16.09.2013 Views

Vermiculture in Egypt: - FAO - Regional Office for the Near East and

Vermiculture in Egypt: - FAO - Regional Office for the Near East and

Vermiculture in Egypt: - FAO - Regional Office for the Near East and

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Vermiculture</strong> <strong>in</strong> <strong>Egypt</strong>:<br />

Current Development<br />

<strong>and</strong><br />

Future Potential<br />

i


<strong>Vermiculture</strong> <strong>in</strong> <strong>Egypt</strong>:<br />

Current Development<br />

<strong>and</strong><br />

Future Potential<br />

Written by:<br />

Mahmoud Medany, Ph.D.<br />

Environment Consultant<br />

<strong>Egypt</strong><br />

Edited by:<br />

Elhadi Yahia, Ph.D.<br />

Agro <strong>in</strong>dustry <strong>and</strong> <strong>in</strong>frastructure <strong>Office</strong>r<br />

Food <strong>and</strong> Agriculture Organizatioon<br />

(<strong>FAO</strong>/UN)<br />

<strong>Regional</strong> <strong>Office</strong> <strong>for</strong> North Africa<br />

<strong>and</strong> <strong>the</strong> <strong>Near</strong> <strong>East</strong>, Cairo, <strong>Egypt</strong><br />

Food <strong>and</strong> Agriculture Organization of <strong>the</strong> United Nations<br />

<strong>Regional</strong> <strong>Office</strong> <strong>for</strong> <strong>the</strong> <strong>Near</strong> <strong>East</strong><br />

Cairo, <strong>Egypt</strong><br />

April, 2011<br />

ii


The designations employed <strong>and</strong> <strong>the</strong> presentation of material <strong>in</strong> this<br />

<strong>in</strong><strong>for</strong>mation product do not imply <strong>the</strong> expression of any op<strong>in</strong>ion whatsoever<br />

on <strong>the</strong> part of <strong>the</strong> Food <strong>and</strong> Agriculture Organization of <strong>the</strong> United Nations<br />

(<strong>FAO</strong>) concern<strong>in</strong>g <strong>the</strong> legal or development status of any country, territory, city<br />

or area or of its authorities, or concern<strong>in</strong>g <strong>the</strong> delimitation of its frontiers or<br />

boundaries. The mention of specific companies or products of manufacturers,<br />

whe<strong>the</strong>r or not <strong>the</strong>se have been patented, does not imply that <strong>the</strong>se have<br />

been endorsed or recommended by <strong>FAO</strong> <strong>in</strong> preference to o<strong>the</strong>rs of a similar<br />

nature that are not mentioned.<br />

ISBN 978-92-5-106859-5<br />

All rights reserved. <strong>FAO</strong> encourages reproduction <strong>and</strong> dissem<strong>in</strong>ation of<br />

material <strong>in</strong> this <strong>in</strong><strong>for</strong>mation product. Non-commercial uses will be authorized<br />

free of charge, upon request. Reproduction <strong>for</strong> resale or o<strong>the</strong>r commercial<br />

purposes, <strong>in</strong>clud<strong>in</strong>g educational purposes, may <strong>in</strong>cur fees. Applications <strong>for</strong><br />

permission to reproduce or dissem<strong>in</strong>ate <strong>FAO</strong> copyright materials, <strong>and</strong> all<br />

queries concern<strong>in</strong>g rights <strong>and</strong> licences, should be addressed by e-mail to<br />

copyright@fao.org or to <strong>the</strong> Chief, Publish<strong>in</strong>g Policy <strong>and</strong> Support Branch,<br />

<strong>Office</strong> of Knowledge Exchange, Research <strong>and</strong> Extension, <strong>FAO</strong>,<br />

Viale delle Terme di Caracalla, 00153 Rome, Italy.<br />

© <strong>FAO</strong> 2011


Table of contents<br />

Table of contents ...................................................................................................................... iv<br />

List of Photos ............................................................................................................................ vi<br />

List of Figures .......................................................................................................................... vi<br />

List of tables ............................................................................................................................ vii<br />

Abbreviations ......................................................................................................................... viii<br />

Introduction ............................................................................................................................... 1<br />

Executive Summary .................................................................................................................. 2<br />

1. Introduction to <strong>the</strong> use of compost worms <strong>in</strong> <strong>Egypt</strong> .............................................................. 3<br />

1.1. Historical background ...................................................................................... 3<br />

1.2. Geographic distribution of earth worms ........................................................ 4<br />

1.3. Types of earthworms ........................................................................................ 6<br />

1.4. Vermicompost<strong>in</strong>g species ................................................................................. 6<br />

1.5. Native earthworm species <strong>in</strong> <strong>Egypt</strong> ................................................................. 7<br />

1.6. <strong>Vermiculture</strong> <strong>and</strong> vermicompost<strong>in</strong>g ............................................................... 8<br />

2. Trial of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g implementation <strong>in</strong> <strong>Egypt</strong> ............................... 10<br />

2.1. Pr<strong>in</strong>ciple of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g ......................................... 10<br />

2.1.1. Bedd<strong>in</strong>g ..................................................................................................... 10<br />

2.1.2. Worm Food ............................................................................................... 11<br />

2.1.3. Moisture .................................................................................................... 14<br />

2.1.4. Aeration .................................................................................................... 14<br />

2.1.5. Temperature control ................................................................................ 15<br />

2.2. Methods of vermicompost<strong>in</strong>g ......................................................................... 16<br />

2.2.1. Pits below <strong>the</strong> ground .............................................................................. 16<br />

2.2.2. Heap<strong>in</strong>g above <strong>the</strong> ground ...................................................................... 17<br />

2.2.3. Tanks above <strong>the</strong> ground .......................................................................... 17<br />

2.2.4. Cement r<strong>in</strong>gs............................................................................................. 18<br />

2.2.5. Commercial model ................................................................................... 18<br />

2.3. The trial experience <strong>in</strong> <strong>Egypt</strong> ......................................................................... 20<br />

2.3. 1. Earthworm types used:........................................................................... 20<br />

2.3.2. Bedd<strong>in</strong>g ..................................................................................................... 20<br />

2.3.3. Food ........................................................................................................... 21<br />

2.3.4. Moisture .................................................................................................... 22<br />

2.3.5. Aeration .................................................................................................... 22<br />

2.3.6. Temperature ............................................................................................. 23<br />

2.3.7 Harvest<strong>in</strong>g .................................................................................................. 23<br />

3. Use of compost worms globally <strong>in</strong> countries of similar climate ......................................... 26<br />

3.1 Vermicompost<strong>in</strong>g <strong>in</strong> Philipp<strong>in</strong>es ....................................................................................... 26<br />

3.2 Vermicompost<strong>in</strong>g <strong>in</strong> Cuba .............................................................................. 28<br />

3.3. Vermicompost<strong>in</strong>g <strong>in</strong> India .............................................................................. 29<br />

3.4. Vermicompost „teas‟ <strong>in</strong> Ohio, USA ............................................................... 32<br />

3.5. Vermicompost<strong>in</strong>g <strong>in</strong> United K<strong>in</strong>gdom .......................................................... 33<br />

4. Current on-farm <strong>and</strong> urban organic waste management practices <strong>in</strong> <strong>Egypt</strong>: gap analysis. . 34<br />

4.1. On-farm organic waste ................................................................................... 34<br />

4.1.1. Weak po<strong>in</strong>ts <strong>in</strong> rice straw system <strong>in</strong> <strong>Egypt</strong> ................................................ 35<br />

4.2. Urban wastes ................................................................................................... 35<br />

4.2.1. Overview of solid waste management problem <strong>in</strong> <strong>Egypt</strong> .......................... 35<br />

4.2.2. Ma<strong>in</strong> factors contribut<strong>in</strong>g to soil waste management problem .................. 36<br />

4.2.3. Waste generation rates ............................................................................... 37<br />

4.2.4. Major conventional solid waste systems are .............................................. 39<br />

iv


4.3. Overview of organic waste recovery options ................................................ 40<br />

4.3.1. Feed<strong>in</strong>g animals ........................................................................................ 40<br />

4.3.2. Compost .................................................................................................... 40<br />

4.3.3 L<strong>and</strong>fill disposal or <strong>in</strong>c<strong>in</strong>eration ................................................................. 40<br />

5. Potential of vermiculture as a means to produce fertilizers <strong>in</strong> <strong>Egypt</strong>. ................................. 45<br />

5.1. Fertilizer use <strong>in</strong> <strong>Egypt</strong> .................................................................................... 45<br />

5.2. Fertilizer statistics ............................................................................................. 46<br />

5.3. Vermicompost<strong>in</strong>g as fertilizers <strong>in</strong> <strong>Egypt</strong>....................................................... 48<br />

5.3.1. Urban waste vermicompost<strong>in</strong>g .................................................................. 49<br />

5.3.2. Vermicompost<strong>in</strong>g of agricultural wastes ................................................... 50<br />

5.3.3. Vermicomposts effect on plant growth ...................................................... 50<br />

5.4. Potentiality of vermicompost as a source of fertilizer <strong>in</strong> <strong>Egypt</strong> .................. 51<br />

6. Current animal feed prote<strong>in</strong> supplements production <strong>in</strong> <strong>Egypt</strong> <strong>and</strong> <strong>the</strong> potential to substitute<br />

desiccated compost worms as an animal feed supplement or use of live worms <strong>in</strong><br />

aquaculture <strong>in</strong>dustries. ...................................................................................................... 53<br />

6.1. Animal <strong>and</strong> aquaculture feed ......................................................................... 53<br />

6.2. Worm meal ...................................................................................................... 54<br />

6.3. Earthworms, <strong>the</strong> susta<strong>in</strong>able aquaculture feed of <strong>the</strong> future ..................... 56<br />

7. Current on-farm <strong>and</strong> urban organic waste management practices <strong>and</strong> environmental effects<br />

of those practices, e.g. carbon <strong>and</strong> methane emissions. .................................................... 62<br />

7.1. Emissions from vermicompost ....................................................................... 62<br />

7.2 Total emissions from waste sector <strong>in</strong> <strong>Egypt</strong> .................................................. 64<br />

7.3. Emissions from agricultural wastes .............................................................. 66<br />

7.4. Vermifilters <strong>in</strong> domestic wastewater treatment ........................................... 69<br />

8. Survey of global vermiculture implementation projects focused on greenhouse gas<br />

emission reductions ........................................................................................................... 71<br />

8.1. Background ..................................................................................................... 71<br />

8.2. Clean Development Mechanism (CDM) achievements <strong>in</strong> <strong>Egypt</strong> ................ 73<br />

8.3. <strong>Egypt</strong> National Strategy on <strong>the</strong> CDM ........................................................... 74<br />

8.4. The national regulatory framework .............................................................. 75<br />

9. Analysis of <strong>the</strong> <strong>Egypt</strong>ian context <strong>and</strong> applicability of vermiculture as a means of<br />

greenhouse gas emission reduction. .................................................................................. 76<br />

9.1. Profile of wastes <strong>in</strong> <strong>Egypt</strong> ............................................................................... 76<br />

9.1.1. Municipal solid waste ................................................................................ 76<br />

9.1.2. Agricultural wastes .................................................................................. 77<br />

9.2. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> solid wastes ......................................... 77<br />

9.3. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> agriculture wastes .............................. 79<br />

References ............................................................................................................................... 80<br />

Annex 1 ................................................................................................................................... 85<br />

General <strong>in</strong><strong>for</strong>mation <strong>and</strong> FAQ ................................................................................................. 85<br />

v


List of Photos<br />

Photo 1.1 Rich fertile soil of <strong>the</strong> Nile Delta enables wide variety of crops<br />

to be grown.<br />

4<br />

Photo 2.1 Open pit vermicompost<strong>in</strong>g - Kirungakottai. 16<br />

Photo 2.2 Open heap vermicompost<strong>in</strong>g. 17<br />

Photo 2.3 Commercial vermicompost operation at KCDC Bangalore, India 18<br />

Photo 2.4 Cement r<strong>in</strong>g vermicompost<strong>in</strong>g 18<br />

Photo 2.5 Commercial vermicompost<strong>in</strong>g unit 19<br />

Photo 2.6 Earthworms used <strong>in</strong> <strong>Egypt</strong> 20<br />

Photo 2.7 Trial vermicompost set up at Dokki. 21<br />

Photo 2.8 Mixture of food wastes <strong>and</strong> shredded plant material ready to be<br />

mixed <strong>in</strong> <strong>the</strong> rotat<strong>in</strong>g mach<strong>in</strong>e.<br />

21<br />

Photo 2.9 The locally manufactured shredd<strong>in</strong>g mach<strong>in</strong>e. 22<br />

Photo 2.10 The shaded grow<strong>in</strong>g beds. 23<br />

Photo 2.11 Harvest<strong>in</strong>g of cast<strong>in</strong>gs. 24<br />

Photo 2.12 Harvested adult worms from <strong>the</strong> grow<strong>in</strong>g beds. 24<br />

Photo 2.13 Couple of adult worms, with clear clitellum <strong>in</strong> both of <strong>the</strong>m. 25<br />

Photo 2.14 Worm eggs. 25<br />

Photo 3.1 Earthworm plots show<strong>in</strong>g plastic covers <strong>and</strong> support frame. 27<br />

Photo 3.2 W<strong>in</strong>drows vermicompost<strong>in</strong>g method: <strong>in</strong> Havana, Cuba . 29<br />

Photo 3.3 Women self-help group <strong>in</strong>volved <strong>in</strong> vermicompost<strong>in</strong>g, to<br />

promote micro-enterprises <strong>and</strong> generate <strong>in</strong>come.<br />

List of Figures<br />

Figure 2.1 Commercial model of vermicompost<strong>in</strong>g developed by ICRISAT 19<br />

Figure 5.1 Trends of production, imports <strong>and</strong> exports (1000 tonnes of<br />

nutrients) of fertilizers <strong>in</strong> <strong>Egypt</strong><br />

47<br />

Figure 5.2 Consumption of nitrogen, phosphate, potassium <strong>and</strong> total<br />

fertilizers <strong>in</strong> <strong>Egypt</strong>.<br />

48<br />

Figure 7.1 <strong>Egypt</strong>‟s GHG emissions by gas type <strong>for</strong> <strong>the</strong> year 2000 <strong>in</strong> mega<br />

tones of carbon dioxide equivalent.<br />

68<br />

Figure 7.2 <strong>Egypt</strong>‟s GHG emissions by sector <strong>for</strong> <strong>the</strong> year 2000, <strong>in</strong> mega<br />

tones of carbon dioxide equivalent.<br />

69<br />

Figure 7.3 Layout of <strong>the</strong> vermifilter. 70<br />

vi<br />

30


List of tables<br />

Table 1.1 Major families of Oligochaeta (order Opisthophora) <strong>and</strong> <strong>the</strong>ir<br />

regions of orig<strong>in</strong>.<br />

5<br />

Table 2.1 Common bedd<strong>in</strong>g materials. 11<br />

Table 2.2 Advantages <strong>and</strong> disadvantages of different types of feed. 12<br />

Table 3.1 Summary <strong>for</strong> production of vermicompost at farm scale <strong>in</strong><br />

Andaman <strong>and</strong> Nicobar (A&N) Isl<strong>and</strong>s, India.<br />

31<br />

Table 4.1 Municipal solid waste contents 2000-2005. 36<br />

Table 4.2 Distribution of waste accord<strong>in</strong>g to <strong>the</strong> sources. 37<br />

Table 4.3 Distribution of wastes accord<strong>in</strong>g to its sources <strong>and</strong> Governorates 38<br />

2007/2008 <strong>in</strong> tons.<br />

Table 4.4 <strong>Egypt</strong>‟s Integrated Solid Waste Management Plan <strong>for</strong> <strong>the</strong> period<br />

2007-2012.<br />

42<br />

Table 4.5 Solid waste accumulation <strong>in</strong> <strong>the</strong> <strong>Egypt</strong>ian Governorates. 43<br />

Table 4.6 Solid waste amount produced by governorates <strong>and</strong> <strong>the</strong> organic<br />

materials percentages For <strong>the</strong> year 2008.<br />

44<br />

Table 5.1 Physical <strong>and</strong> chemical analysis of various soil types. 46<br />

Table 5.2 The ma<strong>in</strong> types of fertilizers used <strong>in</strong> <strong>Egypt</strong>. 47<br />

Table 5.3 Potential nutrients that could be obta<strong>in</strong>ed from urban <strong>and</strong><br />

agriculture wastes <strong>in</strong> <strong>Egypt</strong>.<br />

52<br />

Table 6.1 Chemical composition % of various worm meal (<strong>in</strong> dry matter). 55<br />

Table 6.2 Essential am<strong>in</strong>o acid profile of vermi meals (g/16 gN). 55<br />

Table 6.3 Macro <strong>and</strong> trace m<strong>in</strong>eral contents of freeze dried vermi meal<br />

(Eudrilus eugeniae).<br />

55<br />

Table 6.4 Different nutrient concentration <strong>in</strong> manure <strong>and</strong> fertilizer applied<br />

(average value of triplicate sample analyzed).<br />

58<br />

Table 6.5 Average values (±SD) of physico-chemical parameters of water,<br />

primary productivity of phytoplankton <strong>and</strong> f<strong>in</strong>al body weights <strong>and</strong><br />

fish production of Cypr<strong>in</strong>us carpio (Ham.) <strong>in</strong> various treatments.<br />

59<br />

Table 6.6 Composition (% dry matter) of tested prote<strong>in</strong>s sources or<br />

supplements <strong>for</strong> fish feeds.<br />

60<br />

Table 6.7 Am<strong>in</strong>o acid (g/100g prote<strong>in</strong>) profiles of tested prote<strong>in</strong> sources or<br />

supplement as compared to fish meal (FM).<br />

61<br />

Table 7.1 Summary of greenhouse gas emissions <strong>for</strong> <strong>Egypt</strong>, 2000. 65<br />

Table 7.2 <strong>Egypt</strong>‟s greenhouse gas emissions by gas type <strong>for</strong> <strong>the</strong> year 2000. 67<br />

Table 7.3 <strong>Egypt</strong>‟s greenhouse gas emissions by sector <strong>for</strong> <strong>the</strong> year 2000. 68<br />

Table 9.1 Summary of identified mitigation measures <strong>for</strong> solid wastes. 78<br />

vii


Abbreviations<br />

AF Africa<br />

ARC Agricultural Research Center of <strong>Egypt</strong><br />

ARE Arab Republic of <strong>Egypt</strong><br />

AS Asia<br />

CA Central America<br />

CDM Clean Development Mechanism<br />

CER Certified Emissions Reductions<br />

CH4<br />

Methane<br />

CO Carbon monoxide<br />

CO2<br />

Carbon dioxide<br />

CO2e Equivalent carbon dioxide<br />

COPx Conference of parties number x<br />

DAP Diammonium phosphate<br />

EEAA <strong>Egypt</strong> Environmental Affairs Agency<br />

EU Europe<br />

<strong>FAO</strong> Food <strong>and</strong> Agriculture Organization<br />

GHG Greenhouse gas<br />

GIS Geographic In<strong>for</strong>mation System<br />

GTZ German Technical Cooperation Agency<br />

GWP Global Warm<strong>in</strong>g Potential<br />

ha Hectare, 10 thous<strong>and</strong> square meters<br />

HFC Hydrofluorocarbon<br />

ICRISAT International Crops Research Institute <strong>for</strong> <strong>the</strong> Semi-Arid Tropics<br />

IPCC Inter-governmental Panel on Climate Change<br />

JA Japan<br />

MA Madagascar<br />

ME Mediteranean<br />

MSW Municipal Solid Waste<br />

MSW Municipal Solid Waste<br />

Mt Million tons<br />

N2O Nitrous oxide<br />

NA North America<br />

NH3<br />

Ammonia<br />

NOx Nitrogen oxides<br />

NSS National Strategy Studies<br />

OC Oceania<br />

PFC's Perfluorocarbons<br />

SA South America<br />

viii


SF6<br />

Sulphur hexafluoride<br />

SWM Solid Waste Management<br />

Tg Teragrams<br />

UNCED United Nations Conference on Environment <strong>and</strong> Development<br />

UNDP United Nations Development Program<br />

UNFCCC United Nations Framework Convention on Climate Change<br />

USA The United States of America<br />

USA Unites States of America<br />

VF Vermifiltration: filtration utiliz<strong>in</strong>g earth worms<br />

VOC Volatile Organic Compound<br />

VSS Volatile suspendedsolids<br />

WWTP Wastewater treatment plant<br />

ix


Introduction<br />

The total amount of solid waste generated yearly <strong>in</strong> <strong>Egypt</strong> is about 17 million tons<br />

from municipal sources, 6 million tons from <strong>in</strong>dustrial sources <strong>and</strong> 30 million tons<br />

from agricultural sources. Approximately 8% of municipal solid waste is composted,<br />

2% recycled, 2% l<strong>and</strong>-filled <strong>and</strong> 88% disposed of <strong>in</strong> uncontrolled dumpsites.<br />

Agricultural wastes ei<strong>the</strong>r burned <strong>in</strong> <strong>the</strong> fields or used <strong>in</strong> <strong>the</strong> production of organic<br />

fertilizers, animal fodder <strong>and</strong> food or energy production. National ef<strong>for</strong>ts are be<strong>in</strong>g<br />

exerted to m<strong>in</strong>imize burn<strong>in</strong>g <strong>the</strong> agricultural wastes. There is a great opportunity <strong>for</strong><br />

maximiz<strong>in</strong>g <strong>the</strong> economical benefits of organic wastes by utiliz<strong>in</strong>g <strong>the</strong> earth worms as<br />

"biological mach<strong>in</strong>es" utiliz<strong>in</strong>g <strong>the</strong> waste <strong>for</strong> valuable commodities.<br />

Assessment of greenhouse gases (GHG) emissions <strong>for</strong> <strong>Egypt</strong> revealed that <strong>the</strong> total<br />

emissions <strong>in</strong> <strong>the</strong> year 2000 were about 193 MtCO2e, compared to about 117 MtCO2e<br />

<strong>in</strong> 1990, represent<strong>in</strong>g an average <strong>in</strong>crease of 5.1% annually. Estimated total<br />

greenhouse gas emissions <strong>in</strong> 2008 are about 288 MtCO2e. Although waste sector<br />

produces <strong>the</strong> least quantity of greenhouse gases <strong>in</strong> <strong>Egypt</strong>, without <strong>the</strong> organic residues<br />

burned from <strong>the</strong> agriculture sector, which when added toge<strong>the</strong>r can be <strong>in</strong> a higher<br />

rank. Convert<strong>in</strong>g organic wastes, whe<strong>the</strong>r municipal or agricultural, <strong>in</strong>to<br />

vermicompost can substantially reduce <strong>the</strong> greenhouse gas emission that could be paid<br />

back through <strong>the</strong> clean development mechanism (CDM) of Kyoto Protocol.<br />

From ano<strong>the</strong>r perspective, proper h<strong>and</strong>l<strong>in</strong>g of wastes, especially organic, <strong>in</strong> mega<br />

cities such as Cairo, will reduce <strong>the</strong> environmental impact on both public <strong>and</strong><br />

government. Any ef<strong>for</strong>t lead to cleaner streets is highly appreciated. The availability<br />

of organic compost from various sources will have a direct positive impact on<br />

agriculture <strong>in</strong> <strong>Egypt</strong>, as most soils of modern agriculture have poor organic matter<br />

contents. The benefits of convert<strong>in</strong>g organic wastes <strong>in</strong>to compost to be added to <strong>the</strong><br />

soil apply also to similar countries <strong>in</strong> <strong>the</strong> Middle <strong>East</strong> <strong>and</strong> North Africa.<br />

As general <strong>in</strong><strong>for</strong>mation regard<strong>in</strong>g <strong>the</strong> utilization of earthworm <strong>in</strong> compost<strong>in</strong>g:<br />

- One thous<strong>and</strong> adult worms weigh approximately one kilogram.<br />

- One kilogram of adults can convert up to 5 kilograms of waste per day.<br />

- Approximately ten kilograms of adults can convert one ton waste per month.<br />

- Two thous<strong>and</strong> adults can be accommodated <strong>in</strong> one square meter.<br />

- One thous<strong>and</strong> earthworms <strong>and</strong> <strong>the</strong>ir descendants, under ideal conditions, could<br />

convert approximately one ton of organic waste <strong>in</strong>to high yield fertilizer <strong>in</strong> one<br />

year.<br />

The purpose of this work is to <strong>in</strong>vestigat<strong>in</strong>g current development of vermiculture<br />

under <strong>the</strong> <strong>Egypt</strong>ian conditions, <strong>and</strong> to discuss its potential as an effective means of<br />

convert<strong>in</strong>g <strong>the</strong> carbon <strong>and</strong> nitrogen <strong>in</strong> domestic <strong>and</strong> agricultural organic wastes <strong>in</strong>to<br />

bio-available nutrients <strong>for</strong> food production, <strong>and</strong> <strong>the</strong> potential of vermiculture as means<br />

of reduction <strong>the</strong> greenhouse gas emissions that have negative impacts on <strong>the</strong><br />

environment.<br />

1


Executive Summary<br />

<strong>Vermiculture</strong> <strong>in</strong> <strong>Egypt</strong> dates s<strong>in</strong>ce Cleopatra. However, <strong>the</strong> Green Revolution, with its<br />

dependence on fossil fuelled large scale mach<strong>in</strong>ery <strong>and</strong> operations, toge<strong>the</strong>r with <strong>the</strong><br />

damm<strong>in</strong>g of <strong>the</strong> Nile, has <strong>in</strong> recent times all but removed <strong>the</strong> environment <strong>in</strong> which<br />

compost worms, most commonly Eisenia Foetida, can thrive.<br />

The total quantity of solid wastes generated <strong>in</strong> <strong>Egypt</strong> is 118.6 million tons/year <strong>in</strong><br />

2007/2008, <strong>in</strong>clud<strong>in</strong>g municipal solid waste (garbage) <strong>and</strong> agricultural wastes.<br />

Household waste constitutes about 60% of <strong>the</strong> total municipal waste quantities, with<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g 40% be<strong>in</strong>g generated by commercial establishments, service<br />

<strong>in</strong>stitutions, streets <strong>and</strong> gardens, hotels <strong>and</strong> o<strong>the</strong>r enterta<strong>in</strong>ment sector entities. Per<br />

capita generation rates <strong>in</strong> <strong>Egypt</strong>ian cities, villages <strong>and</strong> towns vary from lower than 0.3<br />

kg <strong>for</strong> low socio-economic groups <strong>and</strong> rural areas, to more than 1 kg <strong>for</strong> higher liv<strong>in</strong>g<br />

st<strong>and</strong>ards <strong>in</strong> urban centers. On a nationwide average, <strong>the</strong> composition is about 50-60%<br />

food wastes, 10-20% paper, <strong>and</strong> 1-7% each of metals, cloth, glass, <strong>and</strong> plastics, <strong>and</strong><br />

<strong>the</strong> rema<strong>in</strong>der is basically <strong>in</strong>organic matter <strong>and</strong> o<strong>the</strong>rs.<br />

Currently, solid waste quantities h<strong>and</strong>led by waste management systems are estimated<br />

at about 40,000 tons per day, with 30,000 tons per day be<strong>in</strong>g produced <strong>in</strong> cities, <strong>and</strong><br />

<strong>the</strong> rest generated from <strong>the</strong> pre-urban <strong>and</strong> rural areas. F<strong>in</strong>al dest<strong>in</strong>ations of municipal<br />

solid waste entail about 8% of <strong>the</strong> waste be<strong>in</strong>g composted, 2% recycled, 2%<br />

l<strong>and</strong>filled, <strong>and</strong> 88% dumped <strong>in</strong> uncontrolled open dumps.<br />

The organic wastes <strong>in</strong> cities can be as large as 10-15 thous<strong>and</strong> tons per day. After <strong>the</strong><br />

sw<strong>in</strong>e flu <strong>and</strong> <strong>the</strong> government decision to get rid of all sw<strong>in</strong>e used to live on <strong>the</strong><br />

organic wastes <strong>in</strong> <strong>the</strong> garbage collection sites near <strong>the</strong> cities, earth worms could be <strong>the</strong><br />

alternate biological mach<strong>in</strong>es that could h<strong>and</strong>le <strong>the</strong> wastes with greater revenues <strong>and</strong><br />

cleaner production. There is a great opportunity <strong>for</strong> all municipal waste systems to<br />

adapt <strong>the</strong> vermicompost <strong>in</strong> <strong>the</strong>ir operation.<br />

<strong>Egypt</strong> produces around 25 to 30 Mt of agriculture waste annually (around 66,000 tons<br />

per day). Some of this waste is used <strong>in</strong> <strong>the</strong> production of organic fertilizers, animal<br />

fodder, food production, energy production, or o<strong>the</strong>r useful purposes. <strong>Vermiculture</strong> is<br />

also a valuable system <strong>for</strong> convert<strong>in</strong>g most of <strong>the</strong> organic waste <strong>in</strong>to vermicompost.<br />

With rural awareness <strong>and</strong> tra<strong>in</strong><strong>in</strong>g, vermicompost could be produced <strong>in</strong> all villages.<br />

The target groups of this book are all growers, <strong>in</strong>clud<strong>in</strong>g organic agriculture growers,<br />

as well as all organic waste producers from as small scale as households to <strong>the</strong> large<br />

scale urban solid waste operations. The very rich <strong>and</strong> valuable organic vermicompost<br />

produce will assist <strong>in</strong> enrich<strong>in</strong>g <strong>the</strong> soil, especially s<strong>and</strong>y <strong>and</strong> newly reclaimed soil,<br />

with organic matter <strong>and</strong> fertilizers <strong>in</strong> <strong>the</strong> <strong>for</strong>m of prote<strong>in</strong>s, enzymes, hormones, humus<br />

substances, vitam<strong>in</strong>s, sugars, <strong>and</strong> synergistic compounds, which makes it as<br />

productive as good soil.<br />

2


1. Introduction to <strong>the</strong> use of compost worms <strong>in</strong> <strong>Egypt</strong><br />

1.1. Historical background<br />

The importance of earthworms is not a very modern phenomenon. Earthworms have<br />

been on <strong>the</strong> Earth <strong>for</strong> over 20 million years. In this time <strong>the</strong>y have faithfully done <strong>the</strong>ir<br />

part to keep <strong>the</strong> cycle of life cont<strong>in</strong>uously mov<strong>in</strong>g. Their purpose is simple but very<br />

important. They are nature‟s way of recycl<strong>in</strong>g organic nutrients from dead tissues<br />

back to liv<strong>in</strong>g organisms. Many have recognized <strong>the</strong> value of <strong>the</strong>se worms. Ancient<br />

civilizations, <strong>in</strong>clud<strong>in</strong>g Greece <strong>and</strong> <strong>Egypt</strong> valued <strong>the</strong> role earthworms played <strong>in</strong> soil.<br />

The ancient <strong>Egypt</strong>ians were <strong>the</strong> first to recognize <strong>the</strong> beneficial status of <strong>the</strong><br />

earthworm. The <strong>Egypt</strong>ian Pharaoh, Cleopatra (69 – 30 B.C.) said, “Earthworms are<br />

sacred.” She recognized <strong>the</strong> important role <strong>the</strong> worms played <strong>in</strong> fertiliz<strong>in</strong>g <strong>the</strong> Nile<br />

Valley cropl<strong>and</strong>s after annual floods. Removal of earthworms from <strong>Egypt</strong> was<br />

punishable by death. <strong>Egypt</strong>ian farmers were not allowed to even touch an earthworm<br />

<strong>for</strong> fear of offend<strong>in</strong>g <strong>the</strong> God of fertility. The Ancient Greeks considered <strong>the</strong><br />

earthworm to have an important role <strong>in</strong> improv<strong>in</strong>g <strong>the</strong> quality of <strong>the</strong> soil. The Greek<br />

philosopher Aristotle (384 – 322 B.C.) referred to worms as “<strong>the</strong> <strong>in</strong>test<strong>in</strong>es of <strong>the</strong><br />

earth”.<br />

Jerry M<strong>in</strong>nich, <strong>in</strong> The Earthworm Book (Rodale, 1977), provides a historical<br />

overview which <strong>in</strong>dicates that at <strong>the</strong> end of <strong>the</strong> last Ice Age, some 10,000 years ago,<br />

earthworm populations had been decimated <strong>in</strong> many regions by glaciers <strong>and</strong> o<strong>the</strong>r<br />

adverse climatic conditions. Many surviv<strong>in</strong>g species were nei<strong>the</strong>r productive nor<br />

prolific. In places where active species <strong>and</strong> suitable environments were found, such as<br />

<strong>the</strong> Nile River Valley, earthworms played a significant role <strong>in</strong> agricultural<br />

susta<strong>in</strong>ability. While <strong>the</strong> Nile‟s long-term fertility is well known <strong>and</strong> attributed to rich<br />

alluvial deposits brought by annual floods, <strong>the</strong>se materials were mixed <strong>and</strong> stabilized<br />

by valley-dwell<strong>in</strong>g earthworms. In 1949, <strong>the</strong> USDA estimated that earthworms<br />

contributed approximately 120 tons of <strong>the</strong>ir cast<strong>in</strong>gs per year to each acre of <strong>the</strong> Nile<br />

floodpla<strong>in</strong> (Tilth, 1982).<br />

<strong>Egypt</strong> has historically had some of <strong>the</strong> most productive <strong>and</strong> fertile l<strong>and</strong> <strong>in</strong> <strong>the</strong> world.<br />

The Nile River not only provides water critical <strong>for</strong> agriculture, but <strong>in</strong> times past, <strong>the</strong><br />

annual flood<strong>in</strong>g of <strong>the</strong> Nile deposited nutrient-rich soil onto <strong>the</strong> l<strong>and</strong>. In recent years,<br />

<strong>the</strong> Aswan High Dam has virtually elim<strong>in</strong>ated <strong>the</strong> annual flood which has resulted <strong>in</strong> a<br />

loss of <strong>the</strong> beneficial soil deposits lead<strong>in</strong>g to a need <strong>for</strong> organic material on l<strong>and</strong>s used<br />

<strong>for</strong> agricultural production <strong>in</strong> <strong>Egypt</strong>.<br />

Charles Darw<strong>in</strong> (1809 –1882) studied earthworms <strong>for</strong> more than <strong>for</strong>ty years <strong>and</strong><br />

devoted an entire book (The Formation of Vegetable Mould through <strong>the</strong> Action of<br />

Worms) to <strong>the</strong> earthworm. Darw<strong>in</strong> said, “it may be doubted that <strong>the</strong>re are many o<strong>the</strong>r<br />

animals which have played so important a part <strong>in</strong> <strong>the</strong> history of <strong>the</strong> world as have<br />

<strong>the</strong>se lowly organized creatures”.<br />

3


For three millennia (3,000 years), <strong>the</strong> thriv<strong>in</strong>g civilization of ancient <strong>Egypt</strong> was<br />

strik<strong>in</strong>gly successful <strong>for</strong> two reasons: 1) The Nile River, which brought abundant<br />

water to <strong>the</strong> o<strong>the</strong>rwise parched l<strong>and</strong>s of <strong>the</strong> region; <strong>and</strong> 2) <strong>the</strong> billions of earthworms<br />

that converted <strong>the</strong> annual deposit of silt <strong>and</strong> organic matter, brought down by <strong>the</strong><br />

annual floods <strong>in</strong>to <strong>the</strong> richest food-produc<strong>in</strong>g soil anywhere. Those <strong>Egypt</strong>ian worms<br />

are thought to be <strong>the</strong> found<strong>in</strong>g stock of <strong>the</strong> night crawlers that slowly spread<br />

throughout Europe <strong>and</strong> eventually came to <strong>the</strong> Western Hemisphere with <strong>the</strong> early<br />

settlers (Burton <strong>and</strong> Burton, 2002).<br />

1.2. Geographic distribution of earth worms<br />

4<br />

Photo 1.1.<br />

Rich fertile soil of<br />

<strong>the</strong> Nile Delta<br />

enables wide variety<br />

of crops to be<br />

grown.<br />

Source: Author<br />

The diversity of earthworm community is <strong>in</strong>fluenced by <strong>the</strong> characteristics of soil,<br />

climate <strong>and</strong> organic resources of <strong>the</strong> locality as well as history of l<strong>and</strong> use. The<br />

species poor communities are characterized by extreme soil conditions such as low<br />

pH, poor fertility, low fertility litter or a high degree of soil disturbance. The most<br />

significant soil factors affect<strong>in</strong>g <strong>the</strong> distribution of different species of earthworm are<br />

<strong>the</strong> C/N ratio, pH <strong>and</strong> contents of Al, Ca, Mg, organic matter, silt <strong>and</strong> coarse s<strong>and</strong><br />

(Ghafoor et al., 2008).<br />

Europe is <strong>the</strong> orig<strong>in</strong>al home of some of most common <strong>and</strong> productive earthworm<br />

species: Lumbricus rubellus (<strong>the</strong> red worm or red wiggler); Eisenia foetida (<strong>the</strong><br />

br<strong>and</strong>l<strong>in</strong>g, manure worm or tiger worm); Lumbricus terrestris (<strong>the</strong> common night<br />

crawler); <strong>and</strong> Allolobophora ealignosa (<strong>the</strong> field worm). The first two species are <strong>the</strong><br />

major „„earthworms of commerce, whose ideal liv<strong>in</strong>g environments are manure or<br />

compost heaps. The night crawler <strong>and</strong> field worms, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, both prefer<br />

grassl<strong>and</strong>s <strong>and</strong> woodl<strong>and</strong> marg<strong>in</strong>s. The ma<strong>in</strong> types <strong>in</strong> <strong>Egypt</strong> are Alma nilotico <strong>and</strong> A.<br />

stuhlmannt. Details of distribution of types will be discussed later <strong>in</strong> this chapter.<br />

Over 3500 earthworm species have been described worldwide, <strong>and</strong> it is estimated that<br />

fur<strong>the</strong>r surveys will reveal this number to be much larger. Dist<strong>in</strong>ct taxonomic groups<br />

of earthworms have arisen on every cont<strong>in</strong>ent except Antarctica, <strong>and</strong>, through human<br />

transport, some groups have been distributed worldwide (Hendrix <strong>and</strong> Bohlen, 2002).<br />

Earthworms are classified with<strong>in</strong> <strong>the</strong> phylum Annelida, class Clitellata, subclass<br />

Oligochaeta, order Opisthophora. There are 16 families worldwide (Table 1.1). Six of


<strong>the</strong>se families (cohort Aquamegadrili plus suborder Alluroid<strong>in</strong>a) comprise aquatic or<br />

semiaquatic worms, whereas <strong>the</strong> o<strong>the</strong>r 10 (cohort Terrimegadrili) consist of <strong>the</strong><br />

terrestrial <strong>for</strong>ms commonly known as earthworms. Two families (Lutodrilidae <strong>and</strong><br />

Komarekionidae, both monospecific) <strong>and</strong> genera from three or four o<strong>the</strong>rs<br />

(Sparganophilidae, Lumbricidae, Megascolecidae, <strong>and</strong> possibly Ocnerodrilidae) are<br />

<strong>Near</strong>ctic.<br />

No native earthworms have been reported from Canada east of <strong>the</strong> Pacific Northwest<br />

or from Alaska or Hawaii, although exotic species now occur <strong>in</strong> all of <strong>the</strong>se regions.<br />

Native earthworms <strong>in</strong> <strong>the</strong> families Ocnerodrilidae, Glossoscolecidae, <strong>and</strong><br />

Megascolecidae occur <strong>in</strong> Mexico <strong>and</strong> <strong>the</strong> Caribbean isl<strong>and</strong>s.<br />

Table 1.1. Major families of Oligochaeta (order Opisthophora) <strong>and</strong> <strong>the</strong>ir regions of<br />

orig<strong>in</strong>.<br />

Family Region of orig<strong>in</strong><br />

Limicolous or aquatic<br />

Alluroididae<br />

Syngenodrilidae<br />

Sparganophilidae<br />

Biwadrilidae<br />

Almidae<br />

Lutodrilidae<br />

Terrestrial<br />

Ocnerodrilidae<br />

Eudrilidae<br />

Kynotidae<br />

Komarekionidae<br />

Ailoscolecidae<br />

Microchaetidae<br />

Hormogastridae<br />

Glossoscolecidae<br />

Lumbricidae<br />

Megascolecidae<br />

AF, SA<br />

AF<br />

NA, EU<br />

JA<br />

EU, AF, SA, AS<br />

NA<br />

SA, CA, AF, AS, MA<br />

AF<br />

MA<br />

NA<br />

EU<br />

AF<br />

ME<br />

SA, CA<br />

NA, EU<br />

NA, CA, SA, OC, AS, AF, MA<br />

Note: AF = Africa, AS = Asia, CA = Central America,<br />

EU = Europe, JA = Japan, MA = Madagascar, ME = Mediteranean,<br />

NA = North America, OC = Oceania, SA = South America<br />

Source: Hendrix <strong>and</strong> Bohlen (2002)<br />

5


1.3. Types of earthworms<br />

Earthworm is a common polyphagous annelid <strong>and</strong> plays an important role <strong>in</strong> <strong>the</strong> soil<br />

ecosystem.<br />

Although all species of earthworms contribute to <strong>the</strong> breakdown of plant-derived<br />

organic matter, <strong>the</strong>y differ <strong>in</strong> <strong>the</strong> ways by which <strong>the</strong>y degrade organic matter.<br />

Accord<strong>in</strong>g to <strong>the</strong>ir habitat types <strong>and</strong> ecological functions, earthworms can be divided<br />

<strong>in</strong>to three types: <strong>the</strong> anecic, <strong>the</strong> endogeic, <strong>and</strong> <strong>the</strong> epigeic.<br />

Anecic (Greek <strong>for</strong> “out of <strong>the</strong> earth”) – <strong>the</strong>se are burrow<strong>in</strong>g worms that come to <strong>the</strong><br />

surface at night to drag food down <strong>in</strong>to <strong>the</strong>ir permanent burrows deep with<strong>in</strong> <strong>the</strong><br />

m<strong>in</strong>eral layers of <strong>the</strong> soil. Example: <strong>the</strong> Canadian Night crawler (Munroe , 2007).<br />

These species are of primary importance <strong>in</strong> pedogenesis.<br />

Endogeic (Greek <strong>for</strong> “with<strong>in</strong> <strong>the</strong> earth”) – <strong>the</strong>se are also burrow<strong>in</strong>g worms but <strong>the</strong>ir<br />

burrows are typically more shallow. Such species are limited ma<strong>in</strong>ly to <strong>the</strong> plant<br />

litter layer on <strong>the</strong> soil surface, composed of decay<strong>in</strong>g organic matter or wood, <strong>and</strong><br />

seldom penetrate soil more than superficially. The ma<strong>in</strong> role of <strong>the</strong>se species<br />

seems to be shredd<strong>in</strong>g of <strong>the</strong> organic matter <strong>in</strong>to f<strong>in</strong>e particles, which facilitates<br />

<strong>in</strong>creased microbial activity.<br />

Epigeic (Greek <strong>for</strong> “upon <strong>the</strong> earth”), <strong>the</strong>y are limited to liv<strong>in</strong>g <strong>in</strong> organic materials<br />

<strong>and</strong> cannot survive long <strong>in</strong> soil; <strong>the</strong>se species are commonly used <strong>in</strong> vermiculture<br />

<strong>and</strong> vermicompost<strong>in</strong>g. All earthworm species depend on consum<strong>in</strong>g organic<br />

matter <strong>in</strong> some <strong>for</strong>m, <strong>and</strong> <strong>the</strong>y play an important role, ma<strong>in</strong>ly by promot<strong>in</strong>g<br />

microbial activity <strong>in</strong> various stages of organic matter decomposition, which<br />

eventually <strong>in</strong>cludes humification <strong>in</strong>to complex <strong>and</strong> stable amorphous colloids<br />

conta<strong>in</strong><strong>in</strong>g phenolic materials. An example is Eisenia fetida, commonly known as<br />

(partial list only): <strong>the</strong> “compost worm”, “manure worm”, “redworm”, <strong>and</strong> “red<br />

wiggler”. This extremely tough <strong>and</strong> adaptable worm is <strong>in</strong>digenous to most parts of<br />

