22.07.2013 Views

Annual Report 2011 Max Planck Institute for Astronomy

Annual Report 2011 Max Planck Institute for Astronomy

Annual Report 2011 Max Planck Institute for Astronomy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong><br />

<strong>for</strong> <strong>Astronomy</strong><br />

Heidelberg-Königstuhl<br />

<strong>Max</strong>-<strong>Planck</strong>-Institut für Astronomie Heidelberg<br />

<strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong> Heidelberg<br />

<strong>Annual</strong> <strong>Report</strong> <strong>2011</strong>


Cover Picture:<br />

The “Haus der <strong>Astronomy</strong>” (House of <strong>Astronomy</strong>) was inaugurated in November <strong>2011</strong>, only three years after its foundation<br />

in 2008 by the <strong>Max</strong> <strong>Planck</strong> Society and the Klaus Tschira Foundation (see chapter V <strong>for</strong> more in<strong>for</strong>mation).<br />

Its <strong>for</strong>m is inspired from the spiral galaxy Messier 51 in the constellation Canes Venatici, called the whirlpool galaxy.<br />

This unique center <strong>for</strong> astronomy education and outreach on the MPIA campus hosts also the volunteer association Astronomieschule<br />

e.V. und the editorial offices of the popular astronomy magazine “Sterne und Weltraum”, which has been<br />

produced on the Königstuhl since 1962.<br />

Credits: Swen Carlin, Heidelberg


<strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong><br />

<strong>for</strong> <strong>Astronomy</strong><br />

Heidelberg-Königstuhl<br />

<strong>Annual</strong> <strong>Report</strong> <strong>2011</strong><br />

<strong>Max</strong>-<strong>Planck</strong>-Institut für Astronomie Heidelberg<br />

<strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong> Heidelberg


<strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong><br />

Scientific Members, Governing Body, Directors:<br />

Prof. Thomas Henning (Managing Director)<br />

Prof. Hans-Walter Rix (Director)<br />

Scientific Coordinator: Dr. Klaus Jäger (Phone: 0049 6221 528 379)<br />

Public Outreach (Head),<br />

Haus der Astronomie (Managing Scientist): Dr. Markus Pössel (Phone: 0049 6221 528 261)<br />

Administration (Head): Mathias Voss (Phone: 0049 6221 528 230)<br />

MPIA Observatories: Roland Gredel (Phone: 0049 6221 528 264)<br />

Emeriti Scientific Members:<br />

Prof. Immo Appenzeller, Heidelberg Prof. George H. Herbig, Honolulu<br />

Prof. Karl-Heinz Böhm, Seattle Prof. Guido Münch, La Jolla<br />

External Scientific Members:<br />

Prof. Steven V. W. Beckwith, Baltimore Prof. Rafael Rebolo, Teneriffa<br />

Prof. Willy Benz, Bern<br />

Advisory Council:<br />

Prof. Rolf-Peter Kudritzki, Honolulu (chair) Prof. Sabine Schindler, Innsbruck<br />

Prof. Ewine van Dishoeck, Leiden Prof. Stephan Shectman, Pasadena<br />

Dr. Philip John Puxley, Arlington Prof. Rens Waters, Amsterdam<br />

Prof. Dieter Reimers, Hamburg Prof. Robert Williams, Baltimore<br />

Prof. Anneila I. Sargent, Pasadena Prof. Harold Yorke, Pasadenan<br />

Board of Trustees:<br />

Prof. Karlheinz Meier, Heidelberg (chair)<br />

Prof. Bernhard Eitel, Heidelberg<br />

Dr. Reinhold Ewald, Weißling<br />

Dr. Michael Kaschke, Oberkochen<br />

MinDirig. Dr. Heribert Knorr, Stuttgart<br />

Dipl.-Ing. Matthias Nagel, Bonn<br />

Stefan Plenz, Wiesloch<br />

Prof. Roland Sauerbrey, Dresden<br />

Dr. h.c. Klaus Tschira, Heidelberg<br />

Prof. Andreas Tünnermann, Jena<br />

Dipl.-Phys. Ranga Yogeshwar, Köln<br />

Staff: By the end of <strong>2011</strong>, a staff of 290 was employed at MPIA (including externally funded positions).<br />

This includes 212 scientists, of which 74 were junior and visiting scientists, and 60 were PhD students.<br />

Address: MPI <strong>for</strong> <strong>Astronomy</strong>, Königstuhl 17, D-69117 Heidelberg<br />

Phone: 0049 6221 5280 Fax: 0049 6221 528 246<br />

E-mail: sekretariat@mpia.de Internet: www.mpia.de<br />

Calar Alto Observatory<br />

Address: Centro Astronómico Hispano Alemán, Calle Jesús Durbán 2/2, E-04004 Almería<br />

Phone: 0034 950 230 988, 0034 950 632 500 Fax: 0034 950 632 504<br />

E-mail: info@caha.es Internet: http://www.caha.es<br />

Research Group “Laboratory Astrophysics”, Jena<br />

Address: Institut für Festkörperphysik der FSU, Helmholtzweg 3, D-07743 Jena<br />

Phone: 0049 3641 947 354 Fax: 0049 3641 947 308<br />

E-mail: friedrich.huisken@uni-jena.de<br />

© 2012 <strong>Max</strong>-<strong>Planck</strong>-Institut für Astronomie, Heidelberg<br />

Editors: Klaus Jäger, Axel M. Quetz, Thomas Henning, Hans-Walter Rix<br />

Figures: MPIA and others<br />

Graphics and Layout: Karin Meißner, Carmen Müllerthann<br />

Printing: Neumann Druck, 69126 Heidelberg<br />

Printed in December 2012<br />

ISSN 1437-2924; Internet: ISSN 1617–0490


Contents<br />

Preface ..................................................................... 5<br />

I. General .................................................................. 6<br />

I.1 Scientific Goals .................................................... 6<br />

I.2 Observatories, Telescopes, and Instruments ........ 10<br />

I.3 National and International Collaborations ........... 18<br />

I.4 Educational and Public Outreach and the New<br />

“Haus der Astronomie” ......................................... 22<br />

II. Highlights ............................................................. 24<br />

II.1 Anchoring Galactic Magnetic Fields in Giant<br />

Molecular Clouds: A Bird’s-eye View ............. 24<br />

II.2 Subaru observations of solar systems in<br />

the making ........................................................ 27<br />

II.3 In what Galaxies do Black Holes live in the<br />

Early Universe? ................................................ 30<br />

II.4 Starbursting Dwarf Galaxies at High Redshift ... 34<br />

III. Selected Research Areas ................................... 39<br />

III.1 Planetary population synthesis ......................... 39<br />

III.2 Formation of star-<strong>for</strong>ming structures in the<br />

interstellar medium ........................................... 48<br />

III.3 Dynamics of Galaxies: inferring their mass<br />

distribution and <strong>for</strong>mation history .................... 56<br />

III.4 The interstellar Medium of Nearby Galaxies ... 64<br />

IV. Instrumental Developments and Projects ........... 71<br />

IV.1 The Pan-StarrS1 surveys and some<br />

early results ...................................................... 71<br />

An extremely large camera .............................. 71<br />

Early results obtained at MPIA ........................ 72<br />

IV.2 argoS: Laser guided Ground Layer Adaptive<br />

Optics <strong>for</strong> the LBT ........................................... 73<br />

IV.3 MatiSSe – Interferometric Imaging in the<br />

Mid-Infrared ..................................................... 75<br />

IV.4 The euclid Dark Energy mission ..................... 77<br />

IV.5 Special Developments in the Technical<br />

Departments ..................................................... 79<br />

trac: A versatile Teamwork Plat<strong>for</strong>m used<br />

in Instrumentation Development ..................... 79<br />

trac at a glance ............................................... 80<br />

trac and linc-nirvana .................................... 81<br />

Interaction Matrix Calibration <strong>for</strong><br />

Adaptive Optics: What is the best method? .... 81<br />

V. People and Events ................................................ 83<br />

V.1 Looking back at <strong>2011</strong> ........................................ 83<br />

V.2 Haus der Astronomie – Centre <strong>for</strong> <strong>Astronomy</strong><br />

Education and Outreach ................................... 86<br />

V.3 Honors and Awards ........................................... 94<br />

Staff .................................................................................... 97<br />

Departments ..................................................................... 100<br />

Teaching Activities .......................................................... 101<br />

Service in Committees .................................................... 102<br />

Further Activities ............................................................. 103<br />

Compatibility of Science, Work, and Family ............... 104<br />

Working Council .............................................................. 105<br />

Awards ............................................................................... 105<br />

Cooperation with Industrial Companies ..................... 106<br />

Conferences, Scientific, and Popular Talks ................ 108<br />

Haus der Astronomie ....................................................... 117<br />

Publications ...................................................................... 120


Preface<br />

This <strong>Annual</strong> <strong>Report</strong> is intended <strong>for</strong> our colleagues worldwide as well as <strong>for</strong> the interested<br />

public.<br />

It describes in particular the scientific activities at the <strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong><br />

<strong>Astronomy</strong> (MPIA) in Heidelberg. In addition to brief presentations of a broad range<br />

of current scientific results, we report in more depth on a few selected research areas<br />

at the MPIA and some of the instrumentation projects. Furthermore, some other activities<br />

and highlights of the life at the institute are presented.<br />

The year <strong>2011</strong> has brought a rich scientific harvest on topics ranging from the structure<br />

of the universe to stars and exoplanets.<br />

There was also excellent, steady progress on crucial, observing facilities, including<br />

the LBT and regular science observations with luci 1, second generation VLT and<br />

VLTI instruments, the PAN-StarrS Survey, the completion of JWST instrumentation<br />

as well as ongoing contributions <strong>for</strong> the European Extremely Large Telescope<br />

(E-ELT), laying the foundation <strong>for</strong> future astronomical discoveries.<br />

Furthermore, we had another very successful year of the HerSchel mission with the<br />

perfect operation of the PacS instrument.<br />

On December 16, we celebrated in the presence of Peter Gruss (President of the<br />

<strong>Max</strong> <strong>Planck</strong> Society), Klaus Tschira (the building's sponsor), Theresia Bauer<br />

(Minister <strong>for</strong> Science, Research and the Arts, State of Baden-Württemberg), Gabriele<br />

Warminski-Leitheußer (Minister <strong>for</strong> Education, Youths and Sports, State of Baden-<br />

Württemberg), Bernhard Eitel (Rector of Heidelberg University), and Eckart<br />

Würzner (Lord Mayor of the City of Heidelberg) the inauguration of the “Haus der<br />

Astronomie”, the new education and public outreach facility on the MPIA campus at<br />

the Königstuhl.<br />

We hope that this <strong>Annual</strong> Review will give the reader a flavour of the research and<br />

work at the MPIA.<br />

Thomas Henning, Hans-Walter Rix<br />

Heidelberg, November 2012<br />

5


6 I. General<br />

Credit: MPIA / AMQ<br />

I. General<br />

I.1 Scientific Goals<br />

Scientific Research at the <strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong><br />

<strong>Astronomy</strong> (MPIA, see Fig. I.1.1) is aimed at exploring and<br />

understanding the nature and evolution of planets, stars,<br />

galaxies and the universe as a whole. This is pursued<br />

through the development and operation of telescopes and<br />

their instrumentation, by designing, executing and analysing<br />

observing programs and surveys, and by connecting<br />

the physical nature of the observed phenomena through<br />

theoretical studies and numerical simulations. The MPIA<br />

focuses its observational capabilities on the optical and<br />

infrared spectral regions, taking a leading role in both<br />

groundbased and space-based instrumentation.<br />

The research at the MPIA is organized within two<br />

scientific departments: Planet and Star Formation and<br />

Galaxies and Cosmology.<br />

In addition to the staff in these departments, the<br />

<strong>Institute</strong> had in <strong>2011</strong> five independent Junior Research<br />

Groups (two Emmy Noether groups supported by the<br />

German Science Foundation DFG, and three groups supported<br />

by the <strong>Max</strong> <strong>Planck</strong> Society).<br />

Over the course of the year <strong>2011</strong>, there were a total of<br />

about 60 postdoctoral stipend holders, about 90 PhD students,<br />

and 13 diploma and master’s students and student<br />

assistants working at the institute.<br />

Strong ties exist between MPIA and the University<br />

of Heidelberg, with its Center <strong>for</strong> <strong>Astronomy</strong> (ZAH),<br />

both in research and teaching, <strong>for</strong> example through the<br />

International <strong>Max</strong> <strong>Planck</strong> Research School (IMPRS) <strong>for</strong><br />

<strong>Astronomy</strong> and Cosmic Physics.<br />

The main research fields of the two departments are<br />

complementary in both scientific and practical terms.<br />

Obviously, star <strong>for</strong>mation is a critical aspect of the <strong>for</strong>mation<br />

and evolution of galaxies, and the instrumentation<br />

capabilities required by both departments share strong<br />

commonalities: e.g. requirements <strong>for</strong> high spatial resolution,<br />

powerful survey capabilities, and the importance<br />

of access to the infrared and millimeter spectral regions.<br />

Galaxies and Cosmology<br />

The “Realm of Galaxies”<br />

Shortly after the Big Bang, the Universe was rather “simple”<br />

and nearly homogeneous. Now it is beautifully complex,<br />

with rich “hierarchical” structure over a wide range<br />

of physical scales: from the filamentary distribution of gal-<br />

Fig. I.1.1: The main building of the MPIA on the Königstuhl.


axies on large scales (the “cosmic web”) to galaxies themselves,<br />

down to clusters of stars, individual stars, and their<br />

planets. The <strong>for</strong>mation of this wealth of structure appears to<br />

be driven by gravitational instabilities, but to make things<br />

‘work’ these instabilities must arise in good part from a<br />

dominant, but yet to be identified, dark matter component.<br />

The galaxies we observe in the present-day universe<br />

represent a central layer in this hierarchical order, each<br />

consisting of millions to billions of stars, gas, and dust, all<br />

embedded in halos of dark matter. As Edwin Hubble already<br />

realized 80 years ago, these “island universes” do<br />

not show the full variety of morphology (or visual appearance)<br />

and structures that seem physically possible. On the<br />

one hand, the variety of galaxies seems vast: galaxies as<br />

an object class span ten orders of magnitude in their stellar<br />

masses, and the rate of new star <strong>for</strong>mation varies similarly;<br />

the physical sizes of different galaxies still vary by a<br />

factor of 100. While some galaxies apparently do not have<br />

a black hole at their centers, in other galaxies this central<br />

black hole has the mass of more than one billion suns. On<br />

the other hand, observations have shown, particularly in<br />

the last 15 years, that only a small fraction of the possible<br />

combinations of the characteristic galactic quantities (stellar<br />

masses and ages, size, central black hole, etc.) are actually<br />

realized in the universe. Virtually all physical properties<br />

strongly correlate with all other properties: massive<br />

galaxies are large; massive galaxies contain virtually no<br />

young stars; the central black hole contains a constant mass<br />

fraction of the spherical star distribution ten million times<br />

its size. While spiral galaxies are the most common galaxy<br />

type, no such galaxy is among the most massive ones.<br />

This means that the “realm of galaxies”, as Hubble<br />

called it, shows a high degree of order. How this order developed<br />

from the random mass fluctuations existing after<br />

the Big Bang is a fundamental question of galaxy <strong>for</strong>mation<br />

and a central issue of cosmology.<br />

There are three broad lines of explanation <strong>for</strong> the limited<br />

variety in the zoo of galaxies: Either, observed galaxies<br />

represent the only stable configurations. Alternatively, the<br />

cosmological initial conditions only permit the <strong>for</strong>mation<br />

of the galaxies we see. Or, the overall process of galaxy<br />

<strong>for</strong>mation results in a limited set of outcomes because it is<br />

very much self-regulating.<br />

What questions would we like to answer?<br />

Many of the projects that the MPIA researchers are<br />

pursuing ultimately address when and where these<br />

three mechanisms play a role. Some of the specific<br />

questions being discussed by researchers in this department<br />

are:<br />

• During which cosmological epoch did most of the stars<br />

<strong>for</strong>m?<br />

• Is cosmic star <strong>for</strong>mation now coming to its end? Why<br />

has the star <strong>for</strong>mation rate declined over the last six<br />

billion years?<br />

• Which galaxies reside in which dark matter halos?<br />

• How did the central black holes in galaxies <strong>for</strong>m and<br />

grow? Why is it possible to predict the properties of<br />

the small-sized central black hole from the overall size<br />

of a galaxy?<br />

• Which processes determine the structure and morphology<br />

of galaxies and when do these processes occur?<br />

• What is the state of the interstellar medium, the raw<br />

material from which new stars <strong>for</strong>m?<br />

• What is the state of the intergalactic medium, in the<br />

space between galaxies, where most of the atoms in<br />

the univere reside?<br />

• Can the various observations be understood ab initio<br />

within a comprehensive model?<br />

• How did the Milky Way, our roSetta Stone of galaxy<br />

evolution, <strong>for</strong>m?<br />

What do we do to find the answers?<br />

The approaches used at the MPIA to tackle these questions<br />

comprise three aspects: the detailed study of galaxies<br />

in the present-day Universe; the direct study of<br />

galaxies at earlier cosmic epochs through the observation<br />

of distant (high-redshift) objects; and the comparison<br />

of observations with physical models. The observational<br />

capabilities <strong>for</strong> the field require survey telescopes,<br />

large telescopes <strong>for</strong> sheer photon collecting power on<br />

faint sources, and particular techniques such as Adaptive<br />

Optics and Interferometry to achieve high spatial resolution.<br />

Comprehensive studies of galaxy evolution require<br />

observations from the X-rays to the radio wavelengths.<br />

The MPIA has been an important partner in several of<br />

the surveys that have brought, or promise to bring, breakthroughs<br />

in these areas: the PanStarrS-1 survey which<br />

has successfully started in 2010; the Sloan Digital Sky<br />

Survey (SDSS) and Segue <strong>for</strong> the Milky Way and Local<br />

Group; complemented since 2008 by the LBC cameras<br />

at the LBT; the 2.2 m telescope on La Silla has enabled<br />

the coMbo-17 galaxy evolution survey; the VLT and the<br />

LBT are used to follow-up this survey work; the irac and<br />

MipS instruments on the Spitzer Space Telescope; and<br />

the pacS Instrument of the herSchel mission to study<br />

star <strong>for</strong>mation and the interstellar medium, complemented<br />

by the VLA, the Plateau de Bure Interferometer, apex<br />

and soon AlMa at radio and sub-millimeter wavelengths.<br />

The Galaxies and Cosmology department truly carries<br />

out multi-wavelength astrophysics.<br />

Planet and Star Formation<br />

The link between stars and galaxies<br />

I.1 Scientific Goals 7<br />

The <strong>for</strong>mation of stars is a fundamental process in the<br />

Universe, shaping the structure of entire galaxies and<br />

determining their chemical state. The <strong>for</strong>mation of individual<br />

