2017.09.029

    Article  CAS  PubMed  Google Scholar 

  57. Dang Q, Kasibhatla SR, Reddy KR, Jiang T, Reddy MR, Potter SC, et al. Discovery of potent and specific fructose-1, 6-bisphosphatase inhibitors and a series of orally-bioavailable phosphoramidase-sensitive prodrugs for the treatment of Type 2 diabetes. J Am Chem Soc. 2007;129:15491–502. https://doi.org/10.1021/ja074871l

    Article  CAS  PubMed  Google Scholar 

  58. Dang Q, Van Poelje PD, Erion MD The discovery and development of MB07803, a second-generation fructose-1, 6-bisphosphatase inhibitor with improved pharmacokinetic properties, as a potential treatment of type 2 diabetes. In New Therapeutic Strategies for Type 2 Diabetes 2012; 306–23. https://doi.org/10.1039/9781849735322-00306

  59. Wang YW, He SJ, Feng X, Cheng J, Luo YT, Tian L, et al. Metformin: a review of its potential indications. Drug Des Devel Ther. 2017; 2421-9. https://doi.org/10.2147/DDDT.S141675

  60. Huttunen KM, Mannila A, Laine K, Kemppainen E, Leppanen J, Vepsalainen J, et al. The first bioreversible prodrug of metformin with improved lipophilicity and enhanced intestinal absorption. J Med Chem. 2009;52:4142–8. https://doi.org/10.1021/jm900274q

    Article  CAS  PubMed  Google Scholar 

  61. Calderone V, Rapposelli S, Martelli A, Digiacomo M, Testai L, Torri S, et al. NO-glibenclamide derivatives: prototypes of a new class of nitric oxide-releasing anti-diabetic drugs. Bioorg Med Chem. 2009;17:5426–32. https://doi.org/10.1016/j.bmc.2009.06.049

    Article  CAS  PubMed  Google Scholar 

  62. Tamboli Y, Lazzarato L, Marini E, Guglielmo S, Novelli M, Beffy P, et al. Synthesis and preliminary biological profile of new NO-donor tolbutamide analogues. Bioorg Med Chem Lett. 2012;22:3810–5. https://doi.org/10.1016/j.bmcl.2012.03.103

    Article  CAS  PubMed  Google Scholar 

  63. Kaur J, Bhardwaj A, Huang Z, Narang D, Chen TY, Plane F, et al. Synthesis and biological investigations of nitric oxide releasing nateglinide and meglitinide type II antidiabetic prodrugs: In-vivo antihyperglycemic activities and blood pressure lowering studies. J Med Chem. 2012;55:7883–91. https://doi.org/10.1021/jm300997w

    Article  CAS  PubMed  Google Scholar 

  64. Tang WH, Martin KA, Hwa J. Aldose reductase, oxidative stress, and diabetic mellitus. Front Pharm. 2012;3:87 https://doi.org/10.3389/fphar.2012.00087

    Article  CAS  Google Scholar 

  65. Hotta N, Sakamoto N, Shigeta Y, Kikkawa R, Goto Y. Clinical investigation of epalrestat, an aldose reductase inhibitor, on diabetic neuropathy in Japan: multicenter study. J Diabetes Complicat. 1996;10(3):168–72. https://doi.org/10.1016/1056-8727(96)00113-4.

    Article  CAS  Google Scholar 

  66. Vyas B, Choudhary S, Singh PK, Singh A, Singh M, Verma H, et al. Molecular dynamics/quantum mechanics guided designing of natural products based prodrugs of Epalrestat. J Mol Struct. 2018;1171:556–63. https://doi.org/10.1016/j.molstruc.2018.06.030

    Article  ADS  CAS  Google Scholar 

  67. Roth JD, Erickson MR, Chen S, Parkes DG. GLP‐1R and amylin agonism in metabolic disease: complementary mechanisms and future opportunities. Br J Pharmacol 2012;166:121–36. https://doi.org/10.1111/j.1476-5381.2011.01537.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lovshin JA. Glucagon-like peptide-1 receptor agonists: a class update for treating type 2 diabetes. Can J Diabetes 2017;41:524–35. https://doi.org/10.1016/j.jcjd.2017.08.242