<strong>the</strong> world.<br />

1.4. Vermicompost<strong>in</strong>g species<br />

To consider a species to be suitable <strong>for</strong> use <strong>in</strong> vermicompost<strong>in</strong>g, it should possess<br />

certa<strong>in</strong> specific biological <strong>and</strong> ecological characteristics, i.e., an ability <strong>for</strong> coloniz<strong>in</strong>g<br />

organic wastes naturally; high rates of organic matter consumption, digestion <strong>and</strong><br />

assimilation of organic matter, able to tolerate a wide range of environmental factors;<br />

have high reproduction rate, produc<strong>in</strong>g large numbers of cocoons that should not have<br />

a long hatch<strong>in</strong>g time, <strong>and</strong> <strong>the</strong>ir growth <strong>and</strong> maturation rates from hatchl<strong>in</strong>g to adult<br />

<strong>in</strong>dividual should be rapid. It should be strong, resistant <strong>and</strong> survive h<strong>and</strong>l<strong>in</strong>g. Not too<br />

many species of earth worm have all <strong>the</strong>se characteristics.<br />

Those species used <strong>in</strong> vermiculture around <strong>the</strong> world are ma<strong>in</strong>ly “litter” species that<br />

<strong>in</strong>clude, but are not limited to: Eisenia fetida “Tiger Worm”, as mentioned earlier, <strong>and</strong><br />

its sibl<strong>in</strong>g species E. <strong>and</strong>rei “Red Tiger Worm”; Perionyx excavatus “Indian Blue”;<br />

Eudrilus eugeniae “African Nightcrawler”; Amynthas corticis) <strong>and</strong> A. gracilis<br />

“Pheretimas” (<strong>for</strong>merly known a P. hawayana); Eisenia hortensis <strong>and</strong> Eisenia veneta<br />

“European Nightcrawlers”; Lampito mauritii “Mauritius Worm”.<br />

6


Additional species used <strong>in</strong> Australia are Anisochaeta buckerfieldi, Anisochaeta spp.<br />

<strong>and</strong> Dichogaster spp.<br />

O<strong>the</strong>r worm species <strong>in</strong>volved <strong>in</strong> vermicompost<strong>in</strong>g are of Family Enchytraeidae<br />

(enchytraeid or pot worms), microdriles (small „aquatic‟ worms), free-liv<strong>in</strong>g<br />

nematodes (roundworms) (Blakemore , 2000).<br />

In recent years, <strong>in</strong>teractions of earthworms with microorganisms <strong>in</strong> degrad<strong>in</strong>g organic<br />

matter have been used commercially <strong>in</strong> systems designed to dispose agricultural <strong>and</strong><br />

urban organic wastes <strong>and</strong> convert <strong>the</strong>se materials <strong>in</strong>to valuable soil amendments <strong>for</strong><br />

crop production. Commercial enterprises process<strong>in</strong>g wastes <strong>in</strong> this way are exp<strong>and</strong><strong>in</strong>g<br />

worldwide <strong>and</strong> divert<strong>in</strong>g organic wastes from more expensive <strong>and</strong> environmentally<br />

harmful ways of disposal, such as <strong>in</strong>c<strong>in</strong>erators <strong>and</strong> l<strong>and</strong>fills (Padmavathiamma et al.,<br />

2008).<br />

1.5. Native earthworm species <strong>in</strong> <strong>Egypt</strong><br />

The Nile bas<strong>in</strong> is subdivided <strong>in</strong>to three Obligataete subregions: <strong>the</strong> ma<strong>in</strong> (Lower)<br />

Nile, from <strong>the</strong> Delta to Kartoum (Characterized by Alma nilotico <strong>and</strong> A. stuhlmannt),<br />

<strong>the</strong> Upper Nile from Kartoum to Centeral <strong>and</strong> <strong>East</strong> Africa (Characterized by A. em<strong>in</strong>i),<br />

<strong>and</strong> <strong>the</strong> Ethiopian subregion (Characterized by Eudrilus).<br />

In <strong>Egypt</strong> Species <strong>and</strong> locations newly <strong>in</strong>vestigated <strong>in</strong>clude Allolboplora<br />

(Aporrectodea) calig<strong>in</strong>osa, associated with <strong>the</strong> aquatic Eiseniella tetraedra <strong>in</strong> spr<strong>in</strong>g<br />

near <strong>the</strong> St. Ca<strong>the</strong>r<strong>in</strong>e monastery <strong>in</strong> South S<strong>in</strong>ai, <strong>and</strong> Allolboplora (Aporrectodea)<br />

rosea (Eisenia rosea) on <strong>the</strong> slops of <strong>the</strong> Mounta<strong>in</strong> of Moses, <strong>and</strong> near Monastery.<br />

Allolobophoru jassyensis is found <strong>in</strong> <strong>the</strong> Delta <strong>and</strong> Eiseniella tetraedra <strong>in</strong> S<strong>in</strong>ai<br />

(Ghabbour, 2009).<br />

The scarcity of earthworm <strong>in</strong> <strong>Egypt</strong>ian soils is mostly attributable to <strong>the</strong> aridity of <strong>the</strong><br />

climate <strong>and</strong> to <strong>the</strong> fact that <strong>the</strong> majority of cultivated l<strong>and</strong> is under <strong>the</strong> plough (arable).<br />

In an arid, almost ra<strong>in</strong>less country like <strong>Egypt</strong>, earth worm, which are highly sensitive<br />

to water loss, cannot move easily from a less to a more favorable place <strong>in</strong> or on dry<br />

ground. Earthworms are scarce <strong>in</strong> <strong>Egypt</strong> because of acreage of favorable soils (e.g.<br />

orchards <strong>and</strong> <strong>for</strong>est) is very small. Moreover, <strong>in</strong> o<strong>the</strong>r places (e.g. arable l<strong>and</strong> soils)<br />

<strong>the</strong> favorable conditions are transient. These favorable conditions are:<br />

1. An undisturbed soil.<br />

2. A regular <strong>and</strong> adequate water supply.<br />

3. A f<strong>in</strong>e soil texture (to raise <strong>the</strong> availability of water).<br />

4. A regular <strong>and</strong> adequate supply of organic matter.<br />

There are several well known species <strong>in</strong> <strong>Egypt</strong>, such as Aporrectodea calig<strong>in</strong>oosa that<br />

can survive <strong>in</strong> s<strong>and</strong> dunes soils but numbers decreased with <strong>in</strong>creased proportions of<br />

gravel <strong>and</strong> s<strong>and</strong>.<br />

Quantitative sampl<strong>in</strong>g <strong>for</strong> earthworms by h<strong>and</strong>-sort<strong>in</strong>g was carried out <strong>in</strong> fourteen<br />

localities <strong>in</strong> Beheira Governorate <strong>and</strong> adjacent areas by El-Duwe<strong>in</strong>i <strong>and</strong> Ghabbour<br />

(1965). They collected five different species: 1- Gordiodrilus sp., 2- Pheretima<br />

califonica ; 3-Pheretima Elongate; 4- Allolbophora calig<strong>in</strong>oosa f. trapezoids <strong>and</strong> 5-<br />

Eisenia rosea f. Biomastoides. A number of juvenile lumbrivids found <strong>in</strong> cattle<br />

7


enclosure could not be ascribed with certa<strong>in</strong>ty to ei<strong>the</strong>r of <strong>the</strong> latter two species <strong>and</strong><br />

are <strong>the</strong>re<strong>for</strong>e recorded separately.<br />

1.6. <strong>Vermiculture</strong> <strong>and</strong> vermicompost<strong>in</strong>g<br />

<strong>Vermiculture</strong> is <strong>the</strong> process of breed<strong>in</strong>g worms. Growers usually pay <strong>for</strong> <strong>the</strong>ir<br />

feedstock, <strong>and</strong> <strong>the</strong> worm cast<strong>in</strong>gs are often considered a waste product. <strong>Vermiculture</strong><br />

is <strong>the</strong> culture of earthworms. The goal is to cont<strong>in</strong>ually <strong>in</strong>crease <strong>the</strong> number of worms<br />

<strong>in</strong> order to obta<strong>in</strong> a susta<strong>in</strong>able harvest. The worms are ei<strong>the</strong>r used to exp<strong>and</strong> a<br />

vermicompost<strong>in</strong>g operation or sold to customers who use <strong>the</strong>m <strong>for</strong> <strong>the</strong> same or o<strong>the</strong>r<br />

purposes.<br />

Vermicompost<strong>in</strong>g, is a simple biotechnological process of compost<strong>in</strong>g, "Vermi" is a<br />

Lat<strong>in</strong> word mean<strong>in</strong>g "worm" <strong>and</strong> thus, vermicompost<strong>in</strong>g is compost<strong>in</strong>g with <strong>the</strong> aid of<br />

worms, <strong>in</strong> which certa<strong>in</strong> species of earthworms are used to enhance <strong>the</strong> process of<br />

waste conversion <strong>and</strong> produce a better end product. Vermicompost<strong>in</strong>g differs from<br />

compost<strong>in</strong>g <strong>in</strong> several ways. It is a mesophilic process, utiliz<strong>in</strong>g microorganisms <strong>and</strong><br />

earthworms that are active at 10–32°C (not ambient temperature but temperature<br />

with<strong>in</strong> <strong>the</strong> pile of moist organic material). The process is faster than compost<strong>in</strong>g;<br />

because <strong>the</strong> material passes through <strong>the</strong> earthworm gut, a significant but not yet fully<br />

understood trans<strong>for</strong>mation takes place, whereby <strong>the</strong> result<strong>in</strong>g earthworm cast<strong>in</strong>gs<br />

(worm manure) are rich <strong>in</strong> microbial activity <strong>and</strong> plant growth regulators, <strong>and</strong> <strong>for</strong>tified<br />

with pest repellence attributes as well (Munroe, 2007). In short, earthworms, through<br />

a type of biological alchemy, are capable of trans<strong>for</strong>m<strong>in</strong>g garbage <strong>in</strong>to valuable<br />

material (Nagavallemma et al., 2004). The ultimate goal of vermicompost<strong>in</strong>g is to<br />

produce vermicompost as quickly <strong>and</strong> efficiently as possible. If <strong>the</strong> goal is to produce<br />

vermicompost, maximum worm population density needs to be ma<strong>in</strong>ta<strong>in</strong>ed all of <strong>the</strong><br />

time. If <strong>the</strong> goal is to produce worms, population density needs to be kept low enough<br />

that reproductive rates are optimized.<br />

It is known that many extracellular enzymes can become bound to humic matter<br />

dur<strong>in</strong>g a compost<strong>in</strong>g or a vermicompost<strong>in</strong>g process, regardless of <strong>the</strong> type of organic<br />

matter used, but knowledge of <strong>the</strong> chemical <strong>and</strong> biochemical properties of such<br />

extracellular enzymes is very scanty (Benítez et al., 2000).<br />

Vermitechnology has been promoted as an eco-biotechnological tool to manage<br />

organic wastes generated from different sources (Suthar, 2010).<br />

Vermicast, similarly known as worm cast<strong>in</strong>gs, worm humus or worm manure, is<br />

<strong>the</strong> end-product of <strong>the</strong> breakdown of organic matter by a species of earthworm.<br />

Vermicast is very important to <strong>the</strong> fertility of <strong>the</strong> soil. The cast<strong>in</strong>gs conta<strong>in</strong> high<br />

amounts of nitrogen, potassium, phosphorus, calcium, <strong>and</strong> magnesium. Cast<strong>in</strong>gs<br />

conta<strong>in</strong>: 5 times <strong>the</strong> available nitrogen, 7 times <strong>the</strong> available potash, <strong>and</strong> 1½ times<br />

more calcium than found <strong>in</strong> good topsoil. It has excellent aeration, porosity, structure,<br />

dra<strong>in</strong>age, <strong>and</strong> moisture-hold<strong>in</strong>g capacity. Vermicast can hold close to n<strong>in</strong>e times <strong>the</strong>ir<br />

weight <strong>in</strong> water. It is a very good fertilizer, growth promoter <strong>and</strong> helps <strong>in</strong>duc<strong>in</strong>g<br />

flower<strong>in</strong>g <strong>and</strong> fruit-bear<strong>in</strong>g <strong>in</strong> higher plants. This can even help plants to get rid of<br />

pests <strong>and</strong> diseases (Venkatesh <strong>and</strong> Eevera, 2008 ).<br />

8


1.7. Compost vs. vermicompost<br />

Compost<strong>in</strong>g, generally def<strong>in</strong>ed as <strong>the</strong> biological aerobic trans<strong>for</strong>mation of an organic<br />

byproduct <strong>in</strong>to a different organic product that can be added to <strong>the</strong> soil without<br />

detrimental effects on crop growth, has been <strong>in</strong>dicated as <strong>the</strong> most adequate method<br />

<strong>for</strong> pre-treat<strong>in</strong>g <strong>and</strong> manag<strong>in</strong>g organic wastes. In <strong>the</strong> process of compost<strong>in</strong>g, organic<br />

wastes are recycled <strong>in</strong>to stabilized products that can be applied to <strong>the</strong> soil as an<br />

odorless <strong>and</strong> relatively dry source of organic matter, which would respond more<br />

efficiently <strong>and</strong> safely than <strong>the</strong> fresh material to soil organic fertility requirements. The<br />

conventional <strong>and</strong> most traditional method of compost<strong>in</strong>g consists of an accelerated<br />

biooxydation of <strong>the</strong> organic matter as it passes through a <strong>the</strong>rmophilic stage (45° to<br />

65°C) where microorganisms liberate heat, carbon dioxide <strong>and</strong> water.<br />

Vermicomposts conta<strong>in</strong> nutrients <strong>in</strong> <strong>for</strong>ms that are readily taken up by <strong>the</strong> plants such<br />

as nitrates, exchangeable phosphorus, <strong>and</strong> soluble potassium, calcium, <strong>and</strong><br />

magnesium. Vermicomposts should have a great potential <strong>in</strong> <strong>the</strong> horticultural <strong>and</strong><br />

agricultural <strong>in</strong>dustries as media <strong>for</strong> plant growth. Vermicomposts, whe<strong>the</strong>r used as<br />

soil additives or as components of horticultural media, improved seed germ<strong>in</strong>ation<br />

<strong>and</strong> enhanced rates of seedl<strong>in</strong>g growth <strong>and</strong> development.<br />

However, compost<strong>in</strong>g <strong>and</strong> vermicompost<strong>in</strong>g are quite dist<strong>in</strong>ct processes, particularly<br />

concern<strong>in</strong>g <strong>the</strong> optimum temperatures <strong>for</strong> each process <strong>and</strong> <strong>the</strong> types of microbial<br />

communities that predom<strong>in</strong>ate dur<strong>in</strong>g active process<strong>in</strong>g (i.e. <strong>the</strong>rmophilic bacteria <strong>in</strong><br />

compost<strong>in</strong>g, mesophilic bacteria <strong>and</strong> fungi <strong>in</strong> vermicompost<strong>in</strong>g). The wastes<br />

processed by <strong>the</strong> two systems are also quite different. Vermicomposts have a much<br />

f<strong>in</strong>er structure than composts <strong>and</strong> conta<strong>in</strong> nutrients <strong>in</strong> <strong>for</strong>ms that are readily available<br />

<strong>for</strong> plant uptake. There have also been reports of production of plant growth<br />

regulators <strong>in</strong> <strong>the</strong> vermicomposts. There<strong>for</strong>e, it was hypo<strong>the</strong>sized that <strong>the</strong>re should be<br />

considerable differences <strong>in</strong> <strong>the</strong> per<strong>for</strong>mances <strong>and</strong> effects of composts <strong>and</strong><br />

vermicomposts on plant growth when used as soil amendments or as components of<br />

horticultural plant growth media (Atiyeh et al., 2000).<br />

9


2. Trial of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g<br />

implementation <strong>in</strong> <strong>Egypt</strong><br />

The historical background, geographic distribution of earth worms, types of<br />

earthworms, native earthworm species, <strong>for</strong>mal def<strong>in</strong>itions of vermiculture <strong>and</strong><br />

vermicompost<strong>in</strong>g, <strong>and</strong> a comparison between compost <strong>and</strong> vermicompost were<br />

<strong>in</strong>troduced <strong>in</strong> <strong>the</strong> previous chapter. This chapter deals with <strong>the</strong> physical requirements<br />

of vermiculture <strong>and</strong> vermicompost, <strong>and</strong> ends by <strong>the</strong> implementation trial of both<br />

vermiculture <strong>and</strong> vermicompost <strong>in</strong> <strong>Egypt</strong>, <strong>in</strong>clud<strong>in</strong>g all details of this trial.<br />

2.1. Pr<strong>in</strong>ciple of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g<br />

Compost worms need five basic pr<strong>in</strong>ciples: a hospitable liv<strong>in</strong>g environment, usually<br />

called “bedd<strong>in</strong>g”, a food source, adequate moisture (greater than 50% water content<br />

by weight), adequate aeration, <strong>and</strong> protection from temperature extremes. These five<br />

essentials are discussed below <strong>in</strong> more details accord<strong>in</strong>g to Munroe (2007).<br />

2.1.1. Bedd<strong>in</strong>g<br />

Bedd<strong>in</strong>g is any material that provides <strong>the</strong> worms with a relatively stable habitat. This<br />

habitat must have <strong>the</strong> follow<strong>in</strong>g characteristics:<br />

- High absorbency. Worms brea<strong>the</strong> through <strong>the</strong>ir sk<strong>in</strong>s <strong>and</strong> <strong>the</strong>re<strong>for</strong>e must have a<br />

moist environment <strong>in</strong> which to live. If a worm‟s sk<strong>in</strong> dries out, it dies. The bedd<strong>in</strong>g<br />

must be able to absorb <strong>and</strong> reta<strong>in</strong> water fairly well if <strong>the</strong> worms are to thrive.<br />

- Good bulk<strong>in</strong>g potential. If <strong>the</strong> material is too dense to beg<strong>in</strong> with, or packs too<br />

tightly, <strong>the</strong>n <strong>the</strong> flow of air is reduced or elim<strong>in</strong>ated. Worms require oxygen to live,<br />

just as we do. Different materials affect <strong>the</strong> overall porosity of <strong>the</strong> bedd<strong>in</strong>g through<br />

a variety of factors, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> range of particle size <strong>and</strong> shape, <strong>the</strong> texture, <strong>and</strong><br />

<strong>the</strong> strength <strong>and</strong> rigidity of its structure.<br />

- Low prote<strong>in</strong> <strong>and</strong>/or nitrogen content (high carbon: nitrogen ratio). Although <strong>the</strong><br />

worms do consume <strong>the</strong>ir bedd<strong>in</strong>g as it breaks down, it is very important that this be<br />

a slow process. High prote<strong>in</strong>/nitrogen levels can result <strong>in</strong> rapid degradation <strong>and</strong> its<br />

associated heat<strong>in</strong>g, creat<strong>in</strong>g <strong>in</strong>hospitable, often fatal, conditions. Heat<strong>in</strong>g can occur<br />

safely <strong>in</strong> <strong>the</strong> food layers of <strong>the</strong> vermiculture or vermicompost<strong>in</strong>g system, but not <strong>in</strong><br />

<strong>the</strong> bedd<strong>in</strong>g.<br />

Some materials make good bedd<strong>in</strong>gs all by <strong>the</strong>mselves, while o<strong>the</strong>rs lack one or more<br />

of <strong>the</strong> above characteristics <strong>and</strong> need to be used <strong>in</strong> various comb<strong>in</strong>ations. Table 2.1<br />

provides a list of some of <strong>the</strong> most commonly used bedd<strong>in</strong>gs <strong>and</strong> provides some <strong>in</strong>put<br />

regard<strong>in</strong>g each material‟s absorbency, bulk<strong>in</strong>g potential, <strong>and</strong> carbon to nitrogen (C:N)<br />

ratios.<br />

10


Table 2.1. Common Bedd<strong>in</strong>g Materials:<br />

Bedd<strong>in</strong>g Material Absorbency Bulk<strong>in</strong>g Pot. C:N Ratio<br />

Horse Manure Medium-Good Good 22 - 56<br />

Peat Moss Good Medium 58<br />

Corn Silage Medium-Good Medium 38 - 43<br />

Hay – general Poor Medium 15 - 32<br />

Straw – general Poor Medium-Good 48 - 150<br />

Straw – oat Poor Medium 48 - 98<br />

Straw – wheat Poor Medium-Good 100 - 150<br />

Paper from municipal waste stream Medium-Good Medium 127 - 178<br />

Newspaper Good Medium 170<br />

Bark – hardwoods Poor Good 116 - 436<br />

Bark -- softwoods Poor Good 131 - 1285<br />

Corrugated cardboard Good Medium 563<br />

Lumber mill waste -- chipped Poor Good 170<br />

Paper fiber sludge Medium-Good Medium 250<br />

Paper mill sludge Good Medium 54<br />

Sawdust Poor-Medium Poor-Medium 142 - 750<br />

Shrub trimm<strong>in</strong>gs Poor Good 53<br />

Hardwood chips, shav<strong>in</strong>gs Poor Good 451 - 819<br />

Softwood chips, shav<strong>in</strong>gs Poor Good 212 - 1313<br />

Leaves (dry, loose) Poor-Medium Poor-Medium 40 - 80<br />

Corn stalks Poor Good 60 - 73<br />

Corn cobs Poor-Medium Good 56 - 123<br />

Source: Munroe (2007).<br />

Researchers <strong>in</strong> Canada made an experiment to determ<strong>in</strong>e <strong>the</strong> feasibility of mix<strong>in</strong>g<br />

municipally generated fiber wastes (e.g., non-recyclable paper, corrugated cardboard,<br />

<strong>and</strong> boxboard) with farm wastes (animal manures) <strong>and</strong> process<strong>in</strong>g <strong>the</strong> mixture with<br />

worms (large-scale vermiculture) to produce a commercially viable compost product<br />

<strong>for</strong> farms. The results show that <strong>the</strong> greatest worm population <strong>in</strong>creases were <strong>in</strong> <strong>the</strong><br />

pure shredded cardboard or <strong>in</strong> <strong>the</strong> high-fiber-content cow-manure mixes, but that<br />

biomass changes were more positive <strong>in</strong> <strong>the</strong> chicken-manure series (GEORG, 2004).<br />

2.1.2. Worm Food<br />

Compost worms are big eaters. Under ideal conditions, <strong>the</strong>y are able to consume more<br />

than <strong>the</strong>ir body weight each day, although <strong>the</strong> general rule-of-thumb is ½ of <strong>the</strong>ir<br />

body weight per day. Table 2.2 summarizes <strong>the</strong> most important attributes of some<br />

worm food that could be used <strong>in</strong> an on-farm vermicompost<strong>in</strong>g or vermiculture<br />

operation.<br />

11


Table 2.2. Advantages <strong>and</strong> disadvantages of different types of feed.<br />

Food Advantages Disadvantages Notes<br />

Good nutrition; natural Weed seeds make All manures are partially<br />

Cattle manure food, <strong>the</strong>re<strong>for</strong>e little pre-compost<strong>in</strong>g decomposed <strong>and</strong> thus ready<br />

adaptation required. necessary.<br />

<strong>for</strong> consumption by worms.<br />

Poultry High N content results High prote<strong>in</strong> levels<br />

manure <strong>in</strong> good nutrition <strong>and</strong> a can be dangerous to Some books suggest that<br />

high value product. worms, so must be poultry manure is not<br />

used <strong>in</strong> small suitable <strong>for</strong> worms because<br />

quantities; major it is so “hot”; however,<br />

adaptation required research <strong>in</strong> has shown that<br />

<strong>for</strong> worms not used to worms can adapt if <strong>in</strong>itial<br />

this feedstock. May proportion of PM to<br />

be precomposted but bedd<strong>in</strong>g is 10% by volume<br />

not necessary if used<br />

cautiously.<br />

or less.<br />

Sheep/Goat Good nutrition. Require<br />

manure<br />

precompost<strong>in</strong>g (weed<br />

seeds); small particle<br />

size can lead to<br />

pack<strong>in</strong>g, necessitat<strong>in</strong>g<br />

extra bulk<strong>in</strong>g<br />

material.<br />

With right additives to<br />

<strong>in</strong>crease C:N ratio, <strong>the</strong>se<br />

manures are also good<br />

bedd<strong>in</strong>gs<br />

Rabbit manure N content second only<br />

to poultry manure,<br />

<strong>the</strong>re<strong>for</strong>e good<br />

nutrition; conta<strong>in</strong>s<br />

very good mix of<br />

vitam<strong>in</strong>s & m<strong>in</strong>erals;<br />

ideal earthworm feed.<br />

Must be leached prior<br />

to use because of high<br />

ur<strong>in</strong>e content; can<br />

overheat if quantities<br />

too large; availability<br />

usually not good<br />

Many U.S. rabbit growers<br />

place earthworm beds<br />

under <strong>the</strong>ir rabbit hutches<br />

to catch <strong>the</strong> pellets as <strong>the</strong>y<br />

drop through <strong>the</strong> wire mesh<br />

cage floors.<br />

Fresh food Excellent nutrition, Extremely variable Some food wastes are<br />

scraps (e.g., good moisture content, (depend<strong>in</strong>g on much better than o<strong>the</strong>rs:<br />

peels, o<strong>the</strong>r possibility of revenues source); high N can coffee grounds are<br />

food prep from waste tipp<strong>in</strong>g result <strong>in</strong> heat<strong>in</strong>g; meat excellent, as <strong>the</strong>y are high<br />

waste, fees.<br />

& high-fat wastes can <strong>in</strong> N, not greasy or smelly,<br />

leftovers,<br />

create anaerobic <strong>and</strong> are attractive to<br />

commercial<br />

conditions <strong>and</strong> odors, worms; alternatively, root<br />

food<br />

attract pests, so vegetables (e.g., potato<br />

process<strong>in</strong>g<br />

should not be culls) resist degradation<br />

wastes)<br />

<strong>in</strong>cluded without <strong>and</strong> require a long time to<br />

precompost<strong>in</strong>g. be consumed.<br />

Precomposted<br />

food wastes<br />

Good nutrition; partial<br />

decomposition makes<br />

digestion by worms<br />

easier <strong>and</strong> faster; can<br />

<strong>in</strong>clude meat <strong>and</strong> o<strong>the</strong>r<br />

greasy wastes; less<br />

tendency to overheat.<br />

Nutrition less than<br />

with fresh food<br />

wastes.<br />

Vermicompost<strong>in</strong>g can<br />

speed <strong>the</strong> cur<strong>in</strong>g process<br />

<strong>for</strong> conventional<br />

compost<strong>in</strong>g operations<br />

while <strong>in</strong>creas<strong>in</strong>g value of<br />

end product.<br />

12


Food Advantages Disadvantages Notes<br />

Bio-solids<br />

(human<br />

waste)<br />

Excellent nutrition<br />

<strong>and</strong> excellent product;<br />

can be activated or<br />

non-activated sludge,<br />

septic sludge;<br />

possibility of waste<br />

management revenues<br />

Seaweed Good nutrition; results<br />

<strong>in</strong> excellent product,<br />

high <strong>in</strong> micronutrients<br />

<strong>and</strong> beneficial<br />

microbes<br />

Legume hays Higher N content<br />

makes <strong>the</strong>se good feed<br />

as well as reasonable<br />

Gra<strong>in</strong>s (e.g.,<br />

feed mixtures<br />

<strong>for</strong><br />

animals, such<br />

as chicken<br />

mash)<br />

Corrugated<br />

cardboard<br />

(<strong>in</strong>clud<strong>in</strong>g<br />

Waxed)<br />

Fish, poultry<br />

offal; blood<br />

wastes; animal<br />

mortalities<br />

bedd<strong>in</strong>g.<br />

Excellent, balanced<br />

nutrition, easy to<br />

h<strong>and</strong>le, no odor, can<br />

use organic gra<strong>in</strong>s <strong>for</strong><br />

certified organic<br />

product.<br />

Excellent nutrition<br />

(due to high prote<strong>in</strong><br />

glue used to hold<br />

layers toge<strong>the</strong>r);<br />

worms like this<br />

material; possible<br />

revenue source from<br />

WM fees<br />

High N content<br />

provides good<br />

nutrition; opportunity<br />

to turn problematic<br />

wastes <strong>in</strong>to highquality<br />

product<br />

Source: Munroe (2007).<br />

Heavy metal <strong>and</strong>/or<br />

chemical<br />

contam<strong>in</strong>ation (if<br />

from municipal<br />

sources); odor dur<strong>in</strong>g<br />

application to beds<br />

(worms control fairly<br />

quickly); possibility<br />

of pathogen survival<br />

if process not<br />

complete<br />

Salt must be r<strong>in</strong>sed<br />

off, as it is<br />

detrimental to worms;<br />

availability<br />

varies by region<br />

Moisture levels not as<br />

high as o<strong>the</strong>r feeds,<br />

requires more <strong>in</strong>put<br />

<strong>and</strong> monitor<strong>in</strong>g<br />

Higher value than<br />

most feeds, <strong>the</strong>re<strong>for</strong>e<br />

expensive to use; low<br />

moisture content;<br />

some larger seeds<br />

hard to digest <strong>and</strong><br />

slow to break down<br />

Must be shredded<br />

(waxed variety)<br />

<strong>and</strong>/or soaked (nonwaxed)<br />

prior to<br />

feed<strong>in</strong>g<br />

Must be<br />

precomposted until<br />

past Thermophillic<br />

stage<br />

13<br />

Vermitech Pty Ltd. <strong>in</strong><br />

Australia has been very<br />

successful with this<br />

process, but <strong>the</strong>y use<br />

automated systems; EPAfunded<br />

tests <strong>in</strong> Florida<br />

demonstrated that worms<br />

destroy human pathogens<br />

as well as does<br />

<strong>the</strong>rmophillic compost<strong>in</strong>g<br />

(<strong>East</strong>man et al., 2001).<br />

Beef farmer <strong>in</strong> Antigonish,<br />

Nova Scotia, Canada, are<br />

produc<strong>in</strong>g certified organic<br />

vermicompost from cattle<br />

manure, bark, <strong>and</strong> seaweed<br />

Probably best to mix this<br />

feed with o<strong>the</strong>rs, such as<br />

manures<br />

Danger: Worms consume<br />

gra<strong>in</strong>s but cannot digest<br />

larger, tougher kernels;<br />

<strong>the</strong>se are passed <strong>in</strong> cast<strong>in</strong>gs<br />

<strong>and</strong> build up <strong>in</strong> bedd<strong>in</strong>g,<br />

result<strong>in</strong>g <strong>in</strong> sudden<br />

overheat<strong>in</strong>g.<br />

Some worm growers claim<br />

that corrugated cardboard<br />

stimulates worm<br />

reproduction<br />

Compost<strong>in</strong>g of offal, blood<br />

wastes, etc. is difficult <strong>and</strong><br />

produces strong odors.<br />

Should only be done with<br />

<strong>in</strong>- vessel systems; much<br />

bulk<strong>in</strong>g required.


2.1.3. Moisture<br />

The bedd<strong>in</strong>g used must be able to hold sufficient moisture if <strong>the</strong> worms are to have a<br />

livable environment. Earthworms do not have specialized breath<strong>in</strong>g devices. They<br />

brea<strong>the</strong> through <strong>the</strong>ir sk<strong>in</strong>, which needs to rema<strong>in</strong> moist to facilitate respiration. Like<br />

<strong>the</strong>ir aquatic ancestors, earthworms can live <strong>for</strong> months completely submerged <strong>in</strong><br />

water, <strong>and</strong> <strong>the</strong>y will die if <strong>the</strong>y dry out (Sherman, 2003). The ideal moisture-content<br />

range <strong>for</strong> materials <strong>in</strong> conventional compost<strong>in</strong>g systems is 45-60%. In contrast, <strong>the</strong><br />

ideal moisture-content range <strong>for</strong> vermicompost<strong>in</strong>g or vermiculture processes is 70-<br />

90%. With<strong>in</strong> this broad range, researchers have found slightly different optimums:<br />

Dom<strong>in</strong>guez <strong>and</strong> Edwards (1997) found that <strong>the</strong>re is a direct relationship between <strong>the</strong><br />

moisture content <strong>and</strong> <strong>the</strong> growth rate of earthworms. E. <strong>and</strong>rei cultured <strong>in</strong> pig manure<br />

grew <strong>and</strong> matured between 65 <strong>and</strong> 90% moisture content, <strong>the</strong> optimum be<strong>in</strong>g 85%.<br />

Until 85% moisture, <strong>the</strong> higher moisture conditions clearly facilitated growth, as<br />

measured by <strong>the</strong> <strong>in</strong>crease <strong>in</strong> biomass. Increased moisture up to 90% clearly<br />

accelerated <strong>the</strong> development of sexual maturity, whereas not all <strong>the</strong> worms at 65-75%<br />

developed a clitellum even after 44 days. Additionally, earthworms at sexual maturity<br />

had greater biomass at higher moisture contents compared to worms grown at lower<br />

moisture contents. Canadian researchers <strong>in</strong> Nova Scotia tested moisture contents with<br />

different bedd<strong>in</strong>g materials, i.e. organic materials <strong>in</strong>cluded shredded corrugated<br />

cardboard, waxed corrugated cardboard, immature municipal solid waste compost,<br />

biosolids (sewage sludge), chicken manure <strong>and</strong> dairy cow manure <strong>in</strong> a variety of<br />

comb<strong>in</strong>ations. They found that 75-80% moisture contents produced <strong>the</strong> best growth<br />

<strong>and</strong> reproductive response (GEORG, 2004).<br />

The moisture content preferences of juvenile <strong>and</strong> clitellate cocoon-produc<strong>in</strong>g (adult)<br />

E. fetida <strong>in</strong> separated cow manure have been <strong>in</strong>vestigated. It ranged from 50% to 80%<br />

<strong>for</strong> adults, but juvenile earthworms had a narrower range of suitable moisture levels<br />

from 65% to 70%. Clitellum development occurred <strong>in</strong> earthworms at a moisture<br />

content from 60% to 70% but occurred later at a moisture content from 55% to 60%.<br />

The tolerance limit <strong>for</strong> low moisture conditions on <strong>the</strong> growth of E. fetida was<br />

reported to be below 50% <strong>for</strong> up to 1 month (Re<strong>in</strong>ecke <strong>and</strong> Venter, 1987). While<br />

Gunadi et al. (2003) found that <strong>the</strong> earthworm growth rate was fastest <strong>in</strong> <strong>the</strong> separated<br />

cattle manure solids with a moisture content of 90% with a maximum mean weight of<br />

earthworms of 600 mg after 12 weeks. The slowest growth rate of E. fetida was <strong>in</strong> <strong>the</strong><br />

separated cattle manure solids at a moisture content of 70%.<br />

2.1.4. Aeration<br />

Worms require oxygen <strong>and</strong> cannot survive anaerobic conditions (very low or absence<br />

of oxygen). When factors such as high levels of grease <strong>in</strong> <strong>the</strong> feedstock or excessive<br />

moisture comb<strong>in</strong>ed with poor aeration conspire to cut off oxygen supplies, areas of<br />

<strong>the</strong> worm bed, or even <strong>the</strong> entire system, can become anaerobic. This will kill <strong>the</strong><br />

worms very quickly. Not only are <strong>the</strong> worms deprived of oxygen, <strong>the</strong>y are also killed<br />

by toxic substances (e.g., ammonia) created by different sets of microbes that bloom<br />

under <strong>the</strong>se conditions. This is one of <strong>the</strong> ma<strong>in</strong> reasons <strong>for</strong> not <strong>in</strong>clud<strong>in</strong>g meat or o<strong>the</strong>r<br />

greasy wastes <strong>in</strong> worm feedstock unless <strong>the</strong>y have been pre-composted to break down<br />

<strong>the</strong> oils <strong>and</strong> fats.<br />

14


2.1.5. Temperature control<br />

Controll<strong>in</strong>g temperature to with<strong>in</strong> <strong>the</strong> worms‟ tolerance is vital to both<br />

vermicompost<strong>in</strong>g <strong>and</strong> vermiculture processes.<br />

2.1.5.1. Low temperatures<br />

Eisenia can survive <strong>in</strong> temperatures as low as 0 o C, but <strong>the</strong>y don‟t reproduce at s<strong>in</strong>gledigit<br />

temperatures <strong>and</strong> <strong>the</strong>y don‟t consume as much food. It is generally considered<br />

necessary to keep <strong>the</strong> temperatures above 10 o C (m<strong>in</strong>imum) <strong>and</strong> preferably 15 o C <strong>for</strong><br />

vermicompost<strong>in</strong>g efficiency <strong>and</strong> above 15 o C (m<strong>in</strong>imum) <strong>and</strong> preferably 20 o C <strong>for</strong><br />

productive vermiculture operations.<br />

2.1.5.2. Effects of freez<strong>in</strong>g<br />

Eisenia can survive hav<strong>in</strong>g <strong>the</strong>ir bodies partially encased <strong>in</strong> frozen bedd<strong>in</strong>g <strong>and</strong> will<br />

only die when <strong>the</strong>y are no longer able to consume food. Moreover, tests at <strong>the</strong> Nova<br />

Scotia Agricultural College (NSAC) have confirmed that <strong>the</strong>ir cocoons survive<br />

extended periods of deep freez<strong>in</strong>g <strong>and</strong> rema<strong>in</strong> viable (GEORG, 2004).<br />

2.1.5.3. High temperatures<br />

Compost worms can survive temperatures <strong>in</strong> <strong>the</strong> mid-30s but prefer a range <strong>in</strong> <strong>the</strong> 20s<br />

( o C). Above 35 o C will cause <strong>the</strong> worms to leave <strong>the</strong> area. If <strong>the</strong>y cannot leave, <strong>the</strong>y<br />

will quickly die. In general, warmer temperatures (above 20 o C) stimulate<br />

reproduction.<br />

Hou et al. (2005) studied <strong>the</strong> <strong>in</strong>fluence of some environmental parameters on <strong>the</strong><br />

growth <strong>and</strong> survival of earthworms <strong>in</strong> municipal solid waste. Earthworms atta<strong>in</strong>ed <strong>the</strong><br />

highest growth rate of 0.0459g / g-day at a temperature of 19.7˚C. The shortest growth<br />

period was 52 days at 25˚C, with <strong>the</strong> largest growth rate 0.0138 g /g-day. At 15˚C,<br />

20˚C <strong>and</strong> 25˚C, <strong>the</strong> fastest growth rate appeared, respectively, <strong>in</strong> 53 days, 34 days <strong>and</strong><br />

27 days, with <strong>the</strong> growth rate 0.0068, 0.0123 <strong>and</strong> 0.0138 g /g-day.<br />

Activities <strong>in</strong> all soil organisms follow a typical seasonal fluctuation. This cycle is<br />

related to optimal temperature <strong>and</strong> moisture, such that a peak <strong>in</strong> activity usually<br />

occurs <strong>in</strong> <strong>the</strong> spr<strong>in</strong>g as temperature <strong>and</strong> moisture become optimal after cold w<strong>in</strong>ter<br />

temperatures. In systems where snow accumulates on <strong>the</strong> soil surface, such that <strong>the</strong><br />

soil does not actually freeze, fungal activity may cont<strong>in</strong>ue at high levels throughout<br />

<strong>the</strong> w<strong>in</strong>ter <strong>in</strong> litter. Decomposition may cont<strong>in</strong>ue at <strong>the</strong> highest rates through <strong>the</strong><br />

w<strong>in</strong>ter under <strong>the</strong> snow <strong>in</strong> <strong>the</strong> litter. In systems where moisture becomes limit<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

summer, activity may reach levels even lower than <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter. When temperatures<br />

rema<strong>in</strong> warm <strong>in</strong> <strong>the</strong> fall <strong>and</strong> ra<strong>in</strong> beg<strong>in</strong>s aga<strong>in</strong> after a summer drought, such as <strong>in</strong><br />

Mediterranean climates, a second peak of activity may be observed <strong>in</strong> <strong>the</strong> fall. If <strong>the</strong>se<br />

peaks are not observed, this suggests <strong>in</strong>adequate organic matter <strong>in</strong> <strong>the</strong> soil.<br />

15


The growth of E. fetida <strong>in</strong> organic matter substrates with different moisture<br />

contents <strong>and</strong> temperatures has been studied by various authors <strong>in</strong> <strong>the</strong> laboratory. This<br />

species ga<strong>in</strong>ed weight maximally <strong>and</strong> survived best at temperatures between 20˚C<br />

<strong>and</strong> 29˚C <strong>and</strong> moisture contents between 70% <strong>and</strong> 85% <strong>in</strong> horse manure <strong>and</strong> activated<br />

sludge (Kaplan et al., 1980). Edwards (1988) reported that <strong>the</strong> optimum growth of E.<br />

fetida <strong>in</strong> different animal <strong>and</strong> vegetable wastes occurred at 25-30˚C <strong>and</strong> at a moisture<br />

content range of 75-90%, but <strong>the</strong>se factors could vary <strong>in</strong> different substrates.<br />

2.1.5.4. Worms‟s response to temperature differentials.<br />

Compost worms will redistribute <strong>the</strong>mselves with<strong>in</strong> piles, beds or w<strong>in</strong>drows<br />

accord<strong>in</strong>g to temperature gradients. In outdoor compost<strong>in</strong>g w<strong>in</strong>drows <strong>in</strong> w<strong>in</strong>tertime,<br />

where <strong>in</strong>ternal heat from decomposition is <strong>in</strong> contrast to frigid external temperatures,<br />

<strong>the</strong> worms will be found <strong>in</strong> a relatively narrow b<strong>and</strong> at a depth where <strong>the</strong> temperature<br />

is close to optimum. They will also be found <strong>in</strong> much greater numbers on <strong>the</strong> south<br />

fac<strong>in</strong>g side of w<strong>in</strong>drows <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter <strong>and</strong> on <strong>the</strong> opposite side <strong>in</strong> <strong>the</strong> summer.<br />

Edwards (1988) studied <strong>the</strong> life cycles <strong>and</strong> optimal conditions <strong>for</strong> survival <strong>and</strong> growth<br />

of E. fetida, D. veneta, E. eugeniae, <strong>and</strong> P. excavatus. Each of <strong>the</strong>se four species<br />

differed considerably <strong>in</strong> terms of <strong>the</strong>ir responses <strong>and</strong> tolerance to different<br />

temperatures. The optimum temperature <strong>for</strong> E. fetida was 25 °C, <strong>and</strong> its temperature<br />

tolerance was between 0 <strong>and</strong> 35°C. Dendrobaena veneta had a ra<strong>the</strong>r low temperature<br />

optimum <strong>and</strong> ra<strong>the</strong>r less tolerance to extreme temperatures. The optimum<br />

temperatures <strong>for</strong> E. eugeniae <strong>and</strong> P. excavatus were around 25 °C, but <strong>the</strong>y died at<br />

temperatures below 9°C <strong>and</strong> above 30°C. Optimal temperatures <strong>for</strong> cocoon<br />

production were much lower than those <strong>for</strong> growth <strong>for</strong> all <strong>the</strong>se species.<br />

2.2. Methods of vermicompost<strong>in</strong>g<br />

2.2.1. Pits below <strong>the</strong> ground<br />

Pit of any convenient dimension can be constructed <strong>in</strong> <strong>the</strong> backyard or garden or<br />

<strong>in</strong> a field. It may be s<strong>in</strong>gle pit, two pits or tank of any sizes with brick <strong>and</strong> mortar with<br />

proper water outlets. The most convenient pit or chamber of easily manageable size is<br />

2m x 1m x 0.75m. The size of <strong>the</strong> pits <strong>and</strong> chambers should be determ<strong>in</strong>ed accord<strong>in</strong>g<br />

to <strong>the</strong> volume of biomass <strong>and</strong> agricultural waste. To combat <strong>the</strong> ants from attack<strong>in</strong>g<br />

<strong>the</strong> worms, it is good to have a water column <strong>in</strong> <strong>the</strong> centre of <strong>the</strong> parapet wall of <strong>the</strong><br />

verm<strong>in</strong>-pits.<br />

Photo 2.1.<br />

Open Pit Vermicompost<strong>in</strong>g<br />

Source: Kirungakottai<br />

(http://www.icasaweb.google.com)<br />

16


2.2.2. Heap<strong>in</strong>g above <strong>the</strong> ground<br />

The waste material is spread on a poly<strong>the</strong>ne sheet placed on <strong>the</strong> ground <strong>and</strong> <strong>the</strong>n<br />

covered with cattle dung. Sunitha et al. (1997) compared <strong>the</strong> efficacy of pit <strong>and</strong> heap<br />

methods of prepar<strong>in</strong>g vermicompost under field conditions. Consider<strong>in</strong>g <strong>the</strong><br />

biodegradation of wastes as <strong>the</strong> criterion, <strong>the</strong> heap method of prepar<strong>in</strong>g vermicompost<br />

was better than <strong>the</strong> pit method. Earthworm population was high <strong>in</strong> <strong>the</strong> heap method,<br />

with a 21-fold <strong>in</strong>crease <strong>in</strong> Eudrilus eugenae as compared to 17-fold <strong>in</strong>crease <strong>in</strong> <strong>the</strong> pit<br />

method. Biomass production was also higher <strong>in</strong> <strong>the</strong> heap method (46-fold <strong>in</strong>crease)<br />

than <strong>in</strong> <strong>the</strong> pit method (31-fold). Consequent production of vermicompost was also<br />

higher <strong>in</strong> <strong>the</strong> heap method (51 kg) than <strong>in</strong> <strong>the</strong> pit method (40 kg). On <strong>the</strong> contrary,<br />

Sa<strong>in</strong>i (2008) compared <strong>the</strong> efficacy of pit <strong>and</strong> heap methods under field conditions<br />

over three seasons (w<strong>in</strong>ter, summer <strong>and</strong> ra<strong>in</strong>y) us<strong>in</strong>g, Eisenia fetida. A pit size of 2 ×<br />

0.5 × 0.6 m (length × width × depth); <strong>and</strong> heap of size 2 × 0.6 × 0.5 m (length × width<br />

× hight) were prepared with <strong>the</strong> same amount of mixture. The pits <strong>and</strong> heaps were<br />

made under shady trees, <strong>in</strong> open field hav<strong>in</strong>g a temporary shed made of straw, raised<br />

on pillars, to prevent <strong>the</strong>m from direct sunlight <strong>and</strong> ra<strong>in</strong>fall. The pits had brick l<strong>in</strong><strong>in</strong>gs<br />

<strong>and</strong> plastered bottoms. The pits <strong>and</strong> heaps carry<strong>in</strong>g <strong>the</strong> organic waste mixture were<br />

covered with gunny bags <strong>and</strong> were watered at 10 liter/pit or heap daily, except on<br />

ra<strong>in</strong>y days, to ma<strong>in</strong>ta<strong>in</strong> moisture. On <strong>the</strong> basis of <strong>the</strong> results of three seasons, it was<br />

concluded that summer <strong>and</strong> w<strong>in</strong>ter were better <strong>for</strong> <strong>the</strong> pit method, whereas <strong>the</strong> ra<strong>in</strong>y<br />

season favored <strong>the</strong> heap method <strong>for</strong> vermicompost<strong>in</strong>g, utiliz<strong>in</strong>g Eisenia fetida.<br />

However, if <strong>the</strong> annual per<strong>for</strong>mance of <strong>the</strong> two methods is compared, <strong>the</strong> pit method<br />

produced more worms <strong>and</strong> more biomass. There<strong>for</strong>e, on <strong>the</strong> latter grounds, <strong>the</strong> pit<br />

method of vermicompost<strong>in</strong>g is more suitable than <strong>the</strong> heap method <strong>in</strong> <strong>the</strong> semi-arid<br />

sub-tropical regions of North-West India.<br />

2.2.3. Tanks above <strong>the</strong> ground<br />

17<br />

Photo 2.2.<br />

Open heap vermicompost<strong>in</strong>g<br />

Source: Department of Agriculture,<br />

Andaman & Nicobar:<br />

(http://agri.<strong>and</strong>.nic.<strong>in</strong>/vermi_culture.htm)<br />

Tanks made up of different materials such as normal bricks, hollow bricks, local<br />

stones, asbestos sheets <strong>and</strong> locally available rocks were evaluated <strong>for</strong> vermicompost<br />

preparation (Nagavallemma et al., 2004).