stars can be best studied in nearby molecular<br />

clouds. The study of star <strong>for</strong>mation in other galaxies al-


8 I. General<br />

lows us to understand this process under physical conditions<br />

which can be very different from those in the Milky<br />

Way. Our studies of star <strong>for</strong>mation in the Magellanic<br />

Clouds allow an investigation of the effect of metallicity<br />

on the star <strong>for</strong>mation process, which is certainly<br />

an important factor in understanding star <strong>for</strong>mation in<br />

the early Universe. Stars are born in the dense and cold<br />

cores of molecular clouds, which become gravitationally<br />

unstable and, in general, fragment to <strong>for</strong>m binaries<br />

and multiple stellar systems. The role of magnetic fields<br />

or turbulence in controlling the onset of star <strong>for</strong>mation<br />

remains one of the open key questions. This question is<br />

immediately related to the shape of the initial (sub-) stellar<br />

mass function in different environments. Dynamical<br />

interactions in multiple systems may be a crucial factor<br />

<strong>for</strong> the <strong>for</strong>mation of Brown Dwarfs. Massive star <strong>for</strong>mation<br />

takes place in clusters, leading to complex star<strong>for</strong>ming<br />

regions. The rapid evolution of massive protostars<br />

and the associated energetic phenomena provide an<br />

enormous challenge in identifying the <strong>for</strong>mation path of<br />

massive stars.<br />

Looking behind the curtain…<br />

The earliest phases of star <strong>for</strong>mation are obscured<br />

by enormous amounts of dust and gas and can only be<br />

detected by sensitive far-infrared and (sub-) millimeter<br />

observations. At later evolutionary stages, the objects<br />

“glow” at near- and mid-infrared wavelengths, and finally<br />

become visible at optical wavelengths. Our observ-<br />

like structure. It is composed of tidal star streams, the remnants<br />

of a smaller satellite galaxy.<br />

Credit: R. Jay Gabany, D. Martínez-Delgado Fig. I.1.2: The galaxy GC 4651 with its remarkable umbrella-<br />

ing programs cover a wide range of wavelengths with a<br />

special emphasis on infrared and (sub-) millimeter observations.<br />

The <strong>for</strong>mation of planets and planetary systems is a<br />

natural by-product of low-mass star <strong>for</strong>mation. Because<br />

of angular momentum conservation, accretion of matter<br />

onto the central protostar happens predominantly through<br />

a circumstellar disk. Disks around T Tauri stars are the<br />

natural birthplaces of planetary systems, resembling the<br />

solar nebula 4.5 Gyr ago. During the active accretion<br />

phase, bipolar molecular outflows and ionized jets are<br />

produced, which in turn play an important role in the evolution<br />

of star-disk systems. We are presently starting to<br />

use protoplanetary disks as laboratories <strong>for</strong> understanding<br />

the <strong>for</strong>mation of our own solar system and the diversity of<br />

other planetary systems detected so far.<br />

The research of the Planet and Star Formation department<br />

is focused on the understanding of the earliest<br />

phases of stars, in both the low and high stellar mass<br />

regime. Observations with space observatories such as<br />

Spitzer, HST and herSchel, as well as ground-based infrared<br />

and (sub-) millimeter telescopes, allow the detection<br />

and characterization of massive protostars and their<br />

subsequent evolution. The vigorous use of submillimeter<br />

facilities is preparing the department <strong>for</strong> the Atacama<br />

Large Millimeter Array (alMa), which will soon commence<br />

operation.<br />

The investigation of Brown Dwarfs, which were first<br />

detected in 1995, is another important research topic.<br />

How do Brown Dwarfs <strong>for</strong>m? Are young substellar objects<br />

also surrounded by disks? What is the binarity fraction<br />

and the exact mass of these objects? What is the<br />

composition of their atmospheres? These are among the<br />

burning questions which are attacked by MPIA scientists.


The <strong>for</strong>mation of planetary systems and the search <strong>for</strong><br />

other planets<br />

With the detection of the first extrasolar planets,<br />

the study of planet <strong>for</strong>mation in protoplanetary<br />

disks entered a new phase of explosive growth. The<br />

department is well-positioned to play an important<br />

role in these studies, with a combination of infrared<br />

and sub–millimeter observations, numerical (magneto-)<br />

hydrodynamical simulations, and radiative transfer<br />

studies. Imaging with the hubble Space Telescope<br />

and the wealth of data from the Spitzer Telescope and<br />

now from HerSchel is providing new insights into the<br />

earliest stages of planet <strong>for</strong>mation. Improved spatial<br />

resolution from our adaptive optics program, infrared<br />

interferometry with large telescopes and long baselines,<br />

and the use of millimeter interferometers provide insights<br />

into disk structure and evolution on spatial scales relevant<br />

to planet <strong>for</strong>mation. Gas evolution in disks is studied<br />

by highresolution infrared spectroscopy and the accretion<br />

behaviour by multi-object spectroscopy.<br />

We have started new observing programs to search<br />

<strong>for</strong> extrasolar planets through direct imaging, the transit<br />

technique, and astrometry. With the Spectral Differential<br />

Imaging facility (SDI) at the VLT, we provided a<br />

new mode <strong>for</strong> high-contrast imaging with the adaptive<br />

optics instrument Naco. This system presently outper<strong>for</strong>ms<br />

any other similar device in the world and was<br />

I.1 Scientific Goals 9<br />

Fig. I.1.3: Star Formation in LH 72, a cluster located at the<br />

northern periphery of the super-giant shell LMC 4 in the Large<br />

Magellanic Cloud.<br />

paving the way <strong>for</strong> the development of eSo’s Sphere<br />

instrument, where MPIA is Co-PI institute. The department<br />

actively participates in the planet search program<br />

SeedS with the Subaru telescope on Mauna Kea<br />

(Hawaii).<br />

The theoretical program of the PSF department focuses<br />

on complex numerical simulations of protoplanetary<br />

disk evolution, including the interplay between<br />

radiation, dynamics, chemistry, and grain evolution.<br />

The study of the <strong>for</strong>mation of massive stars constitutes<br />

another topic <strong>for</strong> theoretical studies. Multi-dimensional<br />

radiative transfer codes, both <strong>for</strong> molecular lines and<br />

the dust continuum, have been developed in the department.<br />

These theoretical studies are also well integrated<br />

with the various observational key projects.<br />

The understanding of many of the microphysical<br />

processes and the composition of dust and gas requires<br />

dedicated laboratory studies. Such a laboratory astrophysics<br />

unit is part of the Planet and Star Formation<br />

department, and is located at the <strong>Institute</strong> <strong>for</strong> Solid-<br />

State Physics of the University of Jena. This group<br />

investigates the spectroscopic properties of nanoparticles,<br />

as well as molecules, especially PAH’s, in the<br />

gas phase.<br />

Credit: eSa / hubble, naSa and D. A. Gouliermis (MPIA)


10 I. General<br />

Credit: CAHA<br />

I.2 Observatories, Telescopes, and Instruments<br />

The <strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong> has been a<br />

key driver and partner in the construction and operation<br />

of two large ground-based observatories. During<br />

the 1970s and 1980s the construction of the Calar<br />

Alto Observatory, still the largest observatory on the<br />

European continent, had been the central focus of the<br />

MPIA, and the two largest telescopes with 2.2 m and<br />

3.5 m mirrors are still scheduled <strong>for</strong> competitive observing<br />

programs. Since 2004 the observatory is jointly<br />

operated as Centro Astronomico Hispano Aleman (Caha)<br />

by the <strong>Max</strong> <strong>Planck</strong> Society, represented by the MPIA,<br />

and the Consejo Superior de Investigaciones Científicas<br />

(CSIC), represented by the Instituto de Astrofísica de<br />

Andalucía (IAA), as an organization of Spanish law.<br />

Since 1997, the MPIA has been the coordinating institute<br />

<strong>for</strong> the German participation in the Large Binocular<br />

Telescope (LBT) on Mt. Graham near Tucson, Arizona.<br />

By the end of 2007, the second prime-focus camera was<br />

installed which is now used <strong>for</strong> regular science programs.<br />

The year 2008 has seen the installation and the<br />

beginning of the commissioning of the first of the two<br />

LuCi instruments, jointly built by the Landessternwarte<br />

of the Center <strong>for</strong> <strong>Astronomy</strong> of Heidelberg University<br />

(ZAH), the MPIA, and the MPE. Additional contributions<br />

were also made by the Ruhr University Bochum and<br />

the Fachhochschule Mannheim. Science demonstration<br />

observations with this near-infrared multi-object<br />

spectrometer have commenced in December 2009 and<br />

at the beginning of 2010 the first excellent spectra<br />

and images have been published. Furthermore, the<br />

first adaptive secondary mirror <strong>for</strong> the LBT started its<br />

operation in 2010 and hence the first “sharper than<br />

hubbLe” near infrared LBT-images could be released.<br />

The MPIA also uses its 2.2 m telescope on La Silla,<br />

Chile, operated by the European Southern Observatory<br />

(eso). As of April 1 st 2009 in a new agreement between<br />

the MPG and Eso, the amount of time available at this<br />

telescope <strong>for</strong> MPG researchers has been increased from<br />

25 to 75 percent.<br />

Fig. I.2.1: Areal View of the Calar Alto Observatory (caha).


The MPIA has a prominent and successful tradition of<br />

developing and building instruments <strong>for</strong> ground-based<br />

and space-based astronomical observations. Such observations<br />

are, almost by necessity, complementary.<br />

Ground-based telescopes usually have larger mirrors<br />

and there<strong>for</strong>e more light-gathering power than space<br />

telescopes. By using cutting-edge techniques such as<br />

adaptive optics and interferometry – which the MPIA<br />

has played a leading role in developing – they can also<br />

achieve higher angular resolution. Space telescopes, on<br />

the other hand, are the only way to carry out observations<br />

in wavelength regions where our atmosphere absorbs<br />

the radiation or generates a bright background, as<br />

is the case, <strong>for</strong> example, in wide regions of the infrared<br />

spectral regime.<br />

Since the pioneering days of infrared astronomy in<br />

the 1970s, the MPIA has been a leading instrument developer<br />

<strong>for</strong> this field of astronomy. In particular, the construction<br />

and implementation of Isophot, one of four scientific<br />

instruments aboard Iso, the first Infrared Space<br />

Observatory of the European Space Agency ESa, was<br />

led by the MPIA. From 1996 to 1998, it acquired excellent<br />

data, particularly in the previously inaccessible farinfrared<br />

range. The knowledge gained with Iso was the<br />

basis <strong>for</strong> MPIA’s prominent role in ongoing space projects<br />

such as the HerSchel Space Observatory and the<br />

James Webb Space Telescope (JWST). Astronomers at<br />

the MPIA are also actively participating in legacy science<br />

programs with the Spitzer Infrared Observatory.<br />

I.2 Observatories, Telescopes, and Instruments 11<br />

At the end of 2009 HerSchel has provided the first<br />

data obtained within a number of key science programs<br />

with MPIA participation. During 2010 and within the<br />

regular operation, the first scientific papers based on excellent<br />

HerSchel data (see also chapter III.1 of our annual<br />

report <strong>for</strong> 2010) have been published in a dedicated<br />

<strong>Astronomy</strong> & Astrophysics special issue. And thanks to<br />

a trouble-free operation, HerSchel provided us also in<br />

<strong>2011</strong> with excellent data.<br />

The new generation of instruments <strong>for</strong> 8 m-class telescopes<br />

and space missions are too large and expensive to<br />

be built by a single group, such as the MPIA. At present,<br />

the <strong>Institute</strong> is there<strong>for</strong>e participating in, or leading a number<br />

of international collaborations <strong>for</strong> building scientific<br />

instruments <strong>for</strong> new large telescopes, thereby gaining<br />

access to the world’s most important observatories. An<br />

example in the southern hemisphere is the eSo Very<br />

Large Telescope (VLT) in Chile, with its four 8 m-telescopes<br />

that can be linked to <strong>for</strong>m a powerful interferometer.<br />

In the northern hemisphere, MPIA is participating<br />

in the Large Binocular Telescope (LBT) in Arizona. This<br />

extraordinary telescope is equipped with two mirrors of<br />

8.4 m diameter each, fixed on a common mount, making<br />

it the world’s largest single telescope. With the current<br />

routine scientific use of the two prime focus cameras<br />

and the near-infrared multi-object spectrograph luci-1<br />

Fig. I.2.2: The Very Large Telescope at Cerro Paranal, in the<br />

Northern Chilean Andes.<br />

Credit: J. l. Dauvergne, G. Hüdepohl / eSo


12 I. General<br />

in December 2009, the LBT has become a productive<br />

world-class observatory.<br />

In 2007, MPIA became the University of Hawaii’s<br />

largest Partner in the international Pan-StarrS1 (PS1)<br />

project (see chapter IV.1), which grants full access<br />

rights to the data from a 1.8 m wide-field telescope on<br />

Haleakala/Maui (Hawaii) with a new 1.4 Gigapixel camera<br />

– the largest digital camera ever built. Since 2010,<br />

PS1 provided MPIA scientists with regular survey data.<br />

These collaborations enable MPIA astronomers to observe<br />

the northern and the southern sky with first class<br />

telescopes. At the same time the MPIA is participating in<br />

studies <strong>for</strong> the instrumentation of next-generation large<br />

telescopes, the so-called Extremely Large Telescopes<br />

(ELTs).<br />

Instrumentation <strong>for</strong> Ground-based <strong>Astronomy</strong><br />

The currrent activities of the MPIA in the area of groundbased<br />

instrumentation concentrate on interferometric instruments<br />

<strong>for</strong> the eSo VLT Interferometer (VLTI), highfidelity<br />

imaging instruments <strong>for</strong> the LBT and the VLT,<br />

and survey instruments <strong>for</strong> Calar Alto. The MPIA is<br />

also involved in studies <strong>for</strong> future instruments <strong>for</strong> the<br />

European ELT (E-ELT).<br />

VLTI instrumentation<br />

In September 2008, the differential delay lines <strong>for</strong> the<br />

dual-feed VLTI system priMa were installed on Cerro<br />

Paranal, Chile. These units were built by the MPIA together<br />

with Geneva Observatory and the Landessternwarte<br />

Heidelberg. priMa is now in its active commissioning<br />

phase. In the related science project eSpri, the differential<br />

delay lines will be used in the combined K-band light<br />

with two 1.8 m VLT Auxiliary Telescopes, in order to<br />

measure the separation of a stellar target from a reference<br />

star with micro-arcsecond precision. The goal is<br />

the dynamical determination of the masses of extrasolar<br />

planets by precise astrometric measurements of the<br />

orbital reflex-motions of planetary host stars.<br />

MPIA is participating in the second-generation VLTI<br />

projects MatiSSe and gravity. MatiSSe is a successor of<br />

the very successful Midi instrument built by the MPIA<br />

which has been in operation on Paranal since September<br />

2003. The MatiSSe consortium consists of nine institutes<br />

led by the Observatoire de la Côte d’Azur. MatiSSe will<br />

combine the light from all four VLT 8.2 m telescopes in<br />

the mid-infrared <strong>for</strong> high spatial resolution image reconstruction<br />

on angular scales of 10 – 20 milliarcseconds.<br />

The scientific applications range from studies of Active<br />

Galactic Nuclei (AGN) to the <strong>for</strong>mation of planetary systems<br />

and of massive stars, and the study of circumstellar<br />

environments.<br />

gravity is the successor of priMa. Like MatiSSe it<br />

will combine four VLT 8.2 m telescopes, but in the<br />

near-infrared. The gravity consortium is led by MPE<br />

Garching; the partners include MPIA, l’Observatoire de<br />

Paris, and the University of Cologne. Assisted by a highper<strong>for</strong>mance<br />

adaptive optics system, gravity will provide<br />

precision narrow-angle astrometry and phase referenced<br />

imaging of faint objects over a field of view of 2.<br />

This will permit astronomers to study motions to within<br />

a few times the event horizon size of the massive black<br />

hole in the Galactic Center, and potentially test General<br />

Relativity in its strong field limit. Other applications are<br />

the direct detection of intermediate mass black holes in<br />

the Galaxy, dynamical mass determinations of extrasolar<br />

planets, the origin of protostellar jets, and the imaging of<br />

stars and gas in obscured regions of AGNs, star <strong>for</strong>ming<br />

regions, or protoplanetary disks.<br />

High-resolution cameras<br />

After its integration at MPIA, Luci 1, the first of two<br />

identical mid-infrared cryogenic imaging cameras and<br />

multi-object spectrographs <strong>for</strong> the LBT, was shipped<br />

to Mt. Graham in August 2008, followed by phases<br />

of installation and commissioning. This instrument<br />

built together with the Landessternwarte Heidelberg,<br />

the MPE Garching, the University of Bochum, and<br />

the Fachhochschule <strong>for</strong> Technology and Design in<br />

Mannheim, has become ready <strong>for</strong> scientific exploitation<br />

in December 2009. It provides a 44 field-of-view<br />

in seeing limited mode. At the beginning of 2010 the<br />

first excellent spectra and images have been published.<br />

With the adaptive secondary mirrors (the first one was<br />

installed at the LBT in 2010), diffraction-limited per<strong>for</strong>mance<br />

can be expected <strong>for</strong> the two Luci instruments over<br />

a field of about 0. 5 0. 5. Adaptive optics will also permit<br />

users to achieve spectral resolving powers of several<br />

tens of thousands. Scientific applications <strong>for</strong> the multimode<br />