    Article  PubMed  Google Scholar 

  69. Lee SH, Lee S, Youn YS, Na DH, Chae SY, Byun Y, et al. Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconjug Chem. 2005;16:377–82. https://doi.org/10.1021/bc049735+

    Article  CAS  PubMed  Google Scholar 

  70. Böttger R, Knappe D, Hoffmann R. PEGylated prodrugs of antidiabetic peptides amylin and GLP-1. J Control Release. 2018;292:58–66. https://doi.org/10.1016/j.jconrel.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  71. Wang J, Yu J, Zhang Y, Kahkoska AR, Wang Z, Fang J, et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. PNAS USA. 2019;116:10744–8. https://doi.org/10.1073/pnas.1901967116

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rao SS, Somayaji Y, Kulal A. Synthesis and evaluation of the insulin-albumin conjugate with prolonged glycemic control. ACS omega. 2022;7:5131–8. https://doi.org/10.1021/acsomega.1c06119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nielsen LL, Young AA, Parkes DG. Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of Type 2 diabetes. Regul Pept. 2004;15:77–88.

    Article  Google Scholar 

  74. Kong JH, Oh EJ, Chae SY, Lee KC, Hahn SK. Long acting hyaluronate-exendin 4 conjugate for the treatment of Type 2 diabetes. Biomater. 2010;31:4121–8. https://doi.org/10.1016/j.biomaterials.2010.01.091

    Article  CAS  Google Scholar 

  75. Haeri HH, Schunk B, Tomaszewski J, Schimm H, Gelos MJ, Hinderberger D. Fatty acid binding to human serum albumin in blood serum characterized by EPR spectroscopy. ChemistryOpen 2019;8:650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Y, Wang Y, Wei Q, Zheng X, Tang L, Kong D, et al. Variant fatty acid-like molecules Conjugation, novel approaches for extending the stability of therapeutic peptides. Sci Rep. 2015;5:18039. https://doi.org/10.1038/srep18039

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rau H, Cleemann F, Hersel U, Kaden-Vagt S, Lessman T, Wegge T, inventors; Sanofi Aventis Deutschland GmbH, assignee. Prodrugs comprising an insulin linker conjugate. United States patent US9138462 B2. 2015. https://patents.google.com/patent/US9138462B2/en

  78. DiMarchi RD, Arnab DE, inventors; Indiana University Research and Technology Corp, assignee. Ester-based insulin prodrugs. United States patent US 8697838 B2. 2014. https://patents.google.com/patent/US8697838B2/en

  79. Sinha S, Chilcote T, Joghee RS, Narasimhan S, inventors; Activesite Pharmaceuticals, Inc., assignee. Prodrugs of inhibitors of plasma kallikrein. United States patent US 8691861 B2. 2014. https://patents.google.com/patent/US8691861B2/en

  80. DiMarchi RD, Binbin K, Cheng S, inventors; Indiana University Research and Technology Corp, assignee. Amide-based insulin prodrugs. United States patent application US 20130123171 A1. 2013. https://patents.google.com/patent/US20130123171A1/en

  81. Szczepanski SW, Castillo S, Kostel PJ, Kakkis ED, Foehr E, inventors; Biomarin Pharmaceutical Inc, assignee. Tetrahydrobiopterin prodrugs. Australian patent AU 2008206486 C1. 2008. https://patents.google.com/patent/AU2008206486C1/en

Download references

Acknowledgements

We thank Mr. Vinayak S. Marulkar, Assistant Professor, Deaprtment of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara, Maharashtra, India for his valuable help in graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha V. Bhilare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhilare, N.V., Shedge, R., Tambe, P.M. et al. Unveiling the potential of prodrug and drug-conjugate strategies in treatment of diabetes mellitus and its complications. Med Chem Res 33, 337–353 (2024). https://doi.org/10.1007/s00044-024-03187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03187-2

Keywords

Navigation