18<br />

Photo 2.3.<br />

Commercial vermicompost operation<br />

at KCDC Bangalore, India.<br />

Source: Basavaiah (2006)<br />

2.2.4. Cement r<strong>in</strong>gs<br />

Vermicompost can also be prepared above <strong>the</strong> ground by us<strong>in</strong>g cement r<strong>in</strong>gs. The size<br />

of <strong>the</strong> cement r<strong>in</strong>g should be 90 cm <strong>in</strong> diameter <strong>and</strong> 30 cm <strong>in</strong> height (Nagavallemma et<br />

al., 2004).<br />

2.2.5. Commercial model<br />

Photo 2.4.<br />

Cement r<strong>in</strong>g<br />

vermicompost<strong>in</strong>g.<br />

Source: Nagavallemma et al.<br />

(2004)<br />

This model conta<strong>in</strong>s partition walls with small holes to facilitate easy movement<br />

of earthworms from one chamber to ano<strong>the</strong>r (Figure 2.1). Provid<strong>in</strong>g an outlet at one<br />

corner of each chamber with a slight slope facilitates collection of excess water. The<br />

four components are filled with plant residues one after ano<strong>the</strong>r. Once <strong>the</strong> first<br />

chamber is filled layer by layer along with cow dung, earthworms are released. Then<br />

<strong>the</strong> second chamber is started fill<strong>in</strong>g layer by layer. Once <strong>the</strong> contents <strong>in</strong> first chamber<br />

are decomposed <strong>the</strong> earthworms move to <strong>the</strong> chamber 2, which is already filled <strong>and</strong><br />

ready <strong>for</strong> earthworms. This facilitates harvest<strong>in</strong>g of decomposed material from <strong>the</strong><br />

first chamber <strong>and</strong> also saves labor <strong>for</strong> harvest<strong>in</strong>g <strong>and</strong> <strong>in</strong>troduc<strong>in</strong>g earthworms. This<br />

technology reduces labor cost <strong>and</strong> saves water as well as time (Twomlow, 2004).<br />

Water is saved by reduc<strong>in</strong>g evaporation from <strong>the</strong> surface dur<strong>in</strong>g h<strong>and</strong>l<strong>in</strong>g from one<br />

room to ano<strong>the</strong>r <strong>in</strong> limited distances with m<strong>in</strong>imum exposure to drier air outside.<br />

Tanks can be constructed with <strong>the</strong> dimensions suitable <strong>for</strong> operations. with small<br />

holes to facilitate easy movement of earthworms from one tank to <strong>the</strong> o<strong>the</strong>r.


19<br />

Photo 2.5.<br />

Commercial vermicompost<strong>in</strong>g unit<br />

Source: Ecoscience<br />

Research Foundation:<br />

(http://www.erf<strong>in</strong>dia.org)<br />

Vermicompost<strong>in</strong>g based on <strong>the</strong> use of worms results <strong>in</strong> high quality compost. The<br />

process does not require physical turn<strong>in</strong>g of <strong>the</strong> material. To ma<strong>in</strong>ta<strong>in</strong> aerobic<br />

conditions <strong>and</strong> limit <strong>the</strong> temperature rise, <strong>the</strong> bed or pile of materials needs to be of<br />

limited size. Temperatures should be regulated so as to favour growth <strong>and</strong> activity of<br />

worms. Compost<strong>in</strong>g period is longer as compared to o<strong>the</strong>r rapid methods <strong>and</strong> varies<br />

between six to twelve weeks.<br />

Figure 2.1.<br />

Commercial model of<br />

vermicompost<strong>in</strong>g<br />

developed by<br />

ICRISAT.<br />

Source: Twomlow,<br />

2004.


2.3. The trial experience <strong>in</strong> <strong>Egypt</strong><br />

2.3. 1. Earthworm types used:<br />

Four types of earthworms were brought to <strong>Egypt</strong> from Australia. from Australia:<br />

Lumbriscus Rubellus (Red Worm), Eisenia Fetida (Tiger Worm), Perionyx Excavatus<br />

(Indian Blue), <strong>and</strong> Eudrilus Eugeniae (African Night Crawler).<br />

2.3.2. Bedd<strong>in</strong>g<br />

Two types of vermiculture were used. The first was aim<strong>in</strong>g at <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

population <strong>and</strong> known as breed<strong>in</strong>g vermiculture. The o<strong>the</strong>r type is <strong>the</strong> grow<strong>in</strong>g system<br />

aim<strong>in</strong>g at convert<strong>in</strong>g organic matter <strong>in</strong>to vermicompost.<br />

Commercially available per<strong>for</strong>ated plastic conta<strong>in</strong>ers, generally used <strong>for</strong> harvest<strong>in</strong>g<br />

fruits <strong>and</strong> vegetables, each has <strong>the</strong> dimensions of 30cm wide, 50cm long <strong>and</strong> 20cm<br />

height were used <strong>for</strong> <strong>the</strong> breed<strong>in</strong>g system. The first 5cm from <strong>the</strong> bottom was l<strong>in</strong>ed by<br />

a mixture of 2/3 shredded cardboard <strong>and</strong> 1/3 shredded newspaper, as bedd<strong>in</strong>g<br />

material. The cardboard <strong>and</strong> newspaper were wetted <strong>in</strong> a bucket of water; <strong>and</strong><br />

allow<strong>in</strong>g <strong>the</strong> excess water to run out be<strong>for</strong>e us<strong>in</strong>g. The next layer was 5cm of pH<br />

neutral cast<strong>in</strong>gs spread evenly, <strong>the</strong>n 1-2kg/m² of adult worms was supplied. Every 1-2<br />

days, 1-2kg of old manure was added. The surface was covered by 5cm shredded<br />

newspaper to keep moisture.<br />

The grow<strong>in</strong>g system was made of brick, with <strong>the</strong> dimensions 1m width, 0.5m height,<br />

<strong>and</strong> 3m long, <strong>and</strong> 0.5m between beds. The bottom of <strong>the</strong> beds was <strong>in</strong>sulated by 20cm<br />

cement layer with a slight slope <strong>in</strong> order to facilitate collection of leachate (Photo<br />

2.7).<br />

The sequence of layers <strong>for</strong> <strong>the</strong> grow<strong>in</strong>g beds was <strong>the</strong> same as <strong>the</strong> breed<strong>in</strong>g system<br />

except that <strong>the</strong> base of <strong>the</strong> bed was 10cm of cardboard/newspaper moist mixture, <strong>and</strong><br />

<strong>the</strong> worms spread over <strong>the</strong> surface were <strong>the</strong> juvenile worms only.<br />

20<br />

Photo 2.6.<br />

Earthworms used <strong>in</strong><br />

<strong>Egypt</strong><br />

Source: Au<strong>the</strong>r


2.3.3. Food<br />

21<br />

Photo 2.7.<br />

Trial vermicompost set up at<br />

Dokki.<br />

Source: Author<br />

For <strong>the</strong> feed<strong>in</strong>g of <strong>the</strong> breed<strong>in</strong>g boxes, a mixture of rabbit manure <strong>and</strong> fresh kitchen<br />

scraps (citrus not more than 1/3 of food scraps) were used. The feed was mixed well<br />

<strong>in</strong> <strong>the</strong> mix<strong>in</strong>g unit until it resembles dairy slurry. This was added <strong>in</strong> one strip along<br />

lengthwise wall <strong>in</strong> a maximum 5cm thick <strong>and</strong> 10cm wide. The feed was supplied<br />

aga<strong>in</strong> only when first strip is f<strong>in</strong>ished, <strong>and</strong> <strong>the</strong> new feed is added along opposite wall.<br />

As <strong>for</strong> <strong>the</strong> grow<strong>in</strong>g beds, <strong>the</strong> feed varies over time. Potato wastes from <strong>the</strong><br />

manufacturers as potato peels were brought <strong>in</strong>to <strong>the</strong> site to be dried <strong>and</strong> used as<br />

needed. Plant wastes from <strong>the</strong> location were shredded <strong>and</strong> mixed with animal manure<br />

to be composted <strong>for</strong> 1-2 weeks. This semi-composted material was <strong>the</strong> base feed that<br />

goes to <strong>the</strong> mix<strong>in</strong>g unit with available fruits <strong>and</strong> vegetable wastes were brought from<br />

<strong>the</strong> nearby shops. The feed mixture was spread evenly on <strong>the</strong> surface of <strong>the</strong> beds.<br />

Photo 2.8.<br />

Mixture of food wastes <strong>and</strong> shredded<br />

plant material ready to be mixed <strong>in</strong> <strong>the</strong><br />

rotat<strong>in</strong>g mach<strong>in</strong>e.<br />

Source: Author<br />

In order to facilitate <strong>the</strong> work, a shredd<strong>in</strong>g mach<strong>in</strong>e was manufactured locally (Photo<br />

2.9) to prepare large plant material be<strong>for</strong>e mixed with o<strong>the</strong>r fruit or vegetable wastes<br />

us<strong>in</strong>g a rotat<strong>in</strong>g mix<strong>in</strong>g mach<strong>in</strong>e.


2.3.4. Moisture<br />

Photo 2.9.<br />

The locally manufactured shredd<strong>in</strong>g<br />

mach<strong>in</strong>e.<br />

Source: Author<br />

The rule of thump is to check manually <strong>for</strong> moisture on a daily basis to ensure that is<br />

not too dry, <strong>and</strong> when water<strong>in</strong>g it is important not to make it too wet. Only fresh water<br />

was used. The breed<strong>in</strong>g boxes were rearranged to make <strong>the</strong> first on <strong>the</strong> top to become<br />

<strong>the</strong> first from <strong>the</strong> bottom <strong>in</strong> order to avoid moisture variations between <strong>the</strong> boxes.<br />

The <strong>in</strong>structions were:<br />

- Water little <strong>and</strong> often – only <strong>the</strong> newspaper on <strong>the</strong> surface should be wet.<br />

- Water after check<strong>in</strong>g <strong>the</strong> bed surface – if already damp, skip one water<strong>in</strong>g.<br />

- Water should be used to supplement exist<strong>in</strong>g humidity <strong>and</strong> replace evaporation.<br />

- Use a spray or mist, not jets of water.<br />

2.3.5. Aeration<br />

The aeration was ma<strong>in</strong>ta<strong>in</strong>ed as <strong>the</strong> bottom of beds or boxes has sufficient bedd<strong>in</strong>g<br />

material, <strong>and</strong> <strong>the</strong> surface is only shredded newspaper. The aeration could be a<br />

problem ma<strong>in</strong>ly if water<strong>in</strong>g is not done properly lead<strong>in</strong>g to too wet conditions.<br />

Only <strong>the</strong> newspaper on <strong>the</strong> surface should be wet, <strong>and</strong> as mentioned earlier, water<br />

should be used to supplement exist<strong>in</strong>g humidity <strong>and</strong> replace evaporation. Beds<br />

must be mixed if:<br />

- The bed smells bad.<br />

- The bed is too wet.<br />

- The bed is hot or lukewarm to touch.<br />

- The worms are not distributed evenly on <strong>the</strong> surface.<br />

- The section of bed turned only when <strong>the</strong>re is no food on <strong>the</strong> surface of<br />

<strong>the</strong> bed, <strong>and</strong> to a depth of 10-15cm only.<br />

22


2.3.6. Temperature<br />

The location of <strong>the</strong> grow<strong>in</strong>g beds was selected <strong>in</strong> order to avoid strong w<strong>in</strong>ds. A<br />

shad<strong>in</strong>g roof made of reed mats was <strong>in</strong>stalled <strong>in</strong> order to prevent direct solar radiation<br />

over <strong>the</strong> beds <strong>in</strong> summer. The mats were removed dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter.<br />

Narrower mats were used to cover <strong>the</strong> beds, as <strong>the</strong>y shade <strong>the</strong> grow<strong>in</strong>g beds, <strong>and</strong> also<br />

protect from birds, cats or dogs.<br />

The breed<strong>in</strong>g boxes were laid under grape v<strong>in</strong>es grown <strong>in</strong> a shaded greenhouse. In<br />

w<strong>in</strong>ter, <strong>the</strong> v<strong>in</strong>es were pruned allow<strong>in</strong>g sun to penetrate, while <strong>in</strong> summer <strong>the</strong> shad<strong>in</strong>g<br />

screens <strong>and</strong> <strong>the</strong> shade of <strong>the</strong> green leaves of <strong>the</strong> v<strong>in</strong>es were pleasant, not only<br />

temperature wise, but also moisture as well. No o<strong>the</strong>r temperature control measures<br />

were used <strong>and</strong> this made grow<strong>in</strong>g <strong>and</strong> breed<strong>in</strong>g conditions ma<strong>in</strong>ta<strong>in</strong>ed stable over both<br />

summer <strong>and</strong> w<strong>in</strong>ter without major reduction <strong>in</strong> worms‟ activities. Temperatures<br />

ma<strong>in</strong>ta<strong>in</strong>ed by daily check<strong>in</strong>g. The general practice was to turn <strong>the</strong> beds or boxes<br />

when conditions were not suitable. When a bed is hot or lukewarm to touch, it must<br />

be mixed gently <strong>in</strong> order to allow air flow between <strong>the</strong> layers. In such cases,<br />

precomposted food must be used to prevent over heat<strong>in</strong>g from organic matter<br />

decomposition. It should be remembered that earth worms move from one side to<br />

ano<strong>the</strong>r horizontally, <strong>and</strong> from <strong>the</strong> bottom to be close to surface <strong>and</strong> close or far from<br />

<strong>the</strong> food accord<strong>in</strong>g to <strong>the</strong> com<strong>for</strong>table comb<strong>in</strong>ation of moisture <strong>and</strong> humidity. In such<br />

dynamic situations, temperature varies over time of <strong>the</strong> day, season, type of organic<br />

material, <strong>the</strong> cover<strong>in</strong>g material, as well as uni<strong>for</strong>mity of <strong>the</strong> beds.<br />

2.3.7 Harvest<strong>in</strong>g<br />

23<br />

Photo 2.10.<br />

The shaded grow<strong>in</strong>g beds at Dokki<br />

greenhouse station.<br />

Source: Author<br />

Harvest<strong>in</strong>g is an important procedure <strong>for</strong> <strong>the</strong> success of vermiculture operations.<br />

Regardless of <strong>the</strong> harvest<strong>in</strong>g target, it should be done quickly <strong>and</strong> simply. The target<br />

of harvest could be cast<strong>in</strong>gs, adult worms or babies <strong>and</strong> eggs.<br />

a- Harvest<strong>in</strong>g cast<strong>in</strong>gs is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a grow<strong>in</strong>g bed.


- Plac<strong>in</strong>g narrow strips of 1-2 day old manure along each side of bed.<br />

- Wait<strong>in</strong>g 1-2 days<br />

- Scoop<strong>in</strong>g out from <strong>the</strong> centre of <strong>the</strong> bed some cast<strong>in</strong>gs.<br />

- Check<strong>in</strong>g <strong>for</strong> eggs <strong>and</strong> worms – <strong>the</strong>se should be very limited.<br />

- Collect<strong>in</strong>g cast<strong>in</strong>gs from centre of bed.<br />

- Spread<strong>in</strong>g cast<strong>in</strong>gs to dry.<br />

- When cast<strong>in</strong>gs clump <strong>and</strong> crumble, pack <strong>in</strong>to plastic bags with p<strong>in</strong>prick<br />

holes<br />

24<br />

Photo 2. 11. Harvest<strong>in</strong>g of<br />

cast<strong>in</strong>gs.<br />

source: Basavaiah (2006)<br />

b- Harvest<strong>in</strong>g adult worms is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a grow<strong>in</strong>g bed.<br />

- Plac<strong>in</strong>g narrow strips of 1-2 day old manure <strong>in</strong>side 70% shade-cloth along<br />

centre of bed.<br />

- Wait<strong>in</strong>g 1-2 days.<br />

- Collect<strong>in</strong>g worms <strong>and</strong> cast<strong>in</strong>gs from side walls.<br />

Photo 2. 12.<br />

Harvested adult worms from <strong>the</strong><br />

grow<strong>in</strong>g beds.<br />

Source: Author


- Check<strong>in</strong>g size of worm – should be approach<strong>in</strong>g reproductive state <strong>and</strong><br />

clitellum should be noticeable.<br />

- Plac<strong>in</strong>g adult worms <strong>in</strong> breed<strong>in</strong>g beds.<br />

- Check<strong>in</strong>g cast<strong>in</strong>gs <strong>for</strong> eggs - replace <strong>in</strong> grow<strong>in</strong>g bed.<br />

25<br />

Photo 2. 13.<br />

A couple of adult worms, with clear<br />

clitellum <strong>in</strong> both of <strong>the</strong>m.<br />

Source: Author<br />

c- Harvest<strong>in</strong>g babies is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a breed<strong>in</strong>g bed.<br />

- Plac<strong>in</strong>g narrow strips of 1-2 day old manure or th<strong>in</strong> fruit peels (not citrus)<br />

<strong>in</strong>side 90% shade-cloth along centre of bed.<br />

- Wait<strong>in</strong>g1-2 days.<br />

- Empty<strong>in</strong>g contents straight <strong>in</strong>to grow<strong>in</strong>g bed, under newspaper cover.<br />

- Check<strong>in</strong>g <strong>for</strong> babies that may be caught <strong>in</strong> shade-cloth.<br />

d- Harvest<strong>in</strong>g eggs is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a breed<strong>in</strong>g bed.<br />

- Bait<strong>in</strong>g one side of <strong>the</strong> bed.<br />

- Wait 1-2 days.<br />

- Scoop<strong>in</strong>g out <strong>the</strong> bed on <strong>the</strong> opposite side of <strong>the</strong> bait.<br />

- Check<strong>in</strong>g <strong>for</strong> adult worms <strong>and</strong> replace <strong>in</strong> bed.<br />

- Plac<strong>in</strong>g contents directly <strong>in</strong> grow<strong>in</strong>g bed.<br />

- Plac<strong>in</strong>g new bedd<strong>in</strong>g <strong>and</strong> food on empty side of breed<strong>in</strong>g bed.<br />

Photo 2.14.<br />

Worm eggs.<br />

Source: Author


3. Use of compost worms globally <strong>in</strong> countries of similar climate<br />

The previous two chapters covered <strong>the</strong> historical background as well as <strong>the</strong> trial The<br />

Philipp<strong>in</strong>es, Cuba <strong>and</strong> India are examples of countries with similar overall conditions<br />

to <strong>Egypt</strong> Their technologies are simple <strong>and</strong> could be easily adapted to <strong>the</strong> local<br />

conditions. The United States of America is <strong>the</strong> model example of advanced<br />

technologies <strong>in</strong> vermiculture. Such examples will broaden <strong>the</strong> readers choice with<br />

what could be done <strong>in</strong> <strong>the</strong> future. Un<strong>for</strong>tunately, vermicompost <strong>and</strong> vermiculture are<br />

very limited <strong>in</strong> MENA region, Most of <strong>the</strong> studies look at utilization of local species<br />

to produce vermicompost. For example, Aldadi et al. (2005), Nourbakhsh (2007) <strong>and</strong><br />

Yousefi et al. (2009) had some studies <strong>in</strong> Iran aim<strong>in</strong>g <strong>for</strong> waste water treatment.<br />

There<strong>for</strong>e, <strong>the</strong> follow<strong>in</strong>g examples were selected to broaden <strong>the</strong> picture of commercial<br />

production. One could adapt or modify any of <strong>the</strong>m or even create a newer version.<br />

3.1 Vermicompost<strong>in</strong>g <strong>in</strong> Philipp<strong>in</strong>es<br />

The worms used are Lumbricus rubellus <strong>and</strong>/or Perionyx excavator. The worms are<br />

reared <strong>and</strong> multiplied from a commercially-obta<strong>in</strong>ed breeder stock <strong>in</strong> shallow wooden<br />

boxes stored <strong>in</strong> a shed. The boxes are approximately 45 cm x 60 cm x 20 cm <strong>and</strong> have<br />

dra<strong>in</strong>age holes; <strong>the</strong>y are stored on shelves <strong>in</strong> rows <strong>and</strong> tiers. A bedd<strong>in</strong>g material is<br />

compounded from miscellaneous organic residues such as sawdust, cereal straw, rice<br />

husks, bagasse, cardboard <strong>and</strong> so on, <strong>and</strong> is moistened well with water. The wet<br />

mixture is stored <strong>for</strong> about one month, be<strong>in</strong>g covered with a damp sack to m<strong>in</strong>imize<br />

evaporation, <strong>and</strong> is thoroughly mixed several times. When fermentation is complete,<br />

chicken manure <strong>and</strong> green matter such as water hyac<strong>in</strong>th is added. The material is<br />

placed <strong>in</strong> <strong>the</strong> boxes <strong>and</strong> should be sufficiently loose <strong>for</strong> <strong>the</strong> worms to burrow <strong>and</strong><br />

should be able to reta<strong>in</strong> moisture. The proportions of <strong>the</strong> different materials will vary<br />

accord<strong>in</strong>g to <strong>the</strong> nature of <strong>the</strong> material but a f<strong>in</strong>al prote<strong>in</strong> content of about 15% should<br />

be aimed at. A pH value as near neutral as possible is necessary <strong>and</strong> <strong>the</strong> boxes should<br />

be kept at temperatures between 20 o C <strong>and</strong> 27 o C. At higher temperatures, <strong>the</strong> worms<br />

will aestivate <strong>and</strong>, at lower temperatures, <strong>the</strong>y hibernate. The excess worms that have<br />

been harvested from <strong>the</strong> pit can be used <strong>in</strong> o<strong>the</strong>r pits, sold to o<strong>the</strong>r farmers <strong>for</strong> <strong>the</strong><br />

same purpose, used or sold <strong>for</strong> use as animal feed supplement, used or sold <strong>for</strong> use as<br />

fish food or, may even be used <strong>in</strong> certa<strong>in</strong> human food preparations (Misra <strong>and</strong> Roy,<br />

2003).<br />

African night crawler was <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> Philipp<strong>in</strong>es <strong>in</strong> <strong>the</strong> 1970s <strong>for</strong> <strong>the</strong><br />

production vermicast<strong>in</strong>gs as an organic fertilizer. Its use today rema<strong>in</strong>s focused <strong>for</strong><br />

this purpose. Recently, with ris<strong>in</strong>g cost of imported fishmeal, a study explores on <strong>the</strong><br />

commercial farm<strong>in</strong>g of <strong>the</strong> species, specifically on its production economics, <strong>and</strong> <strong>the</strong><br />

technical challenges <strong>in</strong> husb<strong>and</strong>ry <strong>and</strong> operation (Cruz, 2005). This project was<br />

fund<strong>in</strong>g assistance of <strong>the</strong> DOST-PCAMRD 1 . The site chosen was a flat but slightly<br />

<strong>in</strong>cl<strong>in</strong><strong>in</strong>g area (around 3%) of approximately 1,000 m 2 . It is partially shaded by<br />

mahogany trees <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g <strong>and</strong> <strong>the</strong> afternoon. The soil is clay loam with nearly<br />

neutral pH. Water used <strong>for</strong> <strong>the</strong> experiment was provided from an adjacent deep well.<br />

1 Philipp<strong>in</strong>e Council <strong>for</strong> Aquatic <strong>and</strong> Mar<strong>in</strong>e Research <strong>and</strong> Development, (Department of Science <strong>and</strong><br />

Technology)<br />

26


A total of 8 units of 1 m x 5 m earthworm plots were constructed on bare<br />

ground utiliz<strong>in</strong>g roof<strong>in</strong>g material as sidewalls. The sidewalls had a total height of<br />

around 40 cm, of which 3-4 cm was sunk on <strong>the</strong> ground. Wooden stakes supported<br />

<strong>the</strong>se sidewalls. Each plot was sub-divided <strong>in</strong>to two units of 1 m x 2.5 m beds <strong>for</strong> ease<br />

of management. The unit was provided with a hapa net l<strong>in</strong><strong>in</strong>g, to prevent <strong>the</strong> worms<br />

from digg<strong>in</strong>g beneath <strong>the</strong> substrate <strong>and</strong> escap<strong>in</strong>g. Plots were covered with a plastic<br />

sheet to protect it from direct sunlight <strong>and</strong> ra<strong>in</strong>. A horizontal wooden beam stretch<strong>in</strong>g<br />

<strong>the</strong> length of plot <strong>and</strong> held by vertical poles provided <strong>the</strong> support <strong>for</strong> <strong>the</strong> plastic sheet<br />

cover. Earthworm plots were kept covered with a plastic canopy, <strong>and</strong> opened only<br />

dur<strong>in</strong>g <strong>in</strong>spection or when water<strong>in</strong>g was done.<br />

27<br />

Photo 3.1.<br />

Earthworm plots show<strong>in</strong>g plastic<br />

covers <strong>and</strong> support frame<br />

Source: Wormsphilipp<strong>in</strong>es.com<br />

Several types of substrates were used <strong>in</strong> <strong>the</strong> study; <strong>the</strong>se were sugarcane bagasse,<br />

mudpress, spent mushroom substrate, <strong>and</strong> cow manure. The plots were watered every<br />

3-6 days, depend<strong>in</strong>g on <strong>the</strong> wea<strong>the</strong>r. Dur<strong>in</strong>g <strong>the</strong> dry months, water<strong>in</strong>g was rout<strong>in</strong>ely<br />

done every 3 days.<br />

Based on <strong>the</strong> data <strong>and</strong> experience ga<strong>the</strong>red <strong>in</strong> this study, <strong>the</strong> cost <strong>and</strong> return<br />

projection <strong>for</strong> a larger scale earthworm farm are based on <strong>the</strong> follow<strong>in</strong>g key<br />

assumptions:<br />

- 3 full-time workers with a salary of PhP150 (3.33$)/day<br />

- Crop cycle of 60 days (2 months), or 6 production cycles/yr<br />

- Total of 52 units of 2.5 m 2 area earthworm plots<br />

- Stock<strong>in</strong>g of 1 bed a day (26 work<strong>in</strong>g days a month)<br />

- Harvest<strong>in</strong>g of 1 bed a day (26 work<strong>in</strong>g days a month)<br />

- Earthworm stock<strong>in</strong>g biomass of 3 kg/plot <strong>and</strong> harvest biomass of 9 kg/plot,<br />

fter 60 days (200% biomass ga<strong>in</strong>)<br />

- Total substrate volume of 600 kg/plot/crop cycle based on two 300 kg<br />

load<strong>in</strong>gs<br />

- 70% recovery of vermicast<strong>in</strong>gs from total substrate weight<br />

- 20% recovery of vermi-meal from total earthworm biomass<br />

The total operational cost <strong>for</strong> 52 plots <strong>for</strong> a 2 month crop cycle is estimated at<br />

PhP80,401.79 (1783.74$), <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> cost of equipment depreciation (capital cost<br />

assumed at PhP5,000 per plot, depreciated <strong>in</strong> 6 crops or 1 year). The total volume of


vermicast<strong>in</strong>gs produced per crop is 21,840 kg based on a production of 420 kg/plot<br />

(from 600 kg x 70% recovery). The total gross production of earthworm biomass per<br />

crop is 468 kg, based on a yield of 9 kg/plot (from <strong>the</strong> 3 kg starter <strong>and</strong> 6 kg of biomass<br />

ga<strong>in</strong>). At <strong>the</strong> sell<strong>in</strong>g price of 0.11$/kg of vermicast<strong>in</strong>gs <strong>and</strong> 0.22$/kg <strong>for</strong> <strong>the</strong><br />

earthworms biomass, gross sales <strong>for</strong> one crop cycle is estimated at 2356.11$ <strong>and</strong><br />

1035.62$, respectively. This would provide <strong>the</strong> venture a net profit of around 742.73$<br />

every 2 months, <strong>and</strong> a rate of return of 249.83% annually. The study suggests a<br />

potential <strong>for</strong> develop<strong>in</strong>g <strong>the</strong> use of earthworms <strong>in</strong> farm-made moist feeds. Such type<br />

of feed is simple to produce <strong>and</strong> is proven to work well when properly <strong>for</strong>mulated <strong>and</strong><br />

processed. In as much as <strong>the</strong> production technology <strong>for</strong> earthworm farm<strong>in</strong>g can be<br />

readily adopted at <strong>the</strong> village level, where organic raw materials abound <strong>and</strong> where<br />

labor is cheap.<br />

3.2 Vermicompost<strong>in</strong>g <strong>in</strong> Cuba<br />

In Cuba, different methods are used <strong>for</strong> worm propagation <strong>and</strong> vermicompost<strong>in</strong>g. The<br />

first <strong>and</strong> most common is cement troughs, two feet wide <strong>and</strong> six feet long, much like<br />

livestock water<strong>in</strong>g troughs, used to raise worms <strong>and</strong> create worm compost. Because of<br />

<strong>the</strong> climate, <strong>the</strong>y are watered by h<strong>and</strong> every day. In <strong>the</strong>se beds, <strong>the</strong> only feedstock <strong>for</strong><br />

<strong>the</strong> worms is manure, which is aged <strong>for</strong> about one week be<strong>for</strong>e be<strong>in</strong>g added to <strong>the</strong><br />

trough.<br />

First, a layer of three to four <strong>in</strong>ches of manure is placed <strong>in</strong> <strong>the</strong> empty trough, <strong>the</strong>n<br />

worms are added. As <strong>the</strong> worms consume <strong>the</strong> manure, more manure is layered on top,<br />

roughly every ten days, until <strong>the</strong> worm compost reaches with<strong>in</strong> a couple <strong>in</strong>ches of <strong>the</strong><br />

top of <strong>the</strong> trough, about two months. Then <strong>the</strong> worms are separated from <strong>the</strong> compost<br />

<strong>and</strong> transferred to ano<strong>the</strong>r trough.<br />

The second method of vermicompost<strong>in</strong>g is w<strong>in</strong>drows, where cow manure is piled<br />

about three feet across <strong>and</strong> three feet wide, <strong>and</strong> <strong>the</strong>n it is seeded with worms. As <strong>the</strong><br />

worms work <strong>the</strong>ir way through it, fresh manure is added to <strong>the</strong> end of <strong>the</strong> row, <strong>and</strong> <strong>the</strong><br />

worms move <strong>for</strong>ward. The rows are covered with fronds or palm leaves to keep <strong>the</strong>m<br />

shaded <strong>and</strong> cool. Some of <strong>the</strong>se rows have a drip system - a hose runn<strong>in</strong>g alongside<br />

<strong>the</strong> row with holes <strong>in</strong> it. But mostly, <strong>the</strong> rows are watered by h<strong>and</strong>. Some of <strong>the</strong>se<br />

rows are hundreds of feet long. The compost is ga<strong>the</strong>red from <strong>the</strong> opposite end when<br />

<strong>the</strong> worms have moved <strong>for</strong>ward. Then it is bagged <strong>and</strong> sold. Fresh manure, seeded<br />

with worms, beg<strong>in</strong>s <strong>the</strong> row <strong>and</strong> <strong>the</strong> process aga<strong>in</strong>. Some of <strong>the</strong> w<strong>in</strong>drows have bricks<br />

runn<strong>in</strong>g along <strong>the</strong>ir sides, but most are simply piles of manure without sides or<br />

protection. Manure is static composted <strong>for</strong> 30 days, <strong>the</strong>n transferred to rows <strong>for</strong><br />

worms to be added. After 90 days, <strong>the</strong> piles reach three feet high. It has been reported<br />

that worm populations can double <strong>in</strong> 60 to 90 days.<br />

28


3.3. Vermicompost<strong>in</strong>g <strong>in</strong> India<br />

Photo 3.2.<br />

W<strong>in</strong>drows vermicompost<strong>in</strong>g method:<br />

<strong>in</strong> Havana, Cuba .<br />

Source: newfarm.org<br />

A study on production <strong>and</strong> market<strong>in</strong>g of vermicompost was carried out dur<strong>in</strong>g 2007-<br />

08 <strong>in</strong> Dharwad District of Karnataka (Shivakumar et al., 2009). The study made an<br />

attempt to analyze <strong>the</strong> economics of vermicompost production, market<strong>in</strong>g methods<br />

followed, f<strong>in</strong>ancial feasibility of vermicompost<strong>in</strong>g <strong>and</strong> <strong>the</strong> problems faced <strong>in</strong><br />

vermicompost production <strong>and</strong> market<strong>in</strong>g <strong>in</strong> Dharwad District. The players <strong>in</strong>volved <strong>in</strong><br />

vermicompost production activities are <strong>the</strong> farm<strong>in</strong>g sector, government organizations,<br />

private organizations <strong>and</strong> o<strong>the</strong>r agencies. This has encouraged many government <strong>and</strong><br />

nongovernment agencies to promote vermicompost production. The rough estimates<br />

<strong>in</strong>dicate that Karnataka state produces around 40,000 to 50,000 metric tons annually.<br />

The study perta<strong>in</strong>s to Dharwad district. Two locations of <strong>the</strong> district, namely Dharwad<br />

<strong>and</strong> Kalaghatagi were purposively selected <strong>and</strong> two villages each were r<strong>and</strong>omly<br />

selected from each location. For <strong>the</strong> economics of production, 10 vermicompost<br />

producers, who followed traditional heap system of vermicompost<strong>in</strong>g, were r<strong>and</strong>omly<br />

selected from each village. Thus, <strong>the</strong> total sample size was 40 producers. The results<br />

revealed that 70 % of vermicompost producers were illiterate. With regard to family<br />

type of vermicompost producers, it can be seen that as many as 60 % of <strong>the</strong>m had a<br />

family, while 40 percent had jo<strong>in</strong>t families. A majority of <strong>the</strong>m (~70 %) had annual<br />

<strong>in</strong>come <strong>in</strong> <strong>the</strong> range of $257 to 1070$ followed by around 18 per cent of <strong>the</strong>m hav<strong>in</strong>g<br />

<strong>in</strong>come of more than $1070 per annum <strong>and</strong> <strong>the</strong> rest hav<strong>in</strong>g annual <strong>in</strong>come of less than<br />

$257. With respect to method of production, heap method of vermicompost<strong>in</strong>g was<br />

followed by 70 % of <strong>the</strong> producers <strong>and</strong> trench method was followed by <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

30 %. With respect to method of production, a majority of respondents were found to<br />

produce vermicompost us<strong>in</strong>g heap method because it costs considerably lower<br />

compared to <strong>the</strong> trench method of production. The production of Vermicompost<br />

provided part time employment <strong>for</strong> <strong>the</strong> family members <strong>and</strong> hence it generated<br />

additional revenue <strong>for</strong> <strong>the</strong> family.<br />

The total cost of production of vermicompost per ton was 28.6$. The total market<strong>in</strong>g<br />

cost amounted to $4.3 per ton <strong>in</strong> channel-I (<strong>the</strong> producer-seller sold <strong>the</strong> produce to<br />

29


users <strong>in</strong> Dharwad) <strong>and</strong> $3.2 per ton <strong>in</strong> channel-II (<strong>the</strong> producer-seller sold <strong>the</strong> produce<br />

through BAIF to <strong>the</strong> users <strong>in</strong> Kalghatagi). The net returns per ton of vermicompost<br />

were $26 <strong>in</strong> channel-I compared to $24.5 <strong>in</strong> channel-II. The net present value <strong>for</strong> <strong>the</strong><br />

vermicompost production was $2136.89, <strong>the</strong> benefit cost ratio at 12% discount rate<br />

was 3.44, <strong>in</strong>ternal rate of return was 38% <strong>and</strong> payback period was 1.71 years.<br />

Some isl<strong>and</strong>s <strong>in</strong> India such as Andaman <strong>and</strong> Nicobar isl<strong>and</strong>s are known <strong>for</strong> <strong>the</strong>ir wide<br />

variety of crops such as paddy, coconut, areca_nut, clove, black pepper, c<strong>in</strong>namon,<br />

nutmeg <strong>and</strong> vegetables. About 2-3 kg of earthworms is required <strong>for</strong> 1000 kg of<br />

biomass, whereas about 1100 number earthworms are required <strong>for</strong> one square meter<br />

area. Non burrow<strong>in</strong>g species are mostly used <strong>for</strong> compost mak<strong>in</strong>g. Red earthworm<br />

species like Eisenia foetida <strong>and</strong> Eudrillus eng<strong>in</strong>ae are most efficient <strong>in</strong> compost<br />

mak<strong>in</strong>g. Summary <strong>for</strong> Production of Vermicompost at Farm Scale is shown <strong>in</strong> Table<br />

3.1.<br />

Women self-help groupes (SHGs) <strong>in</strong> several watersheds <strong>in</strong> India have set up<br />

vermicompost<strong>in</strong>g enterprises. By becom<strong>in</strong>g an earn<strong>in</strong>g member of <strong>the</strong> family, <strong>the</strong>y are<br />

<strong>in</strong>volved <strong>in</strong> <strong>the</strong> decision-mak<strong>in</strong>g process, which has raised <strong>the</strong>ir social status. One of<br />

<strong>the</strong> women managed to earn earned $36 per month from this activity. She has also<br />

<strong>in</strong>spired <strong>and</strong> tra<strong>in</strong>ed 300 peers <strong>in</strong> 50 villages. (Nagavallemma et al., 2004).<br />

30<br />

Photo 3.3.<br />

Women self-help group <strong>in</strong>volved<br />

<strong>in</strong> vermicompost<strong>in</strong>g, to promote<br />

micro-enterprises <strong>and</strong> generate<br />

<strong>in</strong>come<br />

Source: Nagavallemma et al.<br />

(2004)


Table 3.1. Summary <strong>for</strong> Production of Vermicompost at Farm Scale <strong>in</strong> Andaman <strong>and</strong><br />

Nicobar (A&N) Isl<strong>and</strong>s, India:<br />

Parameters Low ly<strong>in</strong>g area Hilly area<br />

Low ly<strong>in</strong>g +<br />

Hilly area<br />

Area (ha) 0.08 5.08 5.08<br />

Cropp<strong>in</strong>g System<br />

Vermicompost requirement<br />

(kg/year)<br />

Crop residue requirement (kg)<br />

Paddy-<br />

vegetable<br />

2500 + 5000<br />

= 7500<br />

7750 Paddy<br />

system +<br />

homestead waste<br />

31<br />

1 Coconut/<br />

2 Areca_nut<br />

spices<br />

Paddy-vegetable<br />

/ (1 ha) Coconut/<br />

arecanut/spices (1 ha)<br />

2500 7500 + 2500 =10000<br />

1750 from<br />

coconut or<br />

areca_nut<br />

plantations<br />

3000 from paddy<br />

system + 6500 from<br />

plantations<br />

Gliricidia production from<br />

fence (kg)<br />

1250 1250 2500<br />

Cow dung required (kg) 6000 2000 Kg 8000 kg<br />

Number of animals required<br />

1 cow + 4 goats+<br />

10 poultry birds<br />

1 cow 2cow<br />

Total waste <strong>for</strong> compost<strong>in</strong>g (kg) 15000<br />

5000<br />

20000<br />

Earth worms required (kg)<br />

7.5<br />

2.5<br />

10<br />

RCC r<strong>in</strong>gs required<br />

Number of units<br />

Capital Cost / year (A)<br />

6 r<strong>in</strong>gs<br />

2 (3 r<strong>in</strong>gs +<br />

3 r<strong>in</strong>gs)<br />

Expenditure/year<br />

2r<strong>in</strong>gs<br />

1 (2 r<strong>in</strong>gs)<br />

8 r<strong>in</strong>gs<br />

2 (4 r<strong>in</strong>gs+<br />

4 r<strong>in</strong>gs)<br />

Cost of r<strong>in</strong>gs $ 191.8$ 191.8$ 255.8$<br />

Cost of shed $ 53.3 53.3 74.6$<br />

Runn<strong>in</strong>g cost /year (B)<br />

Labour <strong>and</strong> Miscellaneous cost 127.9$ 127.9$ 159.86$<br />

Packag<strong>in</strong>g cost 79.93$ 79.93$ 106.6$<br />

Total (A+B) 452.9$ 452.9$ 596.8$<br />

Returns / year<br />

Vermicompost<br />

production (kg/year)<br />

Returns<br />

159.8 159.8 213.2<br />

1438. 8$ 1438. 8$ 1918.2$<br />

Net returns $ /year 985.8$ 985.8$ 1321.6$<br />

Source: MBM-CARI-XIV, Vermicompost Production, central agricultural research <strong>in</strong>stitute, <strong>and</strong>aman<br />

<strong>and</strong> nicobar isl<strong>and</strong>s,, Central Agricultural Research India.: http://cari.res.<strong>in</strong>/<br />

1 Coconut <strong>and</strong> arecanut produces around 8100 <strong>and</strong> 6900 kg of wastes/year, respectively. Hence,<br />

on an average, 7500 kg of wastes will be available per year <strong>for</strong> compost<strong>in</strong>g. If all <strong>the</strong> available<br />

wastes are utilized <strong>for</strong> production, <strong>the</strong> requirement of cowdung will be 5500 kg/year which can be<br />

met from one cow. Includ<strong>in</strong>g Gliricidia, <strong>the</strong> total waste availability will be 15000 kg/year which<br />

requires 7.5 kg of earth worms <strong>and</strong> 2 units compris<strong>in</strong>g 3 r<strong>in</strong>gs + 3 r<strong>in</strong>gs <strong>for</strong> compost<strong>in</strong>g. The total<br />

production will be 7500 kg of vermicompost/year. The additional quantity of 5000 kg/year<br />

available can be sold.<br />

2 Areca nut is <strong>the</strong> seed of <strong>the</strong> Areca palm (Areca catechu), which grows <strong>in</strong> much of <strong>the</strong> tropical Pacific,<br />