Luci instruments are many, including studies of<br />

star <strong>for</strong>mation in nearby galaxies.<br />

The by far largest instrumentation project at the MPIA<br />

is the near-infrared beam combiner linc-nirvana <strong>for</strong> the<br />

LBT, which presently is being assembed at the institute.<br />

As the PI institute, the MPIA leads a consortium with<br />

the Italian Observatories (Inaf), the MPIfR Bonn, and<br />

the University of Cologne. linc-nirvana is currently undertaking<br />

integration and testing at the MPIA as the various<br />

subsystems provided by the different project partners<br />

are being delivered. By coherent combination of the two<br />

LBT primary mirrors via Fizeau interferometry, lincnirvana<br />

will provide diffraction-limited imaging over<br />

a 10. 5 10. 5 field of view in the 1 – 2.4 μm regime,<br />

with the spatial resolution of a 23 m telescope. Multiconjugated<br />

adaptive optics with up to 20 natural guide<br />

stars will ensure large sky coverage. Due to the panoramic<br />

high-resolution imaging and astrometric capabilities<br />

of linc-nirvana, scientific applications range from<br />

supernova cosmology, galaxy <strong>for</strong>mation, and extragalactic<br />

stellar populations and star <strong>for</strong>mation, to extrasolar


Fig. I.2.3: The building of the Large Binocular Telescope (LBT)<br />

on Mt. Graham, Arizona.<br />

planets, stellar multiplicity, the structure of circumstellar<br />

disks, and the imaging of solar-system planets and their<br />

atmospheres.<br />

As Co-PI institute in a consortium with the Laboratoire<br />

d’Astrophysique de l’Observatoire in Grenoble, the<br />

Laboratoire d’Astrophysique in Marseille, ETH Zürich<br />

and the University of Amsterdam, the MPIA coleads<br />

the development of Sphere, a VLT instrument specialized<br />

<strong>for</strong> the imaging of Jupiter-like extrasolar planets. To<br />

overcome the huge brightness contrast between the planet<br />

and its host star, Sphere will use eXtreme Adaptive<br />

Optics (Xao), coronography, and three differential imaging-capable<br />

focal plane subinstruments that will, respectively,<br />

employ polarimetry in the visual, dual imagery in<br />

the near-infrared, and integral field J-band spectroscopy.<br />

Survey instrumentation<br />

The current workhorse <strong>for</strong> MPIAs survey ef<strong>for</strong>ts in<br />

the near infrared at Calar Alto is the oMega2000 nearinfrared<br />

imager, in operation at the prime focus of the<br />

3.5 m telescope since 2003. It provides a field of view of<br />

15.5 15.4, and z to K-band sensitivity.<br />

I.2 Observatories, Telescopes, and Instruments 13<br />

The successor of oMega2000 will be panic, the<br />

Panoramic Near-infrared Camera, which is a wide-field<br />

general purpose instrument <strong>for</strong> the Calar Alto 2.2 m telescope.<br />

panic is a joint development of the MPIA and<br />

the Instituto de Astrofísica de Andalucía. With four<br />

Hawaii2-RG detectors, it will provide a field of view<br />

of 3030. Surveys of extragalactic, galactic, and solar<br />

system objects will be possible as well. Some of the<br />

numerous possible science cases are gamma-ray burst<br />

hosts, supernovae, distance scales, high-redshift quasars,<br />

accretion disks, post AGB-stars, and X-ray binary counterparts.<br />

MPIA has also build laiwo, the Large Area Imager <strong>for</strong><br />

the Wise Observatory (Israel). It is an optical camera that<br />

was re-installed at the observatory’s 1 m telescope in fall<br />

2008. A mosaic of four CCD detectors with 4 K 4 K<br />

pixels each provides a field of view of one square degree.<br />

The main scientific application is the photometric search<br />

<strong>for</strong> transiting extra-solar planets of Jupiter size.<br />

The Hat-South project is a network of 24 small-sized<br />

automated telescopes with the goal to survey a large<br />

number of nearby stars to search <strong>for</strong> transiting extrasolar<br />

planets. These telescopes are located at three sites:<br />

Las Campanas in Chile, the Hess site in Namibia, and<br />

Siding Springs in Australia. MPIA is responsible <strong>for</strong> the<br />

site preparation and operations of the Namibian node.<br />

The survey is expected to detect about 25 planets per<br />

Credit: John Hill, LBTO


14 I. General<br />

Credit: eSo/l. calçada<br />

year. The Hat-South project is a collaboration between<br />

Harvard, the Australian National University, and MPIA.<br />

Instruments <strong>for</strong> next generation telescopes<br />

In 2010, an eSo commission led by MPIA already finished<br />

the search <strong>for</strong> the site of the planned 39 m E-ELT.<br />

It will be the mountain Cerro Armazones in Chile’s<br />

Atacama Desert (after intensive studies of various<br />

suitable places in the world including Spain, Argentina,<br />

and Tibet).<br />

In preparation <strong>for</strong> the future with this awesome<br />

telescope, MPIA has participated in two studies <strong>for</strong><br />

instruments: MetiS and Micado. The MetiS concept is<br />

a thermal/mid-infrared imager and spectrograph whose<br />

wavelength coverage will range from 3 –14 microns. A<br />

wide range of selectable resolving powers is planned.<br />

Adaptive optics will permit diffraction-limited obser-<br />

vations. Science cases are conditions in the early solar<br />

system, <strong>for</strong>mation and evolution of protoplanetary disks,<br />

studies of the galactic center and of the luminous centers<br />

of nearby galaxies, high-redshift AGNs and high-redshift<br />

gamma ray bursts.<br />

In December 2008, several concepts of the Micado<br />

study were evaluated and down-selected <strong>for</strong> a phase A<br />

study. Micado is a near-infrared imaging camera with<br />

multi-conjugated adaptive optics that will provide a<br />

Fig. I.2.4: The European Extremely Large Telescope, E-ELT.<br />

spatial resolution exceeding that of the James Webb<br />

Space Telescope (JWST) by a factor of 6 to 7. It will<br />

have a sensitivity down to 29 mag in bandpasses from I<br />

to K. Applications range from young stellar objects in our<br />

galaxy to star <strong>for</strong>mation in high-redshift galaxies. The<br />

achievable astrometric precision will further advance<br />

studies of stellar orbits around the black hole in the<br />

galactic center and of the proper motions of globular<br />

clusters in the galactic halo. With Micado, detailed mapping<br />

will be possible on scales as small as 80 pc of the<br />

structure, the stellar populations, and the interstellar dust<br />

distribution in galaxies with redshifts z 1.<br />

Instrumentation <strong>for</strong> Space-based <strong>Astronomy</strong><br />

Europe’s new far infrared and submillimetre space observatory<br />

HerSchel has started its four year long mission<br />

with a picture-perfect launch aboard an ariane-5 rocket<br />

on 14 th May 2009. The MPIA has been one of the major<br />

partners in the development of the Pacs instrument<br />

which enables imaging and spectroscopy in the wavelength<br />

range from 60 to 210 mm with unprecedented<br />

sensitivity and spatial resolution. The MPIA has been responsible<br />

<strong>for</strong> delivering the pacS focal plane chopper and<br />

<strong>for</strong> characterizing the large Ge:Ga spectrometer cameras<br />

and their –270 C readout electronics.<br />

After successful delivery and check-out of the pacS<br />

hardware contributions, MPIA has been heavily involved<br />

in many pacS Instrument Control Center tasks.


Credit: eSa / aoeS Medialab<br />

I.2 Observatories, Telescopes, and Instruments 15<br />

Fig. I.2.5: The herSchel Space Observatory.<br />

The Instrument Control Centre (ICC), located at the PI<br />

institute MPE in Garching, has the responsibility <strong>for</strong><br />

operations, calibration and data reduction of the pacS<br />

instrument. MPIA is one of four institutes of the pacS<br />

consortium which are main manpower contributors to<br />

the pacS ICC. MPIA has coordinated a large number of<br />

tasks <strong>for</strong> the calibration of the pacS instrument and has<br />

been responsible <strong>for</strong> establishing the pacS per<strong>for</strong>mance<br />

verification phase plan and the central pacS calibration<br />

document. In particular, the MPIA team has exclusively<br />

carried out the detailed mission planning of all pacS per<strong>for</strong>mance<br />

verification phase operational days, utilizing<br />

dedicated software tools, and has delivered the observational<br />

data bases to the HerSchel Science Center at eSac<br />

in Villafranca (Spain) and the Mission Operations Center<br />

at eSoc in Darmstadt (Germany). The MPIA team had<br />

build up a corresponding calibration plan <strong>for</strong> herSchel’s<br />

routine phase and also ensured the optimum inflight setup<br />

of the Ge:Ga spectrometer detector arrays following<br />

a procedure developed in the MPIA space laboratory (see<br />

Fig. I.2.6: Design model of the James Webb Space Telescope<br />

(JWST), with its large segmented primary mirror and characteristic<br />

sun shield.<br />

Credit: naSa


16 I. General<br />

Point source sensitivity (5s, 1 hour) [Jy]<br />

100<br />

1<br />

0.01<br />

LINC-NIRVANA<br />

MATISSE<br />

MIDI<br />

10<br />

GRAVITY (UT)<br />

GRAVITY (AT)<br />

LAICA CONICA<br />

SPHERE<br />

LUCI/<br />

ARGOS<br />

MICADO<br />

–4<br />

10 –6<br />

10 –8<br />

ASTRALUX<br />

NORTE/<br />

SUR<br />

PANIC<br />

Ω 2000<br />

10 –10<br />

NIRSPEC<br />

MIRI<br />

PACS<br />

METIS<br />

1 10<br />

Wavelength [mm]<br />

100<br />

chapter III.1 of the annual report 2010 <strong>for</strong> details about<br />

HerSchel and some of the excellent scientific data obtained<br />

in the first year of the regular mission).<br />

The MPIA is the leading institute in Germany <strong>for</strong><br />

the development of instrumentation <strong>for</strong> the James Webb<br />

Space Telescope (JWST, Fig. I.2.6), to be launched<br />

in this decade as the successor to the hubble Space<br />

Telescope.<br />

JWST will be equipped with a folding primary mirror<br />

with a diameter of 6.5 m and four science instruments.<br />

As a member of a European consortium, MPIA<br />

is responsible <strong>for</strong> the development of the cryogenic<br />

wheel mechanisms required <strong>for</strong> precise and reliable positioning<br />

of the optical components in JWST’s mid-infrared<br />

instrument Miri and is also leading the electrical<br />

system engineering of this instrument. Miri is designed<br />

<strong>for</strong> the wavelength range from 5 to 28 micron, and consists<br />

of a high-resolution imager and a spectrometer of<br />

medium resolving power.<br />

In 2009 the flight model of the filter wheel mechanism<br />

was delivered <strong>for</strong> integration into the imager section<br />

of the Miri instrument.<br />

The MPIA also provides critical components <strong>for</strong> the<br />

second JWST instrument mainly developed in Europe,<br />

the near-infrared multi-object spectrograph nirSpec<br />

This contribution, as well as our participation in the<br />

nirSpec science team, will provide the astronomers at<br />

MPIA with further excellent opportunities <strong>for</strong> powerful<br />

infrared observations. For the development of the precision<br />

optics of Miri and nirSpec, the MPIA has closely<br />

co- operated with Carl Zeiss Optronics, Oberkochen,<br />

and Astrium GmbH, Ottobrunn and Friedrichshafen.<br />

With the end of 2010, all tasks regarding the cryogenic<br />

mechanisms were successfully finished and they were<br />

integrated into Miri and nirSpec.<br />

Spatial resolution [milliarcsec]<br />

0.1<br />

1<br />

10<br />

100<br />

10 3<br />

10 4<br />

10 5<br />

GRAVITY (ATS)<br />

GRAVITY (UTS)<br />

MIDI<br />

MICADO<br />

MATISSE<br />

SPHERE<br />

METIS LINC-NIRVANA<br />

ASTRALUX<br />

SUR<br />

CONICA/LUCI<br />

ASTRALUX NORTE<br />

LUCI/ARGOS<br />

MIRI<br />

PANIC<br />

LAICA<br />

PACS<br />

Ω 2000<br />

NIRSPEC<br />

1 10 100<br />

Field of view<br />

1000 10000<br />

CALAR ALTO VLT NTT LBT Wise Observatorium HERSCHEL JWST E-ELT<br />

Fig. 1.2.7: Capabilities of MPIA’s major instruments. Left: sensitivity<br />

as a function of wavelength. Right: spatial resolution as<br />

a function of field of view.<br />

The <strong>Institute</strong> is also leading a major data analysis<br />

aspect of ESa’s Gaia project, a space observatory<br />

scheduled <strong>for</strong> launch in 2012. Gaia will be the successor<br />

to the HipparcoS astrometry satellite, exceeding the<br />

latter’s sensitivity by several orders of magnitude. The<br />

satellite will measure positions, magnitudes, and radial<br />

velocities of one billion stars, in addition to numerous<br />

gala-xies, quasars and asteroids. The telescope will provide<br />

photometric data in 15 spectral bands as well as<br />

spectra in a selected spectral range. Unlike HipparcoS,<br />

Gaia does not need to be provided with an input catalogue,<br />

but will measure systematically all accessible<br />

objects. Automatic object classification will thus be of<br />

major importance <strong>for</strong> data analysis. Concepts <strong>for</strong> coping<br />

with this demanding task are being developed at the<br />

MPIA (supported by a grant from DLR).<br />

MPIA is involved in the mission studies within the<br />

ESa Cosmic Vision program.<br />

Euclid has the goal of mapping the geometry of<br />

the dark Universe by studying the distance-redshift<br />

relationship and the evolution of cosmic structures.<br />

To this end, the shapes and redshifts of galaxies and<br />

galaxy clusters will be measured out to redshifts z 2,<br />

that is, to a look-back time of 10 billion years, thereby<br />

covering the entire period over which dark energy<br />

played a significant role in accelerating the expansion<br />

of the Universe. The observing strategy of Euclid will<br />

be based on baryonic acoustic oscillations measurements<br />

and weak gravitational lensing, two complementary<br />

methods to probe dark energy. The Euclid survey<br />

will produce 20 000 square degrees visible and near-in-<br />

Credit: MPIA


frared images of the extragalactic sky at a spatial resolution<br />

of 0.030 arcsec. It will also yield medium resolution<br />

(R 400) spectra of about a third of all galaxies<br />

brighter than 22 mag in the same survey area. During<br />

October <strong>2011</strong>, Euclid was selected as one of two missions<br />

to be carried out. A possible launch date could be<br />

2017 or 2018.<br />

EChO is another ESa Cosmic Vision mission and will<br />

be the first dedicated mission to investigate the atmospheres<br />

of exoplanets. EChO will provide simultaneous<br />

multi-wavelength spectroscopic observations at medium<br />

resolution and with very long exposure times. The observatory<br />

will analyse the structure of the atmospheres, the<br />

abundances of the major molecules (oxygen and carbon)<br />

or magnetospheric signatures. For this purpose, EChO<br />

will focus on transiting expoplanets to benefit, e.g., from<br />

the star’s light passing through the limb of the planet's<br />

atmosphere. Regarding the scientific and the technical<br />

background, MPIA made important contributions<br />

<strong>for</strong> the mission proposal. In the technical preparation<br />

the <strong>Institute</strong> has worked closely together with Astrium<br />

(Friedrichshafen/Ottobrunn) and was financially supported<br />

by DLR. Currently, the feasibility study (Phase<br />

0/A) <strong>for</strong> EChO is carried out and MPIA is leading an<br />

I.2 Observatories, Telescopes, and Instruments 17<br />

European consortium to study the scientific Instrument<br />

of the mission – funded by DLR and supported by the<br />

companies Astrium, Kayser-Threde and AIM.<br />

Finally, Spica, the Space Infrared Telescope <strong>for</strong><br />

Cosmology and Astrophysics, is another astronomy mission<br />

of ESa’s Cosmic Vision in which MPIA is participating<br />

in the study phase. The mission is planned to be<br />

the next space astronomy mission after HerSchel observing<br />

in the far infrared and to be launched probably<br />

in 2017. It will feature a cold 3.5 m telescope providing<br />

up two orders of magnitude sensitivity advantage, mostly<br />

<strong>for</strong> spectroscopic observations, over existing far-infrared<br />

facilities. Spica is led by the Japanese Space Agency<br />

Jaxa. Europe has proposed to participate with a Spica<br />

Far Infrared Instrument called Safari, the telescope mirror,<br />

and support of the ground segment. Currently, the<br />

European contribution to the observatory is in an extended<br />

assessment phase, keeping it in line with the status of<br />

the project at Jaxa.<br />

Fig. I.2.7 gives an overview of the major instruments<br />

which are already working or are about to be put into operation.<br />

Sensitivity is shown as a function of wavelength<br />

(left), and spatial resolution as a function of the size of<br />

the field of view (right).


18 I. General<br />

I.3 National and International Collaborations<br />

The MPIA is strategically well-placed: Heidelberg has<br />

become one of Germany's <strong>for</strong>emost centers of astronomical<br />

research. Cooperation with the High-energy<br />

Astrophysics Department of the MPI <strong>for</strong> Nuclear Physics<br />

(MPIK), the new Heidelberg <strong>Institute</strong> <strong>for</strong> Theoretical<br />

Studies (HITS), and with the institutes of the Center<br />

<strong>for</strong> <strong>Astronomy</strong> Heidelberg (ZAH), established in 2005,<br />

is manifold: the ZAH consists of the Landessternwarte,<br />

the Astronomisches Recheninstitut, and the Institut<br />

für Theoretische Astrophysik at the University. Also,<br />

the “International <strong>Max</strong> <strong>Planck</strong> Research School” <strong>for</strong><br />

<strong>Astronomy</strong> and Cosmic Physics (IMPRS, see Section<br />

I.4) is run jointly by the <strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong>s and the<br />

University.<br />

Köln<br />

Bonn<br />

Kaiserslautern<br />

Bochum<br />

Freiburg<br />

Darmstadt<br />

Mannheim<br />

Heidelberg<br />

Kiel<br />

Bad Wildbad<br />

Tübingen<br />

Nationally, MPIA has extensive cooperations with<br />

the MPI <strong>for</strong> Extraterrestrial Physics in Garching and<br />

the MPI <strong>for</strong> Radio <strong>Astronomy</strong> in Bonn, as well as with<br />

numerous other German institutes, whose locations are<br />

shown in Fig. I.3.1.<br />

The establishment of the German Center <strong>for</strong> Interferometry<br />

(Frontiers of Interferometry in Germany,<br />

or fringe, located at the MPIA, also emphasizes the<br />

<strong>Institute</strong>’s prominent role in Germany in this innovative<br />

astronomical technique. The goal is to coordinate ef<strong>for</strong>ts<br />

Fig. I.3.1: Position of the partner institutes of the MPIA in<br />

Germany.<br />

Hamburg<br />

Braunschweig<br />

Göttingen<br />

Jena<br />

Garching<br />

München<br />

Tautenburg<br />

Potsdam<br />

Dresden<br />

Credit: Mountain High Maps / MPIA graphic


made by German institutes in this field and to accomodate<br />

the interests of the German astronomical community<br />

in the European Interferometric Initiative. Another<br />

specific goal is the preparation of the next generation of<br />

interferometric instruments. This includes the preparation<br />

of second-generation instruments <strong>for</strong> VLTI, such as<br />

MatiSSe and gravity.<br />

fringe, together with other interferometric centers<br />

in Europe, is partaking in the establishment of the<br />

European Interferometry Initiative. The long-term perspective<br />

is to establish a European interferometric center<br />

<strong>for</strong> the optical and infrared wavelength region. In addition<br />

to MPIA, the following institutes are participating<br />

in fringe:<br />

the Leibniz <strong>Institute</strong> <strong>for</strong> Astrophysics in Potsdam<br />

(AIP), the Astrophysical <strong>Institute</strong> of Jena University, the<br />

Kiepenheuer <strong>Institute</strong> <strong>for</strong> Solar Physics in Freiburg, the<br />

MPI <strong>for</strong> Extraterrestrial Physics in Garching, the MPI <strong>for</strong><br />

Radio <strong>Astronomy</strong> in Bonn, the University of Hamburg,<br />

the I. Physical <strong>Institute</strong> of Cologne University, and the<br />

Universities of Kiel and Munich.<br />

The MPIA is participating in a number of EU- networks<br />

and worldwide collaborations, in part as project<br />

leader. These include:<br />

opticon: A network of all operators of major telescopes<br />

in Europe, financed by the European Union.<br />

1 Dublin<br />

2 Edinburgh<br />

3 Manchester<br />

4 Durham<br />

5 Chilton<br />

6 Cardiff<br />

7 Ox<strong>for</strong>d<br />

8 Cambridge<br />

9 Hatfield<br />

10 London<br />

22<br />

1<br />

2<br />

3<br />

6<br />

4<br />

5<br />

9<br />

10<br />

16 17<br />

32<br />

31<br />

33<br />

34<br />

25<br />

36<br />

21<br />

20<br />

35<br />

7<br />

11<br />

8<br />

15<br />

14<br />

18<br />

13<br />

12<br />

28 29<br />

19 27 26<br />

30<br />

23<br />

24<br />

11 Southhampton<br />

12 Saclay<br />

13 Paris<br />

14 Leiden<br />

15 Amsterdam<br />

16 Dwingeloo<br />

17 Groningen<br />

18 Liège<br />

19 Bordeaux<br />

20 Madrid<br />

21 Toledo<br />

22 Lissabon<br />

23 Granada<br />

24 Calar Alto<br />

25 Marseille<br />

26 Grenoble<br />

27 Genf<br />

28 Versoix<br />

29 Lausanne<br />

30 Bern<br />

44<br />

37 38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

I.3 National and international Collaborations 19<br />

Its main goal is to optimize use of scientific technical<br />

infrastructure, in order to increase scientific results and<br />

reduce costs. Opticon’s other main goal is to coordinate<br />

technology development <strong>for</strong> the next generation of<br />

ground-based telescopes.<br />

eSpri (Exoplanet Search with PriMa): This project<br />

aims at carrying out the first systematic astrometric<br />

planet search with a measurement accuracy of<br />

10–20 micro-arcseconds. For this purpose, we have<br />

built, in collaboration with eSo, the Landessternwarte<br />

Heidelberg, and the Geneva Observatory in Switzerland,<br />

differential delay lines <strong>for</strong> the PriMa facility at the VLTI.<br />

Our consortium is also developing the astrometric data<br />

reduction software.<br />

cid: The “Chemistry In Disks” project is a joint collaboration<br />

with Bordeaux, Jena and iram (Grenoble). The<br />

major goal of Cid is the study of physical structure and<br />

chemical composition of protoplanetary disks at various<br />

evolutionary stages. We focus on a sample of nearby<br />

bright protoplanetary disks orbiting low-mass (T-Tauri)<br />

and intermediate-mass (Herbig Ae) stars. For that, we<br />

employ multimolecule, multi-line observations with the<br />

Plateau de Bure interferometer and the IRAM 30 m an-<br />

Fig. I.3.2: Position of MPIA’s international partner institutes.<br />

See also on the following page.<br />

31 Basel<br />

32 Strasbourg<br />

33 Zürich<br />

34 Mailand<br />

35 Genua<br />

36 Nizza<br />

37 Padua<br />

38 Triest<br />

39 Bologna<br />

40 Florenz<br />

45<br />

46<br />

47<br />

48<br />

49<br />

41 Rom<br />

42 Neapel<br />

43 Wien<br />

44 Kopenhagen<br />

45 Stockholm<br />

46 Budapest<br />

47 Krakau<br />

48 Warschau<br />

49 Athens<br />

50 Helsinki<br />

50<br />

51<br />

51 St. Petersburg<br />

52 Moskau<br />

53 Tel Aviv<br />

54 Yerevan<br />

53<br />

52<br />

54<br />

Credit: naSa “Blue Marble” / MPIA graphic


20 I. General<br />

Credit <strong>for</strong> both figures: naSa “Blue Marble” / MPIA graphic<br />

Vancouver<br />

Victoria<br />

Seattle<br />

Stan<strong>for</strong>d<br />

Berkeley<br />

Moffett Field<br />

Santa Cruz<br />

Pasadena<br />

Honolulu<br />

Hilo<br />

Tucson<br />

Calgary<br />

Paranal<br />

La Silla<br />

Santiago<br />

Flagstaff<br />

Los Alamos<br />

Las Cruces<br />

Socorro Austin Houston<br />

Teneriffa<br />

Cape Town<br />

tenna, followed by comprehensive data analysis and theoretical<br />

modeling.<br />

SeedS: This is an imaging survey using the Subaru telescope.<br />

The main goal is to search <strong>for</strong> giant planets and<br />

protoplanetary/debris disks around 500 nearby stars of<br />

solar type or other more massive young stars. This is a<br />

collaboration between naoJ, Princeton and MPIA.<br />

The MPIA is part of a DFG-funded research network<br />

(“Forschergruppe”) on the first stages of planet <strong>for</strong>mation.<br />

This network involves the University of Tübingen<br />

(chair), the MPIA (co-chair), the <strong>Institute</strong> <strong>for</strong> Geology<br />

and Geophysics in Heidelberg (co-chair), the Kirchhoff<br />

<strong>Institute</strong> <strong>for</strong> Physics in Heidelberg, the <strong>Institute</strong> <strong>for</strong><br />

Theoretical Astrophysics in Heidelberg, the <strong>Institute</strong> <strong>for</strong><br />

Planetology in Münster and the <strong>Institute</strong> <strong>for</strong> Geophysics<br />

and Extraterrestrial Physics in Braunschweig. It combines<br />

laboratory astrophysics with theoretical astrophysics and<br />

astronomical observations in order to gain a better understanding<br />

of how the first planetary embryos are <strong>for</strong>med<br />

out of the circumstellar dust surrounding a young star. The<br />

network funds 10 PhD students, most of which started in<br />

early 2007. The project is currently within it´s 2 nd funding<br />

period (from January 2010 until December 2012).<br />

Chicago<br />

Batavia<br />

Pittsburgh<br />

Macomb Columbus<br />

Baltimore<br />

Charlottesville<br />

Eriwan<br />

Ruston<br />

Gainesville<br />

Toronto<br />

Hamilton<br />

Lewisburg<br />

Rochester<br />

Harvard,<br />

Troy<br />

Cambridge<br />

Amherst<br />

Middletown<br />

New Haven<br />

New York<br />

Princeton<br />

Taschkent<br />

Kyoto<br />

Seoul Tokyo<br />

Nanjing Kaganawa<br />

Taiwan<br />

Weston<br />

Canberra<br />

SiSco (Spectroscopic and Imaging Surveys <strong>for</strong> Cosmology):<br />

This EU network is dedicated to the study<br />

of galaxy evolution with the help of sky surveys. The<br />

<strong>Institute</strong> has made pivotal contributions to this network<br />

through cadiS, coMbo-17, and the geMS surveys.<br />

Additional partners are: University of Durham, <strong>Institute</strong><br />

<strong>for</strong> <strong>Astronomy</strong> in Edinburgh, University of Ox<strong>for</strong>d,<br />

University of Groningen, Osservatorio Astronomico<br />

Capodimonte in Naples, and eSo in Garching.<br />

elixir, an EU network dedicated to exploit the unprecedented<br />

capabilities of the nirSpec instrument on<br />

the JWST space mission.<br />

SDSS, the Sloan Digital Sky Survey, has revolutionized<br />

wide-field surveying at optical wavelengths. It is<br />

the most extensive imaging and spectroscopy sky survey<br />

to date, imaging about a quarter of the entire sky<br />

in five filters. The final catalogue provides positions,<br />

magnitudes, and colors of an estimated one hundred<br />

million celestial objects as well as redshifts of about<br />

one million galaxies and quasars. The observations are<br />

made with a 2.5 m telescope specially built <strong>for</strong> this purpose<br />

at Apache Point Observatory, New Mexico. The<br />

project is conducted by an international consortium of


US, Japanese and German institutes. The MPIA was<br />

the first of what is now twelve European partner institutes<br />

in SDSS and the only one to participate since the<br />

inception of surveying. In exchange <strong>for</strong> material and financial<br />

contributions to the SDSS, a team of scientists<br />

at the MPIA receives full access to the data. In 2005,<br />

the “original” SDSS was completed, and an extension,<br />

SDSS-II/Segue,, focusing on Milky Way structure, was<br />

completed in mid 2008.<br />

MPIA is a partner in Pan-StarrS1 (PS1) see also chapter<br />

IV.1, the most ambitious sky survey project since the<br />

SDSS, as part of the Pan-StarrS1 Science Consortium<br />

(PS1SC), using a dedicated 1.8 m telescope and the record-breaking<br />

1.4 Gigapixel Camera (GPC1) with a<br />

7-square-degree field of view. PS1SC is an international<br />

collaboration, involving the University of Hawaii,<br />

the MPE, Johns Hopkins University, the Harvard-<br />

Smithsonian Center <strong>for</strong> Astrophysics/Las Cumbres<br />

Observatory Global Telescope, the Universities of<br />

Durham, Edinburgh and Belfast, and Taiwan’s National<br />

Central University. It will operates the PS1 telescope<br />

during 2009 – 2012 to carry out multiple time-domain<br />

I.3 National and international Collaborations 21<br />

imaging surveys in its g, r, i, z, y filter set: the “3pi”<br />

survey of all of the sky visible from its location on<br />

Haleakala (Hawaii), a medium-deep supernova survey,<br />

as well as a dedicated survey of the Andromeda galaxy<br />

and a search <strong>for</strong> transiting planets. Including this planet<br />

search, MPIA scientists are leading four out of twelve<br />

key science projects within PS1SC, covering in addition<br />

the search <strong>for</strong> the most distant quasars and the coolest<br />

stars, as well as a comprehensive study of the Local<br />

Group’s structure.<br />

Within the herSchel Space Observatory project,<br />

MPIA is the largest Co-I institute in the PACS instrument<br />

consortium, which consists of partners from 6 European<br />

countries. herSchel was successfully launched on May<br />

14 th , 2009. The institute leads two herSchel guaranteed<br />

Time Key Programs on “The earliest phases of star <strong>for</strong>mation”<br />

and “The Dusty Young Universe: Photometry<br />

and Spectroscopy of Quasars at z 2” and participates<br />

in nine other herSchel Open and Guaranteed Time Key<br />

Programs. All these observing programs are large international<br />

collaborations.


22 I. General<br />

I.4 Educational and Public Outreach and the new “Haus der Astronomie”<br />

Training the next generation of scientists and communicating<br />

astronomy to the public has a longstandig tradition<br />

on the Königstuhl. The “Haus der Astronomie” (HdA),<br />

a new center <strong>for</strong> education and public outreach, whose<br />

establishment had been decided in December 2008, has<br />

been finally erected on the Campus of the MPIA during<br />

<strong>2011</strong>. The new institution will amplify and strengthen<br />

the ef<strong>for</strong>ts of all Heidelberg astronomers directed to<br />

this goal.<br />

Students come from all over the world to the MPIA to<br />

carry out research <strong>for</strong> their diploma or doctoral thesis.<br />

A majority of these students are <strong>for</strong>mally enrolled at the<br />

University of Heidelberg. In turn, a number of scientists<br />

at the MPIA have adjunct faculty status at the University<br />

Undergraduate students can get a first taste of scientific<br />

work at the MPIA. The <strong>Institute</strong> offers advanced<br />

practical courses or enables the students to participate in<br />

“mini research projects”. These last about two months<br />

and cover a wide range of questions, including the analysis<br />

of observational data or numerical simulations, as<br />

well as work on instrumentation. These practical courses<br />

offer the students an early, practically oriented insight<br />

into astrophysical research and are an excellent preparatory<br />

step <strong>for</strong> a later diploma or doctoral thesis.<br />

The International <strong>Max</strong> <strong>Planck</strong> Research School<br />

(IMPRS) <strong>for</strong> <strong>Astronomy</strong> and Cosmic Physics, which<br />

was established by the <strong>Max</strong> <strong>Planck</strong> Society and the<br />

University of Heidelberg, started in 2005, and offers<br />

PhD students from all over the world a three-years<br />

education under excellent conditions in experimental<br />

and theoretical research in the field of astronomy and<br />

cosmic physics. It is supported by the five astronomical<br />

research institutes in Heidelberg. After a successful<br />

evaluation in 2009, the IMPRS-HD was extended <strong>for</strong><br />

another period<br />

The institute’s mission also includes educating and<br />

in<strong>for</strong>ming the general public about astronomical research.<br />

Members of the institute give talks at schools,<br />

education centers and planetaria. They also appear at<br />

press conferences or on radio and television programs,<br />

in particular on the occasion of astronomical events<br />

that attract major public attention. Numerous groups of<br />

visitors come to the MPIA on the Königstuhl and the<br />

Calar Alto Observatory.<br />

Our initiative <strong>for</strong> the general public, a series of eight<br />

“Public Lectures on Sunday Morning”, which was in<br />

Fig. I.4.1: The HdA was finished in autumn <strong>2011</strong>. The main<br />

entrance is to the right.<br />

Credit: MPIA


its sixth year in <strong>2011</strong>, always leads to a sold-out auditorium<br />

at the MPIA. Also, as in previous years, the one<br />

week long practical course which was offered to interested<br />

schoolchildren was immediately booked out – applicants<br />

came from all-over the country. And again, the<br />

MPIA participated in the Girls’ Day, an annual nationwide<br />

campaign intended to encourage schoolgirls to<br />

learn about professions that are still mainly male-dominated.<br />

At various stations throughout the MPIA, about<br />

40 schoolgirls got a general idea of the work at an astronomical<br />

institute.<br />

In <strong>2011</strong>, there were a lot of other activities and<br />

events. A more detailed description can be found in<br />

chapter V.<br />

Finally, the monthly magazine “Sterne und<br />

Weltraum” (Stars and Space, SuW of the Spektrum-<br />

Verlag) is published at the MPIA. This journal is intended<br />

<strong>for</strong> the general public and offers a lively <strong>for</strong>um<br />

both <strong>for</strong> professional astronomers and <strong>for</strong> the large<br />

community of amateurs in the field. A significant fraction<br />

of the readers are teachers and pupils. In parallel<br />

to SuW, didactic material is produced monthly within<br />

our successful project “Science to schools!”, which<br />

helps teachers to treat interesting themes of current astronomical<br />

research during regular classes in physics<br />

and natural sciences. The project “Science to schools!”<br />

was sponsored by the Klaus Tschira Foundation from<br />

2005 to 2009, and is now continued in the “Haus der<br />

Astronomie”. The didactic material is made freely<br />

available through the web and is widely used in german-speaking<br />

countries.<br />

I.4 Educational and Public Outreach and the new “Haus der Astronomie” 23<br />

The “Haus der Astronomie” – a Center <strong>for</strong> Education<br />

and Public Outreach<br />

In December <strong>2011</strong>, the “Haus der Astronomie”, which<br />

was founded in December 2008, has been finally erected<br />

on the campus of the MPIA. In this facility, the educational<br />

and public outreach activities of all astronomers<br />

in Heidelberg will be concentrated and developed further.<br />

In<strong>for</strong>mation <strong>for</strong> the media and the general public,<br />

the development of didactic material, simulations and<br />

visualizations, and the training of university students<br />

and teachers of physics, astronomy and natural sciences<br />

will play a major role. Furthermore, the HdA will support<br />

contacts and communication between scientists. The<br />

Klaus Tschira Foundation has financed the building and<br />

its technical equipment, and the <strong>Max</strong> <strong>Planck</strong> Society is<br />

operating the facility. In addition to these Institutions,<br />

the City of Heidelberg, the State of Baden-Württemberg,<br />

and the University of Heidelberg are contributing to the<br />

personnel costs, and the astro-nomers at the MPIA and<br />

at the University’s Center <strong>for</strong> <strong>Astronomy</strong> will also bring<br />

in activities related to public and educational outreach.<br />

During 2009, the center’s core team was assembled,<br />

and construction work was started on October 2009<br />

with a festive groundbreaking ceremony. At the end of<br />

2010, the basic structure of the building, including the<br />

planetarium dome was finished. This was celebrated in<br />

a topping-off ceremony on December 17 2010. And only<br />

one year later, on December 16 <strong>2011</strong>, we celebrated<br />

in the presence of Peter Gruss (President of the <strong>Max</strong><br />

<strong>Planck</strong> Society), Klaus Tschira (the building's sponsor),<br />

Theresia Bauer (Minister <strong>for</strong> Science, Research<br />

and the Arts, State of Baden-Württemberg), Gabriele<br />

Warminski-Leitheußer (Minister <strong>for</strong> Education, Youths<br />

and Sports, State of Baden-Württemberg), Bernhard<br />

Eitel (Rector of Heidelberg University), and Eckart<br />

Würzner (Lord Mayor of the City of Heidelberg) the<br />

inauguration of the “Haus der Astronomie” (see chapter<br />

V <strong>for</strong> more details about the HdA).


24 II. Highlights<br />

II. Highlights<br />

II.1 Anchoring Galactic Magnetic Fields in Giant Molecular Clouds:<br />

A Bird’s-eye View<br />

Magnetic fields set the stage <strong>for</strong> the birth of new stars<br />

Astronomers at MPIA have measured <strong>for</strong> the first time<br />

the alignment of magnetic fields in gigantic clouds of<br />

gas and dust in a distant galaxy. The results suggest that<br />

such magnetic fields play a key role in channelling matter<br />

to <strong>for</strong>m denser clouds, and thus in setting the stage<br />

<strong>for</strong> the birth of new stars. The work was published in the<br />

November 24 edition <strong>2011</strong> of the journal Nature.<br />

The relationship between galaxy-wide magnetic fields<br />

(B-fields) and localized molecular clouds is not well<br />

y [kpc]<br />

6.4<br />

6.2<br />

6<br />

5.8<br />

–5.6<br />

Galactocentric Distance [kpc]<br />

5.5<br />

5<br />

4.5<br />

4<br />

1.5 2<br />

–5.4 –5.2<br />

x [kpc]<br />

–5 –4.8<br />

understood. Some models of cloud <strong>for</strong>mation suggest<br />

that the large scale galactic field is largely irrelevant at<br />

the small scale of individual clouds, because turbulence<br />

and rotation of a cloud might randomize the cloud field<br />

orientations (see Dobbs, C., MNRAS 391 844 (2008)<br />

and Fig. II.1.1 bottom). Others suggest that the galactic<br />

B-fields can be strong enough to impose their directions<br />

upon the clouds (See Fig. II.1.1 top and Shetty, R.<br />

& Ostriker, E. ApJ 647, 997 (2006)).<br />

The implication <strong>for</strong> star <strong>for</strong>mation is that the ordered<br />

cloud B-fields in the latter scenario can regulate cloud<br />

fragmentation and affect star <strong>for</strong>mation rate and efficien-<br />

2.5<br />

3 3.5<br />

Galactocentric Distance [kpc]<br />

–1<br />

–1.5<br />

–2<br />

–2.5<br />

log column density [g / cm 2 ]<br />

200 km s –1<br />

Fig. II.1.1: Two competing scenarios of cloud <strong>for</strong>mation. Top: A<br />

patch from a global galaxy simulation. The solid vectors show<br />

the instantaneous gas velocity in the frame rotating with the<br />

spiral potential. The dotted vectors show the initial velocities<br />

(pure circular motion). The solid lines show B-field orientations.<br />

The gray scale stands <strong>for</strong> the relative surface density. The<br />

B-fields of the spiral arm are only slightly twisted in the molecular<br />

cloud complexes (dark elongated regions), and in turn<br />

the field tension is strong enough to hinder the cloud rotation.<br />

Bottom: A similar simulation but the well developed cloud<br />

rotation has produced tidal tails extending from the GMC, and<br />

the B-fields (vectors) follow the rotation and lost the “memory”<br />

of the galactic field direction.<br />

Credit: Dobbs, C., MNRAS 391 844 (2008)


3100<br />

3055<br />

Declination (J2000)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

3020<br />

Fig. II.1.2.: Locations of the 6 most massive GMCs (“+”s) and<br />

the optical spiral arms in M33. The background is an optical<br />

image of M33 from Thomas V. Davis. The white lines trace the<br />

optical arms adopted from Sandage, A. & Humphreys, R. ApJ<br />

236, 1 (1980) and Rogstad, D., Wright, M. & Lockhart ApJ<br />

204, 703 (1976).<br />

cy. This is because, just like the Earth B-field can channel<br />

the Solar wind toward the polar regions (and <strong>for</strong>m aurora),<br />

strong B-fields can channel the gravitational contraction<br />

of gas and <strong>for</strong>m molecular clouds. Cloud fields<br />

inherited from the galaxy are possible to further channel<br />

the gas motion within the cloud and preserve the direction<br />

of the galactic B-field.<br />

A measurement of the field direction in individual<br />

clouds and comparison to the spiral arms should determine<br />

which model is correct, but is difficult in the Milky<br />

Way because the arms cannot be observed due to the<br />

edge-on view of the Galactic disk.<br />

II.1 Anchoring Galactic Magnetic Fields in Giant Molecular Clouds: A Bird’s-eye view 25<br />