Asia, <strong>and</strong> parts of east Africa


3.4. Vermicompost „teas‟ <strong>in</strong> Ohio, USA<br />

These aqueous vermicompost extracts or „teas‟ are much easier to transport <strong>and</strong> apply,<br />

than solid vermicomposts, <strong>and</strong> can duplicate most of <strong>the</strong> benefits of vermicomposts<br />

when applied to <strong>the</strong> same crops. Additionally, <strong>the</strong>y can be applied to crops as foliar<br />

sprays.<br />

Work at The Ohio State University has shown that vermicompost „teas‟ <strong>in</strong>creased <strong>the</strong><br />

germ<strong>in</strong>ation, growth, flower<strong>in</strong>g, <strong>and</strong> yields of tomatoes, cucumbers, <strong>and</strong> o<strong>the</strong>r crops <strong>in</strong><br />

similar ways to solid vermicomposts. The aerated, vermicompost „teas‟ suppressed<br />

<strong>the</strong> plant diseases Fusarium, Verticillium, Plectosporium, <strong>and</strong> Rhizoctonia to <strong>the</strong> same<br />

extent as <strong>the</strong> solid.<br />

Vermicompost „teas‟ also suppressed populations of spider mites (Tetranychus<br />

urticae) <strong>and</strong> aphids (Myzus persicae) significantly.<br />

Additionally, <strong>the</strong>y had dramatic effects on <strong>the</strong> suppression of attacks by plant<br />

parasitic nematodes such as Meloidogyne on tomatoes both <strong>in</strong> terms of reduc<strong>in</strong>g <strong>the</strong><br />

numbers of root cysts significantly <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g root <strong>and</strong> shoot growth <strong>and</strong> Physicochemical<br />

characteristics of <strong>the</strong> feed <strong>and</strong> optimum worm density are important<br />

parameters <strong>for</strong> <strong>the</strong> efficient work<strong>in</strong>g of a vermicompost<strong>in</strong>g system. The results<br />

showed that E. fetida growth rate was faster at higher stock<strong>in</strong>g densities; however,<br />

biomass ga<strong>in</strong> per worm was faster at lower stock<strong>in</strong>g densities. Sexual maturity was<br />

atta<strong>in</strong>ed earlier at higher stock<strong>in</strong>g densities. Growth rate was highest <strong>in</strong> 100% cow<br />

dung at all <strong>the</strong> stock<strong>in</strong>g densities when compared to textile mill wastewater sludge<br />

conta<strong>in</strong><strong>in</strong>g feed mixtures. A worm population of 27–53 worms per kg of feed was<br />

found to be <strong>the</strong> most favorable stock<strong>in</strong>g density. Even when <strong>the</strong> physical conditions<br />

(temperature <strong>and</strong> moisture) <strong>and</strong> quality of waste (size, total organic carbon, total<br />

nitrogen, <strong>and</strong> total available phosphorus) are appropriate <strong>for</strong> vermicompost<strong>in</strong>g,<br />

problems can develop due to overcrowd<strong>in</strong>g of earthworms. This study clearly showed<br />

that when E. fetida was allowed to grow at different stock<strong>in</strong>g densities <strong>the</strong> worms<br />

grew slowly at higher stock<strong>in</strong>g densities. The maximum body weight of earthworm<br />

was higher at lower stock<strong>in</strong>g densities. Maturation rate was also affected by stock<strong>in</strong>g<br />

rate. Worms atta<strong>in</strong>ed sexual maturity earlier <strong>in</strong> crowded conta<strong>in</strong>ers. Worms of same<br />

age developed clitellum at different times at different population densities. The results<br />

<strong>in</strong>dicate that population of 27–53 worms per kg <strong>and</strong> 4–8 worms per 150 g/feed<br />

mixture is optimum (Garg et al., 2008).<br />

Most of <strong>the</strong> research on utilization of earthworms <strong>in</strong> waste management has focused<br />

on <strong>the</strong> f<strong>in</strong>al product, i.e. <strong>the</strong> vermicompost. There are only few literature references<br />

that have looked <strong>in</strong>to <strong>the</strong> process, or exam<strong>in</strong>ed <strong>the</strong> biochemical trans<strong>for</strong>mations that<br />

are brought about by <strong>the</strong> action of earthworms as <strong>the</strong>y fragment <strong>the</strong> organic matter,<br />

result<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>for</strong>mation of a vermicompost with physicochemical <strong>and</strong> biological<br />

properties which seem to be superior <strong>for</strong> plant growth to those of <strong>the</strong> parent material.<br />

It has been reported that <strong>the</strong> storage of organic wastes over a period of time could<br />

alter <strong>the</strong> biochemistry of <strong>the</strong> organic matter <strong>and</strong> could eventually lead to <strong>the</strong><br />

stabilization of <strong>the</strong> organic waste. Never<strong>the</strong>less, we hypo<strong>the</strong>size that add<strong>in</strong>g<br />

earthworms to <strong>the</strong> organic wastes would accelerate <strong>the</strong> stabilization of <strong>the</strong>se wastes <strong>in</strong><br />

32


terms of decomposition <strong>and</strong> m<strong>in</strong>eralization of <strong>the</strong> organic matter, lead<strong>in</strong>g to a more<br />

suitable medium <strong>for</strong> plant growth(Atiyeh et al., 2000).<br />

3.5. Vermicompost<strong>in</strong>g <strong>in</strong> United K<strong>in</strong>gdom<br />

In <strong>the</strong> UK, although <strong>the</strong> number of <strong>in</strong>door or enclosed systems appears to be<br />

<strong>in</strong>creas<strong>in</strong>g, most vermicompost<strong>in</strong>g systems would appear to be based on ei<strong>the</strong>r<br />

outdoor w<strong>in</strong>drows or covered shallow beds. There is very little evidence of<br />

mechanisation <strong>and</strong> <strong>the</strong> use of labor sav<strong>in</strong>g equipment, such as earthworm harvesters,<br />

is rare. The bed is approximately 5m wide, 50m long <strong>and</strong> 0.5m deep. The beds<br />

typically comprise wooden sides covered <strong>in</strong> a woven semi-permeable fabric<br />

conta<strong>in</strong><strong>in</strong>g coir or shredded wood chip bedd<strong>in</strong>g placed directly on <strong>the</strong> soil surface.<br />

When <strong>in</strong>stalled, <strong>the</strong> bed would have been <strong>in</strong>oculated with start<strong>in</strong>g culture of adult<br />

earthworms at a density of approximately 0.5kg earthworms per m3 of bed. Up until<br />

recently, most vermicompost<strong>in</strong>g facilities were modest <strong>in</strong> size with bed areas around<br />

1,000 m 2 , but <strong>the</strong>re is now a trend towards much larger units, as much as ten times<br />

this size. Very large units can process large amounts of waste, of <strong>the</strong> order of<br />

thous<strong>and</strong>s of tonnes per year, mak<strong>in</strong>g <strong>the</strong>m comparable to many of <strong>the</strong> smaller<br />

municipal compost<strong>in</strong>g operations.<br />

There is very little <strong>in</strong><strong>for</strong>mation available on <strong>the</strong> nature of <strong>the</strong> vermicompost<strong>in</strong>g<br />

<strong>in</strong>dustry <strong>in</strong> <strong>the</strong> UK <strong>and</strong> what little exists is considered to be commercially sensitive.<br />

There are at least four major suppliers of large-scale vermicompost<strong>in</strong>g systems<br />

currently operat<strong>in</strong>g. In year 2000, <strong>the</strong>re were around 90 <strong>in</strong>dividual operators with<br />

81,000 m 2 of beds. The total <strong>in</strong>vestment would have exceeded £1.25 million<br />

(Frederickson, 2003).<br />

33


4. Current on-farm <strong>and</strong> urban organic waste management practices<br />

<strong>in</strong> <strong>Egypt</strong>: gap analysis.<br />

The most important material <strong>for</strong> compost production is <strong>the</strong> organic material. There are<br />

two ma<strong>in</strong> sources of organic matter: farm wastes <strong>and</strong> urban wastes. In order to obta<strong>in</strong><br />

such materials, one should underst<strong>and</strong> waste management practices <strong>in</strong> <strong>the</strong> area. This<br />

chapter covers such an important subject.<br />

4.1. On-farm organic waste<br />

Agricultural wastes are def<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> relevant legislation as “waste from<br />

agriculture that <strong>in</strong>cludes any substances or object which <strong>the</strong> holder discards or <strong>in</strong>tends<br />

or is required to discard”. The disposal of biomass represents a problem <strong>for</strong> <strong>in</strong>dustries<br />

<strong>and</strong> society. It has been estimated that <strong>the</strong> off-farm disposed plant <strong>and</strong> animal wastes<br />

are 27 <strong>and</strong> 12 million tons annually, respectively. Burn<strong>in</strong>g of crop residues is a<br />

problem <strong>in</strong> <strong>Egypt</strong>, especially rice wastes. <strong>Egypt</strong> cultivates about 360.000 ha of rice<br />

accord<strong>in</strong>g to 2008 statistics, with a production of 6 million tons of straw.<br />

It is up to <strong>the</strong> grower to decide <strong>the</strong> way of dispos<strong>in</strong>g his agriculture wastes. The most<br />

common practice <strong>for</strong> dispos<strong>in</strong>g is by dump<strong>in</strong>g it at municipal waste sites, dump<strong>in</strong>g it<br />

<strong>in</strong> <strong>the</strong> desert or by simply burn<strong>in</strong>g it. The failure of any management plan to tackle <strong>the</strong><br />

agriculture waste, especially rice straw, is based on <strong>the</strong> assumption that this waste is<br />

free, <strong>and</strong> <strong>the</strong> grower has to give it away. In fact <strong>the</strong> grower realizes that <strong>the</strong> waste<br />

becomes valuable once collected <strong>and</strong> ready <strong>for</strong> transport. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, as long<br />

as <strong>the</strong> residues are <strong>in</strong> his property, no one could <strong>for</strong>ce him to h<strong>and</strong> it over. For him,<br />

burn<strong>in</strong>g <strong>the</strong> residue <strong>in</strong> site has some agricultural benefits, such as use of m<strong>in</strong>erals of<br />

<strong>the</strong> ash, or gett<strong>in</strong>g rid of <strong>in</strong>sects <strong>and</strong> diseases on above <strong>the</strong> ground as a result of<br />

burn<strong>in</strong>g.<br />

Even though <strong>the</strong> practice is well known, farmers <strong>in</strong> many parts of <strong>the</strong> world especially<br />

<strong>in</strong> develop<strong>in</strong>g countries f<strong>in</strong>d <strong>the</strong>mselves at a disadvantage by not mak<strong>in</strong>g <strong>the</strong> best use<br />

of organic recycl<strong>in</strong>g opportunities available to <strong>the</strong>m, due to various constra<strong>in</strong>ts which<br />

among o<strong>the</strong>rs <strong>in</strong>clude absence of efficient expeditious technology, long time span,<br />

<strong>in</strong>tense labor, l<strong>and</strong> <strong>and</strong> <strong>in</strong>vestment requirements, <strong>and</strong> economic aspects.<br />

In rural areas, <strong>in</strong> particular, <strong>the</strong> implementation of effective solid waste management<br />

systems is faced with a number of constra<strong>in</strong>ts. These constra<strong>in</strong>ts are related to<br />

environmental conditions, <strong>in</strong>stitutional/ adm<strong>in</strong>istrative issues, f<strong>in</strong>ancial matters,<br />

technical deficiencies <strong>and</strong> plann<strong>in</strong>g <strong>and</strong> legal limitations.<br />

As <strong>for</strong> agriculture waste, two options <strong>for</strong> treat<strong>in</strong>g rice straw are recommended. The<br />

first is to collaborate with <strong>the</strong> fresh universities graduates to collect such dispersed<br />

produced amount <strong>in</strong> order to be used <strong>in</strong> <strong>the</strong> compost mak<strong>in</strong>g activities, <strong>the</strong> o<strong>the</strong>r<br />

option is to <strong>in</strong>stall small manufactures <strong>for</strong> fiber process<strong>in</strong>g to produce packages <strong>for</strong><br />

exported crops as rice straw could be used as a virg<strong>in</strong> material.<br />

34


4.1.1. Weak po<strong>in</strong>ts <strong>in</strong> rice straw system <strong>in</strong> <strong>Egypt</strong><br />

There is an extreme shortage of <strong>the</strong> comb<strong>in</strong><strong>in</strong>g, rak<strong>in</strong>g <strong>and</strong> bal<strong>in</strong>g mach<strong>in</strong>es,<br />

<strong>and</strong> no enough trucks to transport <strong>the</strong> ready straw bales (economical problem).<br />

In addition, <strong>the</strong> un-paved dirt roads that makes <strong>the</strong> transportation between<br />

farms <strong>and</strong> market (economical <strong>and</strong> managerial problems) almost impossible.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>s, agricultural co-operations have to work to provide a<br />

storage place <strong>for</strong> <strong>the</strong> ready bales, trucks <strong>and</strong> some mechanical equipment to<br />

overcome <strong>the</strong> previous obstacles. To facilitate such work, GIS maps should<br />

provide <strong>the</strong> farms sites <strong>in</strong> each governorate <strong>and</strong> a full study of <strong>the</strong> road status<br />

that will be used <strong>for</strong> <strong>the</strong> transportation.<br />

4.2. Urban wastes<br />

Ma<strong>in</strong> four systems were <strong>in</strong>volved <strong>in</strong> solid waste management be<strong>for</strong>e <strong>the</strong> trend to<br />

privatization; The Governmental system <strong>in</strong>clud<strong>in</strong>g Cairo <strong>and</strong> Giza "Cleans<strong>in</strong>g <strong>and</strong><br />

Beautification Authorities". These central agencies were responsible <strong>for</strong> municipal<br />

solid waste activities <strong>in</strong>clud<strong>in</strong>g regulation of private service delivery. In spite of<br />

creat<strong>in</strong>g such powerful entities, <strong>the</strong>y were not effective <strong>and</strong> faced lots of problems.<br />

The second system is <strong>the</strong> conventional Zabbaleen (<strong>in</strong><strong>for</strong>mal waste collectors) system,<br />

which offers door-to-door service <strong>in</strong> return <strong>for</strong> <strong>the</strong> monthly fee. Thirdly, <strong>the</strong>re is <strong>the</strong><br />

<strong>for</strong>mal private sector system, which has been <strong>in</strong>troduced <strong>in</strong> larger cities <strong>and</strong> some<br />

prov<strong>in</strong>cial towns. Each private operator must have a collection license or a service<br />

contract <strong>for</strong> his assigned area from <strong>the</strong> local municipality. F<strong>in</strong>ally, <strong>the</strong>re is Non<br />

Governmental Organizations (NGOs), which per<strong>for</strong>m some limited solid waste<br />

services, especially <strong>in</strong> rural areas <strong>and</strong> small cities.<br />

4.2.1. Overview of solid waste management problem <strong>in</strong> <strong>Egypt</strong><br />

The problem of solid waste management <strong>in</strong> <strong>Egypt</strong> has been grow<strong>in</strong>g at an alarm<strong>in</strong>g<br />

rate. Its negative manifestations, as well as its direct <strong>and</strong> <strong>in</strong>direct harmful<br />

consequences on public health, environment <strong>and</strong> national economy (particularly as<br />

related to manpower productivity <strong>and</strong> tourism) are becom<strong>in</strong>g quite apparent <strong>and</strong> acute.<br />

In large cities like Cairo <strong>and</strong> Alex<strong>and</strong>ria <strong>the</strong> problem reached such serious proportions<br />

that <strong>the</strong>y called <strong>for</strong> considerable government <strong>in</strong>tervention <strong>and</strong> a series of judicious<br />

actions <strong>in</strong> <strong>the</strong> short, medium, <strong>and</strong> long term.<br />

In essence, <strong>the</strong> problem –as described <strong>in</strong> <strong>the</strong> National Waste Management Strategy<br />

2000- lies <strong>in</strong> <strong>the</strong> fact that:<br />

"The present systems could not satisfy <strong>the</strong> served community needs with its various<br />

strata <strong>for</strong> a reasonably accepted cleans<strong>in</strong>g level, as well as <strong>in</strong> reduc<strong>in</strong>g <strong>the</strong> negative<br />

health <strong>and</strong> environmental impacts, or <strong>in</strong> improv<strong>in</strong>g <strong>the</strong> aes<strong>the</strong>tic appearance".<br />

35


The clearly evident symptoms of <strong>the</strong> problem are:<br />

- Various levels of waste accumulations at various places <strong>and</strong> locations that<br />

became liable to various vectors (rodents <strong>and</strong> <strong>in</strong>sects) <strong>and</strong> environmental<br />

pollution, bad smells <strong>and</strong> appearance, aside from frequent uncontrolled open<br />

burn<strong>in</strong>g that all contribute to negative health <strong>and</strong> environmental impacts.<br />

- Ineffective <strong>and</strong> environmentally non-sound h<strong>and</strong>l<strong>in</strong>g, treatment <strong>and</strong> recycl<strong>in</strong>g<br />

techniques that may pose health risks.<br />

- Prevalent open-dump type of r<strong>and</strong>om solid waste disposal as well as<br />

<strong>in</strong>discrim<strong>in</strong>ate dump<strong>in</strong>g lead<strong>in</strong>g to various associated health <strong>and</strong> environmental<br />

hazards.<br />

4.2.2. Ma<strong>in</strong> factors contribut<strong>in</strong>g to soil waste management problem<br />

Municipal solid waste contents <strong>for</strong> <strong>the</strong> years 2000-2008 <strong>and</strong> <strong>the</strong>ir distribution are<br />

illustrated <strong>in</strong> Table (4.1) <strong>and</strong> Table (4.2). The ma<strong>in</strong> factors contribut<strong>in</strong>g <strong>the</strong> solid<br />

waste problems <strong>in</strong> <strong>Egypt</strong> could be summarized as follows:<br />

- Actions taken <strong>in</strong> <strong>the</strong> past were not always susta<strong>in</strong>able, <strong>and</strong> <strong>the</strong> issues were not<br />

addressed <strong>in</strong> a comprehensive <strong>and</strong> <strong>in</strong>tegrated manner.<br />

- Accurate <strong>and</strong> reliable data concern<strong>in</strong>g solid waste quantities, rates of<br />

generation, composition does not exist. Numerous attempts to quantify <strong>the</strong><br />

problem have been made; however, <strong>the</strong>se attempts are by no means<br />

comprehensive or rigorous.<br />

- Laws are not applicable with very weak mechanisms <strong>for</strong> en<strong>for</strong>cement.<br />

- The <strong>in</strong>volvement of <strong>the</strong> private sector <strong>in</strong> SWM activities <strong>in</strong> <strong>Egypt</strong> has been<br />

m<strong>in</strong>imal till <strong>the</strong> last decade when <strong>the</strong> private sector became more <strong>in</strong>volved.<br />

- Ineffective recycl<strong>in</strong>g activities, especially with all k<strong>in</strong>ds of waste mixed<br />

toge<strong>the</strong>r without any plan to encourage sort<strong>in</strong>g at source. Moreover, nonhazardous<br />

<strong>and</strong> hazardous wastes are mixed through <strong>the</strong> "waste cycle".<br />

- Low level of public awareness <strong>and</strong> improper behaviors <strong>and</strong> practices <strong>in</strong><br />

relation to solid waste h<strong>and</strong>l<strong>in</strong>g <strong>and</strong> disposal.<br />

Table 4.1. Municipal solid waste contents 2000, 2005 <strong>and</strong> 2008<br />

Waste % 2000 Waste % 2005 Waste % 2008<br />

Organic materials 45-55% 50-60% 50-60%<br />

Paper 10-20% 10-25% 10-25%<br />

Plastic 3-12% 3-12% 3-12%<br />

Glass 1-5% 1-5% 1-5%<br />

Metal 1.5- 7% 1.5- 7% 1.5- 7%<br />

Fabrics 1.2- 7% 1.2- 7% 1.2- 7%<br />

O<strong>the</strong>rs 11-30% 11-30% 11-30%<br />

Source: EEAA (2001) <strong>and</strong> (2006) <strong>and</strong> CAPMAS (2010)<br />

36


Table 4.2. Distribution of waste accord<strong>in</strong>g to <strong>the</strong> sources <strong>in</strong> 2000 <strong>and</strong> 2005<br />

Source<br />

Estimated quantity<br />

2000 2005<br />

Municipal garbage 14-15 million ton 15-16 million ton<br />

Industrial 4-5 million ton 4.5 - 5 million ton<br />

Agricultural 23 million ton 25-30 million ton<br />

Sludge 1.5 -2 million ton 1.5 -2 million ton<br />

Clear<strong>in</strong>g banks<br />

sewage outputs<br />

<strong>and</strong><br />

20 million ton 20 million ton<br />

Hospitals 100 -120 million ton 100 -120 million ton<br />

Construction<br />

demolition waste<br />

<strong>and</strong><br />

3-4 million ton 3-4 million ton<br />

Source: EEAA (2007)<br />

4.2.3. Waste generation rates<br />

The total quantity of solid wastes generated <strong>in</strong> <strong>Egypt</strong> is 118.6 million tons/year <strong>in</strong><br />

2007/2008 as shown <strong>in</strong> Table (4-3) estimates, <strong>in</strong>clud<strong>in</strong>g municipal solid waste<br />

(garbage), <strong>in</strong>dustrial waste, agricultural waste, sludge result<strong>in</strong>g from sanitation<br />

treatment, hospital wastes, construction <strong>and</strong> demolition debris <strong>and</strong> wastes from <strong>the</strong><br />

clean<strong>in</strong>g of canals <strong>and</strong> dra<strong>in</strong>s. Municipal solid wastes (garbage) <strong>in</strong>clude rema<strong>in</strong>s of<br />

households (about 60 %), shops <strong>and</strong> commercial markets, service <strong>in</strong>stitutions such as<br />

schools <strong>and</strong> educational <strong>in</strong>stitutes, utilities, hospitals, adm<strong>in</strong>istrative build<strong>in</strong>gs, streets,<br />

gardens, markets, hotels, <strong>and</strong> recreation areas, <strong>in</strong> addition to small factories <strong>and</strong><br />

camps.<br />

Resource recovery reduces <strong>the</strong> quantity of raw materials needed <strong>in</strong> production<br />

processes. It may <strong>the</strong>re<strong>for</strong>e reduce dependency on imports <strong>and</strong> save <strong>for</strong>eign currency.<br />

Reused rubber <strong>and</strong> plastics, <strong>for</strong> example, reduce <strong>the</strong> need <strong>for</strong> imported raw materials<br />

<strong>and</strong> <strong>the</strong> reuse of organic waste as compost reduces <strong>the</strong> dependence on imported<br />

chemical fertilizers.<br />

Resource recovery saves natural resources, particularly <strong>in</strong> <strong>the</strong> <strong>for</strong>m of raw materials<br />

<strong>and</strong> energy. The recycl<strong>in</strong>g of alum<strong>in</strong>um, <strong>for</strong> example, results <strong>in</strong> energy sav<strong>in</strong>gs 14 of<br />

up to 96%. An environmentally sound waste disposal system should <strong>the</strong>re<strong>for</strong>e <strong>in</strong>volve<br />

resource recovery as much as possible.<br />

However, waste recovery also creates employment opportunities that can conflict with<br />

environmental <strong>and</strong> health criteria. Although <strong>the</strong> reuse of organic waste helps to<br />

prevent environmental degradation <strong>and</strong> pollution, <strong>the</strong> recovery methods <strong>the</strong>mselves<br />

are often not environmentally sound <strong>and</strong> may pose health hazards <strong>for</strong> workers. With<strong>in</strong><br />

solid waste disposal systems environmental, socio-economic <strong>and</strong> health costs are<br />

rarely considered. The total costs of safe <strong>and</strong> environmentally acceptable solid waste<br />

disposal are poorly documented <strong>and</strong> are <strong>the</strong>re<strong>for</strong>e underestimated. However, it is<br />

aga<strong>in</strong>st this background that resource recovery needs to be valued <strong>and</strong> supported <strong>in</strong><br />

order to use <strong>the</strong> potential of recovery to its full extent <strong>and</strong> to improve exist<strong>in</strong>g<br />

practices.<br />

For many people, work<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>in</strong><strong>for</strong>mal waste sector is <strong>the</strong> last resort <strong>in</strong> <strong>the</strong> daily<br />

struggle <strong>for</strong> survival. Incomes are usually m<strong>in</strong>imal, <strong>and</strong> work<strong>in</strong>g conditions are often<br />

appall<strong>in</strong>g. Never<strong>the</strong>less, some traders have managed to set up a feasible bus<strong>in</strong>ess that<br />

can earn reasonable profits. All <strong>the</strong>se people provide a valuable service to society as a<br />

37


whole; <strong>in</strong> many cities <strong>the</strong> municipal refuse collection <strong>and</strong> disposal services are<br />

woefully <strong>in</strong>adequate, particularly <strong>in</strong> low-<strong>in</strong>come areas, where waste accumulates <strong>in</strong><br />

<strong>the</strong> streets. Improved recovery processes could <strong>the</strong>re<strong>for</strong>e reduce <strong>the</strong> amounts of waste<br />

that need to be collected, <strong>and</strong> thus <strong>the</strong> costs of municipal waste disposal, <strong>and</strong> could<br />

help to reduce <strong>the</strong> risk to human health.<br />

For example, Cairo is renowned <strong>for</strong> its extensive <strong>in</strong><strong>for</strong>mal waste recycl<strong>in</strong>g system. In<br />

<strong>the</strong> Cairo metropolitan area, 6000 tons of municipal solid waste is generated daily.<br />

The municipality collects about 2400 tons per day, while <strong>in</strong><strong>for</strong>mal workers collect<br />

about 2700 tons of household waste per day us<strong>in</strong>g a fleet of some 700 donkey carts.<br />

The balance of 900 tons rema<strong>in</strong>s on <strong>the</strong> city streets, vacant lots <strong>and</strong> <strong>the</strong> peripheries of<br />

poorly serviced low-<strong>in</strong>come areas of <strong>the</strong> city.<br />

Table 4.3. Distribution of wastes accord<strong>in</strong>g to its sources <strong>and</strong> Governorates 2007/2008<br />

Governorate<br />

Source (ton/month)<br />

Municipal Industrial Agricultural Sludge<br />

m 3<br />

38<br />

Clear<strong>in</strong>g<br />

banks &<br />

sewage<br />

Hospitals<br />

Construction<br />

<strong>and</strong><br />

demolition<br />

Cairo 1761668 149914 - - - 49860 811488<br />

Giza 139650 - - - - - 77100<br />

Qalyobia - - - - - - -<br />

Alex<strong>and</strong>ria - 620500 1296506 - - - -<br />

Behira 27330 - 4099.5 5072500 - 1366.5 -<br />

Menofia 3281224 2749.42 20617.7 7168 169239 899.57 5035.83<br />

Gharbia 40860 32.5 10069.6 - - 0.5 -<br />

Kar ElSheih 65600 - 369619 - 3550 33 56<br />

Damitta 1124 337.2 - - - - -<br />

Daqhlia - - 456517 - - - -<br />

North S<strong>in</strong>ia 14.75 700 2083.3 8.3 - 31.7 283.3<br />

South S<strong>in</strong>ia 47 - - - - - -<br />

Port Said 18390.1 - - 2205 - 244.11 -<br />

Ismailia 17160 240 2918 369750 25000 35.9 17053<br />

Suis 118625 51666.7 - 18250 37083.3 243.33 760.417<br />

Sharqia 12000 - - - - 11.648 -<br />

Beni Suif 45420 178 - 335.3 - 32.88 975<br />

M<strong>in</strong>ia 13406 53.4 45666.5 218 3186 33.08 2566<br />

Assuit 6120 - - - - - -<br />

New valley 2322 - 6166 416 666 14.7 583<br />

Sohag 2691 382 409 330 250 290 1919<br />

Qena<br />

2046<br />

480m3<br />

15<br />

90m 3 340 - 1500 9.5<br />

135<br />

12545m 3<br />

Asswan 76003.3 6360 64.1667 0.5833 0.833333 134.46 4080<br />

Red sea<br />

16650<br />

12750m 3 - - - - 2.55<br />

1500<br />

100m 3<br />

Luxor 550 50 250 120 150 8 360<br />

Total<br />

5649880.15<br />

13230 m<br />

833278 2215326 8587.88 203541.8 53255 924254.55<br />

3 90 m 3 - 5462713 m 3 37083.3 m 3 - 12645 m 3<br />

Source: EEAA (2007).<br />

The <strong>in</strong><strong>for</strong>mal sector <strong>in</strong> <strong>Egypt</strong> plays a significant role <strong>in</strong> <strong>the</strong> solid waste services<br />

<strong>in</strong>clud<strong>in</strong>g waste recycl<strong>in</strong>g. This sector has been grow<strong>in</strong>g significantly over <strong>the</strong> last<br />

three decades. There<strong>for</strong>e, it is essential to underst<strong>and</strong> <strong>and</strong> recognize <strong>the</strong> complex role<br />

of this sector <strong>in</strong> solid waste services <strong>and</strong> to benefit from its exist<strong>in</strong>g <strong>in</strong>frastructure <strong>and</strong><br />

expertise <strong>in</strong> any <strong>for</strong>mal <strong>in</strong>itiative (GTZ, 2004).


Over <strong>the</strong> last three decades, <strong>the</strong> <strong>in</strong><strong>for</strong>mal garbage collectors have drastically<br />

developed <strong>the</strong> volume <strong>and</strong> scope of activities <strong>the</strong>y per<strong>for</strong>m. Solid waste operators <strong>in</strong><br />

<strong>the</strong> <strong>in</strong><strong>for</strong>mal sector generally per<strong>for</strong>m five functions: collection, transportation,<br />

recovery, trade, <strong>and</strong> recycl<strong>in</strong>g. It is usually a family bus<strong>in</strong>ess where men do <strong>the</strong><br />

transportation <strong>and</strong> trad<strong>in</strong>g <strong>and</strong> women do most of <strong>the</strong> sort<strong>in</strong>g.<br />

The waste sort<strong>in</strong>g <strong>and</strong> recovery is almost entirely done <strong>in</strong> <strong>the</strong> courtyard of garbage<br />

collector‟s houses. After waste collection <strong>and</strong> transportation to <strong>the</strong> Zabbaleen area,<br />

waste is sorted <strong>in</strong>to: (i) organic waste that is fed to <strong>the</strong> animals, sold to o<strong>the</strong>rs as<br />

animal feed, or sent <strong>for</strong> compost<strong>in</strong>g; <strong>and</strong> (ii) non-organic waste that is categorized<br />

<strong>in</strong>to: paper, plastic, metal, glass, fabric, bones, <strong>and</strong> residual non-recyclable waste.<br />

Subsequently, ano<strong>the</strong>r sort<strong>in</strong>g process is <strong>the</strong>n undertaken to sort different sub-types of<br />

each of <strong>the</strong> ma<strong>in</strong> categories while non-recyclable waste is transported to <strong>the</strong> municipal<br />

disposal site on a monthly basis. The recovered material is sold while <strong>the</strong> nonrecoverable<br />

materials are sent to <strong>the</strong> municipal dumps. Recyclable materials sorted<br />

<strong>in</strong>to categories <strong>and</strong> sub-categories of paper, plastic, metal, glass, fabric, <strong>and</strong> bones are<br />

transferred to recycl<strong>in</strong>g workshops.<br />

In 2000, <strong>the</strong>re were more than 220 recycl<strong>in</strong>g workshops <strong>in</strong> <strong>the</strong> Zabbaleen area of<br />

Cairo. About 90% own <strong>the</strong>ir workshop space (even if <strong>in</strong><strong>for</strong>mally) while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

10% rent <strong>the</strong>ir workshop. A workshop employs six workers on average. The average<br />

area of <strong>the</strong> recycl<strong>in</strong>g workshop is 155 square meters but varies widely depend<strong>in</strong>g on<br />

<strong>the</strong> recycl<strong>in</strong>g activity per<strong>for</strong>med. Generally plastic recycl<strong>in</strong>g <strong>and</strong> cloth gr<strong>in</strong>ders use up<br />

<strong>the</strong> most space <strong>and</strong> <strong>the</strong>ir workshops usually have an area more than 200 m 2 . Metal<br />

recycl<strong>in</strong>g <strong>in</strong>dustries need less space.<br />

4.2.4. Major conventional solid waste systems are<br />

- Governmental system: municipalities or clean<strong>in</strong>g authorities (Cairo <strong>and</strong> Giza)<br />

collect <strong>and</strong> transfer wastes from <strong>the</strong> streets, b<strong>in</strong>s, public conta<strong>in</strong>ers, <strong>and</strong> supervises<br />

public dumpsites <strong>and</strong> <strong>the</strong> operation of compost<strong>in</strong>g plants ei<strong>the</strong>r directly or through<br />

<strong>the</strong> private sector.<br />

- Traditional “Zabbaleen” (garbage collectors) system: <strong>in</strong> this system, which date<br />

back to <strong>the</strong> early twentieth century, collectors collect garbage from household units<br />

<strong>and</strong> some commercial establishments, <strong>and</strong> transfer it to <strong>the</strong>ir communities<br />

(Zabbaleen villages) <strong>for</strong> sort<strong>in</strong>g <strong>and</strong> recycl<strong>in</strong>g. Although work<strong>in</strong>g conditions <strong>and</strong><br />

methods used, that are of m<strong>in</strong>imal costs <strong>and</strong> do not comply with <strong>the</strong> requirements of<br />

health <strong>and</strong> <strong>the</strong> environment, yet <strong>the</strong>y are considered by clients as a considerably<br />

good service. Fur<strong>the</strong>r, this system achieves <strong>the</strong> highest recovery degree possible;<br />

sometimes reach 80% of <strong>the</strong> garbage collected by Zabbaleen, which is estimated by<br />

3000 tons per day <strong>in</strong> Cairo (about 30% of <strong>the</strong> total amount generated daily). Local<br />

private companies: <strong>the</strong>se collect <strong>and</strong> transfer garbage <strong>in</strong> a number of <strong>Egypt</strong>ian cities.<br />

They represent a developed model of <strong>the</strong> garbage collectors‟ system, work<strong>in</strong>g <strong>in</strong><br />

limited areas under <strong>the</strong> supervision <strong>and</strong> control of municipalities or clean<strong>in</strong>g<br />

authorities. The f<strong>in</strong>al disposal of wastes takes place ei<strong>the</strong>r at <strong>the</strong> garbage collectors<br />

communities or <strong>in</strong> public dumpsites.<br />

39


4.3. Overview of organic waste recovery options<br />

S<strong>in</strong>ce organic material <strong>for</strong>ms all farm wastes <strong>and</strong> a large proportion of urban refuse,<br />

ways can be sought as to use this resource more effectively. Organic material can be<br />

reused <strong>in</strong> three ways:<br />

- to feed animals (fodder),<br />

- to improve <strong>the</strong> soil (compost),<br />

- to produce energy (biogas or briquettes).<br />

The first two options are already very common <strong>in</strong> economically less developed<br />

countries. In Lahore, Pakistan, <strong>for</strong> example, 40% of urban refuse is collected by<br />

farmers <strong>and</strong> used as animal feed <strong>and</strong> soil amendment.<br />

4.3.1. Feed<strong>in</strong>g animals<br />

Rais<strong>in</strong>g animals is <strong>the</strong> easiest possibility; <strong>in</strong> most cases organic waste can be fed<br />

directly to domestic animals without pretreatment, but cook<strong>in</strong>g or <strong>the</strong> addition of<br />

nutrients may sometimes be necessary. This strategy refers to divert<strong>in</strong>g food not<br />

appropriate <strong>for</strong> human consumption to animal feed. While a potentially useful outlet<br />

<strong>for</strong> food scraps that o<strong>the</strong>rwise would be disposed, this avenue tends to be limited<br />

primarily to food processors <strong>and</strong> beer <strong>in</strong>dustries <strong>and</strong> may not be feasible <strong>for</strong> urban<br />

<strong>in</strong>stitutions. In some cases, rural corrections facilities <strong>and</strong> l<strong>and</strong>-grant colleges have <strong>the</strong><br />

appropriate comb<strong>in</strong>ation of circumstances that allows <strong>for</strong> <strong>the</strong> collection <strong>and</strong> feed<strong>in</strong>g of<br />

certa<strong>in</strong> food scraps to on-site animals.<br />

4.3.2. Compost<br />

Compost<strong>in</strong>g is <strong>the</strong> microbial decomposition of discarded organic materials under<br />

controlled conditions. The end product, compost, is used as an organic soil<br />

amendment. It promotes microbiological activity <strong>in</strong> soils necessary <strong>for</strong> plant growth,<br />

disease resistance, water retention <strong>and</strong> filtration, <strong>and</strong> erosion prevention. Compost can<br />

be used <strong>in</strong> various ways. As a soil amendment, compost enhances <strong>the</strong> physical,<br />

chemical, <strong>and</strong> biological properties of soil. The macro-nutrient value of compost is<br />

typically not high relative to fertilizers. Compost enriches <strong>the</strong> soil by <strong>in</strong>creas<strong>in</strong>g<br />

organic matter. Additionally, compost <strong>in</strong>creases soil‟s capacity to hold water. By<br />

amend<strong>in</strong>g soil with compost, soil is better able to hold nutrients. Nutrients do not<br />

leach as easily; ra<strong>the</strong>r, <strong>the</strong>y are released more slowly to plants, which can reduce <strong>the</strong><br />

need <strong>for</strong> fertilizers. Compost can also suppress fungal diseases <strong>in</strong> soil, which can be<br />

particularly important to <strong>the</strong> golf <strong>and</strong> nursery <strong>in</strong>dustries.<br />

The utilization of earth worms, as discussed previously, could play a strong role <strong>in</strong><br />

convert<strong>in</strong>g organic wastes, whe<strong>the</strong>r urban or rural, <strong>in</strong>to a valuable vermicompost<br />

material.<br />

4.3.3 L<strong>and</strong>fill disposal or <strong>in</strong>c<strong>in</strong>eration<br />

This strategy refers send<strong>in</strong>g organic materials to a disposal facility to be l<strong>and</strong>filled or<br />

<strong>in</strong>c<strong>in</strong>erated. This is considered <strong>the</strong> least desirable strategy from a social,<br />

environmental, <strong>and</strong> sometimes economic perspective.<br />

40


The garbage from which <strong>the</strong> recyclable items have been removed is dumped by a<br />

mechanical front-end loader through a grid onto a conveyor belt, which transfers <strong>the</strong><br />

garbage to a hopper <strong>and</strong> f<strong>in</strong>ally to a rotat<strong>in</strong>g, cyl<strong>in</strong>drical drum, where <strong>the</strong> compost is<br />

sieved. At <strong>the</strong> end of <strong>the</strong> sieve, children anxiously wait <strong>for</strong> some useful remnants. The<br />

maturity of <strong>the</strong> compost is determ<strong>in</strong>ed by measur<strong>in</strong>g <strong>the</strong> temperature.<br />

Normally, <strong>the</strong> plant processes 30 tons (60 m 3 ) of compost per shift per day. Dur<strong>in</strong>g <strong>the</strong><br />

season when l<strong>and</strong> is prepared <strong>for</strong> cultivation (November to February) output is<br />

doubled by work<strong>in</strong>g two shifts per day. The plant provides jobs <strong>for</strong> 11 employees (1<br />

consultant, 1 plant manager, 1 technician, 1 electrician, 1 operation <strong>and</strong> ma<strong>in</strong>tenance<br />

manager, 3 security guards, 2 drivers, <strong>and</strong> 1 messenger). Mechanical parts <strong>for</strong> <strong>the</strong><br />

plant can be bought <strong>in</strong> <strong>Egypt</strong>, although some electrical parts have to be imported.<br />

Although <strong>the</strong> quality of <strong>the</strong> compost appears to be good, it has been found to conta<strong>in</strong><br />

small pieces of glass <strong>and</strong> plastics, <strong>and</strong> large quantities of heavy metals.<br />

The major pressures on solid waste management <strong>in</strong> <strong>Egypt</strong> are exemplified <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>crease <strong>in</strong> waste quantities generated due to <strong>the</strong> escalat<strong>in</strong>g population, on <strong>the</strong> one<br />

h<strong>and</strong>, <strong>and</strong> <strong>the</strong> change <strong>in</strong> consumption patterns <strong>in</strong> towns <strong>and</strong> villages alike, on <strong>the</strong> o<strong>the</strong>r<br />

h<strong>and</strong>, <strong>in</strong> addition to <strong>the</strong> lack of awareness <strong>and</strong> <strong>the</strong> wrong h<strong>and</strong>l<strong>in</strong>g of solid wastes <strong>in</strong><br />

general. Various studies on ducted dur<strong>in</strong>g <strong>the</strong> last two decades <strong>in</strong> a number of<br />

<strong>Egypt</strong>ian Governorates <strong>and</strong> cities po<strong>in</strong>t out to a significant decrease <strong>in</strong> municipal solid<br />

waste collection efficiency totally lack<strong>in</strong>g <strong>in</strong> some rural areas. Consequently, large<br />

amounts of waste accumulations appeared <strong>in</strong> streets, vacant l<strong>and</strong> between build<strong>in</strong>gs<br />

<strong>and</strong> different areas <strong>in</strong> cities <strong>and</strong> populated areas throughout <strong>the</strong> past years. Such areas<br />

have become focal po<strong>in</strong>ts of environmental pollution <strong>and</strong> represent significant<br />

pressures on human health as well as on <strong>the</strong> environment.<br />

41


Table 4.4. <strong>Egypt</strong>‟s Integrated Solid Waste Management Plan <strong>for</strong> <strong>the</strong> period 2007-<br />

2012.<br />

Governorate<br />

The cost of <strong>the</strong> program / million <strong>Egypt</strong>ian pound<br />

Remove<br />

Accumula-<br />

tions<br />

Improve<br />

process of<br />

collections &<br />

transportation<br />

Establish<br />

<strong>in</strong>termediate<br />

station<br />

42<br />

Establish<br />

recycle<br />

centers<br />

Improve<br />

work <strong>in</strong><br />

controlled<br />

Dumpsites<br />

Establish<br />

sanitary<br />

l<strong>and</strong>fill<br />

Total with<br />

million<br />

<strong>Egypt</strong>ian<br />

pound<br />

Cairo --- 13 13 30 40 30 126<br />

Alex<strong>and</strong>ria 15 17 5 5 --- --- 42<br />

Giza --- 30 30 10 10 30 110<br />

Kalyobiya --- 19.5 19.5 10 10 30 89<br />

Dakahilya 60 56.5 16 10 --- 30 172.5<br />

Gharbeya 52 31.5 16 10 --- 30 139.5<br />

Monofiya 6 33 10 10 --- 30 89<br />

Beheira 8 47 13 10 --- 40 118<br />

Kafr-ELShiekh 6 27 10 15 --- 30 83<br />

Sharkia 10 48.5 10 10 --- 30 108.5<br />

Damietta 3 26 10 10 --- --- 64<br />

Fayoum 3 20.5 4 5 --- 15 62.5<br />

Bani Suif 3 22 5 5 --- 30 65<br />

Menia 10 28.5 6 10 --- 30 84.5<br />

Assiut 3 28.5 6 10 --- 30 72.5<br />

Sohag 4.5 35 7 5 --- 30 86.5<br />

Qena 4.5 30.5 7 5 --- 30 82<br />

Luxor 2 2 3 5 --- 15 27<br />

Aswan 6 17 3.5 5 --- 15 46.5<br />

Ismailia 7 17.5 3 5 --- 30 62.5<br />

Port Said 6 7 2.5 5 5 --- 25.5<br />

Suez 10 7.5 2.5 5 5 --- 30<br />

Red Sea 7.5 14 2 5 --- 30 58.5<br />

Matrouh --- 26 5 5 --- 15 51<br />

North S<strong>in</strong>ai --- 31 4 5 --- 30 70<br />

South 7.5 15 3 5 --- 30 60.5<br />

New Valley --- 15 2 5 --- 10 37<br />

total 234 666 218 220 70 655 2063<br />

Source: EEAA (2008) <strong>and</strong> (2009).