01:35:00 34:30 34:00 33:30 33:00 32:30<br />

Right Ascension (J2000)<br />

Credit: Hua-Bai Li, Thomas V. Davis<br />

The efficiencies of the state of the art instruments are<br />

not sufficient to probe the cloud B-fields from a faceon<br />

galaxy with the conventional B-field tracers. Here<br />

we report a novel strategy to tackle extragalactic cloud<br />

B-fields. We determine B-field directions using the polarization<br />

of CO emission lines, which should be either<br />

perpendicular or parallel to the local B-field direction<br />

projected on the sky (the Goldreich-Kylafis-effect, see<br />

Goldreich, P. & Kylafis, N., ApJ 243, 75 (1981) <strong>for</strong> details).<br />

Though there are other B-field tracers that do not<br />

have this 90 ambiguity, CO is much more abundant<br />

and allows current radio telescopes to per<strong>for</strong>m extragalactic<br />

cloud observations. Our argument <strong>for</strong> using the<br />

Goldreich-Kylafis-effect is that the 90 ambiguity can<br />

still be statistically useful. An intrinsically random field<br />

distribution, as happens when the turbulence is super-<br />

Alfvenic (i.e., turbulent energy dominates B-field energy),<br />

will still be random with this ambiguity. On the


26 II. Highlights<br />

N<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

gmc 1<br />

gmc 2<br />

gmc 3<br />

gmc 4<br />

gmc 5<br />

gmc 6<br />

–40<br />

Fig. II.1.3.: Distribution of the polarization-arm offsets. The<br />

offsets are from the difference between the orientations of<br />

CO polarization and local arms. Contributions from different<br />

GMCs are distinguished by the colors. The distribution can be<br />

fitted by a double-Gaussian function with a standard deviation<br />

of 20.72.6 and peaks at –1.94.7 and 91.13.7,<br />

other hand, an intrinsically single-peaked Gaussian-like<br />

field distribution, as happens when the turbulence is sub-<br />

Alfvenic, will either stay single-peaked, or split into two<br />

peaks approximately 90 apart.<br />

M 33 is the nearest face-on galaxy with pronounced<br />

optical spiral arms. We used the Submillimeter Array at<br />

Mauna Kea (SMA), which offers a linear spatial resolution<br />

of 15 parsecs at 230 GHz (the frequency of the<br />

CO J 2–1 transition) at the distance of M 33 (900 kpc).<br />

(The Goldreich-Kylafis effect has been detected by the<br />

SMA be<strong>for</strong>e from a Galactic cloud, see Beuther (also<br />

MPIA) et al. in ApJ 724, 113, 2010).<br />

We picked the six most massive clouds (Fig. II.1.2)<br />

from the Bima M 33 survey because of their strong CO<br />

line emission. The distribution of the offsets between<br />

the CO polarization and the local arm directions clearly<br />

show the trend of “double peaks” (Fig. II.1.3).<br />

–20 0 20 40 60 80 100 120 140<br />

offset of CO polarization from local arm direction<br />

suggesting that the cloud B-field directions are correlated with<br />

the arm directions. The directions of synchrotron polarization,<br />

which traces the B-field from the low-density warm vicinities<br />

of each cloud, are also shown as the dashed lines. The fields in<br />

the less compressed warm media do not align with the spiral<br />

arms.<br />

The distribution can be fitted by a double-Gaussian<br />

function with the two peaks lie at –1.9 4.7 and 91.1<br />

3.7° and a standard deviation of 20.72.6. This indicates<br />

that the mean field directions are well-defined<br />

and highly correlated with the spiral arms, consistent<br />

with the scenario that galactic B-fields can exert tension<br />

<strong>for</strong>ces strong enough to resist cloud rotation (Fig.<br />

II.1.1 top).<br />

The 20 dispersion of the field direction is also important,<br />

which implies that the cloud turbulence is sub-<br />

Alfvenic, based on the Chandrasekhar-Fermi criterion.<br />

Whether molecular clouds are sub- or super-Alfvenic is<br />

another long-lasting debate and is a critical assumption<br />

made in various theories of star <strong>for</strong>mation.<br />

Credit: Hua-Bai Li<br />

Hua-Bai Li and Thomas Henning


II.2 Subaru observations of solar systems in the making<br />

Using the Subaru Telescope in Hawaii, a team of astronomers<br />

including MPIA scientists have shown the<br />

protoplanetary disks surrounding two young stars in<br />

unprecedented detail. This is the first time that disk<br />

structures comparable in size to our own solar system<br />

have been resolved this clearly, revealing features such<br />

as rings and gaps that are associated with the <strong>for</strong>mation<br />

of giant planets. The observations are part of the<br />

SeedS project in which MPIA is involved: a systematic<br />

survey to search <strong>for</strong> planets and disks around young<br />

stars using HiCIAO, a state-of-the-art high-contrast camera<br />

designed specifically <strong>for</strong> this purpose.<br />

Planetary systems like our own share a humble origin<br />

as mere by-products of star <strong>for</strong>mation. A newborn star's<br />

gravity gathers leftover gas and dust in a dense, flattened<br />

disk of matter orbiting the star. Clumps in the disk sweep<br />

up more and more material, until their own gravity becomes<br />

sufficiently strong to compress them into the dense<br />

bodies we know as planets. As documented in MPIA annual<br />

reports, among other places, recent years have seen<br />

substantial advances both in observations (mostly indi-<br />

Fig. II.2.1: Image taken with the HiCIAO planet-hunter camera<br />

on the SuBaru Telescope, which shows a bright arc of scattered<br />

light (white) from the protoplanetary disk around the young<br />

star LkCa 15 (center, masked out with a dark circle). The arc’s<br />

sharp inner edge traces the outline of a wide gap in the disk.<br />

The gap is decidedly lopsided – it is markedly wider on the left<br />

side – and has most likely been carved out of the disk by one<br />

or more newborn planets that orbit the star.<br />

rect) and in theoretical modeling of such protoplanetary<br />

disks. The two recent observations described in this highlight<br />

have added intriguing new details, revealing some<br />

structures that had never be<strong>for</strong>e been seen directly.<br />

The lopsided disk of LkCa 15<br />

One of the two studies, led by Christian Thalmann while<br />

on staff at MPIA, targeted the star LkCa 15, which is<br />

located around 450 light-years from Earth in the constellation<br />

Taurus. At an age of a few million years, LkCa 15<br />

is a young star – the Sun, after all, is a thousand times<br />

older. From previous observations of its infrared spectrum<br />

and its millimeter emissions, scientists had deduced<br />

the presence of a large gap in the center of the star's<br />

protoplanetary disk.<br />

The new images were taken with the HiCIAO camera<br />

in the near-infrared (H band, that is, around a wavelength<br />

of 1.6 mm). The image processing used angular differential<br />

imaging (ADI). This technique exploits the fact that<br />

the field the telescope observes and the telescope’s pupil<br />

Fig. II.2.2: A reconstruction of the geometry of the disk around<br />

LkCa 15 (dashed blue lines) superimposed on the HiCIAO<br />

image. The bright arc represents light from the central star<br />

(LkCa 15) that reflects off the surface of the disk. This kind<br />

of light scattering is particularly effective at grazing angles,<br />

which is why most of the observed light comes from the near<br />

side of the disk.<br />

Credit: MPIA (C. Thalmann) & NAOJ<br />

27


28 II. Highlights<br />

rotate with respect to each other during the observation.<br />

By comparing different images taken during an observing<br />

run, this in<strong>for</strong>mation can be used to distinguish the<br />

star’s halo – stray light due to the star’s extreme brightness<br />

and its interaction with the telescope – from real<br />

on-sky sources as, <strong>for</strong> example, a disk surrounding a star.<br />

The images show starlight gleaming off the disk surface,<br />

clearly outlining the sharp edge of the gap <strong>for</strong> the<br />

first time. Most interestingly, the elliptical shape of the<br />

gap is not centered on the star, but appears lopsided.<br />

The most likely explanation <strong>for</strong> LkCa 15’s disk gap,<br />

and in particular its asymmetry, is that one or more<br />

planets, freshly born from the disk material, have swept<br />

up the gas and dust along their orbits. Intriguingly, the<br />

disk gap is sufficiently large to accommodate the orbits<br />

of all the planets in our own Solar System. It is there<strong>for</strong>e<br />

tempting to speculate that LkCa 15 might be in the process<br />

of <strong>for</strong>ming an entire planetary system much like our<br />

own. Further observation could soon detect those planets.<br />

A detailed view of AB Aurigae<br />

The second observation, led by Jun Hashimoto (National<br />

Observatory of Japan), targeted the Herbig AE star AB<br />

Aur in the constellation Auriga, at a distance of 470 lightyears<br />

from Earth. This star is even younger, with an age<br />

of a mere one million years.<br />

The observations, polarized intensity images at a nearinfrared<br />

wavelength of 1.6 mm, were the first to show<br />

details down to length scales comparable to the size of<br />

Disk wall is<br />

shadowed by<br />

inner disk<br />

Subaru images<br />

show light from<br />

the central star<br />

reflects off the<br />

disk surface<br />

Our entire Solar System<br />

would fit into the hole<br />

of the outer disk ...<br />

50 times the diameter<br />

of Earth‘s orbit<br />

Outer dust and gas disk<br />

our own solar system – <strong>for</strong> comparison: At a distance of<br />

470 light-years, the solar system has the same apparent<br />

size as a 1 Euro coin viewed at a distance of more than<br />

10 km. The disk has a radial distance from its mother star<br />

between 22 and 554 the mean Earth-Sun distance (22–<br />

554 AU). The observations show nested rings of material<br />

that are tilted with respect to the disk’s equatorial plane,<br />

and whose material, intriguingly, is not distributed symmetrically<br />

around the star – irregular features including a<br />

bumpy double ring and a ring-like gap, that indicate the<br />

presence of at least one very massive planet.<br />

HiCIAO and the SeedS project<br />

Both observations where made with the HiCIAO instrument<br />

at the 8.2 m SuBaru Telescope located at Mauna<br />

Kea at Hawaii. Imaging a disk or planet close to a star is<br />

an enormous challenge, as it is very difficult to discern<br />

the light emitted by those objects in the star’s intense<br />

glare. HiCIAO meets this challenge by correcting <strong>for</strong><br />

the distorting influence of the Earth’s atmosphere using<br />

Fig. II.2.3: Sketch of the three-dimensional shape of the protoplanetary<br />

disk around the star LkCa 15. Only the light reflected<br />

from the outer disk (shown in yellow) is seen on the HiCIAO<br />

images. The other structural features have been inferred from<br />

previous indirect observations of the system. The large gap between<br />

the inner and the outer disk has most likely been carved<br />

out by one or more newborn planets that orbit the star. The<br />

planets themselves have not been detected – yet.<br />

1 /6 times the diameter<br />

of Earth‘s orbit<br />

... and the inner disk<br />

would fit inside<br />

Mercury‘s orbit.<br />

Credit: MPIA (C. Thalmann) & NAOJ


Adaptive Optics, and by physically blocking out most of<br />

the star’s light using a coronagraph.<br />

The observations are part of the SeedS project, short<br />

<strong>for</strong> “Strategic Explorations of Exoplanets and Disks with<br />

SuBaru”: a five-year systematic search <strong>for</strong> exoplanets<br />

and protoplanetary disks using observations such as the<br />

ones described here, which are widely regarded as a key<br />

II.2 SuBaru observations of solar systems in the making 29<br />

Current Observation 1 144 AU Earlier Observation<br />

1 144 AU<br />

Fig. II.2.4: Recent near-infrared images of AB Aur taken by<br />

HiCIAO (top left), compared with an image taken in 2004 by<br />

its predecessor instrument CIAO (top right). The new images<br />

give a much more detailed view of the inner regions (bottom<br />

left; with explanations bottom right): Intricate bright and dark<br />

patterns indicate the presence of different rings of matter. The<br />

fact that their centers do not coincide with the position of the star<br />

and the other irregularities point to the existence of a massive giant<br />

planet which is sweeping up the material between the rings.<br />

Gap in the ring<br />

Inner ring<br />

1 144 AU<br />

Center of<br />

the outer ring<br />

Outer ring<br />

to understanding the <strong>for</strong>mation of protoplanetary systems.<br />

SeedS involves more than 100 researchers from<br />

25 astronomical institutions in Asia (NAOJ and others),<br />

Europe (MPIA and others), and the US (Princeton<br />

University and others).<br />

The scientific publications regarding the observations<br />

presented here are: C. Thalmann, et al. 2010,<br />

»Imaging of a Transitional Disk Gap in Reflected Light:<br />

Indications of Planet Formation Around the Young Solar<br />

Analog LkCa 15« in Astrophysical Journal Letters 718,<br />

p. L87-L91, and J. Hashimoto, et al. <strong>2011</strong>, “Direct<br />

Imaging of Fine Structures in Giant Planet-<strong>for</strong>ming<br />

Regions of the Protoplanetary Disk Around AB Aurigae”<br />

in Astrophysical Journal Letters 729, p. L17.<br />

Christian Thalmann, Miwa Goto, Thomas Henning,<br />

Wolfgang Brandner, Joseph Carson, Markus Feldt<br />

Credit: NaOJ/J. Hashimoto


30 II. Highlights<br />

II.3 In what Galaxies do Black Holes live in the Early Universe?<br />

Using state-of-the-art technology and sophisticated<br />

data analysis tools, a team from MPIA has developed a<br />

new and powerful technique to directly determine the<br />

mass of a galaxy hosting an active supermassive central<br />

black hole at a distance of nearly 9 billion light-years<br />

from Earth. This pioneering method promises a new<br />

approach <strong>for</strong> studying the co-evolution of galaxies and<br />

their central black holes, which typically relies on mass<br />

determinations.<br />

One of the most intriguing developments in astronomy<br />

over the last few decades is the realization that not only<br />

do most galaxies contain central black holes of gigantic<br />

size, but also that the mass of these central black holes<br />

are directly related to the mass of their host galaxies.<br />

These scaling relations with the black hole mass have<br />

been found to exist with the galaxy’s stellar or dynamical<br />

bulge mass, total luminosity and stellar velocity dispersion.<br />

It has recently been realized that these correlations<br />

are expected as a consequence of the current standard<br />

model of galaxy evolution, the so-called hierarchical<br />

model, as astronomers from MPIA have shown (Jahnke<br />

& Macciò <strong>2011</strong>, ApJ, 734, 92). In this standard model of<br />

galaxy <strong>for</strong>mation galaxies evolve and grow by ingesting<br />

smaller galaxies, or through mergers with galaxies of<br />

comparable size. As a a consequence of this hierarchical<br />

<strong>for</strong>mation, the individual relations between bulge and<br />

black hole mass are averaged out, creating a nearly universal<br />

ratio between the two properties in every galaxy.<br />

One of the most robust methods to study how galaxies<br />

and black holes evolve relative to each other is to trace<br />

these scaling relations through cosmic time. This can<br />

pixel<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

a<br />

–21.4<br />

log (F(Ha) / (W/m<br />

–21<br />

2 ))<br />

–20.6<br />

0.5<br />

10<br />

E<br />

20 30 40 50 60<br />

pixel<br />

N<br />

b<br />

0.5<br />

10<br />

L(Ha) [10 42 ]<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

–0.1<br />

620<br />

640 660 680 700 720<br />

Wavelength [nm]<br />

Fig. II.3.1: Spectrum around Hα <strong>for</strong> the quasar SDSS<br />

J090543.56+043347.3, centered on the active nucleus. From<br />

the combination of width (red arrow) and luminosity (integral<br />

above the zero level between the blue lines) of the Hα line<br />

the black hole mass can be inferred (Greene & Ho 2005,<br />

ApJ, 630, 122). The use of Hα <strong>for</strong> this purpose reduces the<br />

systematic uncertainties present in the prior estimates using<br />

the MgII line.<br />

Fig. II.3.2: SDSS J090543.56+043347.3: (a) Extracted emission<br />

line flux distribution, (b) Hα line width and (c) resulting<br />

velocity field, in all cases after removal of the bright nucleus,<br />

overlaid in contours.<br />

50<br />

Ha line width [km/s]<br />

110 170<br />

E<br />

20 30 40 50 60<br />

pixel<br />

N<br />

c<br />

V [km/s]<br />

–150 50<br />

0.5<br />

10<br />

E<br />

250<br />

20 30 40 50 60<br />

pixel<br />

N<br />

Credit: Katherine J. Inskip<br />

Credit: Katherine J. Inskip


pixel<br />

pixel<br />

60<br />

40<br />

20<br />

60<br />

40<br />

20<br />

0<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

a b c<br />

d e f<br />

g<br />

be done by measuring the black-hole-mass galaxy-mass<br />

correlation at different cosmic distances, corresponding<br />

to different look-back times. We hence need to be able<br />

to determine black hole and galaxy masses at high redshifts.<br />

II.3 In what Galaxies do Black Holes live in the Early Universe? 31<br />

20 40 60 20 40 60 20 40 60<br />

0 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60<br />

pixel<br />

Fig. II.3.3: The extracted Hα velocity field in Fig. II.3.2c is the<br />

basis <strong>for</strong> a detailed model of the velocity structure in the galaxy.<br />

We had to separate out the peculiar motion in the galaxy associated<br />

with the arms of the galaxy, possibly created by a recent<br />

interaction with another galaxy. Flux models had to be built <strong>for</strong><br />

the arm component (top row a–c) and the main galaxy (center<br />

–250<br />

h i<br />

V [km/s]<br />

50<br />

row d+e) <strong>for</strong> a full flux model (f). This was then used to create a<br />

realistic velocity model <strong>for</strong> the main galaxy component (bottom<br />

row). (g) shows the measured velocity field, (h) the model and<br />

(i) the residual velocities after the model has been subtracted.<br />

There are only very small velocity residuals left. The model can<br />

be directly converted into a dynamical mass value.<br />

For galaxies further away than 5 billion light-years<br />

(corresponding to a redshift of z 0.5), such studies<br />

face considerable difficulties. The only high redshift<br />

objects <strong>for</strong> which a galaxy’s central black hole mass can<br />

be measured are so called active galaxies or quasars.<br />

Credit: Katherine J. Inskip<br />

350


32 II. Highlights<br />

These are galaxies in the special phase during which<br />

their black holes grow by swallowing surrounding matter<br />

and in the process emit enormous amounts of electromagnetic<br />

radiation. Characteristic emission lines allow<br />

the measurement of the black hole mass using a standard<br />

method which relates the width of these emission lines to<br />

the mass of the central black hole (Fig.II.3.1).<br />

However, <strong>for</strong> these galaxies it is the galaxy’s mass<br />

itself that is the challenge: At such distances, standard<br />

methods of estimating a galaxy’s mass become exceedingly<br />

uncertain or fail altogether. Now we have<br />

<strong>for</strong> the first time succeeded in directly and simultaneously<br />

“weighing” both a galaxy and its central<br />

black hole at such a great distance using a sophisticated<br />

and novel method. The galaxy studied is SDSS<br />

J090543.56+043347.3, selected from the quasar sample<br />

of the Sloan Digital Sky Survey and lying at a redshift<br />

z 1.3, corresponding to a distance of 8.8 billion lightyears<br />

from us.<br />

The key idea behind dynamical galaxy masses is the<br />

following: Stars and gas in a galaxy orbit its centre. The<br />

different orbital speeds of the gas clouds are a direct function<br />

of the galaxy’s mass distribution. Determine orbital<br />

speeds and you can determine the galaxy’s total mass.<br />

This task was very challenging. Mainly, we had to overcome<br />

two problems: For one, at such a great distance, the<br />

angular size of SDSS J090543.56+043347.3 amounts to<br />

about one arc-second – the apparent size of an ordinary<br />

DVD viewed from a distance of 25 kilometres. In order<br />

to obtain the dynamical mass of the galaxy from the motion<br />

of the galaxy’s gas clouds at different regions across<br />

the galaxy had to be resolved. This was only possible using<br />

the unique combination of the SiNfONi integral field<br />

spectrograph at the Very Large Telescope (VLT) belonging<br />

to the European Southern Observatory (eSO) on Cerro<br />

Paranal in northern Chile. SiNfONi was coupled with an<br />

adaptive optics (AO) system with the ParSec laser guide<br />

star which was co-developed by MPIA, to strongly reduce<br />

the atmospheric distortion of celestial images. SiNfONi is<br />

able to produce a spectrum <strong>for</strong> each of 1600 pixels over a<br />

3 3 arc-second field while the AO system increased the<br />

spatial resolution from about 1 arc-second to the 0.35 arcseconds<br />

required <strong>for</strong> this project.<br />

The second difficulty is the fact that SDSS<br />

J090543.56+043347.3 is a quasar, whose central region<br />

emits intense light, several times brighter than the emission<br />

from the underlying galaxy – which poses an<br />

obvious problem. For the measurement of the gas velocity<br />

field, first the extremely intense nuclear light around<br />

the black hole had to be separated from the light emitted<br />

by the moving gas clouds in the rest of the galaxy. Only<br />

after this process, the analysis and modelling of the velocity<br />

structure of the galaxy can become possible, resulting<br />

in the derived dynamical mass inside the central<br />

5.25 1.05 kiloparsecs of the galaxy of MDYN 2.05 +1.68<br />

–0.74<br />

1011 solar masses. The data and analysis involved in<br />

this are shown in Figures II.3.2 and II.3.3.<br />

Combining this result with the mass value of the gal-<br />

axy’s central black hole of M BH,Hα 2.83 +1.93<br />

–1.13 10 8 solar<br />

masses, which we measured from the nuclear Hα<br />

line in the same dataset, we were able to compute the<br />

ratio of black hole to dynamical bulge mass of the galaxy.<br />

As it turns out, this value is nearly the same as that<br />

which would be expected <strong>for</strong> a present-day galaxy (Fig.<br />

II.3.4). Apparently, nothing major has changed between<br />

now and then: At least out to this distance, 9 billion<br />

years into the past, the correlation between galaxies<br />

and their black holes appears to be very close to<br />

their modern-day counterparts.<br />

When we estimate the expected star <strong>for</strong>mation and<br />

black hole growth in SDSS J090543.56+043347.3 we<br />

find that both black hole and stellar mass are not expected<br />

to grow by more than 50 % between z 1.3<br />

and today – apparently, over this long period of time<br />

stellar and black hole mass do not change very much.<br />

However, what will still happen is that the orbits of the<br />

stars in SDSS J090543.56+043347.3 will be reshuffled<br />

by collisions with smaller companion galaxies from orbits<br />

in the stellar disk to the stellar bulge. This is supported<br />

by the fact that we see indications <strong>for</strong> a substantial<br />

gaseous disk component in the galaxy but expect<br />

that by z 0 it will be largely a spheroidal galaxy without<br />

many disk stars.<br />

We have now started to expand this novel analysis<br />

to a larger set of 15 further galaxies using a total of 80<br />

hours of SiNfONi time; 30 hours of guaranteed time invested<br />

by MPIA have already been observed, 50 fur-<br />

Fig. II.3.4: Local z 0 scaling relations (symbols and regression<br />

line) <strong>for</strong> black hole vs. dynamical host galaxy mass (Häring<br />

& Rix 2004, ApJ, 604, L89 with modified values by Sani et<br />

al. <strong>2011</strong>, MNRAS, 413, 1479). Overplotted is our estimate of<br />

the dynamical galaxy mass of SDSS J090543.56+043347.3 vs.<br />

the black hole mass, once <strong>for</strong> an old literature value based on<br />

the MgII line (blue star) and vs. our new, improved black hole<br />

mass based on Ha. There is no discernable offset from the<br />

z 0 relation.<br />

Black Hole Mass [M ]<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

108 106 Credit: Katherine J. Inskip<br />

109 10 10 10<br />

Dynamical Bulge Mass [M ]<br />

11 1012 1013


ther hours were awarded in a general observing programme<br />

running until 2012. The total sample of 16 galaxies<br />

at redshifts z 1 to 2.3 will enable us to make<br />

statements about the relative evolution of galaxies and<br />

their central black holes. If our conclusions from SDSS<br />

J090543.56+043347.3 are confirmed then massive galaxies<br />

from these redshifts can change predominantly by<br />

a redistribution of mass and even undergo a structural<br />

change, but without much addition of matter to the black<br />

hole or overall stellar mass. Over the past 9 billion years<br />

– <strong>for</strong> more than half of the age of our Universe! – most<br />

II.3 In what Galaxies do Black Holes live in the Early Universe? 33<br />

of these galaxies would have lived comparatively boring<br />

lives, subject to only very limited and slow change (The<br />

original publication is K. J. Inskip, K. Jahnke, H.-W. Rix<br />

& G. van de Ven, <strong>2011</strong>, ApJ, 739, 90, “Resolving the<br />

Dynamical Mass of a z 1.3 Quasi-stellar Object Host<br />

Galaxy Using SiNfONi and Laser Guide Star Assisted<br />

Adaptive Optics”).<br />

Knud Jahnke, Katherine J. Inskip,<br />

Hans-Walter Rix and Glenn van de Ven


34 II. Highlights<br />

II.4 Starbursting Dwarf Galaxies at High Redshift<br />

Using the Hubble Space Telescope/Wide Field Camera<br />

3 a team of astronomers led by MPIA scientists uncovered<br />

a previously unknown population of dwarf galaxies<br />

at z ~ 2 displaying extraordinary star <strong>for</strong>mation activity.<br />

They are doubling their stellar masses in 10 million years,<br />

a pace that exceeds that of the Milky Way by three<br />

orders of magnitude.<br />

Until now, the <strong>for</strong>mation history of dwarf galaxies<br />

could only be studied through meticulously constructing<br />

color-magnitude diagrams of individual stars in<br />

nearby objects. Such case studies have been carried out<br />

<strong>for</strong> the past two decades and it is by now clear that the<br />

majority of stars living in present-day dwarf galaxies<br />

are old. In essence, the star <strong>for</strong>mation history of dwarf<br />

galaxies does not appear to be markedly different from<br />

that of the universe as a whole: all galaxies, including<br />

dwarf galaxies, were <strong>for</strong>ming stars at higher rates in the<br />

more distant past.<br />

Observing high-redshift galaxies is the commonly<br />

adopted strategy to examine the galaxy <strong>for</strong>mation process<br />

in more detail and also in a more direct manner.<br />

This has been done successfully <strong>for</strong> quite some time<br />

now, but results have been limited almost exclusively<br />

to massive, luminous galaxies. Dwarf galaxies are,<br />

usually, too faint to detect at any interestingly high<br />

redshift<br />

CandelS: an eye opener<br />

This was suddenly changed by the unexpected discovery<br />

of an unusual yet apparently quite common type<br />

of object in new deep observations with the HuBBle<br />

Space Telescope (HST). These observations were part<br />

of the largest HST survey ever undertaken: CaNdelS<br />

(Fig.II.4.1). This international project aims at obtaining<br />

optical and near- infrared images over ‘large’ parts<br />

of the sky (about 700 square arcminutes) at exquisite<br />

depth (27.5 AB mag). The combination of depth, area,<br />

spatial resolution and wavelength coverage make<br />

this a gold mine <strong>for</strong> examining the origin of galaxy<br />

structure and morphology (the HuBBle sequence), the<br />

defining properties of the first galaxies that <strong>for</strong>med during<br />

(and presumably caused) reionization, and putting<br />

stronger constraints on the dynamical state of the universe<br />

through the discovery of Type 1a supernova at<br />

even larger cosmological distances than be<strong>for</strong>e.<br />

This dramatic expansion of discovery space has immediately<br />

resulted in a number of interesting results, the<br />

most unexpected revelation being the topic of this article.<br />

Among the tens of thousands of high-redshift gal-<br />

axies in the currently available images – the survey is<br />

about 50 % complete at the time of writing, and will be<br />

finished in 2013 – we noticed a number of H 25 AB<br />

mag objects with very strange colors (Fig. II.4.1 and 2).<br />

Whereas they are red in I – J ( 0.5 in AB mag, which<br />

is typical <strong>for</strong> a distant galaxy) they are extremely blue<br />

in J – H ( 0.5).<br />

Extreme Emission Lines<br />

Such extreme variations in the spectral energy distribution<br />

cannot be explained by any known continuum radiation<br />

processes, and we arrived at the conclusion that<br />

enormously strong emission lines must contribute considerably<br />

to the integrated light in the J band. The implication<br />

is that the equivalent width of this line (or lines<br />

combined) exceeds 1000 Å, which is unusual indeed.<br />

Spectroscopic confirmation is, of course, essential to<br />

justify such an extraordinary claim. Usually, 25 th magnitude<br />

objects are far too faint to obtain spectra <strong>for</strong>,<br />

but in the purported presence of bright emission lines<br />

(flux 10 –16 erg s -1 cm -2 ) this should, in fact, be quite<br />

straight<strong>for</strong>ward. By chance, HST had already taken<br />

spectra <strong>for</strong> four of the 69 ‘extreme emission line galaxy’<br />

candidates, and all four candidates display bright<br />

emission lines at 1.3 – 1.4 μm (Fig. II.4.3). Moreover,<br />

the line fluxes are consistent with the excess light observed<br />

in the J band: emission lines explain the odd<br />

broad-band colors.<br />

Interestingly, in all four cases the bright emission<br />

lines could readily be identified as the [OIII] doublet<br />

at restframe wavelengths λ 4969 Å and λ 5007 Å,<br />

flanked by Hb at 4861 Å. This puts these objects in the<br />

redshift range z 1.6 – 1.8, and from now on the working<br />

hypothesis will be that all 69 candidates we identified<br />

are in fact [OIII] emitters at z 1.7. However, we<br />

should keep in mind that some of the candidates may be<br />

Hα emitters at z 1, whereas other emission lines can<br />

be ruled out based on additional broad-band photometry<br />

at shorter wavelengths: none of the objects are so-called<br />

U or B-band dropouts, meaning that the Lyman break<br />

lies blueward of the U and B bands, limiting the redshift<br />

to z 2. This rules out the other potentially very bright<br />

Ly α and [OII] emission lines.<br />

In short, we have made a very strong case that we<br />

have identified a previously unknown population of<br />

z 1 – 2 objects with extremely bright [OIII] (or Hα)<br />

emission lines. The question naturally arises what could<br />

cause emission lines with equivalent widths in excess of<br />

500 Å in the rest frame. The two options are starbursts<br />

and active nuclei, that is, accreting black holes.


1<br />

Surprisingly Large Numbers of Young Stars in Surprisingly<br />

Small Galaxies<br />

7<br />

While we cannot completely rule out that active galactic<br />

nuclei are responsible, it would be strange indeed to<br />

have such massive black holes in such small galaxies.<br />

This would require an accretion mode that is so far unknown<br />

and does not occur in the present-day universe.<br />

It is also entirely unclear what the descendants of such<br />

objects would be. In this sense, the starburst hypoth-<br />

8<br />

2<br />

13<br />

14<br />

3<br />

1 2 3 4 5 6<br />

7 8 9 10 11 12<br />

13 14 15 16 17 18<br />

9<br />

15<br />

4<br />

10<br />

II.4 Starbursting Dwarf Galaxies at High Redshift 35<br />

16<br />

Fig. II.4.1: The large false-color image shows an area of about<br />

79 109 observed with HST/WFC3 and HST/ACS. The circles<br />

indicate the locations of 18 of the emission line dominated<br />

objects. The panels (30 30 each) zoom in on these objects.<br />

esis is less outlandish: interpreting the observations as<br />

such puts, as we will see, these objects in the realm of<br />

dwarf galaxies in terms of their stellar mass and number<br />

density.<br />

5<br />

11<br />

17<br />

12<br />

18<br />

6<br />

Credit: NaSa, eSa, A. van der Wel (MPIA), H. Ferguson, A.Koekemoer ( STScI), CaNdelS team


36 II. Highlights<br />

Credit: A. van der Wel<br />

I F814W – J F125W [mag]<br />

1.5<br />

1<br />

0.5<br />

0<br />

–0.5<br />

E(B–V) = 0,3<br />

continuum<br />

emission line<br />

–1.5<br />

Even when adopting the starburst hypothesis, it is<br />

immediately clear that these objects are all but normal.<br />

The only way to get such large line-to-continuum<br />

Flux ratios is to have a stellar population with an age<br />

of about 10 Myr. Usually, galaxy ages are measured in<br />

Gyrs, not Myrs. Given this age constraint, the luminosities<br />

imply stellar masses of around 10 8 M . Although it<br />

is plausible that an older population of stars exists we<br />

can rule out that these starbursts occur in much large,<br />

say, Milky Way type, galaxies. Rather, these must be<br />

truly low-mass galaxies, such that this population constitutes<br />

the first systematic detection of dwarf galaxies<br />

at high redshift.<br />

Cosmological Context<br />

–1 –0.5<br />

JF125W – HF160W [mag]<br />

100 Myr<br />

continuum 1 Myr<br />

Let us now consider the broader implications of the<br />

presence of 69 starbursting dwarf galaxies at z 1.7<br />

in CaNdelS. To be somewhat more precise, assuming<br />

a redshift range of z 1.6 – 1.8, their volume density<br />

is 4 10 –4 Mpc –3 . This makes them about 100 times<br />

rarer than present-day dwarf galaxies and they constitute<br />

only 0.1 % of the 10 Myr young stellar populations<br />

at that redshift if we consider galaxies of all<br />

masses.<br />

While this may sound unimpressive it does not<br />

make these starbursts cosmologically irrelevant once<br />

we realize that they are very short-duration events: <strong>for</strong><br />

every objects we see, there must be numerous similarly<br />

massive objects that are not undergoing such an intense<br />

burst of star <strong>for</strong>mation at the time of observation but<br />

have had or will have one at some other time.<br />

Let us <strong>for</strong>malize this argument and make two reasonable<br />

assumptions. The first assumption is that the<br />

observed bursts do not only occur at at z 1.7 but at<br />

0<br />

Fig. II.4.2: I – J vs. J–H color-color diagram of objects in<br />

CaNdelS, highlighting with large red symbols with error bars<br />

those objects selected as extreme emission line galaxy candidates.<br />

They mainly differ from the main branch of galaxy<br />

colors by their blue J–H colors. The blue line indicates the<br />

colors of the continuum radiation produced by a young population<br />

of stars (the ages are labeled). The red line includes the<br />

effect of a strong emission line on the colors. The selected<br />

objects have colors indicative of strong emission line contributions<br />

in the J filter.<br />

all redshifts z 1 – 4, a period of roughly 4 Gyr. We<br />

know that similarly strong bursts are exceedingly rare<br />

at z 1 but there is no reason to think that they do not<br />

occur over a much broader redshift range. With upcoming<br />

spectroscopic data from HST this assumption can be<br />

tested easily.<br />

The second assumption is that between z 1.7 and<br />

the present day these galaxies will not grow by an order<br />

of magnitude or more. That is, we will rely on the<br />

prediction of ΛCDM-based galaxy <strong>for</strong>mation models<br />

that galaxies typically grow by a factor of several over<br />

that time span. That is, the descendants of the observed<br />

bursting galaxies at z 1.7 are dwarf galaxies with<br />

masses 10 9 M . This assumption is more difficult to test,<br />

and all we can do now is rely on this model prediction.<br />

By integrating the observed burst frequency at<br />

z 1.7 over 4 Gyr (z 1 – 4) we can derive the total<br />

number of bursts per unit cosmic volume as well as the<br />

total number of stars <strong>for</strong>med in this manner. By comparing<br />

the total number of bursts with the total number of<br />

dwarf galaxies in the present-day universe, it then follows<br />

that each present-day dwarf galaxy must have undergone<br />

two or three of such strong bursts over its life<br />

time, and, moreover, that the majority of the stars in<br />

present-day dwarf galaxies <strong>for</strong>med in these bursts. In<br />

other words, we propose that the star <strong>for</strong>mation history<br />

of dwarf galaxies has been strongly burst-like: long periods<br />

of relative inactivity are interspersed with a small<br />

number of very strong bursts, mostly occurring at early<br />

times (z 1).<br />

Unsolved Riddles and Future Directions<br />

The observations and our interpretation present a host<br />

of new questions, as well as speculation on the effect of<br />

such strong bursts on the galaxies and the dark matter<br />

halos that host them. First, hydrodynamical simulations<br />

cannot reproduce such strong bursts in such low-mass<br />

galaxies. It appears that something fundamental is lacking<br />

in our description of galaxy <strong>for</strong>mation. Their mere<br />

existence implies the presence of large reservoirs of gas,<br />

and it is entirely unclear how to prevent this gas reservoir<br />

from <strong>for</strong>ming stars be<strong>for</strong>e the burst commences, or,<br />

alternatively, how to assemble a large amount of gas on<br />

a very short time scale.