Table 4.5. Solid waste accumulation <strong>in</strong> <strong>the</strong> <strong>Egypt</strong>ian Governorates.<br />

Governorate Accumulations <strong>in</strong> m 3 Governorate Accumulations <strong>in</strong> m 3<br />

Cairo 500000 Menoufia 280000<br />

Alex<strong>and</strong>ria 344830 Kafr_El Sheikh 227000<br />

Giza 500000 Damietta 100000<br />

Behairah 600000 Gharbia 1500000<br />

Qalyubia 500000 Dakahlia 1300000<br />

Sharqia 510000 North S<strong>in</strong>ai 140000<br />

Matruh 146429 South S<strong>in</strong>ai 512000<br />

Port Said 359040 Suez 1168550<br />

Ismailia 350000 Red Sea 11885000<br />

Fayoum 292500 Beni Suef 150000<br />

M<strong>in</strong>ya 951000 Assiut 250000<br />

Sohag 281845 Qena 258480<br />

Luxor 107022 Aswan 385240<br />

Total accumulation 23598936<br />

Source: EEAA (2008) <strong>and</strong> (2009).<br />

43


Table 4.6. Solid waste amount produced by governorates <strong>and</strong> <strong>the</strong> organic materials<br />

percentages <strong>for</strong> <strong>the</strong> year 2008.<br />

Governorate<br />

Cairo<br />

Alex<strong>and</strong>ria<br />

Port Said<br />

Suez<br />

Damietta<br />

Behairah<br />

Kafr_El Sheikh<br />

Dakahlia<br />

Ismailia<br />

Menoufia<br />

Gharbia<br />

Sharqia<br />

Qalyubia<br />

Giza<br />

Fayoum<br />

Beni Suef<br />

Menia<br />

Assiut<br />

Suhag<br />

Qena<br />

Aswan<br />

Luxor<br />

Red Sea<br />

New Valley<br />

Matruh<br />

North S<strong>in</strong>ai<br />

South S<strong>in</strong>ai<br />

Total<br />

Source: CAPMAS (2010)<br />

Total waste<br />

(Ton/Day)<br />

44<br />

10000<br />

2700<br />

1014<br />

325<br />

1319<br />

911<br />

1361<br />

3718<br />

572<br />

897<br />

2960<br />

717<br />

1738<br />

9062<br />

706<br />

924<br />

785<br />

187<br />

98<br />

343<br />

364<br />

164<br />

395<br />

917<br />

260<br />

337<br />

287<br />

43061<br />

% of organic<br />

material<br />

50%<br />

65%<br />

34%<br />

50%<br />

70%<br />

60%<br />

80%<br />

70%<br />

75%<br />

65%<br />

65%<br />

70%<br />

70%<br />

60%<br />

60%<br />

65%<br />

50%<br />

75%<br />

80%<br />

90%<br />

8%<br />

50%<br />

20%<br />

25%<br />

40%<br />

20%<br />

75%


5. Potential of vermiculture as a means to produce<br />

fertilizers <strong>in</strong> <strong>Egypt</strong>.<br />

The concept of us<strong>in</strong>g earthworms to stabilize organic wastes (vermicompost<strong>in</strong>g) is not<br />

new, <strong>and</strong> is <strong>in</strong> use on vary<strong>in</strong>g scales <strong>in</strong> a large number of both developed <strong>and</strong><br />

underdeveloped countries. The capital cost of establish<strong>in</strong>g systems has proven to be a<br />

barrier to <strong>the</strong> large scale use of vermicompost<strong>in</strong>g, largely due to <strong>the</strong> high value placed<br />

on <strong>the</strong> worms <strong>the</strong>mselves.<br />

Three factors contribute to <strong>the</strong> economic susta<strong>in</strong>ability of <strong>the</strong> system. The first is <strong>the</strong><br />

provision of a susta<strong>in</strong>able waste stabilization process, a service which can generate<br />

ongo<strong>in</strong>g <strong>in</strong>come but which, at <strong>the</strong> moment, is provided at m<strong>in</strong>imal cost. The second is<br />

<strong>the</strong> creation of a saleable <strong>for</strong>m of soil conditioner <strong>in</strong> <strong>the</strong> <strong>for</strong>m of vermicast. The third<br />

is <strong>the</strong> production of prote<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>for</strong>m of worm-meal, a valuable source of am<strong>in</strong>o<br />

acids, vitam<strong>in</strong>s, long cha<strong>in</strong> fatty acids <strong>and</strong> m<strong>in</strong>erals <strong>for</strong> chicken <strong>and</strong> fish.<br />

Recycl<strong>in</strong>g of farm waste <strong>and</strong> compost<strong>in</strong>g is <strong>the</strong> o<strong>the</strong>r alternative to use m<strong>in</strong>eral<br />

fertilizers. The <strong>in</strong>crease <strong>in</strong> us<strong>in</strong>g compost <strong>in</strong> conventional agricultural will be coupled<br />

by a decrease <strong>in</strong> fertilizers usage <strong>and</strong> will result <strong>in</strong> higher quality production <strong>and</strong> less<br />

pollution hazards.<br />

Organic agriculture could be one of <strong>the</strong> important options that have a good<br />

opportunity <strong>in</strong> a wide zone of <strong>the</strong> newly reclaimed l<strong>and</strong>s <strong>in</strong> <strong>Egypt</strong>. Wider production<br />

of organic material will <strong>in</strong>crease <strong>the</strong> opportunities of more growers to jo<strong>in</strong> <strong>the</strong> organic<br />

farm<strong>in</strong>g.<br />

This chapter sheds <strong>the</strong> light on <strong>the</strong> fertilizer needs <strong>in</strong> <strong>Egypt</strong> <strong>and</strong> potentiality of us<strong>in</strong>g<br />

vermicompost as a fertilizer <strong>in</strong> <strong>Egypt</strong>, especially <strong>for</strong> organic farm<strong>in</strong>g.<br />

5.1. Fertilizer use <strong>in</strong> <strong>Egypt</strong><br />

Application of fertilizers <strong>for</strong> grow<strong>in</strong>g crops is a rout<strong>in</strong>e operation <strong>in</strong> modern<br />

agriculture <strong>and</strong> one of <strong>the</strong> essential requirements <strong>for</strong> a high quantity <strong>and</strong> quality yield<br />

under extensive agricultural systems. Fertilizers are primary <strong>in</strong>put <strong>in</strong> extensive<br />

agricultural systems, but <strong>the</strong>y are considered as one of <strong>the</strong> important sources of air,<br />

water <strong>and</strong> soil pollution as well as greenhouse gases (greenhouse gases) of climate<br />

change.<br />

<strong>Egypt</strong> has a long history of us<strong>in</strong>g m<strong>in</strong>eral fertilizers. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, excessive<br />

amounts of soluble salts <strong>in</strong> <strong>the</strong> soil can prevent or delay seed germ<strong>in</strong>ation, kill or<br />

seriously retard plant growth, <strong>and</strong> possibly render soils <strong>and</strong> groundwater unusable.<br />

The degree of environmental impacts can depend on <strong>the</strong> fertilizer application method.<br />

The <strong>Egypt</strong>ian fertilizers first production was from about 75 years ago. Now, <strong>Egypt</strong> is<br />

ranked as one of <strong>the</strong> countries that are highly consum<strong>in</strong>g fertilizers <strong>in</strong> agricultural<br />

activities. The total production quantity of fertilizers is approximately reaches to 2<br />

million Mt, 32% of <strong>the</strong> total production is exported. Excessive use of such chemical<br />

components have a harmful effect on <strong>the</strong> <strong>Egypt</strong>ian environment <strong>and</strong> human health,<br />

45


which needs to f<strong>in</strong>d o<strong>the</strong>r alternatives such as, organic agriculture that could be one of<br />

<strong>the</strong> important options that have a good opportunity <strong>in</strong> a wide zone of <strong>the</strong> newly<br />

reclaimed l<strong>and</strong>s <strong>in</strong> <strong>Egypt</strong>. Moreover, recycl<strong>in</strong>g of farm waste <strong>and</strong> compost<strong>in</strong>g is<br />

ano<strong>the</strong>r alternative <strong>for</strong> renew<strong>in</strong>g soil fertility that has very low organic content<br />

(Table.5.1). Harvest<strong>in</strong>g <strong>the</strong> fruits or gra<strong>in</strong>s, which is a small proportion of a whole<br />

plant system, <strong>and</strong> return<strong>in</strong>g <strong>the</strong> rema<strong>in</strong><strong>in</strong>g plant residues after compost<strong>in</strong>g back to <strong>the</strong><br />

soil will result <strong>in</strong> a m<strong>in</strong>imum need <strong>for</strong> additional m<strong>in</strong>erals. Substitut<strong>in</strong>g any quantity<br />

of chemical fertilizers will result <strong>in</strong> a cleaner production <strong>and</strong> environment, as well as<br />

less emissions of greenhouse gases, <strong>and</strong> consequently <strong>the</strong> organic farm<strong>in</strong>g growers<br />

can get substituted through <strong>the</strong> clean development mechanism (CDM) of Kyoto<br />

protocol, which will be discussed <strong>in</strong> more details <strong>in</strong> a separate chapter later.<br />

Table 5.1. Physical <strong>and</strong> chemical analysis of various soil types.<br />

Item<br />

North<br />

Delta<br />

South<br />

Delta<br />

46<br />

Middle &<br />

Upper<br />

<strong>Egypt</strong><br />

<strong>East</strong> Delta West Delta<br />

Soil texture Clayey Clayey Loamy clay S<strong>and</strong>y Calcareous<br />

pH (1:2.5) 7.9-8.5 7.8-8.2 7.7-8.0 7.6-7.9 7.7-8.1<br />

Percent total soluble salts 0.2-0.5 0.2-0.4 0.1-0.5 0.1-0.6 0.2-0.6<br />

Percent calcium carbonate 2.6-4.4 2.0-3.1 2.6-5.3 1.0-5.1 11.0-30.0<br />

Percent organic matter 1.9-2.6 1.8-2.8 1.5-2.7 0.35-0.8 0.7-1.5<br />

Total soluble N (ppm) 25-50 30-60 15-40 10 – 20 10 -30<br />

ppm available P (Olsen) 5.4 -10 3.5-15.0 2.5-16 2-5.0 1.5-10.5<br />

ppm available K (ammonium<br />

acetate)<br />

250-500 300-550 280-700 105-350 100-300<br />

Available Zn (DTPA) (ppm) 0.5-4.0 0.6-6.0 0.5-3.9 0.6-1.2 0.5-1.2<br />

Available Fe (DTPA) (ppm) 20.8-63.4 19.0-27.4 12.4-40.8 6.7-16.4 12 - 18<br />

Available Mn (DTPA) (ppm) 13.1-45 11.2-37.2 8.2-51.6 3-16.7 10 - 20<br />

Source: <strong>FAO</strong> (2005).<br />

5.2. Fertilizer statistics<br />

The dem<strong>and</strong> <strong>for</strong> food <strong>and</strong> o<strong>the</strong>r agricultural commodities is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> <strong>Egypt</strong> due to<br />

<strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> population <strong>and</strong> improvements <strong>in</strong> liv<strong>in</strong>g st<strong>and</strong>ards. Ef<strong>for</strong>ts cont<strong>in</strong>ue<br />

to improve crop productivity <strong>and</strong> quality. Appropriate fertilization is one of <strong>the</strong> most<br />

important agricultural practices <strong>for</strong> achiev<strong>in</strong>g <strong>the</strong> agricultural improvement (<strong>FAO</strong>,<br />

2005).<br />

The ma<strong>in</strong> commercial types of fertilizers used <strong>in</strong> <strong>Egypt</strong> <strong>and</strong> <strong>the</strong> percentage of active<br />

<strong>in</strong>gredients are listed <strong>in</strong> Table 5.2.


Table 5.2. The ma<strong>in</strong> types of fertilizers used <strong>in</strong> <strong>Egypt</strong><br />

Element Fertilizer<br />

Nitrogen - urea (46.5 percent N)<br />

- ammonium nitrate (33.5 percent N)<br />

- ammonium sulphate (20.6 percent N)<br />

- calcium nitrate (15.5 percent N)<br />

Phosphate - s<strong>in</strong>gle superphosphate (15 percent P 2 O 5 )<br />

- concentrated superphosphate (37 percent P 2 O 5 )<br />

Potassium - potassium sulphate (48 to 50 percent K 2 O)<br />

Mixed <strong>and</strong><br />

compound<br />

fertilizers<br />

Source: <strong>FAO</strong> (2005).<br />

- potassium chloride (50 to 60 percent K 2 O)<br />

-N, P, K, Fe, Mn, Zn <strong>and</strong>/or Cu <strong>in</strong> different <strong>for</strong>mulations <strong>for</strong><br />

ei<strong>the</strong>r soil or foliar application. The micronutrient may be <strong>in</strong><br />

ei<strong>the</strong>r m<strong>in</strong>eral or chelated <strong>for</strong>m.<br />

The improvement <strong>in</strong> fertilizers production is achieved through <strong>the</strong> last decades. The<br />

total production quantity of fertilizers is approximately reaches to 2 million Mt, 32%<br />

of <strong>the</strong> total production is exported. The rema<strong>in</strong><strong>in</strong>g quantity of production after<br />

export<strong>in</strong>g is less than <strong>the</strong> dem<strong>and</strong> quantity by about 43%. There<strong>for</strong>e, <strong>Egypt</strong><br />

compensates <strong>the</strong> shortage <strong>in</strong> <strong>the</strong> dem<strong>and</strong>s by import<strong>in</strong>g fertilizers by about 43% of <strong>the</strong><br />

total consumption. Figure (5.1.) illustrates <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g trend of fertilizers<br />

production <strong>and</strong> export. This <strong>in</strong>crease is ma<strong>in</strong>ly due to <strong>the</strong> rapid agricultural horizontal<br />

<strong>and</strong> vertical expansion.<br />

1000 tonnes<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2002 2003 2004 2005 2006 2007 2008<br />

Production Import Export<br />

Figure 5.1.Production, imports <strong>and</strong> exports (1000 tonnes of nutrients) trends of<br />

fertilizers <strong>in</strong> <strong>Egypt</strong><br />

Source: <strong>FAO</strong> ( 2010).<br />

47


The latest fertilizers consumption is shown <strong>in</strong> Figure (5.2) <strong>and</strong> illustrates that<br />

phosphorus <strong>and</strong> nitrogen fertilizers are <strong>the</strong> highest consumed type of fertilizers under<br />

<strong>Egypt</strong>ian conditions. The most recent <strong>FAO</strong> statistics of 2010 <strong>in</strong>dicated that <strong>the</strong>re is an<br />

<strong>in</strong>crease <strong>in</strong> nitrogen fertilizer consumption <strong>for</strong> 2008 (1721105 ton N) <strong>and</strong> phosphorus<br />

(229911 tons). This <strong>in</strong>crease reached 60 <strong>and</strong> 61% <strong>in</strong> 2008 compared to 2002 <strong>for</strong><br />

nitrogen <strong>and</strong> phosphorus, respectively.<br />

In addition, <strong>the</strong> cont<strong>in</strong>uous <strong>in</strong>crease <strong>in</strong> fertilizers consumption is obvious <strong>and</strong><br />

additional <strong>in</strong>crease <strong>in</strong> fertilizer dem<strong>and</strong> is expected <strong>in</strong> <strong>the</strong> next few years.<br />

1000 tonnes N<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Consumption <strong>in</strong> nutrients (tonnes of nutrients)<br />

2002 2003 2004 2005 2006 2007 2008<br />

N P K<br />

Figure 5.2. Nitrogen, phosphate, potassium <strong>and</strong> total fertilizers consumption <strong>in</strong> <strong>Egypt</strong>.<br />

Source: <strong>FAO</strong> (2010).<br />

5.3. Vermicompost<strong>in</strong>g as fertilizers <strong>in</strong> <strong>Egypt</strong><br />

The production of consistently high-quality vermicompost is especially important to<br />

growers of high-value crops. The <strong>in</strong>fluence of production factors, such as <strong>the</strong><br />

variability <strong>in</strong> <strong>the</strong> characteristics of <strong>the</strong> organic feedstocks, <strong>the</strong> length of time of<br />

vermicompost<strong>in</strong>g, <strong>and</strong> <strong>the</strong> various parameters used as maturity <strong>in</strong>dicators, are<br />

essential aspects to be considered <strong>in</strong> develop<strong>in</strong>g guidel<strong>in</strong>es <strong>for</strong> assess<strong>in</strong>g <strong>the</strong> quality of<br />

vermicompost. The vermicompost<strong>in</strong>g <strong>in</strong>dustry anticipates a need <strong>for</strong> compost quality<br />

<strong>in</strong>dicators as <strong>the</strong> production, utilization <strong>and</strong> market<strong>in</strong>g of vermicompost exp<strong>and</strong>s.<br />

Various organic wastes tested <strong>in</strong> past as feed material <strong>for</strong> different species of<br />

earthworms <strong>in</strong>clude sewage sludge, paper mill <strong>in</strong>dustry sludge, water hyac<strong>in</strong>th, paper<br />

waste, crop residues, cattle manure, etc.<br />

Many studies were conducted <strong>in</strong> order to evaluate vermicompost<strong>in</strong>g from various<br />

waste sources as follows:<br />

48<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1000 tonnes P & K


5.3.1. Urban waste vermicompost<strong>in</strong>g<br />

Home compost<strong>in</strong>g is a tradition <strong>in</strong> many countries, <strong>and</strong> is recommended as an<br />

important waste management option <strong>in</strong> <strong>the</strong> European Union policy. Advantages are<br />

that <strong>the</strong> waste does not have to be transported <strong>and</strong> that home gardens are provided<br />

with nutrients <strong>and</strong> humus. Fur<strong>the</strong>rmore, it has an educational importance <strong>in</strong> improv<strong>in</strong>g<br />

environmental awareness. Limit<strong>in</strong>g conditions to its adoption are <strong>the</strong> availability of<br />

space <strong>for</strong> compost<strong>in</strong>g <strong>and</strong> compost application, <strong>and</strong> <strong>the</strong> lack of knowledge as to <strong>the</strong><br />

correct compost<strong>in</strong>g procedure. This <strong>in</strong>cludes <strong>the</strong> selection of substrates that are<br />

suitable <strong>for</strong> home compost<strong>in</strong>g <strong>and</strong> <strong>the</strong> provision of suitable process conditions.<br />

In a city like Cairo, <strong>the</strong>re is a possibility of produc<strong>in</strong>g vermicompost from <strong>in</strong>dividual<br />

houses. Hav<strong>in</strong>g <strong>the</strong> suitable amount of earthworms <strong>in</strong> a double basket system with a<br />

per<strong>for</strong>ated one <strong>in</strong>side, organic wastes could be vermicomposted without any odors or<br />

side annoyance. Although <strong>the</strong> system is not widely established, but with <strong>the</strong> proper<br />

awareness <strong>and</strong> public support could be implemented. This could both create an<br />

<strong>in</strong>come to <strong>the</strong> poor families, <strong>and</strong> produce considerable amount of vermicompost that<br />

goes directly to agricultural activities. In addition, it has <strong>the</strong> follow<strong>in</strong>g advantages:<br />

Saves money <strong>and</strong> <strong>the</strong> environment<br />

It reduces household garbage disposal costs;<br />

It produces less odor <strong>and</strong> attracts fewer pests than putt<strong>in</strong>g food wastes <strong>in</strong>to a<br />

garbage conta<strong>in</strong>er;<br />

It saves <strong>the</strong> water <strong>and</strong> electricity that kitchen s<strong>in</strong>k garbage disposal units<br />

consume;<br />

It produces a free, high-quality soil amendment (compost);<br />

It requires little space, labor, or ma<strong>in</strong>tenance;<br />

It spawns free worms <strong>for</strong> fish<strong>in</strong>g.<br />

Several options <strong>for</strong> <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> Zabbaleen <strong>in</strong>to <strong>the</strong> <strong>in</strong>ternational companies‟<br />

contracts were explored dur<strong>in</strong>g <strong>in</strong>terviews with staff members at CID, rais<strong>in</strong>g <strong>the</strong><br />

issue of local-global confrontation <strong>and</strong> <strong>the</strong> possible contribution of a private–public<br />

partnership. The Zabbaleen could act as sub-contractors, as <strong>the</strong>y implement a<br />

“segregation system”, separat<strong>in</strong>g organic from non-organic waste. They could<br />

cont<strong>in</strong>ue to collect household waste while medical <strong>and</strong> <strong>in</strong>dustrial waste <strong>and</strong> l<strong>and</strong>fill<br />

management could be h<strong>and</strong>led by mult<strong>in</strong>ational companies. Transfer stations could be<br />

established where a major proportion of non-organic waste could be recovered <strong>and</strong><br />

directed to exist<strong>in</strong>g traders. The Zabbaleen could receive <strong>in</strong>organic waste from<br />

companies as <strong>in</strong>put to <strong>the</strong>ir recycl<strong>in</strong>g bus<strong>in</strong>esses, as small communitybased<br />

compost<strong>in</strong>g facilities are established. In such ways <strong>the</strong> traditional <strong>in</strong><strong>for</strong>mal Zabbaleen<br />

system could be <strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong> new privatized large-scale waste collection system<br />

to <strong>the</strong> mutual benefit of both sides. Despite such suggestions, recent developments<br />

have demonstrated <strong>the</strong> unlikelihood of fruitful local–global partnerships. Instead,<br />

<strong>in</strong>ternational companies favour tra<strong>in</strong><strong>in</strong>g <strong>the</strong> Zabbaleen as waged employees, while<br />

allow<strong>in</strong>g <strong>the</strong>m to search l<strong>and</strong>fill sites <strong>for</strong> organic waste <strong>for</strong> <strong>the</strong>ir pig-rear<strong>in</strong>g activities<br />

(Fahmi, 2005).<br />

49


5.3.2. Vermicompost<strong>in</strong>g of agricultural wastes<br />

Vermicompost<strong>in</strong>g of crop residues <strong>and</strong> cattle shed wastes can not only produce a<br />

value-added product (vermicompost<strong>in</strong>g) but at <strong>the</strong> same time acts as best culture<br />

medium <strong>for</strong> large-scale production of earthworms.<br />

The compost<strong>in</strong>g ability <strong>and</strong> growth per<strong>for</strong>mance of E. eugeniae were evaluated by<br />

us<strong>in</strong>g a variety of comb<strong>in</strong>ations of crop residues <strong>and</strong> cattle dung, under laboratory<br />

conditions. The best results <strong>in</strong> terms of nutrient enhancement <strong>in</strong> <strong>the</strong> end product were<br />

recorded <strong>in</strong> vermicomposted beds as compared to experimental compost<strong>in</strong>g without<br />

worms. Moreover, vermicompost showed higher amounts of total nitrogen, available<br />

phosphorous, exchangeable potassium <strong>and</strong> calcium content. The ready end product<br />

showed relatively lower C:N ratio <strong>and</strong> comparatively was a more stabilized product.<br />

A considerable amount of worm biomass <strong>and</strong> cocoons were produced <strong>in</strong> different<br />

treatments. However, quality of <strong>the</strong> feed stuff, used <strong>in</strong> this study was of a primary<br />

importance, determ<strong>in</strong><strong>in</strong>g <strong>the</strong> earthworm‟s growth parameter, e.g. <strong>in</strong>dividual biomass,<br />

cocoon numbers, growth rate. The results suggest that crop residues can be used as an<br />

efficient culture media <strong>for</strong> large-scale production of E. eugeniae <strong>for</strong> susta<strong>in</strong>able l<strong>and</strong><br />

restoration practices at low-<strong>in</strong>put basis (Suthar, 2008).<br />

5.3.3. Vermicomposts effect on plant growth<br />

It is well established that earthworms have beneficial physical, biological <strong>and</strong><br />

chemical effects on soils <strong>and</strong> can <strong>in</strong>crease plant growth <strong>and</strong> crop yields <strong>in</strong> both natural<br />

<strong>and</strong> managed ecosystems. These beneficial effects have been attributed to<br />

improvements <strong>in</strong> soil properties <strong>and</strong> structure, to greater availability of m<strong>in</strong>eral<br />

nutrients to plants, <strong>and</strong> to biologically active metabolites act<strong>in</strong>g as plant growth<br />

regulators.<br />

Earthworm (Eisenia foetida) compost strongly affects soil fertility by <strong>in</strong>creas<strong>in</strong>g<br />

availability of nutrients, improv<strong>in</strong>g soil structure <strong>and</strong> water hold<strong>in</strong>g capacity. It has<br />

been suggested that earthworms can <strong>in</strong>crease <strong>the</strong> velocity of decomposition of organic<br />

residues <strong>and</strong> also produce several bioactive humic substances. These substances are<br />

endowed with hormone like activity that improves plant nutrition <strong>and</strong> growth. Humic<br />

acids (HAs) comprise one of <strong>the</strong> major fractions of humic substances.<br />

An experiment was conducted to p<strong>in</strong>po<strong>in</strong>t precisely a biological mechanism by which<br />

vermicomposts can <strong>in</strong>fluence plant growth positively <strong>and</strong> produce significant<br />

<strong>in</strong>creases <strong>in</strong> overall plant productivity, <strong>in</strong>dependent of nutrient uptake. Mix<strong>in</strong>g <strong>the</strong><br />

conta<strong>in</strong>er media with <strong>in</strong>creas<strong>in</strong>g concentrations of vermicompost-derived humic acids<br />

<strong>in</strong>creased plant growth, <strong>and</strong> larger concentrations usually reduced growth, <strong>in</strong> a pattern<br />

similar to <strong>the</strong> plant growth responses observed after <strong>in</strong>corporation of vermicomposts<br />

<strong>in</strong>to conta<strong>in</strong>er media with all needed m<strong>in</strong>eral nutrition. Plant growth was <strong>in</strong>creased by<br />

treatments of <strong>the</strong> plants with 50–500 mg/kg humic acids, but decreased significantly<br />

when <strong>the</strong> concentrations of humic acids <strong>in</strong> <strong>the</strong> conta<strong>in</strong>er medium exceeded 500–1000<br />

mg/kg. Although some of <strong>the</strong> growth enhancement by humic acids could have been<br />

partially due to <strong>in</strong>creased rates of nitrogen uptake by <strong>the</strong> plants, most of <strong>the</strong> results<br />

reported exceed those that would result from such a mechanism, very considerably.<br />

However, this does not exclude <strong>the</strong> possibility of o<strong>the</strong>r contributory mechanisms by<br />

50


which humic acids could affect plant growth. There is a fur<strong>the</strong>r alternative explanation<br />

<strong>for</strong> <strong>the</strong> hormone-like mode of action of humic acids <strong>in</strong> <strong>the</strong>se experiments. In our<br />

laboratory, we have extracted plant growth regulators such as <strong>in</strong>dole acetic acid,<br />

gibberell<strong>in</strong>s <strong>and</strong> cytok<strong>in</strong><strong>in</strong>s from vermicomposts <strong>in</strong> aqueous solution <strong>and</strong><br />

demonstrated that <strong>the</strong>se can have significant effects on plant growth. Such substances<br />

may be relatively transient <strong>in</strong> soils. However, <strong>the</strong>re seems a strong possibility that<br />

such plant growth regulators which are relatively transient may become adsorbed on<br />

to humates <strong>and</strong> act <strong>in</strong> conjunction with <strong>the</strong>m to <strong>in</strong>fluence plant growth (Atiyeh et al.,<br />

2002).<br />

Vermicompost has been promoted as a viable alternative conta<strong>in</strong>er media component<br />

<strong>for</strong> <strong>the</strong> horticulture <strong>in</strong>dustry. The addition of vermicompost <strong>in</strong> media mixes of 10%<br />

<strong>and</strong> 20% volume had positive effects on plant growth. The greatest growth<br />

enhancement was on seedl<strong>in</strong>gs dur<strong>in</strong>g <strong>the</strong> plug stage of <strong>the</strong> bedd<strong>in</strong>g plant crop cycle.<br />

Growth <strong>in</strong>creases up to 40% were observed <strong>in</strong> dry shoot tissue <strong>and</strong> leaf area of<br />

marigold, tomato <strong>and</strong> green pepper. The <strong>in</strong>creased vigor exhibited was also<br />

ma<strong>in</strong>ta<strong>in</strong>ed when <strong>the</strong> seedl<strong>in</strong>g plugs were transplanted <strong>in</strong>to larger conta<strong>in</strong>ers with<br />

st<strong>and</strong>ard commercial pott<strong>in</strong>g substrates without vermicompost. Additionally, <strong>the</strong>re<br />

were benefits apparently result<strong>in</strong>g from <strong>the</strong> nutritional content of <strong>the</strong> vermicompost.<br />

All of <strong>the</strong> plugs were produced without <strong>the</strong> <strong>in</strong>put of additional fertilization. The<br />

potential exists <strong>for</strong> growers to use vermicompost-amended commercial pott<strong>in</strong>g<br />

substrates dur<strong>in</strong>g <strong>the</strong> plug production stage without <strong>the</strong> use of additional fertilizer<br />

(Bachman <strong>and</strong> Metzger, 2008).<br />

5.4. Potentiality of vermicompost as a source of fertilizer <strong>in</strong> <strong>Egypt</strong><br />

Consider<strong>in</strong>g urban wastes as mentioned <strong>in</strong> <strong>the</strong> previous chapter <strong>for</strong> <strong>the</strong> year 2005<br />

ranged from 15 to 16 million tons, compostable matter <strong>in</strong> <strong>the</strong> wastes as 50-60% <strong>and</strong><br />

average collection efficiency as 70%. <strong>Egypt</strong> has an estimated potential of produc<strong>in</strong>g<br />

from urban wastes about 1.99 million tons of compost each year conta<strong>in</strong><strong>in</strong>g about<br />

21,000 ton N, 5,000 ton P, <strong>and</strong> 10,640 ton K (Table 5.2). Inappropriate solid waste<br />

management <strong>and</strong> production of poor quality of composts are ma<strong>in</strong> constra<strong>in</strong>t <strong>in</strong><br />

exploit<strong>in</strong>g such large amount plant nutrients <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g crop productivity.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, agricultural wastes <strong>in</strong> <strong>Egypt</strong> could produce almost four times<br />

compost material compared to urban wastes, assum<strong>in</strong>g that 100% of it is organic<br />

material <strong>and</strong> all of it is accessible to <strong>the</strong> grower. There are o<strong>the</strong>r advantages of this<br />

waste, which are <strong>the</strong> availability of space <strong>and</strong> directly l<strong>in</strong>ked to <strong>the</strong> farm. This<br />

m<strong>in</strong>imizes <strong>the</strong> need of collection <strong>and</strong> transportation. The amounts of N, P <strong>and</strong> K that<br />

could be produced from agricultural wastes are almost four folds of that of <strong>the</strong> urban<br />

wastes.<br />

From both sources, <strong>the</strong> total composted material is almost 10 million tons, conta<strong>in</strong><strong>in</strong>g<br />

about 10 thous<strong>and</strong> tons of nitrogen, 20 thous<strong>and</strong> tons of phosphorus, <strong>and</strong> 41 thous<strong>and</strong><br />

tons of potassium. Nitrogen fertilizer obta<strong>in</strong>ed from organic wastes could save up to<br />

5.9% of that consumed <strong>in</strong> 2008; while more than 10% of phosphorus fertilizers<br />

consumed <strong>in</strong> 2008 could be saved.<br />

51


Table 5.3. Potential nutrients that could be obta<strong>in</strong>ed from urban <strong>and</strong> agriculture<br />

wastes <strong>in</strong> <strong>Egypt</strong>*<br />

Waste Ton/year<br />

Fraction<br />

organic<br />

Fraction<br />

efficiency<br />

collection<br />

Fraction<br />

of waste<br />

to be<br />

compost Quantity, Ton Type<br />

15500000 0.55 0.70 0.33 1,988,968 Compost<br />

20,815 N<br />

Urban<br />

5,088 P<br />

10,639 K<br />

23000000 1.00 1.00 0.33 7,665,900 Compost<br />

Agriculture<br />

80,225<br />

19,610<br />

N<br />

P<br />

41,004 K<br />

9,654,868 Compost<br />

Total<br />

101,039<br />

24,698<br />

N<br />

P<br />

51,642 K<br />

*Estimated as <strong>the</strong> assumptions of fractions <strong>and</strong> fixed percent of N, P <strong>and</strong> K <strong>in</strong> <strong>the</strong><br />

compost.<br />

Source: CAPMAS (2010)<br />

52


6. Current animal feed prote<strong>in</strong> supplements production<br />

<strong>in</strong> <strong>Egypt</strong> <strong>and</strong> <strong>the</strong> potential to substitute desiccated<br />

compost worms as an animal feed supplement or use<br />

of live worms <strong>in</strong> aquaculture <strong>in</strong>dustries.<br />

Production of vermicompost <strong>and</strong> vermiculture is covered <strong>in</strong> previous chapters. In<br />

order to utilize <strong>the</strong> products <strong>and</strong> byproducts of <strong>the</strong> <strong>in</strong>dustry, clear end-users should be<br />

def<strong>in</strong>ed <strong>in</strong> order to facilitate <strong>the</strong> development of <strong>the</strong> <strong>in</strong>dustry. One important possible<br />

consumption cha<strong>in</strong> is <strong>the</strong> utilization <strong>in</strong> animal <strong>and</strong> fish feed prote<strong>in</strong> supplement. This<br />

chapter h<strong>and</strong>les such possibilities.<br />

6.1. Animal <strong>and</strong> aquaculture feed<br />

The basic reason <strong>for</strong> <strong>the</strong> poor per<strong>for</strong>mance of livestock <strong>in</strong> develop<strong>in</strong>g countries is <strong>the</strong><br />

seasonal <strong>in</strong>adequacy of feed, both <strong>in</strong> quantity <strong>and</strong> quality (Makkar, 2002). These<br />

deficiencies have rarely been corrected by conservation <strong>and</strong>, or, supplementation,<br />

often <strong>for</strong> lack of <strong>in</strong>frastructure, technical know-how, poor management, etc. In<br />

addition, many feed resources that could have a major impact on livestock production<br />

cont<strong>in</strong>ue to be unused, undeveloped or poorly utilized. A critical factor <strong>in</strong> this regard<br />

has been <strong>the</strong> lack of proper underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> nutritional pr<strong>in</strong>ciples underly<strong>in</strong>g <strong>the</strong>ir<br />

utilization.<br />

Poultry waste has been successfully used <strong>in</strong> rum<strong>in</strong>ant rations <strong>in</strong> <strong>Egypt</strong>. The total<br />

bacterial count was considerably lower <strong>in</strong> sun dried poultry waste compared to <strong>the</strong><br />

oven dried waste. Aflatox<strong>in</strong>s were not detectable <strong>in</strong> <strong>the</strong> concentrate mixtures<br />

conta<strong>in</strong><strong>in</strong>g poultry litter. Both feed <strong>in</strong>take <strong>and</strong> milk production <strong>in</strong> ewes was not<br />

affected by <strong>the</strong> <strong>in</strong>clusion of 14% poultry waste as a dietary supplement, suggest<strong>in</strong>g<br />

that cottonseed meal <strong>and</strong> o<strong>the</strong>r high prote<strong>in</strong> feed <strong>in</strong>gredients could be, at least partially<br />

replaced, by poultry waste without any loss <strong>in</strong> productivity. The weight <strong>and</strong> age at<br />

puberty of lambs fed a ration conta<strong>in</strong><strong>in</strong>g 17% poultry waste was similar to those given<br />

a ration without any poultry waste. Similarly, poultry waste up to 20% <strong>in</strong> <strong>the</strong> diet had<br />

no detrimental effect on growth <strong>in</strong> cattle <strong>and</strong> buffaloes <strong>and</strong> on <strong>the</strong> reproductive<br />

per<strong>for</strong>mance <strong>in</strong> buffalo heifers evaluated. The <strong>in</strong>clusion of 15% poultry waste <strong>in</strong><br />

mixed concentrate feed decreased <strong>the</strong> cost of feed by about 10% (Makkar, 2002).<br />

It is an ancient practice <strong>in</strong> Ch<strong>in</strong>a to feed earthworms to livestock <strong>and</strong> poultry, i.e. to<br />

dig earthworms from fields to feed chickens <strong>and</strong> ducks or to graze chicken <strong>and</strong> ducks<br />

to feed on earthworms at ease. Earthworms are rich <strong>in</strong> nutrients with high prote<strong>in</strong>.<br />

Accord<strong>in</strong>g to measurements, <strong>the</strong> crude prote<strong>in</strong> <strong>in</strong> dry earthworms reaches about 70%,<br />

while <strong>in</strong> wet earthworms about 10-20%. The am<strong>in</strong>o acids of earthworm prote<strong>in</strong> are<br />

complete, especially <strong>the</strong> contents of Glutamic acid, Leuc<strong>in</strong>e <strong>and</strong> Lys<strong>in</strong>e, among which<br />

Arg<strong>in</strong><strong>in</strong>e is higher than fish meal, <strong>and</strong> Tryptophan is 4 times higher than <strong>in</strong> blood<br />

powder, <strong>and</strong> 7 times higher than <strong>in</strong> cow liver. Earthworms are rich <strong>in</strong> Vitam<strong>in</strong> A <strong>and</strong><br />

Vitam<strong>in</strong> B. There is 0.25mg of Vitam<strong>in</strong> B1 <strong>and</strong> 2.3mg of Vitam<strong>in</strong> B2 <strong>in</strong> each 100 g of<br />

earthworms. Vitam<strong>in</strong> D accounts <strong>for</strong> 0.04%-0.073% of earthworms‟ wet weight. In<br />

view of <strong>the</strong> great effects of El Niño, fish meal from Peru can not meet <strong>the</strong> market<br />

53


dem<strong>and</strong> <strong>in</strong> <strong>the</strong> world. Thus earthworms are <strong>the</strong> best substitute with <strong>the</strong> functions of<br />

supplements, anti-diseases <strong>and</strong> allurement. Earthworms are used as additive to<br />

produce pellet feeds <strong>in</strong> <strong>the</strong> USA, Canada <strong>and</strong> Japan, which account <strong>for</strong> 50% of <strong>the</strong><br />

pellet feed market. However, when earthworms are used as feeds, one must note that<br />

earthworms degrade quickly <strong>and</strong> should be processed with<strong>in</strong> several hours by hot<br />

w<strong>in</strong>d or freeze dry<strong>in</strong>g. In general earthworms conta<strong>in</strong> more pollutants than fish meal<br />

because it is hard to clean residues from <strong>the</strong> epidermis <strong>and</strong> seta of earthworms. Some<br />

people realize that it is better to feed earthworms <strong>in</strong> wet. For fowls, <strong>the</strong> earthworm<br />

amount could reach 50% <strong>and</strong> <strong>for</strong> swamp eel 100% (Kangm<strong>in</strong>, 2005).<br />

6.2. Worm meal<br />

Worm meal or verm<strong>in</strong>-meal is an excellent source of prote<strong>in</strong> <strong>and</strong> nutrients.<br />

Earthworms typically conta<strong>in</strong> over 80% moisture <strong>and</strong> can be fed directly to animals.<br />

To preserve <strong>the</strong> worms <strong>and</strong> process <strong>the</strong>m <strong>in</strong>to to a more convenient food <strong>the</strong>y can be<br />

dried <strong>and</strong> ground up <strong>in</strong>to worm meal.<br />

In addition to <strong>the</strong> prote<strong>in</strong>, worms are a valuable source of essential am<strong>in</strong>o acids <strong>and</strong><br />

vitam<strong>in</strong>s. The fats <strong>in</strong> worms are highly unsaturated <strong>and</strong> no additional antioxidants<br />

need to be added to <strong>the</strong> worm meal to preserve it.<br />

Worm meal may replace fish meal <strong>and</strong> meat <strong>and</strong> bone meal. Broilers fed with<br />

earthworm meal consumed 13% less feed <strong>for</strong> <strong>the</strong> same weight ga<strong>in</strong> than those fed<br />

with ord<strong>in</strong>ary broiler diet, but given live <strong>in</strong> earthworms matured 15 days earlier than<br />

<strong>the</strong> control group without earthworms (Hertrampf <strong>and</strong> Piedad-Pascual, 2000).<br />

Earthworms are <strong>the</strong> best bait <strong>for</strong> anglers. Pay attention to <strong>the</strong> palatability of various<br />

species of earthworms. It is said that Eisenia foetida can produce a substance fish do<br />

not like. In Australia <strong>the</strong>y culture 3-4 species of earthworms: red wiggler Lumbricus<br />

rubellus, Indian blue Perionyx excavatus, African earthworm Eudrilus eugeniae, <strong>and</strong><br />

Eisenia foetida. Table (6.1) shows <strong>the</strong> different composition of several earth worms.<br />

Different fish prefer different species of earthworms as bait, <strong>the</strong> palatability of<br />

earthworms is out of question. Table (6.2) shows <strong>the</strong> richness of verm<strong>in</strong> meal with<br />

essential am<strong>in</strong>o acids, while Table (6.3) demonstrate <strong>the</strong> macro <strong>and</strong> trace m<strong>in</strong>eral<br />

contents of freeze dried vermi meal (Eudrilus eugeniae).<br />

The prote<strong>in</strong> content of earthworms is complete, conta<strong>in</strong><strong>in</strong>g 8-9 essential am<strong>in</strong>o acids<br />

<strong>for</strong> human be<strong>in</strong>gs, <strong>in</strong>clud<strong>in</strong>g 9-10% tasty glutamic acid. Compared with o<strong>the</strong>r meat,<br />

<strong>the</strong> prote<strong>in</strong> of earthworms is higher than meat <strong>and</strong> <strong>the</strong> lipid, 2% lower than meat.<br />

From <strong>the</strong> view po<strong>in</strong>t of health, earthworms might be one of ideal food with high<br />

prote<strong>in</strong> <strong>and</strong> low lipid <strong>for</strong> human be<strong>in</strong>gs. In sou<strong>the</strong>rn Ch<strong>in</strong>a <strong>and</strong> Taiwan people used to<br />

eat earthworms. There are many dishes of earthworms: m<strong>in</strong>ce meat of earthworm as<br />

stuff<strong>in</strong>g <strong>for</strong> dumpl<strong>in</strong>gs to <strong>in</strong>crease delicacy <strong>and</strong> prevent it from go<strong>in</strong>g bad. It is said<br />

that spiced sauce from ROK has a big market <strong>in</strong> SEA. For human consumption a<br />

worm farm should use beer spent gra<strong>in</strong>s or mushroom spent substrate to feed<br />

earthworms. The Edible Fungi Scientific Center <strong>in</strong> Q<strong>in</strong>gyuan as well as Shanghai<br />

Academy of Agriculture has developed artificial logs which do not require pure<br />

hardwood chips. Each year Q<strong>in</strong>gyuan produces some 50,000 tons of used logs. This<br />

substrate of shiitake Lent<strong>in</strong>us edodes could also generate as much as 5,000 tons of<br />

54


earthworms <strong>and</strong> <strong>in</strong> turn can be processed to quality human food. It is said that <strong>the</strong>re<br />

are 200 k<strong>in</strong>ds of food from earthworms <strong>in</strong> <strong>the</strong> U.S.A (Kangm<strong>in</strong>, 2005). Earthworms<br />

are <strong>the</strong> future of seafood. Not yet, but <strong>the</strong>y will be (Sh<strong>in</strong>er , 2009).<br />

Table 6.1. Chemical composition % of various worm meal (<strong>in</strong> dry matters)<br />

Eisenia Lumbricus<br />

foetida terrestils<br />

Moisture<br />

83.3 81.1<br />

Crude prot<strong>in</strong>e 57.4 56.1<br />

Crude fat 13.2 2.1<br />

Ash<br />

10.8 28.7<br />

Crude fiber 0.7 -<br />

N-free extract 18.2 13.1<br />

Source: Hertrampf <strong>and</strong> Piedad-Pascua l(2000).<br />

55<br />

Allolobophora<br />

longa<br />

78.3<br />

50.4<br />

1.4<br />

35.2<br />

-<br />

12.9<br />

Table 6.2. Essential am<strong>in</strong>o acid profile of vermi meals (g/16 gN)<br />