F l [10 –21 W m –2 nm –1 ]<br />

15<br />

10<br />

5<br />

0<br />

10<br />

5<br />

0<br />

5<br />

0<br />

10<br />

5<br />

0<br />

1.25<br />

GSD18 z 1.742<br />

Hb [OIII] [OIII]<br />

UDS2 z 1.784<br />

UDS5<br />

Another fascinating aspect of the bursts is the enormous<br />

amount of energy, produced by stellar winds and<br />

supernovae, that is injected into the interstellar medium.<br />

All still-present gas must be in the process of being<br />

blown out of the star-<strong>for</strong>ming regions at a high rate,<br />

changing the very gravitational potential of the galaxy<br />

as whole. The consequences of this should be quite profound.<br />

The dark matter profiles may be altered in the<br />

sense that dark matter is removed from the center, producing<br />

so-called cored density profiles which are observed<br />

in low-mass galaxies in the vicinity of the Milky<br />

II.4 Starbursting Dwarf Galaxies at High Redshift 37<br />

z 1.688<br />

UDS6 z 1.659<br />

Fig. II.4.3: HST/WFC3 grism spectra of four extreme emission<br />

line galaxy candidates. In all cases, a strong emission is seen<br />

at around 1.35 μm, implying redshifts z 1.7. The lines are<br />

readily identified as [OIII] by virtue of their asymmetry (the<br />

[OIII] line is a doublet that is marginally resolved at the low<br />

resolution of the grism, R 100) and the presence of faint Hb<br />

emission at the expected wavelength.<br />

1.3<br />

Way galaxy. It has long been argued that starbursts could<br />

provide the necessary feedback to alleviate the tension<br />

between observed rotation curves of dwarf galaxies and<br />

the strongly cuspy density profiles predicted by cosmological<br />

N-body simulations. The fact that we are now<br />

observing strong bursts in low-mass systems lends much<br />

credibility to this picture, especially because the bursts<br />

are all but rare.<br />

An even more dramatic effect of the rapid outflow of<br />

large amounts of gas may be that the stellar body itself<br />

could become unbound. Such a process would obviously<br />

thwart our interpretation of dwarf galaxy <strong>for</strong>mation: it<br />

suggests that the observed bursts do not have presentday<br />

descendants in the <strong>for</strong>m of galaxies at all.<br />

In summary, the newly discovered star bursts in distant<br />

dwarf galaxies are surprising in a number of ways,<br />

mostly because the level of star <strong>for</strong>mation is extremely<br />

high <strong>for</strong> the galaxies' small masses. This provides<br />

a strong indication of how low-mass galaxies <strong>for</strong>m,<br />

Credit: Arjen van der Wel<br />

1.35<br />

l [mm]<br />

1.4 1.45


38 II. Highlights<br />

and may solve a long-standing problem in cosmology,<br />

that of the shallow central slopes of low-mass dark halos.<br />

Furthermore, many questions are raised that warrant<br />

further investigations. We will search <strong>for</strong> similar<br />

objects over a broader redshift range to find out how<br />

their frequency evolves with cosmic time, search <strong>for</strong><br />

less extreme counterparts to sample different evolutionary<br />

stages of similar objects, and examine through highresolution<br />

spectroscopy the metal content, dynamical<br />

masses, and ionization parameters of the most extreme<br />

bursts. What is perhaps most important is that we suddenly<br />

have a way to study dwarf galaxies at large cosmological<br />

look-back times. This new avenue will prove<br />

to be a valuable complement to the detailed studies that<br />

unravel the inner workings of nearby, present-day dwarf<br />

galaxies.<br />

Arjen van der Wel, Hans Walter Rix<br />

& the Candels team


III. Selected Research Areas<br />

III.1 Planetary population synthesis<br />

Planetary population synthesis is a new method that<br />

allows us to improve our understanding of planet <strong>for</strong>mation<br />

and evolution by using statistical observational<br />

constraints provided by the extrasolar planets. They are<br />

now known in a sufficiently high number to treat them<br />

no more just as single objects, but also as a population<br />

characterized by a number of statistical distributions.<br />

With planetary population synthesis, the global effects<br />

of many different physical mechanisms occurring during<br />

planet <strong>for</strong>mation and evolution can be put to the observational<br />

test.<br />

Introduction<br />

The number of known extrasolar planets has increased<br />

very rapidly in the last few years. Currently, there are<br />

several hundred confirmed exoplanets known, which<br />

were mostly found by the spectroscopic radial velocity<br />

technique. Additionally, there are more than two thousand<br />

candidates from the Kepler satellite which were detected<br />

with extremely precise photometric transit measurements.<br />

These detections have revealed an exiting diversity in<br />

the properties of planetary companions, which was not<br />

expected from the structure of our own planetary system,<br />

the Solar System. The detections have however not<br />

only revealed diversity, but also a number of interesting<br />

correlations and structures in the properties of the planets.<br />

These insights were in particular possible thanks to<br />

the large number of planets now known. This allows<br />

<strong>for</strong> the first time to look at the (extrasolar) planets no<br />

more as single objects only but as a population that<br />

is characterized by a number of statistical properties.<br />

Understanding these statistical properties from the point<br />

of view of planet <strong>for</strong>mation theory is one of the most important<br />

goals of planetary population synthesis.<br />

The special interest in a statistical, population wide<br />

approach also comes from the fact that the knowledge<br />

about a single planet is often limited. For the majority of<br />

the extrasolar planets, still only a few orbital elements<br />

(semimajor axis, eccentricity,…) and a minimum mass<br />

are known (or a radius, but no mass in the case of the<br />

Kepler candidates). For a limited number of planets,<br />

which are typically planets around bright stars <strong>for</strong> which<br />

both the mass and the radius are known, more observational<br />

constraints can be derived like the mean density or<br />

the atmospheric structure, so that they are investigated<br />

in details. Also the Solar System provides a large body<br />

of precise observational constraints against which planet<br />

<strong>for</strong>mation models must be tested. In order to benefit also<br />

from the large number, but individually limited data sets,<br />

statistical methods are necessary. This is important since<br />

several future surveys like the Gaia space mission or the<br />

Sphere survey with the VLT will yield additional, similar<br />

statistical data sets <strong>for</strong> comparisons.<br />

The fundamental assumption behind planetary population<br />

synthesis is that the observed statistical properties<br />

(like the distribution of the planetary masses or semimajor<br />

axes) can be explained by studying the physical<br />

processes like the accretion of gas and solids occurring<br />

during the <strong>for</strong>mation phase of the planets, given the initial<br />

conditions. These conditions <strong>for</strong> the planet <strong>for</strong>mation<br />

process are the properties of the protoplanetary<br />

disk which are seen to surround most newly born stars.<br />

Observations of such circumstellar disks show that they<br />

come, as planets, with a variety of properties in terms of<br />

e.g. their mass or lifetime. For an individual planetary<br />

system, the properties of the protoplanetary disk from<br />

which it <strong>for</strong>med are mostly unknown, except maybe <strong>for</strong><br />

the dust-to-gas ratio in the disk, which is likely correlated<br />

with the stellar metallicity that can be measured spectroscopically<br />

today. This means that the initial conditions<br />

are also only known in a statistical sense, which again<br />

makes a statistical approach appropriate.<br />

Observational constraints<br />

Fig. III.1.1 shows two of the most important statistical<br />

observational constraints. Explaining the structures seen<br />

in the two plots is one of the declared goals of planetary<br />

population synthesis. The left panels shows the (minimum)<br />

mass M versus the semimajor axis a of the exoplanets<br />

together with the planets of the Solar System.<br />

The extreme diversity, but also the existence of certain<br />

structures in the a – M diagram is obvious. For exoplanets,<br />

the mass-distance diagram has become a representation<br />

of similar importance as the Hertzsprung-<br />

Russell diagram <strong>for</strong> stellar astrophysics. In the plot, one<br />

can distinguish several groups of planets. There are <strong>for</strong><br />

example massive, close-in planets without equivalent in<br />

the Solar System. Such hot Jupiters are found around approximately<br />

1 % of solar like stars (Mayor et al. <strong>2011</strong>).<br />

A class of extrasolar planets that has only been detected<br />

in the last few years thanks to the progress in the observational<br />

precision are low-mass planets with masses<br />

between 1 to 30 Earth masses. These super-Earths and<br />

mini-Neptunes seem to be very abundant, since roughly<br />

48 % of FGK stars are found to have such a companion<br />

with a period of up to 100 days (Mayor et al. <strong>2011</strong>).<br />

39


40 III. Selected Research Areas<br />

Mass [M Earth ]<br />

10 4<br />

10 3<br />

10 2<br />

Jupiter<br />

Saturn<br />

Neptune<br />

Uranus<br />

Earth<br />

Venus<br />

Radial velocity<br />

& Transits<br />

Microlensing<br />

Direct imaging<br />

10 –2 10<br />

10<br />

1<br />

5<br />

0<br />

0,1 1<br />

10 102 1 10 102 10<br />

Semimajor axis [AU] Mass [MEarth ]<br />

3 104 jovian<br />

Jupiter<br />

Uranus<br />

Saturn<br />

Venus<br />

Earth<br />

Neptune<br />

ice<br />

rocky<br />

Fig. III.1.1: Two of the most important statistical observational<br />

constraints <strong>for</strong> planet <strong>for</strong>mation theory. The left panel shows the<br />

semimajor axis – mass diagram of the extrasolar planets. The<br />

different colors indicate the observational detection technique.<br />

The right panel shows the observed mass-radius relationship<br />

of the extrasolar planets (red points), together with theoretical<br />

Since hot Jupiters are much more easily detected by<br />

both the radial velocity and the transit method relative<br />

to low-mass (respectively small) planets, their number is<br />

still lower in Fig. III.1.1, which is not corrected <strong>for</strong> the<br />

observational biases. Two statistical distributions which<br />

are linked to the a – M diagram are the semimajor axis<br />

distribution and the planetary mass function, which is<br />

studied below.<br />

The right panel shows the radius of the extrasolar<br />

planets and the planets of the Solar System as a function<br />

of mass. The most recent breakthrough in the observation<br />

of exoplanets is that it has become possible to not<br />

only detect exoplanets, but also to start characterizing<br />

them. In this context, the planetary mass-radius diagram<br />

is probably the most central representation. The importance<br />

of the M– R plot stems from its in<strong>for</strong>mation content<br />

about the inner bulk composition of planets which<br />

is the first, very basic geophysical characterization of a<br />

planet. In the Solar System, we have three fundamental<br />

types of planets, namely terrestrial, gas giant and ice giant<br />

planets. The imprint of the bulk composition on the<br />

radius is indicated by theoretical lines. Two lines show<br />

the theoretical mass-radius relationship <strong>for</strong> solid planets<br />

made of silicates and iron, and of water, while the third<br />

line shows the M – R <strong>for</strong> giant planets consisting mostly<br />

of H/He. Being able to understand and reproduce in<br />

a model this second fundamental figure is another goal<br />

of planetary population synthesis. The reason <strong>for</strong> the importance<br />

<strong>for</strong> <strong>for</strong>mation theory stems from the fact that it<br />

contains additional constraints on the <strong>for</strong>mation process,<br />

which we cannot derive from the mass-distance diagram<br />

Radius [R Earth ]<br />

20<br />

15<br />

mass-radius lines <strong>for</strong> planets of different compositions. In both<br />

panels, the planets of the Solar System are also shown. Note<br />

that these figures are not corrected <strong>for</strong> the various observational<br />

biases, which favor <strong>for</strong> the radial velocity and the transit technique<br />

the detection of close-in, giant planets.<br />

alone. An example are the observational constraints<br />

coming from the M – R diagram on the extent of orbital<br />

migration. Efficient inward migration brings ice-dominated,<br />

low-density planets from the outer parts of the<br />

disk close to the star. These planets can be distinguished<br />

from planets consisting only of silicates and iron, which<br />

have presumably <strong>for</strong>med in situ in the inner, hotter parts<br />

of the disk. In future, the atmospheric composition of<br />

exoplanets as measured by, e.g., the planned EChO mission<br />

will provide additional, important constraints.<br />

Another important goal of population synthesis that<br />

goes beyond the purely planetary properties is to understand<br />

the correlations between planetary and host star<br />

properties.<br />

Population synthesis method<br />

The general framework <strong>for</strong> population synthesis calculations<br />

is shown in Fig. III.1.2. With this framework,<br />

theoretical <strong>for</strong>mation models can be tested how far<br />

they can reproduce the statistical properties of the entire<br />

known population. The most important ingredient is<br />

the planet <strong>for</strong>mation and evolution model which establishes<br />

the link between disk and planetary properties. It<br />

will be addressed below. The second central ingredients<br />

are sets of initial conditions. These sets are drawn in a<br />

Monte Carlo way from probability distributions. These<br />

probability distributions represent the different properties<br />

of protoplanetary disks and are derived as closely<br />

as possible from observational results regarding the<br />

Credit: C. Mordasini


Planet <strong>for</strong>mation & evolution model<br />

Link disk properties ⇒ planet properties<br />

Number<br />

600<br />

400<br />

200<br />

0<br />

1995<br />

2000 2005 2010<br />

Observerd Population<br />

No match: improve,<br />

change parameters<br />

Fig. III.1.2: Flowchart of the population synthesis method.<br />

disk. At least three different fundamental properties are<br />

considered: The mass of gas in the disk, the a<strong>for</strong>ementioned<br />

dust-to-gas ratio, and the lifetime of the disk.<br />

Additionally properties can be the outer disk radius or<br />

the initial radial slope of the solid surface density.<br />

For a given set of initial condition, the <strong>for</strong>mation<br />

model is used to calculate the final outcome, i.e. the<br />

planetary system. This step is repeated many times (typically<br />

10 000 times), leading to a population of synthetic<br />

planets. Many of these synthetic planets could not<br />

be detected by current observational techniques <strong>for</strong> example<br />

because their mass is too small (cf. Fig. III.1.1).<br />

In order to make quantitative comparisons with the observations,<br />

one must there<strong>for</strong>e apply in the next step<br />

a synthetic observational bias. This leads to the subpopulation<br />

of detectable synthetic planets. This group<br />

is then compared in the following step with a comparison<br />

sample of actual exoplanets. Depending on the observational<br />

technique, different biases will be used. It<br />

is clear that the selection bias of a given observational<br />

survey should be known as well as possible <strong>for</strong> this<br />

step. This makes that large, well characterized surveys<br />

like e.g. the Kepler mission are of particular interest.<br />

For the comparison in the next step, various statistical<br />

methods can be used, like <strong>for</strong> example two-dimensional<br />

Komogoroff-Smirnofftests in the a – M plane. This tests<br />

whether the actual and the synthetic planets are distributed<br />

in a similar way. Other quantities that are tested<br />

are the detection frequency, or the radius distribution. It<br />

Draw and compute<br />

synthetic planet population<br />

Apply observational<br />

detection bias<br />

Comparison:<br />

Observable sub-population<br />

• Distribution of semi-major axis<br />

• Distribution of masses<br />

• Fraction of hot/cold Jupiters<br />

• Distribution of radii<br />

Initial Conditions: Probability distributions<br />

Disk gas mass<br />

Disk dust mass<br />

Disk lifetime<br />

III.1 Planetary population synthesis 41<br />

Match<br />

From observations of<br />

protoplanetary disk<br />

Predictions<br />

(going back to the full<br />

synthetic population)<br />

Model<br />

solution<br />

found<br />

can further be studied if correlations exist between the<br />

initial conditions, and the planet properties, and if similar<br />

correlation exist in reality. The most important observed<br />

correlation is the one between the stellar metallicity,<br />

and the frequency of giant planets. Giant planets<br />

are much more frequent around high metallicity stars, a<br />

correlation that can be reproduced with <strong>for</strong>mation models<br />

based on the core-accretion theory.<br />

Depending on the results of this procedure, one can<br />

judge if the <strong>for</strong>mation model is able to reproduce certain<br />

observed properties, and thus probably catches<br />

some important mechanisms of planet <strong>for</strong>mation. In<br />

the ideal case, one single population should be able to<br />

reproduce all observational constraints coming from<br />

many different techniques (radial velocity, transits, direct<br />

imaging and microlensing). In reality, there will be<br />

differences between the model output and the observations.<br />

The reason <strong>for</strong> these differences are then be analyzed,<br />

so that various physical descriptions of the mechanism<br />

occurring during planet <strong>for</strong>mation and evolution<br />

can be tested. This can have the consequence that given<br />

physical mechanisms must be added to the theoretical<br />

model, or modified, or dropped as being inconsistent<br />

with observations. This is the fundamental mechanism<br />

by which planet population improves our understanding<br />

of planet <strong>for</strong>mation and evolution.<br />

In the case of a relatively good agreement between<br />

theory and observation, one can go back to the full underlying<br />

synthetic population and make predictions<br />

about planets or planetary properties that currently cannot<br />

be observed, like low-mass planets, or the internal<br />

composition. The capacity of population synthesis to al-<br />

Credit: C. Mordasini


42 III. Selected Research Areas<br />

low <strong>for</strong> direct falsifiability with future observations is a<br />

strength of the method. Besides that, the predictions are<br />

also useful to estimate the yield of future instruments<br />

and surveys.<br />

Planet <strong>for</strong>mation models<br />

On the observational side, usually only the initial conditions<br />

(the protoplanetary disks) and the final outcomes<br />

(the planets) are accessible to observations. With theoretical<br />

<strong>for</strong>mation models, it is possible to bridge this gap<br />

at least on the theoretical side. The global, numerical<br />

models of planet <strong>for</strong>mation used in population synthesis<br />

calculations try to cover the largest possible extent<br />

of important mechanisms. The various mechanisms like<br />

accretion or migration must be treated in an interlinked<br />

way, since they happen on similar timescales and feed<br />

back on each other. Ideally, the models would start with<br />

a protoplanetary disk at a very early stage when the<br />

solids are in the <strong>for</strong>m of micrometer-sized dust grains,<br />

and yield as an output full-blown planetary systems at<br />

an age of several billions of years. This means that also<br />

the evolution of the planets over long timescales must<br />

be modeled, since we essentially observe planets a long<br />

time after they have <strong>for</strong>med. It is clear that these glob-<br />

Fig. III.1.3: Theoretical planetary <strong>for</strong>mation tracks which show<br />

how planetary seeds (initial mass 0.6 Earth masses) concurrently<br />

grow and migrate. The colors indicate the different types<br />

of orbital migration. The position of the planet at the moment<br />

Mass [M Earth ]<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

1<br />

0,1 1<br />

Semimajor axis [AU]<br />

al models of planet <strong>for</strong>mation and evolution involve<br />

important simplifications of the actual processes, and<br />

cannot describe all physical effects at the same level<br />

of detail as models dedicated to one single process. On<br />

the other hand, only combined models allow to see the<br />

interaction between different processes, and only they<br />

allow <strong>for</strong> direct comparisons with many observational<br />

constraints.<br />

The global planet <strong>for</strong>mation and evolution models<br />

used in population synthesis calculations are based on<br />

the so called core-accretion paradigm which states that<br />

first, solid cores are <strong>for</strong>med, some of which later accrete<br />

massive gaseous envelopes to become giant planets<br />

(bottom-up process), while the remaining cores collide<br />

to <strong>for</strong>m both ice giants and terrestrial planets. The<br />

models address the following processes in a number of<br />

coupled computational modules:<br />

1. A structure and evolution model <strong>for</strong> a gaseous protoplanetary<br />

disk. The gaseous disk model yields the<br />

ambient properties in which the planets <strong>for</strong>m. The<br />

ambient pressure and temperature serve as outer<br />

boundary conditions <strong>for</strong> the calculation of the structure<br />

of the gaseous envelope of the planets. The<br />

structure of the disk is also very important <strong>for</strong> the<br />

orbital migration of the protoplanets, since the di-<br />

in time that is shown (4.9 Myrs) is indicated by black symbols.<br />

Some planets have reached the inner border of the computational<br />

domain at 0.1 AU.<br />

10<br />

t 4.9 Myr<br />

Credit: C. Mordasini


ection and migration rate depends on the radial<br />

slopes of the temperature and the gas surface density.<br />

A good compromise <strong>for</strong> the numerical description<br />

of the disks (which are in reality very complex,<br />

3D-structures driven by magneto-hydrodynamical<br />

processes) is provided by α-models, which describe<br />

the disk as a rotating, viscous fluid which has an axisymmetric<br />

structure.<br />

2. A structure and evolution model <strong>for</strong> disk of solids.<br />

This model yields the size, dynamical state and surface<br />

density of the solid content of the disk. The<br />

solids are initially in the <strong>for</strong>m of dust. This dust<br />

can grow in mass to <strong>for</strong>m kilometer-sized planetesimals,<br />

but also get destroyed again in collisions.<br />

Additionally, they drift through the disk. These quantities<br />

are used to calculate the accretion rate of solids<br />

of the <strong>for</strong>ming protoplanets.<br />

3. An internal structure and evolution model of the<br />

planet. This model calculates the internal, 1-D radial<br />

structure of the interior of the planet. Both the solid<br />

part and the gaseous envelope of the planet are considered.<br />

The solid core is assumed to be differentiated<br />

and consist of layers of iron, silicates, and if the<br />

planet accreted outside of the snow-line, ices. For the<br />

gaseous envelope, only primordial H/He envelopes<br />

have been considered to date. During the <strong>for</strong>mation<br />

phase, the model calculates the amount of gas a core<br />

can bind gravitationally. Low mass cores can only<br />

bind tenuous atmospheres, while cores more massive<br />

than roughly 10 Earth masses can trigger rapid,<br />

runaway gas accretion, so that a giant planet <strong>for</strong>ms.<br />

After the <strong>for</strong>mation phase, at constant mass, the temporal<br />

evolution i.e. the contraction and cooling is calculated,<br />

which yield radius and intrinsic luminosity<br />

of a planet.<br />

4. The last module addresses the various interactions<br />

occurring during the <strong>for</strong>mation process. These interaction<br />

and feedbacks are in large parts responsible<br />

<strong>for</strong> the complexity of the planet <strong>for</strong>mation process.<br />