Eisenia Lumbricus<br />

foetida terrestils<br />

Arg<strong>in</strong><strong>in</strong>e<br />

3.67 3.17<br />

Histid<strong>in</strong>e<br />

1.39 1.38<br />

Isoleuc<strong>in</strong>e 2.85 2.20<br />

Leuc<strong>in</strong>e<br />

4.90 4.11<br />

Lys<strong>in</strong>e<br />

4.16 3.52<br />

Methion<strong>in</strong>e 0.83 1.11<br />

Phenylalan<strong>in</strong>e 2.65 2.02<br />

Theron<strong>in</strong>e 3.07 2.48<br />

Tryptophan 0.67 0.44<br />

Val<strong>in</strong>e<br />

3.11 2.30<br />

Source: Hertrampf <strong>and</strong> Piedad-Pascua l( 2000).<br />

Allolobophora<br />

longa<br />

3.15<br />

1.01<br />

2.24<br />

3.57<br />

3.43<br />

0.5<br />

2.65<br />

2.11<br />

-<br />

2.46<br />

Neries sp. Eudrilus<br />

eugeniae<br />

-<br />

85.3<br />

47.0 56.4<br />

25.2 7.9<br />

6.6 13.1<br />

-0.6 5.9<br />

20.6 17.8<br />

Eudrilus<br />

eugeniae<br />

4.95<br />

1.58<br />

2.82<br />

5.22<br />

4.50<br />

1.04<br />

2.47<br />

3.22<br />

0.63<br />

3.39<br />

Table 6.3. Macro <strong>and</strong> trace m<strong>in</strong>eral contents of freeze dried vermi meal (Eudrilus<br />

eugeniae)<br />

Calcium<br />

Phosphorus<br />

Sodium<br />

Iron<br />

Z<strong>in</strong>c<br />

Copper<br />

Cadmium<br />

%<br />

%<br />

%<br />

mg/kg<br />

mg/kg<br />

mg/kg<br />

mg/kg<br />

Source: Hertrampf <strong>and</strong> Piedad-Pascual (2000).<br />

1.5<br />

0.9<br />

0.2<br />

100.0<br />

122.5<br />

7.8<br />

21.0<br />

The key to <strong>the</strong> multi-pronged success of earthworms as aquaculture fodder is <strong>the</strong>ir diet<br />

of organic wastes. L<strong>and</strong>-based pollution, such as fester<strong>in</strong>g animal manure, is an<br />

enormous problem <strong>for</strong> coastal fisheries impacted by runoff. Brita<strong>in</strong> alone produces 84<br />

megatons of cow manure, 9 megatons of pig waste <strong>and</strong> 5 megatons of chicken waste<br />

each year, much of which flows to <strong>the</strong> coast as runoff. This pollution is a significant<br />

contributor to <strong>the</strong> decl<strong>in</strong><strong>in</strong>g productivity of wild fish stocks, as fish struggle to cope<br />

with <strong>the</strong>ir heavily contam<strong>in</strong>ated environment. Earthworms solve this problem by<br />

convert<strong>in</strong>g l<strong>and</strong> animal wastes <strong>in</strong>to high-prote<strong>in</strong> aquaculture feed. Earthworms<br />

convert cow manure <strong>in</strong>to dry matter at a remarkable 10 percent clip, such that<br />

Brita<strong>in</strong>‟s 84 megatons of cow manure could produce 8.4 megatons of dehydrated


earthworms, deliver<strong>in</strong>g a prote<strong>in</strong> punch of 5.9 million tons. The recipe is<br />

uncomplicated: f<strong>in</strong>d crap, add worms, wait, <strong>the</strong>n harvest, dry <strong>and</strong> gr<strong>in</strong>d.<br />

The rock-solid implications of earthworms <strong>for</strong> aquaculture have already been verified.<br />

Two species of worms were fed to a group of trout, a classic <strong>in</strong>tensive aquaculture<br />

species, while ano<strong>the</strong>r group was fed commercial trout pellets made from fishmeal.<br />

The results were splendid: <strong>the</strong> earthworm-fed fish grew as well or better than <strong>the</strong>ir<br />

fishmeal-fed counterparts. Ano<strong>the</strong>r study <strong>in</strong>dicated <strong>the</strong> effectiveness of earthworm<br />

feed on tilapia aquaculture, f<strong>in</strong>d<strong>in</strong>g that tilapia actually grew better with earthworm<br />

supplements than with fishmeal.<br />

Us<strong>in</strong>g earthworms as fish feed presents a truly novel method <strong>for</strong> reduc<strong>in</strong>g <strong>the</strong> impact<br />

of aquaculture on mar<strong>in</strong>e ecosystems. The benefits are threefold. Earthworms eat<br />

pollut<strong>in</strong>g manure, improv<strong>in</strong>g water quality of coastal fisheries <strong>and</strong> aid<strong>in</strong>g <strong>in</strong> recovery<br />

from over-fish<strong>in</strong>g. Elim<strong>in</strong>at<strong>in</strong>g fishmeal from aquaculture diets will also significantly<br />

reduce overall stress on wild fisheries as well as allow <strong>for</strong> production cost control<br />

<strong>in</strong>dependent of <strong>the</strong> price of wild fish. Thirdly, <strong>and</strong> not <strong>in</strong>significantly, earthworms can<br />

be used <strong>in</strong> place of fishmeal to feed l<strong>and</strong> animals such as cows, pigs <strong>and</strong> chickens. At<br />

present, l<strong>and</strong> animal consumption accounts <strong>for</strong> a great deal of fishmeal <strong>in</strong>take, <strong>and</strong><br />

transition<strong>in</strong>g livestock to an earthworm diet will take huge pressure off wild fisheries.<br />

Earthworms are a triple-w<strong>in</strong> solution to <strong>in</strong>tensive aquacultures‟ appetite <strong>for</strong> fishmeal.<br />

The worms are by no means a silver bullet as <strong>the</strong>y cannot solve all of aquaculture‟s<br />

problems immediately. Pollution from <strong>in</strong>tensive crustacean aquaculture will rema<strong>in</strong> a<br />

serious threat to coastal habitats until <strong>the</strong> lagoons are ei<strong>the</strong>r moved <strong>in</strong>l<strong>and</strong> or farmed<br />

less <strong>in</strong>tensively. This is to say noth<strong>in</strong>g of mollusk aquaculture, a genu<strong>in</strong>e champion of<br />

susta<strong>in</strong>able prote<strong>in</strong> production.<br />

Earthworms, with an important high prote<strong>in</strong> component, are used to feed chickens,<br />

pigs, rabbits, <strong>and</strong> as a dietary supplement <strong>for</strong> ornamental fish or o<strong>the</strong>r fish species<br />

difficult to raise <strong>and</strong> Some authors claim that <strong>in</strong> breed<strong>in</strong>g of aquarium fish it is<br />

essential to use a variety of food.<br />

Vermicompost produced <strong>in</strong> ecological boxes can be used <strong>for</strong> feed<strong>in</strong>g plants <strong>and</strong> <strong>the</strong><br />

created biomass can be a highly nutritious food <strong>for</strong> animals, because it consists of 58–<br />

71% prote<strong>in</strong>, 2.3–9.0% fat depend<strong>in</strong>g on earthworm species <strong>and</strong> <strong>the</strong> way earthworms<br />

are fed with organic waste.<br />

6.3. Earthworms, <strong>the</strong> susta<strong>in</strong>able aquaculture feed of <strong>the</strong> future<br />

Aquaculture is a boom<strong>in</strong>g global <strong>in</strong>dustry: from 2002 to 2006, world aquaculture<br />

production <strong>in</strong>creased from 40.4 million metric tons to 51.7 million metric tons. Over a<br />

three-decade span from 1975 to 2005, aquaculture production grew tenfold. Dur<strong>in</strong>g<br />

this same span of time, however, wild capture fell from 93.2 to 92.0 million metric<br />

tons. The <strong>in</strong>herent exhaustibility of <strong>the</strong> oceans necessitates that economically efficient<br />

<strong>and</strong> environmentally responsible aquaculture fill <strong>the</strong> gap between supply <strong>and</strong> dem<strong>and</strong><br />

<strong>for</strong> f<strong>in</strong>fish <strong>and</strong> shellfish worldwide.<br />

56


Genetic contam<strong>in</strong>ation <strong>and</strong> pollution, both chemical <strong>and</strong> biological, are serious<br />

blemishes on <strong>the</strong> face of responsible aquaculture; however, <strong>the</strong> solution is simple.<br />

Float<strong>in</strong>g or l<strong>and</strong>-based solid-wall tanks, such as those already <strong>in</strong> use <strong>in</strong> British<br />

Columbia, elim<strong>in</strong>ate escapes altoge<strong>the</strong>r. Wastes <strong>and</strong> uneaten feed, all collected with<strong>in</strong><br />

<strong>the</strong> tank, are pumped through a filter, elim<strong>in</strong>at<strong>in</strong>g <strong>the</strong>ir respective eutrophy<strong>in</strong>g <strong>and</strong><br />

pollut<strong>in</strong>g effects. The real problem with status quo aquaculture isn‟t genetic<br />

contam<strong>in</strong>ation or pollution, but ra<strong>the</strong>r <strong>the</strong> <strong>in</strong>efficiency <strong>and</strong> un-susta<strong>in</strong>ability of<br />

fishmeal as used <strong>for</strong> fish feed.<br />

Carnivorous f<strong>in</strong>fish aquaculture, <strong>the</strong> type employed <strong>in</strong> salmon <strong>and</strong> tuna farm<strong>in</strong>g,<br />

typically depends on fishmeal, an oily paste made from ground fishes such as<br />

mackerel <strong>and</strong> sard<strong>in</strong>es, <strong>for</strong> feed. Each pound of farmed fish <strong>for</strong> human consumption<br />

dem<strong>and</strong>s many pounds of fishmeal throughout <strong>the</strong> farm<strong>in</strong>g process, present<strong>in</strong>g a<br />

serious barrier to <strong>the</strong> expansion of responsible aquaculture. Tilapia, a onetime d<strong>in</strong><strong>in</strong>g<br />

hall staple, is only 25 percent calorie efficient, mean<strong>in</strong>g that it takes four tons of<br />

fishmeal to grow only one ton of tilapia. Sard<strong>in</strong>es <strong>and</strong> mackerel serve as important<br />

sources of prote<strong>in</strong> worldwide <strong>and</strong> as <strong>the</strong> diet of larger, commercially valuable stocks.<br />

New sources of feed must be developed <strong>in</strong> order to facilitate <strong>in</strong>dustrial expansion <strong>and</strong><br />

ease aquaculture‟s stra<strong>in</strong> on <strong>the</strong> world‟s over-fished oceans.<br />

Organic manures if not decomposed completely be<strong>for</strong>e application <strong>in</strong> aquaculture<br />

pond may deteriorate <strong>the</strong> water quality as <strong>the</strong>y utilize oxygen dur<strong>in</strong>g decomposition.<br />

There<strong>for</strong>e, <strong>the</strong> amount of any organic manure to be added <strong>in</strong> <strong>the</strong> pond ma<strong>in</strong>ly depends<br />

upon its biological oxygen dem<strong>and</strong> (BOD), as <strong>the</strong>ir excessive use may cause severe<br />

dissolved oxygen depletion <strong>in</strong> <strong>the</strong> pond <strong>and</strong> results <strong>in</strong> production of toxic gases like<br />

CO2, H2S, NH3, etc., <strong>and</strong> can spread parasitic diseases.<br />

A study suggests higher potential of utiliz<strong>in</strong>g vermicompost as compared to cow dung<br />

<strong>and</strong> hence can be used more effectively <strong>for</strong> manur<strong>in</strong>g semi-<strong>in</strong>tensive carp culture<br />

ponds without affect<strong>in</strong>g <strong>the</strong> hydro biological parameters. In develop<strong>in</strong>g country like<br />

India, agriculture <strong>and</strong> livestock work <strong>in</strong> <strong>in</strong>tegration, where livestock waste (ma<strong>in</strong>ly<br />

cow dung) is <strong>the</strong> most commonly used organic manure <strong>in</strong> agriculture <strong>and</strong> aquaculture.<br />

Hence, <strong>the</strong> small scale on farm <strong>in</strong>tegration of vermicompost<strong>in</strong>g of livestock <strong>and</strong><br />

agriculture waste with <strong>the</strong> rural aquaculture (extensive/semi-<strong>in</strong>tensive) holds ample<br />

scope <strong>for</strong> develop<strong>in</strong>g economically <strong>and</strong> ecologically susta<strong>in</strong>able farm<strong>in</strong>g system <strong>for</strong><br />

<strong>the</strong> socio-economic upliftment of rural population <strong>in</strong> develop<strong>in</strong>g countries (Kaur <strong>and</strong><br />

Ansal, 2010).<br />

The research on Carassius auratus, showed that a 10% supplement of E. fetida<br />

earthworms <strong>in</strong> food, given to those fish, caused a doubl<strong>in</strong>g of <strong>the</strong>ir biomass. The<br />

research on P. reticulata, fed on earthworms only, also showed benefits. Compared to<br />

<strong>the</strong> group fed with Bio-vit, <strong>the</strong> fish were characterized by a larger number of broods<br />

<strong>and</strong> larger numbers of surviv<strong>in</strong>g fry. From this research it can be seen that E. fetida is<br />

a highly nutritious food that is eagerly eaten by all age groups of <strong>the</strong> exam<strong>in</strong>ed species<br />

of fish. For <strong>the</strong> advocates of <strong>the</strong> ecological box, it means ano<strong>the</strong>r possible use of one<br />

of its products. That is because <strong>in</strong> addition to us<strong>in</strong>g <strong>the</strong> vermicompost, it gives ano<strong>the</strong>r<br />

possibility of feed<strong>in</strong>g selected aquarium fish with <strong>the</strong> produced biomass of<br />

earthworms. The results of <strong>the</strong> research not only <strong>in</strong>dicate <strong>the</strong> possibility of reduc<strong>in</strong>g<br />

57


<strong>the</strong> cost of fish-keep<strong>in</strong>g, but also better results of that culture (Kostecka <strong>and</strong> Paczka,<br />

2006).<br />

Three meals were <strong>for</strong>mulated from <strong>the</strong> earthworm (Endrilus eug<strong>in</strong>eae) <strong>and</strong> maggot<br />

(Musca domestica) <strong>and</strong> fish (Engraulis encrosicolus). These meals were evaluated as<br />

a potential replacement <strong>for</strong> fishmeal. This is because fishmeal could be very<br />

expensive at times. The three meals were used <strong>in</strong> feed<strong>in</strong>g <strong>the</strong> catfish (Heterobranchus<br />

isopterus) <strong>for</strong> 30 days. On <strong>the</strong> basis of weight <strong>in</strong>crement, <strong>the</strong> best growth per<strong>for</strong>mance<br />

was produced by maggot meal. It was followed by earthworm <strong>and</strong> fish meals,<br />

respectively. Based on food conversion ratio maggot meal was aga<strong>in</strong> <strong>the</strong> best,<br />

followed by earthworm <strong>and</strong> fish meals respectively. The importance of supplementary<br />

feed<strong>in</strong>g was evidenced <strong>in</strong> <strong>the</strong> higher weight <strong>in</strong>crement <strong>in</strong> fish that were fed than those<br />

that were not fed. Maggot <strong>and</strong> earthworm meals could <strong>the</strong>re<strong>for</strong>e be a whole or partial<br />

replacement <strong>for</strong> fishmeal. The difficulty <strong>in</strong> <strong>the</strong> harvest<strong>in</strong>g or rear<strong>in</strong>g maggots <strong>and</strong><br />

earthworms may however reduce this potential (Yaqub, 1991).<br />

The use of vermicompost <strong>in</strong> pisci-culture is ga<strong>in</strong><strong>in</strong>g its <strong>in</strong>creased recognition <strong>for</strong> <strong>the</strong><br />

conservation of energy <strong>and</strong> optimum but economical utilization of available resources<br />

with simultaneous pollution control. Vermicompost is hazard free organic manure,<br />

which improves quality of pond base <strong>and</strong> overly<strong>in</strong>g water as well as provides<br />

organically produced aqua crops. The additions of manures affect <strong>the</strong> relative<br />

abundance of <strong>the</strong> plankton <strong>and</strong> <strong>the</strong>ir community structure <strong>in</strong> aquatic system. Proper<br />

comb<strong>in</strong>ations of <strong>in</strong>organic nutrients (NPK) are <strong>the</strong> major factors that <strong>in</strong>fluence <strong>the</strong><br />

growth <strong>and</strong> production of plankton <strong>in</strong> a pond. Vermicompost conta<strong>in</strong>s all <strong>the</strong> major<br />

organic nutrient components of N, P <strong>and</strong> K along with some necessary micronutrients<br />

<strong>for</strong> plankton growth (Table 6.4).<br />

In aquaculture <strong>in</strong>dustry, capital <strong>in</strong>vestment apart, <strong>the</strong>re are also operat<strong>in</strong>g expenses,<br />

ma<strong>in</strong>ly <strong>for</strong> seed, fertilizer, feed <strong>and</strong> labors. Among those, <strong>the</strong> cost of feed <strong>and</strong><br />

fertilizer constitute about 70% of <strong>the</strong> total expenses. For this reason <strong>the</strong>re is need <strong>for</strong><br />

search<strong>in</strong>g out chapter sources <strong>for</strong> feed <strong>and</strong> fertilizer. So, this is particularly significant<br />

<strong>in</strong> develop<strong>in</strong>g nations, where fish farmers are unable to buy costly fish feed <strong>and</strong><br />

chemical fertilizer vermicompost <strong>for</strong>ms an abundant alternative natural resource <strong>for</strong><br />

less expensive manure <strong>and</strong> fish feed <strong>for</strong> higher fish yield. However, <strong>the</strong> amount of<br />

available nitrogen <strong>and</strong> phosphorus from vermicompost is less when compared with<br />

conventional fertilizers <strong>and</strong> research should be oriented to <strong>in</strong>crease its nitrogen <strong>and</strong><br />

phosphorus concentration through alteration of substrate composition.<br />

Table 6.4. Different nutrient concentration <strong>in</strong> manure <strong>and</strong> fertilizer applied (average<br />

value of triplicate sample analyzed)<br />

Parameters<br />

Available N<br />

(mg·g -1 )<br />

Available P<br />

(mg·g -1 )<br />

Available K<br />

(mg·g -1 )<br />

Dry weight of fertilizer<br />

<strong>and</strong> manure used (g)<br />

Diammonium phosphate (DAP) 18 ± 0.07 46 ± 0.05 Nil 3.04<br />

Vermicompost 1.5 ± 0.05 1.4 ± 0.08 1.0 ± 0.05 99.0<br />

Compost<br />

Souce: Chakrabarty et al, (2009).<br />

1.0 ± 0.08 0.55 ± 0.09 1.0 ± 0.05 252.0<br />

Sample of soil, compost, vermicompost <strong>and</strong> DAP were analyzed <strong>for</strong> available P, N<br />

content as well as <strong>for</strong> organic carbon. The dry weights of <strong>the</strong> fertilizer <strong>and</strong> manure<br />

58


were ranged from 3.04 to 252.0 g <strong>in</strong> different treatments (50 kg P2O5 content basis)<br />

(Table 6.5).<br />

Table 6.5. Average values* (±SD) of physio-chemical parameters of water, primary<br />

productivity of phytoplankton <strong>and</strong> f<strong>in</strong>al body weights <strong>and</strong> fish production of<br />

Cypr<strong>in</strong>us carpio <strong>in</strong> various treatments.<br />

Parameters Control (T-1) Compost<br />

(T-2)<br />

59<br />

Diammonium<br />

phosphate<br />

(T-3)<br />

Vermicompost<br />

(T-4)<br />

Temperature (˚C) 30.0 ± 4.3 30.0 ± 5.1 30.0 ± 4.9 30.00 ± 5.5<br />

pH 7.06 ± 0.4 7.26 ± 0.6 7.14 ± 0.1 7.43 ± 0.6<br />

Dissolved oxygen (mg l -1 ) 6.01 ± 0.9 6.21 ± 1.1 7.74 ± 1.0 7.02 ± 1.2<br />

Ortho phosphate (mg l -1 ) 0.09 ± 0.09 0.19 ± 0.06 0.52 ± 0.10 0.30 ± 0.14<br />

Organic phosphate (mg l -1 ) 0.08 ± 0.19 0.27 ± 0.15 0.20 ± 0.14 0.35 ± 0.21<br />

Total phosphate (mg l -1 ) 0.10 ± 0.10 0.66 ± 0.16 0.88 ± 0.25 0.68 ± 0.21<br />

NO3–N (mg l -1 ) 0.06 ± 0.08 0.12 ± 0.06 0.28 ± 0.03 0.16 ± 0.04<br />

Total <strong>in</strong>organic N (mg l -1 ) 0.06 ± 0.005 0.40 ± 0.02 0.80 ± 0.04 0.62 ± 0.03<br />

Total <strong>in</strong>organic nitrogen (N)/total 1.6 0.61 0.90 0.91<br />

phosphate (P)<br />

Community respiration (mg C m -2 h -<br />

1<br />

)<br />

20.13 ±±9.3 28.13 ± 12.5 35.79 ± 18.2 38.58 ± 13.1<br />

F<strong>in</strong>al mean body weight (g) 18.24 ± 2.3 22.25 ± 3.6 39.50 ± 4.3 45.77 ± 3.9<br />

Fertilizer/manure added (g) 0 252 3.04 99<br />

Stock<strong>in</strong>g density 10.00 10.00 10.00 10.00<br />

Initial average <strong>in</strong>dividual length 1.40 ± 0.02 1.40 ± 0.02 1.40 ± 0.02 1.40 ± 0.02<br />

(cm)<br />

Initial average <strong>in</strong>dividual weight (g) 2.40 ± 0.01 2.40 ± 0.03 2.40 ± 0.04 2.40 ± 0.02<br />

F<strong>in</strong>al average <strong>in</strong>dividual length (cm) 4.20 ± 0.03 6.80 ± 0.06 7.60 ± 0.04 8.80 ± 0.07<br />

F<strong>in</strong>al average <strong>in</strong>dividual weight (g) 3.76 ± 0.01 8.29 ± 0.05 12.92 ± 0.03 16.76 ± 0.07<br />

Growth <strong>in</strong>crement (g fish -1 day -1 ) 0.0151 0.0654 0.1169 0.1595<br />

Production of fish (kg ha -1 90 day-1) 385.92 1,952.64 3080.45 3,970.56<br />

Total weight ga<strong>in</strong> (TWG) (g fish -1 ) 0.57 2.45 4.38 5.98<br />

Survival (%) 85 88 87 90<br />

*Each average value applies to 90 days samples.<br />

Source: Chakrabarty et al. (2009).<br />

Where:<br />

Absolute growth (AG) = f<strong>in</strong>al body weight - <strong>in</strong>itial body weight<br />

Growth <strong>in</strong>crement (GI) = f<strong>in</strong>al body weight - <strong>in</strong>itial body weight /<br />

number of culture days after fish <strong>in</strong>troduction<br />

Total weight ga<strong>in</strong> (TWG) = f<strong>in</strong>al body weight - <strong>in</strong>itial body weight /<br />

<strong>in</strong>itial body weight<br />

The dem<strong>and</strong> <strong>for</strong> organically cultured food <strong>for</strong> human consumption is <strong>in</strong>creas<strong>in</strong>g across<br />

<strong>the</strong> globe <strong>and</strong> <strong>for</strong> this reason organic aquaculture is <strong>the</strong> need of <strong>the</strong> present time. Wide<br />

variety of organic manures such as grass, leaves, sewage water, livestock manure,<br />

domestic wastes, night soil <strong>and</strong> dried blood meal have been used.<br />

6.4. Possibilities of worms as animal feed <strong>in</strong> <strong>Egypt</strong>:<br />

For a long time, extensive fish farm<strong>in</strong>g was <strong>the</strong> type practiced <strong>in</strong> <strong>Egypt</strong>, where only<br />

chemical <strong>and</strong>/or organic fertilizers were applied <strong>for</strong> promot<strong>in</strong>g <strong>the</strong> natural productivity<br />

of ponds. Agricultural by-products such as wheat bran <strong>and</strong> rice bran were used <strong>for</strong><br />

supplementation <strong>in</strong> some farms. As <strong>the</strong> technology of fish farm<strong>in</strong>g has developed,


aquaculture started to exert some significant dem<strong>and</strong> on fish feed. In 2001, <strong>the</strong>re are<br />

twelve feed mills that produced about 68 500 tons of specialized feeds. Most of feeds<br />

are produced <strong>for</strong> self-sufficiency to support <strong>the</strong> needs of Governmental fish farms, but<br />

some quantities are available <strong>for</strong> sale to private sector. Because of <strong>the</strong> cost, such mills<br />

produce fish feeds of 18-32% prote<strong>in</strong> of s<strong>in</strong>k<strong>in</strong>g type pellets, however, higher prote<strong>in</strong><br />

float<strong>in</strong>g feeds could be produced upon request. High quality fish meal provide <strong>the</strong><br />

major component <strong>in</strong> <strong>the</strong> commercial fish feeds <strong>and</strong> may constitute up to 60% of <strong>the</strong><br />

total diet <strong>for</strong> mar<strong>in</strong>e species, with higher levels be<strong>in</strong>g used <strong>in</strong> starter <strong>and</strong> f<strong>in</strong>gerl<strong>in</strong>g<br />

rations. Generally, a good range of raw materials is available <strong>for</strong> fish manufacture <strong>in</strong><br />

<strong>Egypt</strong>. However, price <strong>and</strong> competition from <strong>the</strong> human food <strong>and</strong> animal feed<br />

<strong>in</strong>dustries limits <strong>the</strong> choice. High quality feed materials are <strong>in</strong> short supply <strong>and</strong> are<br />

expensive. Apart from fish meal (imported <strong>and</strong> <strong>in</strong>digenous), <strong>the</strong> ma<strong>in</strong> available<br />

prote<strong>in</strong> sources are: soybean meal (hexane-extracted), cottonseed meal (expeller),<br />

meat meal, poultry offal meal <strong>and</strong> fea<strong>the</strong>r meal. O<strong>the</strong>r possibilities <strong>for</strong> new feed<br />

materials may be <strong>the</strong> wide spread mar<strong>in</strong>e macroalgae or fresh water weed hyac<strong>in</strong>th.<br />

On local basis, <strong>the</strong>re is a scope <strong>for</strong> <strong>the</strong>ir <strong>in</strong>corporation <strong>in</strong>to fish feeds particularly <strong>for</strong><br />

tilapia <strong>and</strong> mullets. Tables 6.6 <strong>and</strong> 6.7 show <strong>the</strong> proximate composition of <strong>the</strong> tested<br />

feed <strong>in</strong>gredients, namely: acid fish silage (AFS), fermented fish silage (FFS), soybean<br />

meal (SBM), a mixture of FFS <strong>and</strong> SBM (MIX), green macroalga Ulva meal (UM)<br />

<strong>and</strong> red macro-algae Pterocladia meal (PM) compared to fish meal (FM) from<br />

different sources <strong>and</strong> <strong>the</strong>ir am<strong>in</strong>o acid profiles, respectively.<br />

Table 6.6. Composition (%dry matter) of tested prote<strong>in</strong>s sources or supplements <strong>for</strong><br />

fish feeds<br />

Ingredient Prote<strong>in</strong> Lipid Ash Moisture NFE Fiber DE<br />

AFS1 72.90 13.12 12.76 73.28 1.22 - 164<br />

AFS2 73.40 17.10 8.30 - 1.20 - 178<br />

AFS3 63.00 22.10 9.68 75.00 - - 177<br />

FFS 56.67 12.7 20.04 0.98 - - 135<br />

SBMG 44.80 20.60 5.40 5.50 29.20 - 161<br />

SBMB 44.00 1.80 8.00 8.94 37.26 - 103<br />

SBMD 44.00 4.00 6.53 11.00 38.17 7.30 110<br />

UM 17.44 2.5 32.85 3.69 41.47 5.47 64<br />

PM 22.61 2.18 37.3 3.05 28.29 9.62 35<br />

FM1 72.05 10.94 7.00 5.00 8.98 1.02 160<br />

FMD 61.00 8.95 20.72 6.20 9.73 - 136<br />

FMD 61.00 5.00 16.60 5.00 16.70 0.70 127<br />

Source: Wassef (2005).<br />

NFE: Nitrogen free extract, by difference; DE: Digestible energy (MJ/Kg); AFS: acid fish silage;<br />

FFS: fermented fish silage; SBM: boiled full fat soy meal (G: germ<strong>in</strong>ated; B: boilled fullfat; D:<br />

defatted); MIX: mixture of FFS <strong>and</strong> SBM; UM: Ulva meal; PM: Pterocladia meal; FM: fish meal (D:<br />

domestic product; I: imported Manhaden).<br />

60


Table 6.7. Am<strong>in</strong>o acid (g/100g prote<strong>in</strong>) profiles of tested prote<strong>in</strong> sources or<br />

supplement as compared to fish meal (FM)<br />

Am<strong>in</strong>o acid (AA) AFS FFS SBM MIX UM PM FM<br />

Indispensable (IAA)<br />

Arg<strong>in</strong><strong>in</strong>e (ARG)<br />

Histid<strong>in</strong>e (HIS)<br />

Isoleuc<strong>in</strong>e (ILE)<br />

Leuc<strong>in</strong>e (LEU)<br />

Lys<strong>in</strong>e (LYS)<br />

Methion<strong>in</strong>e (MET)<br />

Phenyl-alan<strong>in</strong>e (PHE)<br />

Threon<strong>in</strong>e (THR)<br />

Val<strong>in</strong>e (VAL)<br />

Tryptophan (TRP)<br />

Total IAA<br />

Dispensable (DAA)<br />

Aspartic Acid (ASP)<br />

Ser<strong>in</strong>e (SER)<br />

Glutamic Acid<br />

(GLU)<br />

Glyc<strong>in</strong>e (GLY)<br />

Alan<strong>in</strong>e (ALA)<br />

Tyros<strong>in</strong>e (TYR)<br />

Prol<strong>in</strong>e (PRO)<br />

Cyste<strong>in</strong>e (CYS)<br />

Total (DAA)<br />

Total am<strong>in</strong>o acids<br />

03.62<br />

02.36<br />

02.66<br />

04.43<br />

05.27<br />

01.81<br />

02.36<br />

02.60<br />

03.01<br />

00.63<br />

28.75<br />

05.97<br />

02.62<br />

08.81<br />

03.50<br />

03.74<br />

02.04<br />

02.60<br />

00.73<br />

30.01<br />

58.76<br />

02.86<br />

01.33<br />

01.87<br />

03.73<br />

03.95<br />

01.35<br />

02.30<br />

01.41<br />

02.41<br />

00.36<br />

21.57<br />

61<br />

05.59<br />

04.30<br />

03.64<br />

06.09<br />

04.49<br />

01.25<br />

04.30<br />

02.97<br />

03.86<br />

36.94<br />

15.20<br />

04.15<br />

13.03<br />

03.14<br />

03.54<br />

04.03<br />

04.46<br />

01.13<br />

48.68<br />

85.62<br />

06.20<br />

02.48<br />

03.27<br />

00.51<br />

05.44<br />

02.22<br />

03.06<br />

03.74<br />

03.94<br />

00.72<br />

31.58<br />

05.85<br />

02.80<br />

03.47<br />

05.21<br />

05.62<br />

04.40<br />

04.45<br />

03.94<br />

07.46<br />

43.20<br />

11.54<br />

04.48<br />

09.35<br />

05.53<br />

07.19<br />

03.31<br />

05.15<br />

01.27<br />

47.82<br />

91.02<br />

04.46<br />

02.70<br />

04.53<br />

05.92<br />

06.90<br />

03.26<br />

04.78<br />

04.23<br />

06.69<br />

43.47<br />

10.59<br />

04.08<br />

10.22<br />

07.49<br />

07.23<br />

03.65<br />

04.64<br />

01.51<br />

49.41<br />

92.88<br />

05.88<br />

02.48<br />

04.41<br />

05.71<br />

04.42<br />

02.50<br />

03.87<br />

03.76<br />

04.75<br />

00.80<br />

38.58<br />

02.04<br />

00.66<br />

03.30<br />

04.13<br />

01.47<br />

01.47<br />

00.97<br />

12.57<br />

51.15<br />

Source: Wassef (2005).<br />

AFS: acid fish silage; FFS: fermented fish silage; SBM: boiled full fat soy meal; MIX: mixture of FFS<br />

<strong>and</strong> SBM; UM: Ulva meal; PM: Pterocladia meal; FM: fish meal.<br />

There is still a great opportunity <strong>for</strong> <strong>Egypt</strong> to use <strong>the</strong> tremendous amount of organic<br />

wastes to be used as meal not only <strong>for</strong> poultry, rabbits, ducks, <strong>and</strong> geese, but also <strong>for</strong><br />

aquaculture <strong>and</strong> large animals. The only miss<strong>in</strong>g part is to create awareness <strong>and</strong> to<br />

develop capacity build<strong>in</strong>g programs <strong>in</strong> a well established demonstrated sites<br />

represent<strong>in</strong>g different geographic regions of <strong>the</strong> country.


7. Current on-farm <strong>and</strong> urban organic waste management practices<br />

<strong>and</strong> environmental effects of those practices, e.g. carbon <strong>and</strong> methane<br />

emissions.<br />

The ma<strong>in</strong> beneficiaries of this work are <strong>the</strong> agriculture producers <strong>in</strong> general <strong>and</strong><br />

organic farm<strong>in</strong>g producers specifically. Previous chapters covered all aspects of<br />

production of vermicompost <strong>and</strong> vermiculture. As an organic grower <strong>in</strong>terest, <strong>the</strong><br />

environmental positive impacts of utiliz<strong>in</strong>g such methods of production, it is<br />

important to underst<strong>and</strong> how vermicompost contribute to improve reduc<strong>in</strong>g <strong>the</strong><br />

production of greenhouse gases, <strong>and</strong> consequently help mitigat<strong>in</strong>g <strong>the</strong> global<br />

warm<strong>in</strong>g. This chapter aims at highlight<strong>in</strong>g on-farm <strong>and</strong> urban organic waste<br />

management practices <strong>and</strong> <strong>the</strong> environmental effects of those practices.<br />

7.1. Emissions from vermicompost<br />

Compost<strong>in</strong>g has been identified as an important source of CH4 <strong>and</strong> N2O. With<br />

<strong>in</strong>creas<strong>in</strong>g divergence of biodegradable waste from l<strong>and</strong>fill <strong>in</strong>to <strong>the</strong> compost<strong>in</strong>g<br />

sector, it is important to quantify emissions of CH4 <strong>and</strong> N2O from all <strong>for</strong>ms of<br />

compost<strong>in</strong>g <strong>and</strong> from all stages. The study focused on <strong>the</strong> f<strong>in</strong>al phase of a two stage<br />

compost<strong>in</strong>g process <strong>and</strong> compared <strong>the</strong> generation <strong>and</strong> emission of CH4 <strong>and</strong> N2O<br />

associated with two differ<strong>in</strong>g compost<strong>in</strong>g methods: mechanically turned w<strong>in</strong>drow <strong>and</strong><br />

vermicompost<strong>in</strong>g. The mechanically turned w<strong>in</strong>drow system was characterized by<br />

emissions of CH4 <strong>and</strong> to a much lesser extent N2O. However, <strong>the</strong> vermicompost<strong>in</strong>g<br />

system emitted significant fluxes of N2O <strong>and</strong> only traces amounts of CH4. High N2O<br />

emission rates from vermicompost<strong>in</strong>g were ascribed to strongly nitrify<strong>in</strong>g conditions<br />

<strong>in</strong> <strong>the</strong> process<strong>in</strong>g beds comb<strong>in</strong>ed with <strong>the</strong> presence of de-nitrify<strong>in</strong>g bacteria with<strong>in</strong> <strong>the</strong><br />

worm gut (Hobson et al., 2005).<br />

Different o<strong>the</strong>r reports from several countries stated that any possible emissions of<br />

greenhouse gases by earthworms from soil or vermicompost<strong>in</strong>g systems is extremely<br />

small when compared with <strong>the</strong> well-documented emissions of nitrous oxide, methane<br />

<strong>and</strong> carbon dioxide from <strong>in</strong>organic fertilizer manufacture, l<strong>and</strong>fills, manure heaps,<br />

lagoons, crop residues <strong>in</strong> soils <strong>and</strong> manure from pigs <strong>and</strong> cattle <strong>in</strong> housed systems.<br />

While <strong>the</strong>re will be N2O emissions from all <strong>the</strong>se sources, <strong>the</strong>re is no justification <strong>for</strong><br />

suggest<strong>in</strong>g that environmentally-friendly <strong>and</strong> energy-efficient systems <strong>for</strong> produc<strong>in</strong>g<br />

vermicomposts <strong>and</strong> composts should be restricted because of <strong>the</strong>ir potential to<br />

produce greenhouse gases. The global production of nitrogenous greenhouse gases <strong>in</strong><br />

agriculture should be compared from all sources be<strong>for</strong>e vermicompost<strong>in</strong>g is publicly<br />

condemned <strong>in</strong> such a sensational way (Edwards, 2008).<br />

Recent research has shown that certa<strong>in</strong> types of vermicompost<strong>in</strong>g can generate<br />

significant amounts of N2O. These <strong>in</strong>itial f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate a need <strong>for</strong> more research to<br />

be conducted be<strong>for</strong>e any sound recommendations on vermicompost<strong>in</strong>g can be given.<br />

S<strong>in</strong>ce <strong>the</strong> amount of emissions from compost<strong>in</strong>g depends on <strong>the</strong> specific compost<strong>in</strong>g<br />

method used <strong>and</strong> on how well <strong>the</strong> process is managed, it is not possible to give a<br />

62


def<strong>in</strong>itive answer to <strong>the</strong> question of how much compost<strong>in</strong>g contributes to climate<br />

change. Most studies on emissions from compost<strong>in</strong>g have been carried out <strong>in</strong><br />

developed countries where conditions differ from <strong>the</strong> target countries of this study.<br />

Never<strong>the</strong>less, several environmental agencies have concluded that when compost<strong>in</strong>g<br />

is done properly, it generates very small amounts of greenhouse gases (IGES, 2008).<br />

Chan et al. (2010) <strong>in</strong>vestigated greenhouse gas emissions from three different home<br />

waste treatment methods <strong>in</strong> Brisbane, Australia. Gas samples were taken monthly<br />

from 34 backyard compost<strong>in</strong>g b<strong>in</strong>s from January to April 2009. Averaged over <strong>the</strong><br />

study period, <strong>the</strong> aerobic compost<strong>in</strong>g b<strong>in</strong>s released lower amounts of CH4 (2.2 mg·m -<br />

2 ·h -1 ) than <strong>the</strong> anaerobic digestion b<strong>in</strong>s (9.5 mg·m -2 ·h -1 ) <strong>and</strong> <strong>the</strong> vermicompost<strong>in</strong>g b<strong>in</strong>s<br />

(4.8 mg . m -2. h -1 ). The vermicompost<strong>in</strong>g b<strong>in</strong>s had lower N2O emission rates (1.2 mg m -2<br />

h -1 ) than <strong>the</strong> o<strong>the</strong>rs (1.5–1.6 mg·m -2 ·h -1 ). Total greenhouse gas emissions <strong>in</strong>clud<strong>in</strong>g<br />

both N2O <strong>and</strong> CH4 were 463, 504 <strong>and</strong> 694 mg CO2e m -2 ·h -1 <strong>for</strong> vermicompost<strong>in</strong>g,<br />

aerobic compost<strong>in</strong>g <strong>and</strong> anaerobic digestion, respectively, with N2O contribut<strong>in</strong>g<br />

>80% <strong>in</strong> <strong>the</strong> total budget. The greenhouse gas emissions varied substantially with<br />

time <strong>and</strong> were regulated by temperature, moisture content <strong>and</strong> <strong>the</strong> waste properties,<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> potential to mitigate greenhouse gas emission through proper<br />

management of <strong>the</strong> compost<strong>in</strong>g systems. The results suggest that home compost<strong>in</strong>g<br />

provides an effective <strong>and</strong> feasible supplementary waste management method to a<br />

centralized facility <strong>in</strong> particular <strong>for</strong> cities with lower population density such as <strong>the</strong><br />

Australian cities.<br />

In terms of greenhouse gas emissions dur<strong>in</strong>g <strong>the</strong> maturation process, <strong>the</strong> w<strong>in</strong>drow<br />

compost<strong>in</strong>g process was characterized by emission of CH4. Emission of greenhouse<br />

gases from vermicompost<strong>in</strong>g was predom<strong>in</strong>antly N2O with comparatively little CH4<br />

emitted, demonstrat<strong>in</strong>g that sufficiently aerobic conditions were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

vermicompost<strong>in</strong>g beds to <strong>in</strong>hibit CH4 production. The global warm<strong>in</strong>g potential of <strong>the</strong><br />

vermicompost<strong>in</strong>g maturation system was estimated to be approximately 30 times<br />

greater than that <strong>for</strong> <strong>the</strong> w<strong>in</strong>drow compost<strong>in</strong>g system. The emission of greenhouse<br />

gases from <strong>the</strong>se types of compost<strong>in</strong>g systems requires fur<strong>the</strong>r <strong>in</strong>vestigation.<br />

Vermicompost<strong>in</strong>g by worms decreases <strong>the</strong> proportion of 'anaerobic to aerobic<br />

decomposition', result<strong>in</strong>g <strong>in</strong> a significant decrease <strong>in</strong> methane (CH4) <strong>and</strong> volatile<br />

sulfur compounds which are readily emitted from <strong>the</strong> conventional (microbial)<br />

compost<strong>in</strong>g process. Vermi-compost<strong>in</strong>g of waste organics us<strong>in</strong>g earthworms <strong>the</strong>re<strong>for</strong>e<br />

has a dist<strong>in</strong>ct advantage over <strong>the</strong> conventional aerobic compost<strong>in</strong>g as it does not allow<br />

<strong>the</strong> greenhouse gas methane (CH4) to be <strong>for</strong>med. Molecule to molecule, methane is a<br />

20-25 times more powerful greenhouse gas than CO2. Earthworms can play a good<br />

part <strong>in</strong> <strong>the</strong> strategy of greenhouse gas reduction <strong>and</strong> mitigation <strong>in</strong> <strong>the</strong> disposal of<br />

global organic wastes as l<strong>and</strong>fills also emit methane result<strong>in</strong>g from <strong>the</strong> slow anaerobic<br />

decomposition of waste organics over several years. However, recent research done <strong>in</strong><br />

Germany has found that earthworms produce a third of nitrous oxide (N20) gases<br />

when used <strong>for</strong> vermicompost<strong>in</strong>g. Molecule to molecule N:0 is a 296 times more<br />

powerful greenhouse gas than carbon dioxide (CO2). This needs fur<strong>the</strong>r study (Daven<br />

<strong>and</strong> Kle<strong>in</strong>, 2008).<br />

63


7.2 Total emissions from waste sector <strong>in</strong> <strong>Egypt</strong><br />

Total emissions <strong>for</strong> 2000 amounted to about 193 megaton of carbon dioxide<br />

equivalent 1 . With <strong>the</strong> total emissions <strong>for</strong> 1990 amount<strong>in</strong>g to about 117 megaton of<br />

carbon dioxide equivalent., The average greenhouse gases emissions <strong>in</strong>crease is about<br />

5% annually. In this respect, <strong>the</strong> estimated total greenhouse gases emissions <strong>for</strong> 2008<br />

are about 288 megaton of carbon dioxide equivalent. <strong>Egypt</strong>‟s specific greenhouse<br />

gases emissions <strong>for</strong> 2000 amounted to 2.99 megaton of carbon dioxide per capita,<br />

while direct CO2 emissions per capita <strong>in</strong> 2000 amounted to 1.98 ton per capita.<br />

The total greenhouse gas emissions <strong>in</strong> 1990 of carbon dioxide, methane, nittrogen<br />

oxide, Perfluorocarbons, haloflorocarbons, sulpher hexafloride (exclud<strong>in</strong>g emissions<br />

from l<strong>and</strong> use change), <strong>for</strong> <strong>the</strong> world amounted to 29,910 megaton of carbon dioxide..<br />

The total 1990 emissions of <strong>Egypt</strong> amounted to about 117 megaton of carbon dioxide,<br />

based on emissions of dioxide, methane, nittrogen oxide (EEAA, 1999). These figures<br />

denote that <strong>the</strong> share of <strong>Egypt</strong> <strong>in</strong> <strong>the</strong> total World emissions <strong>in</strong> 1990 was 0.4%.<br />

<strong>Egypt</strong>‟s total emissions are about 193 dioxide, methane, nittrogen oxide, <strong>in</strong>clud<strong>in</strong>g<br />

emissions of manure management, agriculture soil, <strong>and</strong> field burn<strong>in</strong>g of agricultural<br />

residues, <strong>and</strong> emissions from some sources of sub-categories, such as methane<br />

emissions from aerobic waste water treatment plants, nitrogen oxide emissions from<br />

domestic wastewater <strong>and</strong> emissions from <strong>in</strong>c<strong>in</strong>eration, all of which were not <strong>in</strong>cluded<br />

<strong>in</strong> <strong>the</strong> 1990 figures. Moreover, more updated figures <strong>for</strong> activity data were used <strong>for</strong><br />

solid waste generation <strong>and</strong> wastewater generation <strong>for</strong> <strong>the</strong> year 2000. Based on this <strong>and</strong><br />

tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> world total emissions <strong>for</strong> <strong>the</strong> year 2000, amount<strong>in</strong>g to 33,017<br />

megaton of carbon dioxide equivalen, <strong>Egypt</strong>‟s share <strong>in</strong> <strong>the</strong> total world emissions <strong>for</strong><br />

2000 was 0.58% (EEAA, 2010).<br />

1 Each of <strong>the</strong> greenhouse gases has a global warm<strong>in</strong>g potential (GWP) value compared to CO2, which has global<br />

warm<strong>in</strong>g potential=1. All quantities of green house gases are converted to CO 2 equivalent quantities by<br />

multiply<strong>in</strong>g <strong>the</strong> weight of such gas by its GWP to obta<strong>in</strong> <strong>the</strong> CO 2 equivalent weight.<br />

64


Table 7.1. Summary of greenhouse gases emissions <strong>for</strong> <strong>Egypt</strong>, 2000, as of its Second<br />

National Communications 1 submitted <strong>in</strong> July 2010.<br />

Greenhouse gases<br />

Source & S<strong>in</strong>k<br />

Categories<br />

Total National<br />

Emissions & Removals<br />

ALL ENERGY<br />

(Fuel Combustion &<br />

Fugitive)<br />

CO2<br />

(Kt)<br />

CH4<br />

(Kt)<br />

65<br />

N2O<br />

(Kt)<br />

128,227 1,877 79<br />

106,629 447<br />

Fuel combustion 105,161 3<br />

Petroleum & energy<br />

trans<strong>for</strong>mation <strong>in</strong>dustries<br />

41,436<br />

Industry 26,987<br />

930<br />

(tons)<br />

680<br />

(tons)<br />

Transport 27,120 1<br />

Small combustion 9,389<br />

Agriculture 229<br />

Fugitive emissions from<br />

fuels<br />

188<br />

(tons)<br />

10<br />

(tons)<br />

1,469 444<br />

Oil & Natural Gas 1,469 444<br />

INDUSTRIAL<br />

PROCESSES<br />

581<br />

(tons)<br />

559<br />

(tons)<br />

130<br />

(tons)<br />

180<br />

(tons)<br />

222<br />

(tons)<br />

25<br />

(tons)<br />

2<br />

(tons)<br />

22<br />

(tons)<br />

22<br />

(tons)<br />

21,594 -- 16<br />

PFCs<br />

(Kt)<br />

160<br />

(tons)<br />

--<br />

--<br />

--<br />

SF6<br />

(Kt)<br />

5<br />

(tons)<br />

5<br />

(tons)<br />

5<br />

(tons)<br />

5<br />

(tons)<br />

HFCs<br />

(Kt)<br />

28<br />

(tons)<br />

Total<br />

(Mt<br />

CO2e)<br />

193.3<br />

-- 116.3<br />

-- 105.5<br />

--<br />

-- -- --<br />

-- -- --<br />

-- -- --<br />

-- -- --<br />

-- -- -- 10.8<br />

-- -- --<br />

160<br />

(tons)<br />

--<br />

28<br />

(tons)<br />

Cement production 17,251 -- -- -- -- -- --<br />

Lime production 31 -- -- -- -- -- --<br />

Iron <strong>and</strong> steel <strong>in</strong>dustry 1,576 -- -- -- -- -- --<br />

Nitric acid production -- -- 16 -- -- -- --<br />

Alum<strong>in</strong>um production -- -- --<br />

160<br />

(tons)<br />

Ozone Deplet<strong>in</strong>g Substitutes -- -- -- -- --<br />

27.8<br />

-- -- --<br />

28<br />

(tons)<br />

Ammonia production 2,736 -- -- -- -- -- --<br />

1 As per Kyoto Protocol, <strong>Egypt</strong> submitted it's Second National Communication <strong>for</strong> Climate Change to<br />

<strong>the</strong> United Nations Framework Convention <strong>for</strong> Climate Change (UNFCCC) <strong>in</strong> June 2010.<br />

--


Greenhouse gases<br />

Source & S<strong>in</strong>k<br />

Categories<br />

CO2<br />

(Kt)<br />

CH4<br />

(Kt)<br />

66<br />

N2O<br />

(Kt)<br />

PFCs<br />

(Kt)<br />

SF6<br />

(Kt)<br />

HFCs<br />

(Kt)<br />

Total<br />

(Mt<br />

CO2e)<br />

AGRICULTURE -- 599 62 31.7<br />

Agriculture soils -- -- 33 -- -- -- --<br />

Enteric fermentation -- 385 -- -- -- -- --<br />

Manure management -- 28 28 -- -- -- --<br />

Rice cultivation --<br />

Field burn<strong>in</strong>g of<br />

agricultural residues<br />

118<br />

WASTE 3 832<br />

-- -- -- -- --<br />

-- 68 1 -- -- -- --<br />

10<br />

(tons)<br />

-- -- -- 17.5<br />

Solid waste disposal on l<strong>and</strong> -- 557 -- -- -- -- --<br />

Wastewater treatment -- 275<br />

10<br />

(tons)<br />

-- -- -- --<br />

Waste <strong>in</strong>c<strong>in</strong>eration 3 -- -- -- -- -- --<br />

Source: EEAA (2010).<br />

7.3. Emissions from agricultural wastes<br />

The global N2O emission from crop residue has been estimated at 0.4 tera gram<br />

nitrogen per year, us<strong>in</strong>g <strong>the</strong> IPCC default emission factor of 1.25% of applied residue<br />

N emitted as N2O. However, this default emission factor is based on relatively few<br />

experimental studies. Recent experiments showed that <strong>the</strong> emission factor <strong>for</strong> crop<br />

residues can vary considerably with residue quality, particularly <strong>the</strong> carbon/nitrogen<br />

(C/N) ratio <strong>and</strong> <strong>the</strong> amount of m<strong>in</strong>eralizable N. Generally, higher emissions follow<br />

<strong>in</strong>corporation of residue with lower C/N ratios. It could be concluded that earthworm<br />

activity has <strong>the</strong> potential to <strong>in</strong>crease N2O emissions from crop residues up to 18-fold;<br />

that <strong>the</strong> earthworm effect is largely <strong>in</strong>dependent of bulk density; <strong>and</strong> that earthworm<br />

species, specifically, impact N2O emissions <strong>and</strong> residue stabilization <strong>in</strong> soil organic<br />

matter. However, earthworm-mediated emissions of N2O mostly resulted from residue<br />

<strong>in</strong>corporation <strong>in</strong>to <strong>the</strong> soil, <strong>and</strong> disappeared when plow<strong>in</strong>g of residue <strong>in</strong>to <strong>the</strong> soil was<br />

simulated. Our results suggest that, irrespective of earthworm activity, farmers may<br />

decrease direct N2O emissions from crop residues with a relatively low C/N ratio by<br />

leav<strong>in</strong>g it on top <strong>for</strong> a few weeks be<strong>for</strong>e plow<strong>in</strong>g it <strong>in</strong>to <strong>the</strong> soil. However, field<br />

studies should confirm this effect, <strong>and</strong> possible trade-offs to o<strong>the</strong>r (<strong>in</strong>direct) emissions<br />

of N2O should be taken <strong>in</strong>to consideration be<strong>for</strong>e this can be recommended (Rizhiya<br />

et al., 2007).


Over <strong>the</strong> past three years, a comprehensive research program on vermicompost<strong>in</strong>g has<br />

been developed at <strong>the</strong> Ohio State University. This has <strong>in</strong>cluded experiments<br />

<strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> effects of vermicomposts on <strong>the</strong> germ<strong>in</strong>ation, growth, flower<strong>in</strong>g, <strong>and</strong><br />

fruit<strong>in</strong>g of vegetable plants such as bell peppers <strong>and</strong> tomatoes, as well as on a wide<br />

range of flower<strong>in</strong>g plants <strong>in</strong>clud<strong>in</strong>g petunias, marigolds, bachelor‟s button,<br />

chrysan<strong>the</strong>mums, impatiens, sunflowers, <strong>and</strong> po<strong>in</strong>settias. A consistent trend <strong>in</strong> all<br />

<strong>the</strong>se growth trials has been that <strong>the</strong> best plant growth responses, with all needed<br />

nutrients supplied, occurred when vermicomposts constituted a relatively small<br />

proportion (10% to 20%) of <strong>the</strong> total volume of <strong>the</strong> conta<strong>in</strong>er medium mixture, with<br />

greater proportions of vermicomposts <strong>in</strong> <strong>the</strong> plant growth medium not always<br />

improv<strong>in</strong>g plant growth. Some of <strong>the</strong> plant growth responses <strong>in</strong> horticultural conta<strong>in</strong>er<br />

media, substituted with a range of dilutions of vermicomposts, were similar to those<br />

reported when composts were used <strong>in</strong>stead (Atiyeh et al., 2000).<br />

Table (7.2) <strong>and</strong> Figure (7.1) present <strong>Egypt</strong>‟s total greenhouse gas emissions by gas<br />

type, <strong>for</strong> <strong>the</strong> year 2000, while Table (7.2) <strong>and</strong> figure (7.2) present <strong>Egypt</strong>‟s total<br />

greenhouse gas emissions by sector <strong>for</strong> <strong>the</strong> year 2000.<br />

Table 7.2. <strong>Egypt</strong>‟s greenhouse gas emissions by gas type <strong>for</strong> <strong>the</strong> year 2000.<br />

Gas<br />

Emissions<br />

(mega ton CO2<br />

equivalent)<br />

67<br />

Emissions<br />

(%)<br />

Carbon Dioxide, CO2 128.2 66.3<br />

Methane, CH4 39.4 20.4<br />

Nittrogen oxide, N2O 24.4 12.6<br />

Perfluorocarbons, PFC 1.1 0.6<br />

Sulpher hexafluoride, SF6 0.1 0.1<br />

Haloflorocarbons, HFC's<br />

blend<br />

0.1<br />

0.1<br />

TOTAL<br />

Source: EEAA (2010).<br />

193.3 100


CH4<br />

;<br />

Figure 7.1. <strong>Egypt</strong>‟s greenhouse gases emissions by gas type <strong>for</strong> <strong>the</strong> year 2000 <strong>in</strong><br />

mega ton CO2 equivalent.<br />

Source: EEAA (2010).<br />

Table 7.3. <strong>Egypt</strong>‟s greenhouse gases emissions by sector <strong>for</strong> <strong>the</strong> year 2000<br />

Sector<br />

N2<br />

O;<br />

39.44 ; 20%<br />

PFC;<br />

24.36 ; 13%<br />

1.04 ; 1%<br />

Emissions<br />

(mega ton CO2<br />

equivalent)<br />

68<br />

SF6; 0.11; 0%<br />

HFC's blend; 0.05; 0%<br />

CO2;<br />

128.22;<br />

66%<br />

Emissions<br />

(%)<br />

Fuel Combustion 105.5 55<br />

Fugitive Fuel Emissions 10.8 6<br />

Agriculture 31.7 16<br />

Industrial Processes 27.8 14<br />

Waste 17.5 9<br />

TOTAL 193.3 100<br />

Source: EEAA (2010).


Agriculture;<br />

31.72;<br />

16%<br />

Industrial Processes;<br />

;<br />

27.77; 14%<br />

Fuel Combustion<br />

Waste;<br />

17.49;<br />

9%<br />

Fugitive fuel;<br />

10.81; 6%<br />

Fugitive fuel emissions<br />

Figure 7.2. <strong>Egypt</strong>‟s greenhouse gases emissions by sector <strong>for</strong> <strong>the</strong> year 2000, <strong>in</strong> mega<br />

ton CO2 equivalent.<br />

Source: EEAA(2010).<br />

Table (7.3) <strong>and</strong> figure (7.2) show <strong>the</strong> change of sectors‟ contribution to <strong>Egypt</strong>‟s total<br />

<strong>in</strong>ventory. It is clear that <strong>the</strong> total greenhouse gas emissions of <strong>Egypt</strong> <strong>in</strong>creased <strong>in</strong><br />

2000 to be 165% of that <strong>in</strong> 1990. Dur<strong>in</strong>g this period <strong>Egypt</strong>‟s population <strong>in</strong>creased by<br />

123% with an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> GDP of 277% (M<strong>in</strong>istry of Economic Development,<br />

2007). The ratio of GDP, at <strong>the</strong> 1981/82 fixed prices, <strong>for</strong> <strong>the</strong> year 2000 to that <strong>for</strong><br />

1990 is 151%, denot<strong>in</strong>g that <strong>the</strong> <strong>in</strong>crease <strong>in</strong> greenhouse gas emissions seems to be<br />

correlated to <strong>the</strong> GDP <strong>in</strong>crease ra<strong>the</strong>r than <strong>the</strong> population growth. It is clear that<br />

emissions from agriculture are <strong>the</strong> second after fuel combustion <strong>and</strong> be<strong>for</strong>e <strong>in</strong>dustrial<br />

processes.<br />

7.4. Vermifilters <strong>in</strong> domestic wastewater treatment<br />

There is ano<strong>the</strong>r important use that helps <strong>the</strong> environment which is <strong>the</strong> use of<br />

vermiculture as a biological filter <strong>for</strong> domestic waste water. use of earthworms <strong>in</strong><br />

filtration systems, which has been termed vermifiltration (VF) (X<strong>in</strong>g et al., 2010).<br />

S<strong>in</strong>ce <strong>the</strong>n, several studies have been conducted to evaluate <strong>the</strong> use of vermifilters <strong>in</strong><br />

domestic wastewater treatment, municipal wastewater treatment, <strong>and</strong> sw<strong>in</strong>e<br />

wastewater treatment processes, as well as <strong>in</strong> simultaneous sludge reduction<br />

processes. However, less attention has been given to <strong>the</strong> use of vermifilters to dispose<br />

of excess sludge directly. Moreover, most studies conducted to evaluate VFs have<br />

only focused on <strong>the</strong> contam<strong>in</strong>ation purification efficiencies, but <strong>the</strong> <strong>in</strong>teractions<br />

between earthworms <strong>and</strong> microorganisms, which are very important <strong>for</strong> underst<strong>and</strong><strong>in</strong>g<br />

<strong>the</strong> sludge stabilization mechanisms <strong>in</strong>volved <strong>in</strong> VFs, have not been fully <strong>in</strong>vestigated.<br />

A study was conducted to explore <strong>the</strong> feasibility of us<strong>in</strong>g a VF to stabilize sewage<br />

sludge while focus<strong>in</strong>g on elucidat<strong>in</strong>g <strong>the</strong> earthworm–microorganism <strong>in</strong>teractions<br />

responsible <strong>for</strong> <strong>the</strong> decomposition of organic matter <strong>in</strong> <strong>the</strong> vermifilter. Additionally,<br />

this <strong>in</strong>vestigation sought to identify <strong>the</strong> primary mechanism by which sewage sludge<br />

stabilization <strong>in</strong> <strong>the</strong> vermifilter occurs based on <strong>the</strong> chemical <strong>and</strong> spectroscopic<br />

69<br />

Industrial Processes<br />

Fuel Combustion;<br />

105.51;<br />

55%<br />

Agriculture<br />

Waste


properties of <strong>the</strong> treated sludge, <strong>the</strong> microbial community <strong>in</strong> <strong>the</strong> biofilm, <strong>and</strong> <strong>the</strong><br />

earthworm–microorganism <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> vermifilter reactor. The results of this<br />

study provide useful <strong>in</strong><strong>for</strong>mation regard<strong>in</strong>g <strong>the</strong> use of a vermifilter <strong>for</strong> <strong>the</strong> optimal<br />

sewage sludge treatment. A cyl<strong>in</strong>der shaped vermifilter (30 cm <strong>in</strong> diameter <strong>and</strong> 60 cm<br />

<strong>in</strong> depth) that was naturally ventilated was equipped with a 0.5-<strong>in</strong>ch polypropylene<br />

pipe with holes to ensure uni<strong>for</strong>m distribution of <strong>the</strong> <strong>in</strong>fluent (Figure 7.3). The<br />

vermifilter conta<strong>in</strong>ed a 0.5 m filter bed of ceramic pellets (6–9 mm <strong>in</strong> diameter). A<br />

layer of plastic fiber was placed on <strong>the</strong> top of <strong>the</strong> filter bed to avoid direct hydraulic<br />

impact on <strong>the</strong> earthworms <strong>and</strong> to ensure an even <strong>in</strong>fluent distribution. The <strong>in</strong>fluent<br />

sludge was <strong>in</strong>troduced to <strong>the</strong> vermifilter via a peristaltic pump. After pass<strong>in</strong>g through<br />

<strong>the</strong> filter bed, <strong>the</strong> treated sludge entered <strong>in</strong>to a sedimentation tank below <strong>the</strong><br />

vermifilter <strong>and</strong> <strong>the</strong> supernatant <strong>in</strong> <strong>the</strong> sedimentation tank was recycled.<br />

Figure 7.3. Layout of <strong>the</strong> Vermifilter<br />

Source: Zhaoa et al. (2010).<br />

The vermifilter may be an efficient technology <strong>for</strong> stabilization of excess sludge from<br />

domestic Waste Water Treatment Plants. The volatile suspended solids (VSS)<br />

reduction <strong>in</strong> <strong>the</strong> VF reached 56.2–66.6%, which met <strong>the</strong> criteria <strong>for</strong> aerobic <strong>and</strong><br />

anaerobic sludge stabilization (>40%). The presence of <strong>the</strong> earthworms <strong>in</strong> <strong>the</strong> VF<br />

<strong>in</strong>duced an additional 25.1% reduction <strong>in</strong> volatile suspended solids. On average, <strong>the</strong><br />

earthworm–microorganism <strong>in</strong>teractions were responsible <strong>for</strong> approximately 46% of<br />

<strong>the</strong> improvement <strong>in</strong> <strong>the</strong> VSS reduction. Moreover, a detailed characterization of<br />

sludge <strong>and</strong> earthworm cast samples revealed that earthworms <strong>in</strong> <strong>the</strong> VF improved <strong>the</strong><br />

microbial activity by trans<strong>for</strong>m<strong>in</strong>g <strong>in</strong>soluble organic materials <strong>in</strong>to a soluble <strong>for</strong>m <strong>and</strong><br />

selectively digest<strong>in</strong>g <strong>the</strong> sludge particles of 10–200 μm to f<strong>in</strong>er particles of 0–2 μm,<br />

while enhanc<strong>in</strong>g <strong>the</strong> bacterial diversity <strong>in</strong> <strong>the</strong> biofilm. Additionally, improved sludge<br />

settleability with a compact structure <strong>and</strong> low SVI values (33–45 mL/g) were<br />

achieved <strong>in</strong> <strong>the</strong> presence of earthworms, which was favorable <strong>for</strong> fur<strong>the</strong>r sludge<br />

process<strong>in</strong>g (Zhaoa et al., 2010).<br />

70


8. Survey of global vermiculture implementation projects focused on<br />

greenhouse gas emission reductions<br />

Vermicompost is one of <strong>the</strong> activities that could mitigate <strong>the</strong> greenhouse gases<br />

(GHGs) that cause global warm<strong>in</strong>g. Both urbane wastes <strong>and</strong> agricultural residues<br />

produce considerable amounts of greenhouse gases as described <strong>in</strong> <strong>the</strong> previous<br />

chapter. Accord<strong>in</strong>g to <strong>the</strong> environmental regulations, <strong>the</strong> reduction of greenhouse<br />

gases could be a source of f<strong>in</strong>ancial benefits <strong>for</strong> vermicompost producers. There<strong>for</strong>e,<br />

this chapter deals with examples of reduc<strong>in</strong>g <strong>the</strong> emissions through vermicompost<strong>in</strong>g,<br />

which may assist <strong>the</strong> firms work<strong>in</strong>g <strong>in</strong> this bus<strong>in</strong>ess to sell <strong>the</strong>ir carbon reduction <strong>in</strong><br />

what is called "carbon market". Every ton of CO2e reduced could be sold with around<br />

10 Euros accord<strong>in</strong>g to pre-signed contract. The mechanism that regulates such activity<br />

is <strong>the</strong> clean development mechanism (CDM) of <strong>the</strong> Kyoto prorocol. Under <strong>the</strong> CDM<br />

<strong>in</strong>dustrialized countries can purchase greenhouse gas emission reductions from<br />

develop<strong>in</strong>g countries to help meet <strong>the</strong>ir obligations under <strong>the</strong> Kyoto Protocol.<br />

8.1. Background<br />

The Clean Development Mechanism (CDM) proposed under article 12 of <strong>the</strong> Kyoto<br />

Protocol is an important potential <strong>in</strong>strument to promote <strong>for</strong>eign <strong>in</strong>vestment <strong>in</strong><br />

greenhouse gas emission reduction options while simultaneously address<strong>in</strong>g <strong>the</strong> issue<br />

of susta<strong>in</strong>able development.<br />

The Clean Development Mechanism (CDM) is one of <strong>the</strong> Kyoto Protocol programs<br />

<strong>for</strong> <strong>the</strong> reduction of greenhouse gas (GHG) emission. Under <strong>the</strong> CDM, an<br />

<strong>in</strong>dustrialized country with a greenhouse gas reduction target can <strong>in</strong>vest <strong>in</strong> a project <strong>in</strong><br />

a develop<strong>in</strong>g country without a target <strong>and</strong> claim credit <strong>for</strong> <strong>the</strong> emissions that <strong>the</strong><br />

project achieves. German companies, <strong>for</strong> <strong>in</strong>stance, <strong>in</strong>vested <strong>in</strong> a w<strong>in</strong>d power project <strong>in</strong><br />

<strong>Egypt</strong>, thus replac<strong>in</strong>g electricity that would o<strong>the</strong>rwise have been produced from coal.<br />

<strong>Egypt</strong> <strong>the</strong>n sold <strong>the</strong> credit <strong>for</strong> <strong>the</strong> emissions that have been avoided to Germany<br />

which, <strong>in</strong> turn, used <strong>the</strong>m to meet its own greenhouse gas reduction target.<br />

Both sides benefit from CDM projects. For <strong>in</strong>dustrialized countries, <strong>the</strong> CDM greatly<br />

reduces <strong>the</strong> cost of meet<strong>in</strong>g <strong>the</strong> reduction commitments that <strong>the</strong>y agreed to under <strong>the</strong><br />

Kyoto Protocol. Develop<strong>in</strong>g countries receive f<strong>in</strong>ancial <strong>and</strong> technical assistance <strong>in</strong><br />

upgrad<strong>in</strong>g <strong>the</strong>ir energy <strong>in</strong>frastructure <strong>and</strong> can sell certified emission reductions <strong>for</strong><br />

profit. This diversification of external earn<strong>in</strong>gs will reduce oil-export<strong>in</strong>g countries'<br />

dependence on <strong>the</strong> highly volatile world oil price.<br />

<strong>Egypt</strong> is striv<strong>in</strong>g to develop efficient, transparent <strong>and</strong> strong criteria <strong>and</strong> <strong>in</strong>stitutions<br />

<strong>for</strong> <strong>the</strong> market<strong>in</strong>g, approval <strong>and</strong> control of CDM projects, thus mak<strong>in</strong>g <strong>the</strong> country<br />

attractive <strong>for</strong> <strong>in</strong>ternational CDM <strong>in</strong>vestors <strong>and</strong> ensur<strong>in</strong>g <strong>the</strong> efficient implementation<br />

of CDM projects. The private sector will play an important role <strong>in</strong> this process, be it<br />

as project hosts, <strong>in</strong> project design <strong>and</strong> implementation, or <strong>in</strong> <strong>the</strong> verification of<br />

emission reductions. Donors <strong>and</strong> governmental authorities are <strong>the</strong> potential facilitators<br />

of CDM projects. Environment 2007 <strong>the</strong>re<strong>for</strong>e <strong>in</strong>tends to <strong>in</strong>crease awareness <strong>and</strong><br />

br<strong>in</strong>g toge<strong>the</strong>r bus<strong>in</strong>esses <strong>and</strong> <strong>the</strong> various f<strong>in</strong>anc<strong>in</strong>g <strong>in</strong>stitutions <strong>in</strong> order to ensure <strong>the</strong>ir<br />

full participation <strong>in</strong> <strong>the</strong> CDM process.<br />

71


The United Nations Framework Convention on Climate Change – UNFCCC was<br />

agreed at <strong>the</strong> United Nations Conference on Environment <strong>and</strong> Development<br />

(UNCED) <strong>in</strong> Rio de Janeiro, 1992. This agreement aims at <strong>the</strong> stabilization of<br />

greenhouse gases <strong>in</strong> <strong>the</strong> atmosphere, at a level that would prevent dangerous changes<br />

to <strong>the</strong> climate.<br />

The UNFCCC adopted Kyoto Protocol at <strong>the</strong> third conference of parties (COP3) <strong>in</strong><br />

Kyoto, Japan <strong>in</strong> 1997. The Protocol sets b<strong>in</strong>d<strong>in</strong>g commitments by 39 developed<br />

countries <strong>and</strong> economies <strong>in</strong> transition, listed <strong>in</strong> Annex B, to reduce <strong>the</strong>ir greenhouse<br />

gas emissions by an average of 5.2 per cent on 1990 levels (<strong>the</strong> first commitment<br />

period, 2008 - 2012).<br />

The UNFCCC divides countries <strong>in</strong> two ma<strong>in</strong> groups: Annex I parties that <strong>in</strong>clude <strong>the</strong><br />

<strong>in</strong>dustrialized countries <strong>and</strong> countries with “economies <strong>in</strong> transition” /EITs (<strong>the</strong><br />

Russian Federation, <strong>the</strong> Baltic States <strong>and</strong> several o<strong>the</strong>r Central <strong>and</strong> <strong>East</strong>ern European<br />

countries). All <strong>the</strong> o<strong>the</strong>rs are called non-Annex I countries.<br />

Annex I countries that have ratified <strong>the</strong> Kyoto Protocol can <strong>in</strong>vest <strong>in</strong> projects that both<br />

reduce greenhouse gases <strong>and</strong> contribute to susta<strong>in</strong>able development <strong>in</strong> non-Annex I<br />

countries. A CDM project provides certified emissions reductions (CERs) to Annex I<br />

countries, which <strong>the</strong>y can use to meet <strong>the</strong>ir greenhouse gas reduction commitments<br />

under <strong>the</strong> Kyoto Protocol. Article 12 of <strong>the</strong> Kyoto Protocol sets out three goals <strong>for</strong> <strong>the</strong><br />

CDM: i) To help mitigate climate change; ii) To assist Annex I countries atta<strong>in</strong> <strong>the</strong>ir<br />

emission reduction commitments, <strong>and</strong> iii) To assist develop<strong>in</strong>g countries <strong>in</strong> achiev<strong>in</strong>g<br />

susta<strong>in</strong>able development.<br />

In addition to contribute towards susta<strong>in</strong>able development, CDM project c<strong>and</strong>idates<br />

look<strong>in</strong>g <strong>for</strong> approval under <strong>the</strong> CDM must lead to real, measurable reductions <strong>in</strong><br />

greenhouse gas emissions, or lead to <strong>the</strong> measurable absorption (or “sequestration”) of<br />

greenhouse gases <strong>in</strong> a develop<strong>in</strong>g country. The six greenhouse gases <strong>and</strong> gas classes<br />

com<strong>in</strong>g from varied sources of <strong>the</strong> economy are: carbon dioxide "CO2" (source: fossil<br />

fuel combustion; de<strong>for</strong>estation; agriculture); methane "CH4" (source: agriculture; l<strong>and</strong><br />

use change; biomass burn<strong>in</strong>g; l<strong>and</strong>fills); nitrous oxide "N2O" (source: fossil fuel<br />

combustion; <strong>in</strong>dustrial; agriculture); hydrofluorocarbons "HFCs" (source: <strong>in</strong>dustrial<br />

/manufactur<strong>in</strong>g); perfluorocarbons "PFCs" (source: <strong>in</strong>dustrial/manufactur<strong>in</strong>g); sulphur<br />

hexafluoride "SF6" (source: electricity transmission; manufactur<strong>in</strong>g(.<br />

The basel<strong>in</strong>e <strong>for</strong> a CDM project is <strong>the</strong> scenario used to show <strong>the</strong> trend of<br />

anthropogenic greenhouse gas emissions that would occur <strong>in</strong> <strong>the</strong> absence of <strong>the</strong><br />

proposed CDM project. The basel<strong>in</strong>e basically shows what would be <strong>the</strong> future<br />

greenhouse gas emissions without <strong>the</strong> CDM project <strong>in</strong>tervention. Each CDM project<br />

has to develop its own basel<strong>in</strong>e. Once a basel<strong>in</strong>e methodology has been approved by<br />

<strong>the</strong> Executive Board, o<strong>the</strong>r projects can use it too. For small-scale projects, guidance<br />

is provided on st<strong>and</strong>ard basel<strong>in</strong>es.<br />

Greenhouse gas emissions from a CDM project activity must be reduced below those<br />

that would have occurred <strong>in</strong> <strong>the</strong> absence of <strong>the</strong> project. It must be shown that <strong>the</strong><br />

project would not have been implemented without <strong>the</strong> CDM. Without this<br />

“additionality” requirement, <strong>the</strong>re is no guarantee that CDM projects will create<br />

72


<strong>in</strong>cremental greenhouse gas emissions reductions equivalent to those that would have<br />

been made <strong>in</strong> Annex I countries, or play a role <strong>in</strong> <strong>the</strong> ultimate objective of stabiliz<strong>in</strong>g<br />

atmospheric greenhouse gas concentrations.<br />

CERs generated by CDM projects that are used by Annex 1 countries to meet <strong>the</strong>ir<br />

Kyoto targets allow emissions <strong>in</strong> <strong>the</strong>se countries to rise. There<strong>for</strong>e if CERs are<br />

awarded to activities that would happen without <strong>the</strong> CDM project, i.e. <strong>for</strong> reductions<br />

that would occur anyway, Annex 1 emissions are allowed to rise without a<br />

correspond<strong>in</strong>g cut elsewhere, <strong>the</strong>reby rais<strong>in</strong>g global emissions. The only w<strong>in</strong>ners are<br />

<strong>the</strong> buyers of cheap credits, because host countries do not receive new <strong>in</strong>vestment <strong>and</strong><br />

climate change is not be<strong>in</strong>g mitigated.<br />

CDM projects assist develop<strong>in</strong>g countries to achieve susta<strong>in</strong>able development.<br />

Industrialized countries have developed domestic policies to comply with <strong>the</strong> Kyoto<br />

Protocol. This has led to a grow<strong>in</strong>g dem<strong>and</strong> <strong>for</strong> carbon credits. Develop<strong>in</strong>g countries<br />

may supply such carbon credits. While many factors <strong>in</strong>fluence <strong>the</strong> size <strong>and</strong> stability of<br />

<strong>the</strong> global market, facts <strong>in</strong>dicate that this market would move billions of dollars a<br />

year, <strong>in</strong>creas<strong>in</strong>g <strong>for</strong>eign <strong>in</strong>vestment capital flow <strong>in</strong> develop<strong>in</strong>g countries.<br />

Accord<strong>in</strong>g to <strong>the</strong> Kyoto Protocol, <strong>in</strong>vestments <strong>in</strong> various sectors of non-Annex I<br />

countries may qualify <strong>for</strong> CDM credits <strong>in</strong> 1) energy fuel combustion: energy<br />

<strong>in</strong>dustries; manufactur<strong>in</strong>g <strong>in</strong>dustries <strong>and</strong> construction; transport; o<strong>the</strong>r sectors; 2)<br />

Fugitive emissions from fuels: solid fuels; oil <strong>and</strong> natural gas; 3) <strong>in</strong>dustrial processes:<br />

m<strong>in</strong>eral products; chemical <strong>in</strong>dustry; metal production; o<strong>the</strong>r production; production<br />

<strong>and</strong> consumption of halocarbons <strong>and</strong> sulphur hexaflouride; 4) solvent; 5) agriculture:<br />

enteric fermentation; manure management; rice cultivation; agricultural soils;<br />

prescribed burn<strong>in</strong>g of savannas; filed burn<strong>in</strong>g of agricultural residues; 6) solid waste<br />

disposal on l<strong>and</strong>; wastewater h<strong>and</strong>l<strong>in</strong>g; waste <strong>in</strong>c<strong>in</strong>eration; 7) l<strong>and</strong>-use, l<strong>and</strong>-use<br />

change, <strong>and</strong> <strong>for</strong>estry: af<strong>for</strong>estation; re<strong>for</strong>estation; avoided de<strong>for</strong>estation <strong>for</strong> <strong>the</strong>rmal<br />

energy <strong>in</strong> small-scale projects.<br />

8.2. Clean Development Mechanism (CDM) achievements <strong>in</strong> <strong>Egypt</strong><br />

Clean Development Mechanism is one of Kyoto Protocol three mechanisms which<br />

<strong>in</strong>clude Jo<strong>in</strong>t Implementation <strong>and</strong> Emissions Trad<strong>in</strong>g. The aim from apply<strong>in</strong>g CDM is<br />

<strong>the</strong> implementation of projects reduc<strong>in</strong>g greenhouse gas emissions from different<br />

sectors such as <strong>in</strong>dustry, waste recycl<strong>in</strong>g, transport, switch<strong>in</strong>g to usage of natural gas<br />

as a fuel, <strong>and</strong> af<strong>for</strong>estation to absorb greenhouse gas. These projects contribute to<br />

achiev<strong>in</strong>g susta<strong>in</strong>able development goals, create job opportunities, produce additional<br />

f<strong>in</strong>ancial return from sell<strong>in</strong>g carbon reduction certificates as a result.<br />

Dur<strong>in</strong>g 2007, NCCC held 6 meet<strong>in</strong>gs (3 <strong>for</strong> <strong>the</strong> <strong>Egypt</strong>ian Bureau <strong>for</strong> CDM (EB-CDM)<br />

<strong>and</strong> <strong>the</strong> <strong>Egypt</strong>ian Council <strong>for</strong> CDM (EC-CDM)). Seventeen CDM projects have been<br />

approved <strong>and</strong> Letters of No-Objection (LoN) have been issued (first phase of project<br />

approval). Such projects <strong>in</strong>clude:<br />

1. Abatement of nitrous oxide from <strong>the</strong> acid factory, Delta Fertilizers <strong>and</strong> Chemical<br />

Industries.<br />

73


2. Abatement of nitrous oxide from <strong>the</strong> acid factory, KIMA Chemical Industries.<br />

3. Abatement of nitrous oxide from <strong>the</strong> acid factory, Nasr Fertilizers <strong>and</strong> Chemical<br />

Industries.<br />

4. Fuel switch<strong>in</strong>g <strong>and</strong> reduction of cl<strong>in</strong>ker, National Cement Company.<br />

5. Fuel switch<strong>in</strong>g <strong>in</strong> <strong>in</strong>dustrial processes, El-Delta Steel Company.<br />

6. Equipment replacement <strong>and</strong> fuel switch<strong>in</strong>g, El-Max Sal<strong>in</strong>as Company,<br />

Alex<strong>and</strong>ria.<br />

7. L<strong>and</strong> fill<strong>in</strong>g, treatment, <strong>and</strong> recycl<strong>in</strong>g, Sou<strong>the</strong>rn Region, Cairo Governorate.<br />

8. Installation of cogeneration unit operat<strong>in</strong>g by gas recovered from <strong>the</strong> <strong>in</strong>dustrial<br />

processes, Alex<strong>and</strong>ria Carbon Black Company.<br />

9. Replacement of fuel oil by natural gas, Dakahlia Sp<strong>in</strong>n<strong>in</strong>g <strong>and</strong> Weav<strong>in</strong>g<br />

Company.<br />

10. Replacement of light oil <strong>and</strong> coke gas by natural gas as a fuel <strong>for</strong> furnaces, Nasr<br />

Forg<strong>in</strong>g Company.<br />

11. Fuel Switch<strong>in</strong>g from Light Oil to Natural Gas <strong>in</strong> Spr<strong>in</strong>g <strong>and</strong> Transport Needs<br />

Manufactur<strong>in</strong>g Co.<br />

12. Methane Reduction by Compost<strong>in</strong>g of Municipal Waste from Cairo North <strong>and</strong><br />

West.<br />

13. Capture <strong>and</strong> flar<strong>in</strong>g of biologically-generated methane from Abu Zaabal<br />

l<strong>and</strong>fills,Qalyubia.<br />

14. Replacement of light oil by natural gas, Damietta Sp<strong>in</strong>n<strong>in</strong>g <strong>and</strong> Weav<strong>in</strong>g<br />

Company.<br />

15. Reduction of sodium carbonate, Nile Oils <strong>and</strong> Detergents Company.<br />

16. Reduction of CO2 emissions, <strong>Egypt</strong> <strong>for</strong> Oils <strong>and</strong> Soap Company.<br />

17. Switch<strong>in</strong>g fuel from heavy oil to natural gas, El-Nasr Wool <strong>and</strong> Selected Textile<br />

Company (STIA).<br />

8.3. <strong>Egypt</strong> National Strategy on <strong>the</strong> CDM<br />

<strong>Egypt</strong> has participated to <strong>the</strong> National Strategy Studies (NSS) Program, launched by<br />

<strong>the</strong> Government of Switzerl<strong>and</strong> <strong>and</strong> <strong>the</strong> World Bank <strong>in</strong> 1997.<br />

This program has assisted <strong>Egypt</strong> <strong>in</strong> <strong>the</strong> development of <strong>the</strong> CDM Strategy which was<br />

undertaken <strong>in</strong> collaboration with <strong>the</strong> M<strong>in</strong>istry of State <strong>for</strong> Environmental Affairs <strong>and</strong><br />

<strong>Egypt</strong>ian Environmental Affairs Agency (EEAA).<br />

The <strong>Egypt</strong>‟s NSS on <strong>the</strong> CDM aims at ma<strong>in</strong>stream<strong>in</strong>g environment <strong>in</strong>to <strong>the</strong> relevant<br />

sectors <strong>and</strong> m<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> environmental impacts of development, through<br />

identification of priority policies <strong>and</strong> plann<strong>in</strong>g <strong>for</strong> <strong>the</strong>ir implementation.<br />

1- Ratification on <strong>the</strong> United Nations Framework Convention on Climate<br />

Change, <strong>the</strong> issuance of Law 4/1994 <strong>for</strong> <strong>the</strong> Protection of <strong>the</strong> Environment,<br />

<strong>and</strong> <strong>the</strong> participation <strong>in</strong> various <strong>in</strong>ternational workshops <strong>and</strong> conferences<br />

related to climate change to avoid hav<strong>in</strong>g any <strong>in</strong>ternational obligations on<br />

develop<strong>in</strong>g countries, <strong>in</strong>clud<strong>in</strong>g <strong>Egypt</strong> .<br />

2- Ratification of Kyoto's Protocol, <strong>and</strong> <strong>the</strong> establishment of <strong>the</strong> <strong>Egypt</strong>ian<br />

Designated National Authority <strong>for</strong> Clean Development Mechanism (DNA);<br />

74


consist<strong>in</strong>g of <strong>the</strong> <strong>Egypt</strong>ian Bureau <strong>and</strong> <strong>the</strong> <strong>Egypt</strong>ian Council <strong>for</strong> Clean<br />

Development Mechanism.<br />

3- M<strong>in</strong>istry of Electricity <strong>and</strong> Energy: establishment several projects <strong>in</strong> <strong>the</strong> field<br />

of New <strong>and</strong> Renewable Energy (W<strong>in</strong>d - Solar - Hydro - Bio), <strong>and</strong> encourag<strong>in</strong>g<br />

Energy Efficiency Projects .<br />

4- M<strong>in</strong>istry of State <strong>for</strong> Environmental Affairs: establish<strong>in</strong>g guid<strong>in</strong>g schemes <strong>for</strong><br />

private sector to encourage <strong>in</strong>vestments <strong>in</strong> <strong>the</strong> field of clean energy projects,<br />

waste recycl<strong>in</strong>g, <strong>and</strong> af<strong>for</strong>estation .<br />

5- Maximiz<strong>in</strong>g <strong>the</strong> benefit from Kyoto Protocol Mechanisms through<br />

implement<strong>in</strong>g Clean Development Mechanism Projects .<br />

In addition to <strong>the</strong> State's concern <strong>in</strong> maximiz<strong>in</strong>g <strong>the</strong> benefit from Kyoto Protocol<br />

Mechanisms, especially Clean Development Mechanism, it established <strong>the</strong><br />

<strong>Egypt</strong>ian Designated National Authority <strong>for</strong> Clean Development Mechanism<br />

(DNA-CDM), <strong>in</strong>stantly after ratify<strong>in</strong>g <strong>the</strong> protocol <strong>and</strong> its entrance <strong>in</strong>to <strong>for</strong>ce <strong>in</strong><br />

2005. The DNA has achieved tangible progress <strong>in</strong> several sectors, 36 projects<br />

have been approved with<strong>in</strong> <strong>the</strong> framework of <strong>the</strong> Mechanism. This is <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

sectors of: New <strong>and</strong> Renewable Energy, Industry, Waste Recycl<strong>in</strong>g, Af<strong>for</strong>estation,<br />

Energy Efficiency, <strong>and</strong> Fuel Switch<strong>in</strong>g to Natural Gas. This is <strong>for</strong> an estimated<br />

total cost of 1200 Million US Dollar. These projects are considered as a source <strong>for</strong><br />

attract<strong>in</strong>g <strong>for</strong>eign <strong>in</strong>vestments, provid<strong>in</strong>g employment opportunities, <strong>and</strong><br />

contribut<strong>in</strong>g <strong>in</strong> <strong>the</strong> implementation of Susta<strong>in</strong>able Development plans <strong>in</strong> <strong>Egypt</strong>.<br />

8.4. The national regulatory framework<br />

The law number 4 of 1994 <strong>and</strong> its executive regulation conta<strong>in</strong> <strong>the</strong> national policy <strong>and</strong><br />

regulatory framework govern<strong>in</strong>g <strong>the</strong> growth <strong>and</strong> competitiveness of <strong>the</strong> agro residue<br />

based biomass sector. In <strong>the</strong> protection of air environment from pollution section<br />

article (36) said that <strong>in</strong> carry<strong>in</strong>g out <strong>the</strong>ir activities, establishments subject to <strong>the</strong><br />

provisions of this law are held to ensure that emissions or leakages of air pollutants do<br />

not exceed <strong>the</strong> maximum limits permitted <strong>and</strong> Article (38) Concern about dump, treat<br />

or burn garbage <strong>and</strong> solid waste, while Article (42) talk about <strong>the</strong> consideration which<br />

should be given by <strong>the</strong> competent bodies, accord<strong>in</strong>g to <strong>the</strong>ir activities, when burn<strong>in</strong>g<br />

any type of fuel or o<strong>the</strong>r substance, <strong>and</strong> <strong>the</strong> Precautions, Permissible limits, <strong>and</strong><br />

Specification of Chimneys While Article (45)Talk about <strong>the</strong> necessary precautions<br />

<strong>and</strong> procedures laid down by <strong>the</strong> M<strong>in</strong>istry of Manpower <strong>and</strong> Employment to prevent<br />

<strong>the</strong> leakage or emission of air pollutants <strong>in</strong>side <strong>the</strong> work. Annex I conta<strong>in</strong> <strong>the</strong><br />

executive regulation of law number 4 of 1994 which govern<strong>in</strong>g <strong>the</strong> growth <strong>and</strong><br />

competitiveness of <strong>the</strong> agro residue based biomass sector.<br />

75


9. Analysis of <strong>the</strong> <strong>Egypt</strong>ian context <strong>and</strong> applicability of vermiculture<br />

as a means of greenhouse gas emission reduction.<br />

In <strong>the</strong> waste sector, <strong>the</strong> <strong>Egypt</strong>ian relevant m<strong>in</strong>istries, <strong>in</strong> collaboration with concerned<br />

governorates, have developed several plans <strong>and</strong> programs over <strong>the</strong> past ten years to<br />

improve <strong>the</strong> process of collection, reuse <strong>and</strong> recycl<strong>in</strong>g of waste, yet <strong>the</strong>re are several<br />

barriers to achiev<strong>in</strong>g <strong>the</strong> goals of <strong>the</strong>se programs. These <strong>in</strong>clude f<strong>in</strong>ancial constra<strong>in</strong>ts<br />

<strong>for</strong> <strong>the</strong> mitigation of greenhouse gass emissions from <strong>the</strong> waste sector; <strong>the</strong> significant<br />

dependence on external f<strong>in</strong>ancial support, as grants <strong>and</strong> concessionary loans,<br />

complicat<strong>in</strong>g <strong>the</strong> plann<strong>in</strong>g process <strong>and</strong> slow<strong>in</strong>g down implementation; limited public<br />

awareness about <strong>the</strong> economic benefits of reuse <strong>and</strong> recycl<strong>in</strong>g of waste leads, lead<strong>in</strong>g<br />

to <strong>the</strong> hesitation of fund<strong>in</strong>g <strong>in</strong>stitutions to consider waste management activity as a<br />

viable option; <strong>the</strong> need of technology transfer <strong>and</strong> high <strong>in</strong>vestments <strong>for</strong> some waste<br />

treatment options, such as anaerobic digestion; <strong>the</strong> weak en<strong>for</strong>cement of exist<strong>in</strong>g laws<br />

<strong>and</strong> regulations <strong>for</strong> violations <strong>in</strong> h<strong>and</strong>l<strong>in</strong>g waste.<br />

9.1. Profile of wastes <strong>in</strong> <strong>Egypt</strong><br />

9.1.1. Municipal solid waste<br />

Waste <strong>in</strong> <strong>Egypt</strong> can be considered as constituted of solid waste <strong>and</strong> wastewater. The<br />

total annual amount of solid waste produced <strong>in</strong> <strong>Egypt</strong> is about 17 Mt accord<strong>in</strong>g to <strong>the</strong><br />

year 2000 estimates. The amount of accumulated solid waste (i.e. waste not collected<br />

<strong>and</strong> dumped <strong>in</strong> disposal sites but ra<strong>the</strong>r dumped on roads <strong>and</strong> empty l<strong>and</strong>s) was<br />

estimated to be about 9.7 Mt <strong>for</strong> <strong>the</strong> year 2000, with a total volume of 36,098,936 m 3<br />

(EEAA 2007). This solid waste can be categorized <strong>in</strong>to municipal waste, <strong>in</strong>dustrial<br />

waste, agriculture waste, waste from clean<strong>in</strong>g waterways <strong>and</strong> healthcare waste.<br />

Household waste constitutes about 60% of <strong>the</strong> total municipal waste quantities, with<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g 40% be<strong>in</strong>g generated by commercial establishments, service<br />

<strong>in</strong>stitutions, streets <strong>and</strong> gardens, hotels <strong>and</strong> o<strong>the</strong>r enterta<strong>in</strong>ment sector entities. Per<br />

capita generation rates <strong>in</strong> <strong>Egypt</strong>ian cities, villages <strong>and</strong> towns vary from lower than 0.3<br />

kg <strong>for</strong> low socio-economic groups <strong>and</strong> rural areas, to more than 1 kg <strong>for</strong> higher liv<strong>in</strong>g<br />

st<strong>and</strong>ards <strong>in</strong> urban centers. On a nationwide average, <strong>the</strong> composition is about 50-60%<br />

food wastes, 10-20% paper, <strong>and</strong> 1-7% each of metals, cloth, glass, <strong>and</strong> plastics, <strong>and</strong><br />

<strong>the</strong> rema<strong>in</strong>der is basically <strong>in</strong>organic matter <strong>and</strong> o<strong>the</strong>rs.<br />

Currently, solid waste quantities h<strong>and</strong>led by waste management systems are estimated<br />

at about 40,000 tons per day, with 30,000 tons per day be<strong>in</strong>g produced <strong>in</strong> cities, <strong>and</strong><br />

<strong>the</strong> rest generated from <strong>the</strong> pre-urban <strong>and</strong> rural areas. Various studies <strong>in</strong>dicate low<br />

waste collection efficiencies, vary<strong>in</strong>g between less than 35% <strong>in</strong> small prov<strong>in</strong>cial<br />

towns to 77% <strong>in</strong> large cities.<br />

F<strong>in</strong>al dest<strong>in</strong>ations of municipal solid waste entail about 8% of <strong>the</strong> waste be<strong>in</strong>g<br />

composted, 2% recycled, 2% l<strong>and</strong>filled, <strong>and</strong> 88% dumped <strong>in</strong> uncontrolled open<br />

dumps. In this respect, 16 l<strong>and</strong>fills exist <strong>in</strong> <strong>Egypt</strong>: 7 <strong>in</strong> <strong>the</strong> Greater Cairo Region, 5 <strong>in</strong><br />

<strong>the</strong> Delta governorates <strong>and</strong> 4 <strong>in</strong> Upper <strong>Egypt</strong>. Their capacities range between 0.5 <strong>and</strong><br />

76


12 Mt per day. They are usually operated by private entities. Recently, 53 sites have<br />

been identified <strong>for</strong> new l<strong>and</strong>fills, <strong>and</strong> <strong>the</strong> construction of 56 compost<strong>in</strong>g plants<br />

throughout <strong>the</strong> country is underway.<br />

9.1.2. Agricultural wastes<br />

<strong>Egypt</strong> produces around 25 to 30 Mt of agriculture waste annually (around 66,000 tons<br />

per day). Some of this waste is used <strong>in</strong> <strong>the</strong> production of organic fertilizers, animal<br />

fodder, food production, energy production, or o<strong>the</strong>r useful purposes.<br />

9.2. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> solid wastes<br />

As a non-annex I country, <strong>Egypt</strong> is not required to meet any specific emission<br />

reduction or limitation targets <strong>in</strong> terms of commitments under <strong>the</strong> UNFCCC, or <strong>the</strong><br />

Kyoto protocol. However, mitigation measures are already <strong>in</strong> progress. <strong>Egypt</strong> is fully<br />

aware that greenhouse gas emissions reduction, particularly by major producers, is <strong>the</strong><br />

only measure that could ensure <strong>the</strong> mitigation of global warm<strong>in</strong>g <strong>and</strong> climate change.<br />

The mitigation measures <strong>in</strong> this section are based on those described <strong>in</strong> national plans<br />

<strong>and</strong> country studies documents (Table 9.1).<br />

Six ma<strong>in</strong> criteria have been selected <strong>for</strong> prioritization of mitigation measures <strong>in</strong> <strong>the</strong><br />

waste sector accord<strong>in</strong>g to <strong>Egypt</strong>'s Second National Communication. These entail<br />

<strong>in</strong>vestment costs; payback periods; greenhouse gases emission reductions potentials;<br />

duration of implementation; priority <strong>in</strong> national strategies/programs; <strong>and</strong> contribution<br />

to susta<strong>in</strong>able development. Mitigation options, concluded from a multi-criteria<br />

analysis, were comb<strong>in</strong>ed <strong>for</strong> each sub-sector <strong>in</strong> order to generate a number of<br />

scenarios <strong>for</strong> solid waste <strong>and</strong> wastewater. The lowest greenhouse gas emitt<strong>in</strong>g<br />

scenario was selected <strong>for</strong> implementation dur<strong>in</strong>g <strong>the</strong> period 2009 to 2025.<br />

Mitigation measures under one or more of appropriate treatment categories, <strong>the</strong><br />

associated emission reduction potential, <strong>and</strong> <strong>in</strong>vestment costs calculated <strong>for</strong> 25 years<br />

lifetime <strong>in</strong> simple l<strong>in</strong>ear amortization cost, are summarized <strong>in</strong> tables (III.6) <strong>and</strong> (III.7)<br />

<strong>for</strong> solid waste <strong>and</strong> wastewater, respectively (EEAA, 2007).<br />

77


Table 9.1. Summary of identified mitigation measures <strong>for</strong> solid wastes.<br />

Mitigation Measure<br />

78<br />

Emission<br />

reduction<br />

potential<br />

(ton CO2e per<br />

ton MSW)<br />

Investment cost<br />

(US$/ton MSW)<br />

Compost<strong>in</strong>g <strong>and</strong> recycl<strong>in</strong>g facilities 0.38 0.92<br />

Refuse Derived Fuel (RDF) with<br />

electricity generation only,<br />

compost<strong>in</strong>g, <strong>and</strong> recycl<strong>in</strong>g<br />

Refuse Derived Fuel (RDF) with<br />

substitution <strong>in</strong> cement kiln,<br />

compost<strong>in</strong>g, <strong>and</strong> recycl<strong>in</strong>g facilities<br />

Anaerobic digestion with recycl<strong>in</strong>g<br />

(flar<strong>in</strong>g biogas)<br />

Anaerobic digestion with recycl<strong>in</strong>g<br />

facilities (with electricity<br />

generation)<br />

Source: EEAA (2010).<br />

< 0.3<br />

< 0.3<br />

2.07<br />

1.97<br />

0.342 12.16<br />

0.547<br />

16.16<br />

The <strong>Egypt</strong>ian relevant m<strong>in</strong>istries, <strong>in</strong> close collaboration with concerned governorates,<br />

have developed several plans <strong>and</strong> programs over <strong>the</strong> past ten years to improve <strong>the</strong><br />

process of deal<strong>in</strong>g with waste reduction, reuse, recycl<strong>in</strong>g <strong>and</strong>/or proper disposal.<br />

These plans <strong>and</strong> programs lead to <strong>the</strong> reduction <strong>in</strong> emissions from <strong>the</strong> waste sector.<br />

Yet <strong>the</strong>re are several barriers to achiev<strong>in</strong>g <strong>the</strong> goals of <strong>the</strong>se programs. These<br />

comprise <strong>the</strong> follow<strong>in</strong>g:<br />

Although f<strong>in</strong>ancial support <strong>for</strong> mitigation of greenhouse gases emissions from<br />

<strong>the</strong> waste sector <strong>in</strong> <strong>Egypt</strong> has <strong>in</strong>creased significantly over <strong>the</strong> last years, it still<br />

represents a clear constra<strong>in</strong>t <strong>in</strong> <strong>the</strong> implementation of <strong>the</strong> <strong>in</strong>tended programs.<br />

The significant dependence on external f<strong>in</strong>ancial support, as grants <strong>and</strong><br />

concessionary loans, complicates <strong>the</strong> plann<strong>in</strong>g process, <strong>and</strong> slows down<br />

implementation.<br />

The limited public awareness about <strong>the</strong> economic benefits of mitigation options<br />

<strong>in</strong> <strong>the</strong> waste sector leads to <strong>the</strong> hesitation of fund<strong>in</strong>g <strong>in</strong>stitutions to consider<br />

waste management activity as an economically viable option.<br />

Technology transfer represents ano<strong>the</strong>r barrier ma<strong>in</strong>ly <strong>in</strong> anaerobic digestion<br />

technologies as it needs high capital <strong>in</strong>vestment <strong>and</strong> skills to operate correctly.<br />

Some technologies are designed on site-specific bases, which are not optimal <strong>for</strong><br />

o<strong>the</strong>r regions. Highly local skilled experts <strong>and</strong> extensive studies are needed <strong>for</strong><br />

prov<strong>in</strong>g <strong>the</strong> suitability <strong>and</strong> applicability of <strong>the</strong> technology accord<strong>in</strong>g to different<br />

vary<strong>in</strong>g local conditions <strong>in</strong> <strong>Egypt</strong>.<br />

All parties <strong>in</strong> <strong>the</strong> waste sector are relatively of limited environmental<br />

management experience <strong>and</strong> <strong>the</strong> mechanisms <strong>for</strong> coord<strong>in</strong>ation with EEAA are<br />

not well established. Fur<strong>the</strong>rmore, privatization of <strong>the</strong> waste sector lacks clear


modalities <strong>for</strong> partnership, particularly with regards to private-public<br />

partnership.<br />

Weak en<strong>for</strong>cement of exist<strong>in</strong>g laws <strong>and</strong> regulations <strong>for</strong> violations <strong>in</strong> h<strong>and</strong>l<strong>in</strong>g<br />

waste reduces <strong>the</strong> opportunity <strong>for</strong> achiev<strong>in</strong>g <strong>the</strong> goals of <strong>the</strong> planned programs.<br />

9.3. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> agriculture wastes<br />

As <strong>the</strong> activities of agriculture are too complicated <strong>and</strong> <strong>the</strong> share of emission from all<br />

agriculture activities is almost 16%, it was not mentioned <strong>in</strong> <strong>the</strong> mitigation options <strong>for</strong><br />

<strong>the</strong> National Communication of <strong>Egypt</strong>. Although no studies have been reported on <strong>the</strong><br />

mitigation from <strong>the</strong> agricultural wastes, vermicompost could save considerable<br />

amounts of greenhouse gases from reduc<strong>in</strong>g <strong>the</strong> amount of crop residues burned.<br />

Fur<strong>the</strong>r studies are still required to elaborate on this subject.<br />

79


References<br />

Aldadi, H.; A.R. Parvaresh; M. R. Shahmansouri <strong>and</strong> H. Pourmoghadas. 2005. Heavy<br />

Metals Bioaccumulation by Iranian <strong>and</strong> Australian Earthworms (Eisenia fetida)<br />

<strong>in</strong> <strong>the</strong> Sewage Sludge Vermicompost<strong>in</strong>g. Iranian J F.w Health Sci Eng, 2 (1), pp:<br />

28-32.<br />

Atiyeh, R. M.; S. Subler; C. A. Edwards; G. Bachman; J. D. Metzger <strong>and</strong> W. Shuster.<br />

2000. Effects of vermicomposts <strong>and</strong> composts on plant growth <strong>in</strong> horticultural<br />

conta<strong>in</strong>er media <strong>and</strong> soil. Pedobiologia, 44, pp: 579–590.<br />

Atiyeh, R.M.; S. Lee; C. A. Edwards; N. Q. Arancon, <strong>and</strong> J. D. Metzger. 2002. The<br />

<strong>in</strong>fluence of humic acids derived from earthworm-processed organic wastes on<br />

plant growth. Bioresource Technology 84, pp: 7–14.<br />

Bachman, G.R. <strong>and</strong> J. D. Metzger 2008. Growth of bedd<strong>in</strong>g plants <strong>in</strong> commercial<br />

pott<strong>in</strong>g substrate amended with vermicompost, Bioresource Technology, 99 (8),<br />

pp: 3155-3161.<br />

Basavaiah C. 2008. Karnataka Compost Development Corporation Ltd. (Government<br />

of Karnataka), <strong>Near</strong> Kudlu, Madiwala Post, Hosur Road, Bangalore – 560 068,<br />

Karnataka, India.<br />

Benítez, E.; R. Nogales,; G. Masci<strong>and</strong>aro, <strong>and</strong> B. Ceccanti, 2000. Isolation by<br />

isoelectric focus<strong>in</strong>g of humic-urease complexes from earthworm (Eisenia<br />

fetida)-processed sewage sludges. Biol Fertil Soils, 31, pp: 489–493.<br />

Blakemore, R. 2000. Dances with worms - Biology, ecology, taxonomy <strong>and</strong> Worm<br />

Species Suitable <strong>for</strong> Vermicompost<strong>in</strong>g. Presentations at <strong>the</strong> "Vermillennium"<br />

conference held <strong>in</strong> Kalamazoo, Michigan, pp: 16-22.<br />

Burton, M. <strong>and</strong> R. Burton. 2002. International Wildlife Encyclopedia. Marshall<br />

Cavendish, New York. Publication Year, 6, pp: 734.<br />

CAPMAS. 2010. The annual report of environment statistics. Central Agency <strong>for</strong> Public<br />

Mobilization And Statistics, 71 - 12800/2008: (http://www.capmas.gov.eg).<br />

Chakrabarty, D.; S. K. Das; <strong>and</strong> M. K. Das. 2009. Relative efficiency of<br />

vermicompost as direct application manure <strong>in</strong> pisciculture. Paddy Water Environ<br />

7, pp:27–32.<br />

Chan, Y. C; R. K. S<strong>in</strong>ha; <strong>and</strong> W. Wang, 2010. Emission of greenhouse gases from<br />

home aerobic compost<strong>in</strong>g, anaerobic digestion <strong>and</strong> vermicompost<strong>in</strong>g of<br />

household wastes <strong>in</strong> Brisbane. Australia. Waste Manager Research.<br />

(http://wmr.sagepub.com).<br />

Cortet, J.; A. G. Vauflery; N. Po<strong>in</strong>sot-Balaguer; L. Gomot,; C. Texier, , <strong>and</strong> D.<br />

Cluzeau. 1999. The use of <strong>in</strong>vertebrate soil fauna <strong>in</strong> monitor<strong>in</strong>g pollutant effects.<br />

European Journal of Soil Biology, 35, pp: 115 134.<br />

Cruz, P. S. 2005. Prospects of rais<strong>in</strong>g earthworm biomass as a substitute <strong>for</strong> fishmeal<br />

<strong>in</strong> aquaculture feeds. International Symposium - Workshop on Vermi<br />

Technologies <strong>for</strong> Develop<strong>in</strong>g Countries (ISWVT 2005).<br />

80


Daven, J. I. <strong>and</strong> R. N. Kle<strong>in</strong>. 2008. Progress <strong>in</strong> waste management research. Nova<br />

Publishers. pp392.<br />

Dom<strong>in</strong>guez, J. <strong>and</strong> C. A. Edwards. 1997. Effects of Sock<strong>in</strong>g Rate <strong>and</strong> Moisture<br />

Content on <strong>the</strong> Growth <strong>and</strong> Maturation of Eisenia Andrei (Oliogochaeta) <strong>in</strong> Pig<br />

Manure”. In Soil Biol Biochem Vol 29, #3,4, pp: 743-746.<br />

<strong>East</strong>man, B. R. ; P. N. Kane; C. A. Edwards; L. Trytek; B. Gunadi; A. L. Stermer <strong>and</strong><br />

J. R. Mobley, 2001. The Effectiveness of <strong>Vermiculture</strong> <strong>in</strong> Human Pathogen<br />

Reduction <strong>for</strong> USEPA Biosolids Stabilization. Compost Science & Utilization,<br />

(2001), 9 (1), pp: 38-49.<br />

Edwards, C. A. 1988. Breakdown of animal, vegetable <strong>and</strong> <strong>in</strong>dustrial organic wastes<br />

by earthworms, <strong>in</strong>: C.A. Edwards, E.F. Neuhauser (Eds.), Earthworms <strong>in</strong> Waste<br />

<strong>and</strong> Environmental Management, SPB Academic Publish<strong>in</strong>g, The Hague, 1988,<br />

pp. 21–31.<br />

Edwards, C. A. 2008. Can Earthworms Harm The Planet?. Bio Cycle December, 49,<br />

(12), pp53.<br />

EEAA. 1999. First National Communications of <strong>Egypt</strong>. <strong>Egypt</strong>ian Environmental<br />

Affairs Agency, IPCC, UNFCCC.<br />

EEAA. Second National Communications of <strong>Egypt</strong>. <strong>Egypt</strong>ian Environmental Affairs<br />

Agency. IPCC, UNFCCC.<br />

El-Duwe<strong>in</strong>i, A. K. <strong>and</strong> Ghabbour, I. S. .1965. Population Density <strong>and</strong> Biomass of<br />

Earthworms <strong>in</strong> Different Types of <strong>Egypt</strong>ian Soils. Journal of Applied Ecology, 2<br />

(2), pp: 271-287.<br />

Fahmi, W. S. 2005. The impact of privatization of solid waste management on <strong>the</strong><br />

Zabaleen garbage collectors of Cairo, Environment & Urbanization, 17 (2): 77.<br />

<strong>FAO</strong>. 2005. Fertilizer use by crop <strong>in</strong> <strong>Egypt</strong>. L<strong>and</strong> <strong>and</strong> Water Development Division<br />

<strong>and</strong> Plant Nutrition Management Service, Food <strong>and</strong> agriculture organization of<br />

<strong>the</strong> united nations.<br />

<strong>FAO</strong>. 2010. <strong>FAO</strong>Stat, Food <strong>and</strong> agriculture organization of <strong>the</strong> united nations:<br />

http://faostat.fao.org.<br />

Frederickson, J. 2003. Vermicompost<strong>in</strong>g trial at <strong>the</strong> worm research centre, Part 1 -<br />

technical evaluation, funded by BIFFAWARD 2002 - 2003 :<br />

www.wormresearchcentre.co.uk, S:\biffa reports worms\F<strong>in</strong>al Report app1.doc<br />

Garg, V. K.; P. Kaushik <strong>and</strong> Y. K. Yadav. 2008. Effect of stock<strong>in</strong>g density <strong>and</strong> food<br />

quality on <strong>the</strong> growth <strong>and</strong> fecundity of an epigeic earthworm (Eisenia fetida)<br />

dur<strong>in</strong>g vermicompost<strong>in</strong>g. Environmentalist 28, pp:483–488.<br />

GEORG. 2004. Feasibility of develop<strong>in</strong>g <strong>the</strong> organic <strong>and</strong> transitional farm market <strong>for</strong><br />

process<strong>in</strong>g municipal <strong>and</strong> farm organic wastes us<strong>in</strong>g large-scale<br />

vermicompost<strong>in</strong>g. The good earth organic resources group limited Sackville,<br />

Nova Scotia.<br />

Ghabbour, S. 2009. The Oligochaeta of <strong>the</strong> Nile Bas<strong>in</strong> Revisited. The Nile Orig<strong>in</strong>,<br />

Environments, Limnology <strong>and</strong> Human Use, Series: Monographiae Biologicae,<br />

89.<br />

81


Ghafoor, A.; M. Hassan <strong>and</strong> Z.H. Alvi. 2008. Biodiversity of earthworm species from<br />

various habitats of district Narowal, Pakistan. Int. J. Agri. Biol., 10, pp: 681–<br />

684.<br />

GTZ. 2004. <strong>Regional</strong> Solid Waste Management Project <strong>in</strong> Mashreq <strong>and</strong> Maghreb<br />

Countries, regional guidel<strong>in</strong>es case study: In<strong>for</strong>mal Sector Recycl<strong>in</strong>g Activities-<br />

<strong>Egypt</strong>, FINAL REPORT. German Technical Cooperation Agency.<br />

Gunadi, B.; C. A. Edwards; <strong>and</strong> IV C. Blount. 2003. The <strong>in</strong>fluence of different<br />

moisture levels on <strong>the</strong> growth, fecundity <strong>and</strong> survival of Eisenia fetida (Savigny)<br />

<strong>in</strong> cattle <strong>and</strong> pig manure solids. European Journal of Soil Biology 39, pp:19–24.<br />

Hendrix, F. P. <strong>and</strong> P. J. Bohlen. 2002. Exotic Earthworm Invasions <strong>in</strong> North America:<br />

Ecological<strong>and</strong> Policy Implications. BioScience 801, 52 (9), pp: 801-811.<br />

Hertrampf, J. W. <strong>and</strong> F. Piedad-Pascual. 2000. H<strong>and</strong>book on Ingredients <strong>for</strong><br />

Aquaculture Feeds. Kluwer academic puplishers.<br />

Hobson, A. M.; J. Frederickson <strong>and</strong> NB. Dise, 2005. CH4 <strong>and</strong> N2O from<br />

mechanically turned w<strong>in</strong>drow <strong>and</strong> vermicompost<strong>in</strong>g systems follow<strong>in</strong>g <strong>in</strong>-vessel<br />

pre-treatment. Waste Manag, 25(4), pp:345-52.<br />

Hou, J.; Y. Qian,; G. Liu <strong>and</strong> R. Dong, 2005. “The Influence of Temperature, pH <strong>and</strong><br />

C/N Ratio on <strong>the</strong> Growth <strong>and</strong> Survival of Earthworms <strong>in</strong> Municipal Solid<br />

Waste” Agricultural Eng<strong>in</strong>eer<strong>in</strong>g International: <strong>the</strong> CIGR Ejournal. Manuscript<br />

FP 04 014. VII.<br />

IGES. 2008. Climate Change Policies <strong>in</strong> <strong>the</strong> Asia-Pacific, Re-unit<strong>in</strong>g Climate Change<br />

<strong>and</strong> Susta<strong>in</strong>able Development. Institute <strong>for</strong> Global Environmental Strategies.<br />

Kangm<strong>in</strong>, Li. 2005. <strong>Vermiculture</strong> Industry <strong>in</strong> Circular Economy,<br />

http://www.wormdigest.org .<br />

Kaplan, D.L.; R. Hartenste<strong>in</strong>; E. F. Neuhauser <strong>and</strong> M. R. Malechi, 1980.<br />

Physicochemical requirements <strong>in</strong> <strong>the</strong> environment of <strong>the</strong> earthworm Eisenia<br />

foetida. Soil Biol. Biochem. 12, pp: 352:347.<br />

Kaur, V. I. <strong>and</strong> M. D. Ansal. 2010. Efficacy of vermicompost as fish pond manure –<br />

Effect on water quality <strong>and</strong> growth of Cypr<strong>in</strong>us carpio (L<strong>in</strong>n.)Bioresource<br />

Technology, Bioresource Technology, 101, Issue 15, pp: 6215-6218 .<br />

Kostecka, J. <strong>and</strong> G. Paczka. 2006. Possible use of earthworm Eisenia fetida (Sav.)<br />

biomass <strong>for</strong> breed<strong>in</strong>g aquarium fish. European Journal of Soil Biology 42, pp:<br />

S231–S233.<br />

Makkar, H. P. S. 2002. Development <strong>and</strong> field evaluation of animal feed<br />

upplementation packages (AFRA project II-17 - RAF/5/041), Animal<br />

Production <strong>and</strong> Health Section International Atomic Energy Agency IAEA-<br />

TECDOC-1294<br />

MBM-CARI-XIV, Vermicompost production, central agricultural research <strong>in</strong>stitute,<br />

<strong>and</strong>aman <strong>and</strong> nicobar isl<strong>and</strong>s, Central Agricultural Research India.:<br />

http://cari.res.<strong>in</strong>/<br />

82


Misra, R.V. <strong>and</strong> R. N. Roy. 2003. on-farm compost<strong>in</strong>g methods. L<strong>and</strong> <strong>and</strong> water<br />

disccusion paper2, Ffood <strong>and</strong> agriculture organization of <strong>the</strong> united nations<br />

<strong>FAO</strong>.<br />

MSEA. 2001. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

MSEA. 2006. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

MSEA. 2008. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

MSEA. 2009. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

Munroe, G. 2007. Manual of On-Farm Vermicompost<strong>in</strong>g <strong>and</strong> <strong>Vermiculture</strong>. Organic<br />

Agriculture Centre of Canada: http://www.allth<strong>in</strong>gsorganic.com/How_To/01.asp.<br />

Nagavallemma, K. P.; S. P. Wani; L. Stephane; V. V. Padmaja; C. V<strong>in</strong>eela,; R. M.<br />

Babu <strong>and</strong> K.L. Sahrawat. 2004. Vermicompost<strong>in</strong>g: Recycl<strong>in</strong>g wastes <strong>in</strong>to<br />

valuable organic fertilizer. Global <strong>the</strong>meon agrecosystems report no. 8.<br />

Patancheru 502 324, Andhra Pradesh, India: Sahrawat 502324, Andhra Pradesh,<br />

India: International Crops Research Institute <strong>for</strong> <strong>the</strong> Semi-Arid Tropics. P.<br />

Ecoscience Research Foundation: http://www.erf<strong>in</strong>dia.org.<br />

Nourbakhsh, F. 2007. Influence of vermicompost<strong>in</strong>g on solid wastes decomposition<br />

k<strong>in</strong>etics <strong>in</strong> soils. Journal of Zhejiang University. Science. B, 8(10), pp: 725–730.<br />

Padmavathiamma, P. K.; L. Y. Li <strong>and</strong> U. R. Kumari. 2008. An experimental study of<br />

vermibiowaste compost<strong>in</strong>g <strong>for</strong> agricultural soil improvement. Bioresource<br />

Technology, 99 (6), pp: 1672-1681.<br />

Re<strong>in</strong>ecke, A.J. <strong>and</strong> J. M. Venter. 1987. Moisture preferences, growth <strong>and</strong> reproduction<br />

of <strong>the</strong> compost worm Eisenia fetida (oligochaeta), Biol. Fertil. Soils, pp: 135–<br />

141.<br />

Rizhiya, E.; C. Bertora; P. C. J. V. vlit; P. J. Kuikman; J. H. Faber <strong>and</strong> J. W. V.<br />

Groenigen. 2007. Earthworm activity as a determ<strong>in</strong>ant <strong>for</strong> N2O emission from<br />

crop residue, Soil biology <strong>and</strong> biochemistry, 39 (8), pp: 2058-2069.<br />

Sa<strong>in</strong>i, V. K., 2008. Relative efficacy of two methods of vermicompost<strong>in</strong>g <strong>for</strong> biodegradation<br />

of organic wastes, Int. J. Environment <strong>and</strong> waste management, Vol.<br />

2, Nos. 1/2.<br />

Sherman, R. 2003. Rais<strong>in</strong>g Earthworms Successfully, North Carol<strong>in</strong>a Cooperative<br />

Extension Service; (http://www.bae.ncsu.edu).<br />

Sh<strong>in</strong>er, A. 2009. Aquaculture 2.0. Yale daily news; (http://www.yaledailynews.com).<br />

Shivakumar, C.; S. B. Mahajanashetti; C. Murthy; H. Basavaraja And Y. N.<br />

Hawaldar, 2009. Production <strong>and</strong> market<strong>in</strong>g of vermicompost <strong>in</strong> Dharwad district<br />

: An economic analysis. J. Agric. Sci., 22 (4), pp:850-853.<br />

83


Sunitha, ND; R. S. Giraddi,; K. A. Kulkarni; <strong>and</strong> S. L<strong>in</strong>gappa, 1997. Evaluation<br />

methods of vermicompost<strong>in</strong>g under open field conditions. Karnataka Journal of<br />

Agricultural Sciences 10(4), pp: 987–990.<br />

Suthar, S. 2008. Bioconversion of post harvest crop residues <strong>and</strong> cattle shed manure<br />

<strong>in</strong>to value-added products us<strong>in</strong>g earthworm Eudrilus eugeniae K<strong>in</strong>berg.<br />

ecological eng<strong>in</strong>eer<strong>in</strong>g 32, pp: 206–214.<br />

Suthar, S. 2010. Pilot-scale vermireactors <strong>for</strong> sewage sludge stabilization <strong>and</strong> metal<br />

remediation process: Comparison with small-scale vermireactors. Ecological<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Volume 36, Issue 5, pp: 703-712.<br />

Tilth, 1982. Earthworms - surpris<strong>in</strong>g partners <strong>in</strong> <strong>the</strong> creation of fertile Soils. Tilth<br />

producers quarterly, A journal of organic <strong>and</strong> susta<strong>in</strong>able agriculture, 8(1 & 2)<br />

(Soil supplement),<br />

Twomlow, S. 2004. Water, soil <strong>and</strong> agro-diversity management <strong>for</strong> ecosystem<br />

resilience, annual report 2003, International Crops Research Institute <strong>for</strong> <strong>the</strong><br />

Semi-Arid Tropics ICRISAT, Patancheru 502 324, Andhra Pradesh, India.<br />

Venkatesh, R. M. <strong>and</strong> T. Eevera. 2008. “Mass reduction <strong>and</strong> recovery of nutrients<br />

through vermicompost<strong>in</strong>g of fly ash,” applied ecology <strong>and</strong> environmental<br />

research, 6, pp: 77–84.<br />

Wassef, E. A. 2005. Alternative prote<strong>in</strong> sources <strong>for</strong> fish feeds <strong>in</strong> <strong>Egypt</strong>.<br />

Mediterranean Fish Nutrition, 63, pp: 127-142.<br />

X<strong>in</strong>g, Meiyan; X. Li <strong>and</strong> Y. Jian. 2010. Treatment per<strong>for</strong>mance of small-scale<br />

vermifilter <strong>for</strong> domestic wastewater <strong>and</strong> its relationship to earthworm growth,<br />

reproduction <strong>and</strong> enzymatic activity. African Journal of Biotechnology, 9(44),<br />

pp: 7513-7520.<br />

Yaqub, H. 1991. Earthworm <strong>and</strong> maggot meals as a potential fish meal replacement.<br />

Thesis .Institute of Renewable Natural Resources U.S.T., Kumasi, Ghana:<br />

http://hdl.h<strong>and</strong>le.net/1834/1268 .<br />

Yousefi, Z., M. Ramezani, S. K. A. Mohamadi, R. A. Mohammadpour <strong>and</strong> A.<br />

Nemati. 2009. Identification of earthworms species <strong>in</strong> sari township <strong>in</strong> Nor<strong>the</strong>rn<br />

Iran, 2007-2008. J. Applied Sci., 9, pp: 3746-3751.<br />

Zhaoa, L.; Y. Wang; J. Yanga; M. X<strong>in</strong>ga; X. Lia; D. Yia, <strong>and</strong> D. Denga. 2010.<br />

Earthworm–microorganism <strong>in</strong>teractions: A strategy to stabilize domestic<br />

wastewater sludge. Water research, 44, Issue 8, pp: 2572-2582.<br />

84


General <strong>in</strong><strong>for</strong>mation <strong>and</strong> FAQ<br />

WORM FACTS<br />

Annex 1<br />

SMALLEST: Less than an <strong>in</strong>ch<br />

LARGEST: 22 Foot found <strong>in</strong> South Africa<br />

An earthworm has a bra<strong>in</strong>, five hearts, <strong>and</strong> “ brea<strong>the</strong>s” through its sk<strong>in</strong><br />

An earthworm produces its own weight <strong>in</strong> casts everyday<br />

There are over 1 million earthworms <strong>in</strong> one acre of soil<br />

Earthworms can burrow as deep as fifteen feet<br />

Earthworms are 82% prote<strong>in</strong> <strong>and</strong> are a food source <strong>for</strong> many people around <strong>the</strong><br />

world<br />

Eat<strong>in</strong>g earthworms can reduce cholesterol, as <strong>the</strong> basic essential oil of<br />

earthworms is Omega 3<br />

Benefits of Earthworms<br />

Increased moisture absorption<br />

Improved soil aeration <strong>and</strong> dra<strong>in</strong>age<br />

Leach<strong>in</strong>g counteracted by nutrient-rich cast<strong>in</strong>gsbrought to <strong>the</strong> surface<br />

Nutrients are pre-digested, mak<strong>in</strong>g <strong>the</strong>m readily available to microorganisms<br />

<strong>and</strong> plants<br />

Worm cast<strong>in</strong>gs <strong>for</strong>m aggregates which improve soil structure<br />

Cast<strong>in</strong>gs neutralize soil by buffer<strong>in</strong>g acid <strong>and</strong> alkal<strong>in</strong>e conditions<br />

Worm tunnels create fertile channels <strong>for</strong> <strong>the</strong> growth of plant roots<br />

The bottom l<strong>in</strong>e: Earthworms <strong>in</strong>crease crop yields while build<strong>in</strong>g soil fertility<br />

reserves.<br />

FAQ Compost Worm -<br />

Do compost worms also eat normal earth or only rott<strong>in</strong>g organic material?<br />

Although <strong>the</strong> compost worms Eisenia foetida <strong>and</strong> Eisenia <strong>and</strong>rei are not commonly<br />

found <strong>in</strong> m<strong>in</strong>eral grounds, scientific <strong>in</strong>vestigations show that <strong>the</strong>y also eat m<strong>in</strong>eral<br />

earth. However, <strong>the</strong>y select an organic enriched fraction from <strong>the</strong> bulk soil<br />

(approximately by a factor 2), which is also typical <strong>for</strong> soil dwell<strong>in</strong>g worms.<br />

There<strong>for</strong>e, compost worms can also be used to clean contam<strong>in</strong>ated m<strong>in</strong>eral grounds.<br />

Can compost worms be used <strong>for</strong> decontam<strong>in</strong>ation of m<strong>in</strong>eral soils?<br />

Yes, because <strong>the</strong>y eat m<strong>in</strong>eral soils too. Experiments were done with <strong>the</strong> harbour<br />

sludge of Rotterdam.<br />

Eisenia <strong>and</strong>rei is commonly used <strong>in</strong> st<strong>and</strong>ard toxcicity tests <strong>and</strong> <strong>in</strong> bioassays <strong>for</strong><br />

contam<strong>in</strong>ated soils (Cortet et al., 1999).<br />

85


How long will <strong>the</strong> material <strong>in</strong>gested by <strong>the</strong> compost worm be <strong>in</strong> his gut?<br />

In adult compost worms (Eisenia <strong>and</strong>rei) appr. 3 to 4 hours, <strong>in</strong> juvenile worms appr.<br />

11 to 13 hours. The scientists expected <strong>the</strong> opposite (a longer retention time <strong>for</strong> adult<br />

worms).<br />

For Eisenia foetida 2.5 h were measured at 25°C, <strong>in</strong>dependent from <strong>the</strong> weight or <strong>the</strong><br />

length of <strong>the</strong> worm. At 18°C <strong>the</strong> retention time was about 3.5 hours.<br />

Lumbricus terrestris shows a retention time of 20 hours. O<strong>the</strong>r worm species 11 to 13<br />

hours (Lumbricus festivus, Lumbricus rubellus, Allolobophora calig<strong>in</strong>osa).<br />

How do compost worms multiply?<br />

Like all earthworms, compost worms have female <strong>and</strong> male gender organs<br />

(hermaphrodite). If <strong>the</strong>y pair off, <strong>the</strong> genitals come mutually to narrow contact. These<br />

are localized <strong>in</strong> <strong>the</strong> wide r<strong>in</strong>gs (clitellum) of adult worms. This r<strong>in</strong>g walks <strong>in</strong> <strong>the</strong><br />

course of <strong>the</strong> next days on <strong>and</strong> on to <strong>the</strong> back <strong>and</strong> is shored up, <strong>in</strong> <strong>the</strong> end, so that a<br />

yellowish cocoon orig<strong>in</strong>ates which has <strong>the</strong> <strong>for</strong>m a lemon. After a certa<strong>in</strong> time, out of<br />

this small mites are slipp<strong>in</strong>g.<br />

How often does a conception take place with <strong>the</strong> mat<strong>in</strong>g of compost worms?<br />

It comes to 61% of <strong>the</strong> mat<strong>in</strong>gs to <strong>the</strong> transfer of sperm. Of it a mutual transfer of<br />

sperm takes place <strong>in</strong> 88.2% of <strong>the</strong> cases, <strong>in</strong> 9.8% <strong>the</strong> transfer occurred only <strong>in</strong> one<br />

direction. Merely <strong>in</strong> one case a self conception occurred.<br />

Is a self-fertilization also possible with compost worms?<br />

Although reported very often with earthworms, a self-sperm transfer could be clearly<br />

documented <strong>in</strong> 2003 <strong>for</strong> <strong>the</strong> first time. This occurs very seldom <strong>and</strong> was observed with<br />

Eisenia foetida. Self conception is an extreme <strong>for</strong>m of <strong>in</strong>breed<strong>in</strong>g. The genetic<br />

diversity is lowered what normally leads to a reduction <strong>in</strong> fitness of <strong>the</strong> species. For<br />

this reason mechanisms of self-<strong>in</strong>compatibility have been developed <strong>in</strong> many species.<br />

Which compost worm multiplies faster? Eisenia foetida or Eisenia <strong>and</strong>rei?<br />

Scientific <strong>in</strong>vestigations from <strong>the</strong> year 2003 showed that Eisenia <strong>and</strong>rei multiplies<br />

much faster under <strong>the</strong> elective conditions of <strong>the</strong> study. The percentage of <strong>the</strong> worms,<br />

that produced cocoons was substantially higher (33% compared with 3.5%). Also <strong>the</strong><br />

number of <strong>the</strong> produced cocoons was higher with Eisenia <strong>and</strong>rei, likewise <strong>the</strong> slip rate<br />

of <strong>the</strong> mites from <strong>the</strong> cocoons. The life ability of <strong>the</strong> cocoons was possibly equally<br />

high with both species.<br />

86


What do eat compost worms?<br />

Fungi are probably a primary source of food <strong>for</strong> many earthworm species. Rott<strong>in</strong>g<br />

material from plants, which is richly colonized with it, is <strong>the</strong> most popular "meal" <strong>for</strong><br />

<strong>the</strong> worms.<br />

Slows <strong>the</strong> compost<strong>in</strong>g process down because <strong>the</strong> fungi <strong>in</strong> <strong>the</strong> compost are eaten<br />

by <strong>the</strong> worms?<br />

On <strong>the</strong> contrary, <strong>in</strong> <strong>the</strong> general, it is even accelerated. More diverse fungal<br />

communities <strong>in</strong>habited earthworm-processed substrates than were found <strong>in</strong> fresh<br />

substrates. This, although it is generally believed that fungal hyphae are destroyed <strong>and</strong><br />

may be a preferred food source <strong>for</strong> earthworms. Worms probably accelerate <strong>the</strong><br />

compost<strong>in</strong>g process by both graz<strong>in</strong>g <strong>and</strong> dispersal, <strong>and</strong> <strong>in</strong>directly by <strong>the</strong>ir effects on<br />

<strong>the</strong> substrate (burrow<strong>in</strong>g <strong>and</strong> cast<strong>in</strong>g).<br />

Can earthworms nibble at liv<strong>in</strong>g roots?<br />

No! The earthworms to which also <strong>the</strong> compost worms belong, attack no liv<strong>in</strong>g roots.<br />

They live on <strong>the</strong> dead plant material colonized richly with micro-organisms. In<br />

addition, <strong>the</strong>y have no tools (teeth, grater plates or o<strong>the</strong>r th<strong>in</strong>gs) by which <strong>the</strong>y could<br />

nibble at roots. The earthworm <strong>in</strong> <strong>the</strong> flowerpot or plant patch does not harm <strong>the</strong><br />

plants.<br />

Are certa<strong>in</strong> fungi preferred by earthworms as food?<br />

Earthworms can make a good dist<strong>in</strong>ction between <strong>the</strong> different k<strong>in</strong>ds of fungi.<br />

Lumbricus terrestris prefers Fusarium oxysporum <strong>and</strong> Mucor hiemalis, o<strong>the</strong>r tested<br />

mushrooms are only sometimes eaten or are avoided even completely. In case of <strong>the</strong><br />

compost worm Eisenia foetida it was shown, that <strong>the</strong> black melan<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g<br />

fungus C. cladosporioides was <strong>the</strong> most attractive <strong>in</strong> contrast to Aspergillus niger<br />

which was <strong>the</strong> least attractive. For Eisenia <strong>and</strong>rei still no <strong>in</strong>vestigations were done.<br />

Does a quicker worm compost<strong>in</strong>g take place if <strong>the</strong> plant leftovers are <strong>in</strong>oculated<br />

with certa<strong>in</strong> fungi be<strong>for</strong>e?<br />

This is possible, however, <strong>for</strong> <strong>the</strong> normal leisure gardener too exaggeratedly <strong>and</strong> also<br />

not necessary. Investigations proved that a previous addition of A. flavus accelerates<br />

<strong>the</strong> growth of Eisenia <strong>and</strong>rei. Mucor sp. should accelerate <strong>the</strong> growth with five o<strong>the</strong>r<br />

earthworms. Never<strong>the</strong>less, with Eisenia <strong>and</strong>rei M. circ<strong>in</strong>elloides shows <strong>the</strong> opposite<br />

effect.<br />

What role do compost<strong>in</strong>g worms play besides <strong>the</strong> use as humus producer, fish<br />

bait <strong>and</strong> animal food?<br />

The compost worms Eisenia fetida <strong>and</strong> Eisenia <strong>and</strong>rei play an important role <strong>in</strong> <strong>the</strong><br />

ecotoxicological assessment of compounds <strong>in</strong> soil <strong>and</strong> are <strong>the</strong> recommended OECD<br />

87


earthworm test species. This species has been used to exam<strong>in</strong>e <strong>the</strong> relative toxicity<br />

<strong>and</strong> predict <strong>the</strong> short <strong>and</strong> long-term effects of toxic substances on earthworm<br />

populations <strong>in</strong> field soil. The compost<strong>in</strong>g worm (Eisenia fetida) is representative of<br />

three o<strong>the</strong>r species of earthworms (Allolobophora tuberculata, Eudrilus eugenia, <strong>and</strong><br />

Perionyx excavus). For Eisenia fetida a very large toxicological literature database is<br />

exist<strong>in</strong>g.<br />

88


ISBN 978-92-5-106859-5<br />

9 7 8 9 2 5 1 0 6 8 5 9 5<br />

I2196E/1/04.11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!