Various interactions have to be modeled:<br />

a) the interaction of the planet and the disk of solids<br />

(planetesimals). The growing protoplanets not<br />

only accrete planetesimals, but also influence their<br />

dynamical state in terms of eccentricity and inclinations.<br />

b) the interaction of the planets and the gaseous disk.<br />

Due to gravitational interactions, the gaseous disk exerts<br />

torques onto the planets, which causes them to<br />

undergo radial migration. This orbital migration is<br />

important in shaping the architectures of planetary<br />

systems.<br />

c) the interaction of the solid and the gaseous disk.<br />

The drag felt by planetesimals causes the smaller bodies<br />

to drift inwards. The temperature structure of the<br />

gaseous disk also determines where in the disk which<br />

solids can condensate, which in the end influences the<br />

composition of the planets.<br />

III.1 Planetary population synthesis 43<br />

d) the interaction among planets. When several protoplanets<br />

<strong>for</strong>m in vicinity, they influence each other via<br />

gravitational interactions. This can pump the eccentricity,<br />

lead to scattering events and even ejections of<br />

planets out of a planetary system. Migrating planets<br />

can get caught into mean-motion resonances, which<br />

can <strong>for</strong> example cause the outward migration of giant<br />

planets.<br />

e) the interaction between the planets and the star.<br />

Planets at small orbital distances are subject to intense<br />

stellar irradiation. This irradiation modifies the internal<br />

structure of the planets, which affects their evolution.<br />

The intense irradiation can also cause planets to<br />

loose parts of their gaseous envelope.<br />

f) the interaction between the star and the gaseous<br />

disk. The temperature structure of the gaseous disk is<br />

strongly influenced by the stellar radiation. The hard<br />

radiation by the star drives the internal photoevaporation<br />

of the disk, which is important <strong>for</strong> the lifetime of<br />

the disks. Close to the star, the magnetic field of the<br />

star can lead to the <strong>for</strong>mation of a magnetospheric<br />

cavity, which can halt migrating planets.<br />

For the different processes, already relatively well established<br />

physical descriptions are employed if possible.<br />

Some simplifications are necessary (e.g. <strong>for</strong> computational<br />

time restrictions), so that the global models rely<br />

on the results of models and theoretical studies which focus<br />

on one single aspect. In order to validate the models,<br />

dedicated simulations are made which focus on relatively<br />

well known individual planetary systems, in particular<br />

the Solar System. But also some extrasolar systems<br />

are studied individually, like <strong>for</strong> example the Kepler-11<br />

system with at least six extrasolar planets, <strong>for</strong> which both<br />

the masses and the radii are known.<br />

The global <strong>for</strong>mation models should output as many<br />

observable quantities as possible, since in this case, one<br />

can use combined constraints from many techniques.<br />

The outputs should be: the mass, the orbital distance and<br />

the eccentricity (<strong>for</strong> comparison with radial velocity and<br />

microlensing results), the radius (which is a proxy <strong>for</strong><br />

the bulk composition) <strong>for</strong> the comparisons with transit<br />

observations and the intrinsic luminosity <strong>for</strong> comparison<br />

with discoveries made with direct imaging.<br />

An exemplary output from the global <strong>for</strong>mation model<br />

used in the population synthesis calculations is shown<br />

in Fig. III.1.3. It shows <strong>for</strong>mation tracks in the mass-distance<br />

plane. Planetary embryos are inserted at a given<br />

starting semimajor axis into protoplanetary disk of varied<br />

properties with an initial mass of 0.6 Earth masses.<br />

They then grow by accreting planetesimals and gas, and<br />

concurrently migrate due to the interaction with the gas<br />

disk. The distribution of the final positions of the planets<br />

(at the moment the protoplanetary disk goes away)<br />

is eventually compared with the observed mass-distance<br />

distribution (Fig. III.1.1). One can see that the outcome<br />

of the <strong>for</strong>mation process is of a high diversity, despite


44 III. Selected Research Areas<br />

Number of planets<br />

100<br />

50<br />

0<br />

10<br />

Msin i [MEarth ]<br />

the fact that always exactly the same <strong>for</strong>mation model is<br />

used. This is a basic outcome similar to the observational<br />

result. In Figure III.1.3, one can <strong>for</strong> example find tracks<br />

that lead to the <strong>for</strong>mation of hot Jupiters. Most embryos<br />

however remain at low masses, since they cannot accrete<br />

a sufficient amount of planetesimals to start rapid gas accretion<br />

and become a giant planet.<br />

Comparison with observations<br />

100<br />

Fig. III.1.4: Comparison of the observed and the synthetic<br />

planetary mass distribution. The left panel shows the distribution<br />

of planetary masses as found with high precision radial<br />

velocity observations (Mayor et al. <strong>2011</strong>). The blue line gives<br />

the raw count, while the red line corrects <strong>for</strong> the observational<br />

bias against the detection of low-mass planets. The right panel<br />

Among the many outputs that can be compared with observations,<br />

one of the most fundamental results of population<br />

synthesis is a prediction <strong>for</strong> the distribution of<br />

planetary masses. It is obvious that the planetary mass<br />

function has many important implications, including the<br />

question about the frequency of habitable extrasolar planets.<br />

In the left panel of Fig. III.1.4, the planetary mass<br />

function is shown as derived recently from high precision<br />

radial velocity observations of FGK dwarfs (Mayor<br />

et al. <strong>2011</strong>). It makes clear that below a mass of approximately<br />

30 Earth masses, there is a strong increase in the<br />

frequency. Very low-mass planets of a few Earth masses<br />

are very frequent. The right panel shows the predicted<br />

mass function from population synthesis calculations of<br />

planets around a 1 M 0 star. Also in the theoretical curve,<br />

there is a strong change in the frequency at a similar mass<br />

as in the observations. This is explained by the fact that<br />

in this mass domain, planets start to accrete nebular gas<br />

in a rapid, runaway process. They then quickly grow to<br />

masses of M 100 M Earth . It is unlikely that the proto-<br />

Normalized Fraction<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

1 10<br />

10 2<br />

M sin i [M Earth ]<br />

10 3 10 4<br />

shows the planetary mass function as found in a population<br />

synthesis calculation. The black line gives the full underlying<br />

population, while the blue, red, and green lines are the detectable<br />

synthetic planets at a low, high, and very high radial velocity<br />

precision.<br />

planetary disk disappears exactly during the short time<br />

during which the planet is trans<strong>for</strong>med from a Neptunian<br />

into a Jovian planet. This makes that planets with intermediate<br />

masses 30 M Earth are less frequent (“planetary<br />

desert”, cf. Ida & Lin 2004). The “dryness” of the desert<br />

is directly given by the rate at which planets can accrete<br />

gas, while the mass where the frequency drops represents<br />

the mass where runaway gas accretion starts. We thus see<br />

how the comparison of synthetic and actual mass function<br />

constrains the theory of planet <strong>for</strong>mation. We further<br />

note that model and observation agree in the result that<br />

low-mass planets are very frequent.<br />

A typical example how planet population synthesis<br />

can be used to study the global effects of a given physical<br />

mechanism is shown in Fig. III.1.5. The plot compares<br />

the observed distribution of radii of planets inside<br />

of 0.27 AU as found by the Kepler satellite (Howard et<br />

al. <strong>2011</strong>) with the radius distribution in three different<br />

population synthesis calculations. The three calculations<br />

are identical except <strong>for</strong> the value of f κ . This parameter<br />

describes the reduction factor of the opacity due to grains<br />

relative to the interstellar value. A value of f κ 1 means<br />

that the full interstellar opacity is used, while f κ 0<br />

means that we are dealing with a grain-free gas where<br />

only molecular and atomic opacities contribute. These<br />

opacities are used when calculating the internal structure<br />

of the planets. There, the strength of the opacity is important<br />

<strong>for</strong> the rate at which planets can accrete primordial<br />

H/He envelopes. At low opacities, the liberated gravitational<br />

potential energy of the accreted gas can be easily<br />

radiated away, allowing the envelope to contract, so<br />

Credit: C. Mordasini


Number per star a 0.27 AU<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

Fig. III.1.5: Tests of the impact of the opacity due to grains in the<br />

protoplanetary gas envelope on the planetary radius distribution<br />

at 5 Gyrs. In all panels, the blue line with error bars shows<br />

the distribution of radii as found by the Kepler satellite. The<br />

red line shows the synthetic distribution <strong>for</strong> a full, reduced, and<br />

vanishing grain opacity (left to right).<br />

that new gas can be accreted. The opacity is thought to<br />

be reduced in protoplanetary atmospheres, since grains<br />

grow and then settle into the deeper parts of the envelope<br />

where they are vaporized.<br />

Concentrating on the radius bin in Fig. III.1.5 that<br />

contains the giant planets at about 1 Jovian radius,<br />

( 11 Earth radii), we see that with full grain opacities,<br />

there are too few synthetic planets relative to the observations.<br />

With vanishing grain opacities, the efficiency of<br />

giant planet <strong>for</strong>mation is on the contrary too high in the<br />

model relative to the data. This general effect is of course<br />

expected, but only with population synthesis it can be<br />

quantified, and directly compared with observations. A<br />

relatively good agreement with the observations is found<br />

with a f κ 0.003 (middle panel). The comparison shown<br />

here thus indicates that grain growth is effcient, so that<br />

the opacities are much smaller than in interstellar space,<br />

but that grains still contribute to a certain degree. The<br />

plots also demonstrate that the opacity also has an important<br />

effect on the frequency of planets with small radii,<br />

corresponding to low-mass planets. This is because with<br />

a different opacity, the mass growth history of an embryo<br />

is different, so that the planet has at a given moment in<br />

time a different mass in the three simulations. The mass<br />

in turn influences the rate of orbital migration, and the<br />

migration regime the planet is in. This makes that in the<br />

three populations different types of planets migrate close<br />

to the star, resulting in different radius distributions also<br />

at small radii.<br />

In summary, the comparisons with the observed<br />

po-pulation shows that the mass distribution of extrasolar<br />

planets (at least <strong>for</strong> masses 10M Earth ) can be<br />

approximately reproduced with the synthetic popula-<br />

10<br />

R [R Earth ]<br />

10<br />

tions. Also the observed positive correlation of stellar<br />

metallicity and the frequency of giant planets can be<br />

reproduced at least in a quantitative way. More important<br />

differences exist <strong>for</strong> the distribution of semimajor<br />

axes. This indicates that the physical processes that<br />

govern the accretion of mass are currently better understood<br />

than the processes that control the distribution of<br />

orbital distances. Such differences are not a surprise,<br />

since many of the processes that influence e.g. the orbital<br />

migration are still only understood in a very rudimentary<br />

way, and the description of them in the models<br />

are insecure.<br />

Summary and outlook<br />

III.1 Planetary population synthesis 45<br />

Planetary population synthesis is a new method that allows<br />

to improve our understanding of planet <strong>for</strong>mation<br />

and evolution by using statistical observational constraints<br />

provided by the extrasolar planets which are now<br />

known in a suffcient number to treat them as a population.<br />

With it, the global effects of many different physical<br />

mechanisms occurring during planet <strong>for</strong>mation and<br />

evolution can be put to the observational test.<br />

The first group of extrasolar planets which was known<br />

in suffcient numbers were giant planets detected by the<br />

radial velocity method. Population synthesis calculations<br />

there<strong>for</strong>e initially concentrated on studying the mass and<br />

semimajor axis distribution of this type of planets. After<br />

this first phase of extrasolar planet detections, recent observational<br />

results now start to provide a first physical<br />

characterization of planets outside of our Solar System.<br />

Important results are the observational determination<br />

of the planetary mass-radius relationship (Fig. III.1.1)<br />

and the atmospheric structures of transiting exoplanets.<br />

Another class of new constraints comes from the direct<br />

imaging method, which yields the intrinsic luminosities<br />

of young giant planets.<br />

This new observational data provides important new<br />

impulses to planet <strong>for</strong>mation and evolution theory, since<br />

10<br />

Credit: C. Mordasini


46 III. Selected Research Areas<br />

R [R Earth ]<br />

15<br />

10<br />

5<br />

0<br />

Kepler–18d<br />

Kepler–9b<br />

Kepler–9c<br />

Kepler–11e<br />

Uranus<br />

Kepler–11d<br />

Neptune<br />

Uranus<br />

Neptune<br />

Kepler–11f<br />

Kepler–10c<br />

Kepler–11c<br />

Fig. III.1.6: Mass-radius diagram of synthetic planets with a<br />

primordial H/He envelope at an age of 5 Gyrs together with all<br />

planets in- and outside of the Solar System with a known mass<br />

and radius, and a semimajor axis of at least 0.1 AU (as in the<br />

model). The colors indicate the fraction of heavy elements in<br />

it adds constraints that go beyond the position of a planet<br />

in the mass-distance plot. Fig. III.1.6 shows a comparison<br />

of the observed mass-radius relationship of actual<br />

and synthetic planets as found in a recent population<br />

synthesis calculation. These calculations do not only<br />

model the <strong>for</strong>mation of the planets, but also their evolution<br />

once the protoplanetary disk has disappeared. The<br />

global shape of the planetary mass-radius relation can<br />

be understood from the core accretion paradigm, and the<br />

basic properties of matter as expressed in the equations<br />

of state: Low-mass planets can only bind tenuous H/He<br />

envelopes, since their Kelvin-Helmholtz timescale <strong>for</strong><br />

envelope contraction during the <strong>for</strong>mation phase is long<br />

compared to the typical lifetime of a protoplanetary disk.<br />

There<strong>for</strong>e, the top left corner in the M – R plane remains<br />

empty, as no low-mass, gas-dominated planets come into<br />

existence. Also the bottom right corner remains empty.<br />

This is due to the fact that massive cores necessarily<br />

cause rapid runaway gas accretion, so that their composition<br />

is dominated by envelope gas. No massive, solid<br />

dominated planets come into existence that would populate<br />

the bottom right corner. One notes that the synthetic<br />

and most actual planets populate the same location in the<br />

mass-radius plane.<br />

10<br />

CoRoT–9b<br />

Saturn<br />

10 2<br />

M [M Earth ]<br />

Jupiter<br />

HD 17156b<br />

HD 80606b<br />

CoRoT–10b<br />

KOI–423b<br />

10 3 10 4<br />

Credit: C. Mordasini<br />

the synthetic planets. The black symbols (bottom) <strong>for</strong> example<br />

correspond to solid-dominated low-mass planets which contain<br />

at most 1 % of H/He, while the most massive planets (orange,<br />

top) consist of at least 99 % H/He.<br />

From the position of a planet in the mass-radius relationship,<br />

it is possible to deduce (within some limits due<br />

to degeneracies) the bulk composition of a planet. This<br />

is due to the fact that <strong>for</strong> a given total mass, planets with<br />

a higher fraction of solid elements (iron, silicates, and<br />

possibly ices) relative to H/He have a smaller radius.<br />

The plot shows that depending on the mass range, there<br />

are many different associated radii, reflecting a large diversity<br />

in potential interior compositions. These different<br />

compositions are in turn due to the different <strong>for</strong>mation<br />

histories. It is <strong>for</strong> example found that planets at large<br />

distances typically contain a higher fraction of solid elements,<br />

since the mass of planetesimals available to accrete<br />

(the isolation mass) increases <strong>for</strong> currently accepted<br />

disk models with distance.<br />

The interior structure of a planet also varies depending<br />

on the place where it has accreted matter. Planets that<br />

accrete mainly outside of the ice line will contain large<br />

amounts of ices. This leaves traces in the bulk composition,<br />

and possibly also in the atmospheric composition.<br />

Future global models of planet <strong>for</strong>mation and evolution<br />

should there<strong>for</strong>e include detailed descriptions <strong>for</strong> the<br />

(chemical) composition of planets, and consider <strong>for</strong> example<br />

also other envelope types than just primordial H/


He envelopes. They will also be much more detailed in<br />

the description of many other effects occurring during<br />

planet <strong>for</strong>mation, like e.g. the interactions of many planets<br />

that are <strong>for</strong>ming concurrently, or the effects of atmospheric<br />

mass loss due to stellar irradiation. When used in<br />

planetary population synthesis calculations, these models<br />

will yield many testable predictions <strong>for</strong> all major observational<br />

techniques. This is important in a time where<br />

many surveys both from space and from the ground are<br />

expected to yield large amounts of additional data on<br />

III.1 Planetary population synthesis 47<br />

both the global statistics and the physical characteristics<br />

of extrasolar planets. Seeking <strong>for</strong> the theoretical models<br />

which best explain these combined data sets will be a<br />

fruitful approach towards a better understanding of planet<br />

<strong>for</strong>mation and evolution.<br />

Christoph Mordasini, Kai-Martin Dittkrist,<br />

Sheng Jin, Paul Molliere,<br />

Hubert Klahr


48 III. Selected Research Areas<br />

III.2 Formation of star-<strong>for</strong>ming structures in the interstellar medium<br />

New stars are born in the cold and dense molecular<br />

clouds that are present “everywhere” in the Universe.<br />

How these molecular clouds are <strong>for</strong>med and how they<br />

evolve are key questions in the current ef<strong>for</strong>ts to establish<br />

global laws that regulate the star <strong>for</strong>mation process.<br />

The fundamental physical processes that are responsible<br />

<strong>for</strong> the evolution of molecular clouds can be studied<br />

through accurate measurements of how the material in<br />

them is distributed. Here we review our research on<br />

this topic.<br />

Molecular clouds of the interstellar medium (ISM) provide<br />

the environments where new stars in the Universe<br />

can be born. There is an intricate, two-way connection<br />

between the physical structure of molecular clouds and<br />

star <strong>for</strong>mation inside them. On the one hand, star <strong>for</strong>mation<br />

is very concretely driven by the molecular cloud<br />

structure: how much and how rapidly a cloud can <strong>for</strong>m<br />

stars depends crucially on how exactly the material in it<br />

Fig. III.2.1: Dust extinction map of the Ophiuchus star-<strong>for</strong>ming<br />

region. The dust extinction can be used as a tracer of the gas<br />

column density in molecular clouds, and hence, as a tracer of<br />

their mass distributions. In Kainulainen et al. (2009, A&A,<br />

508, L35) and Kainulainen et al. (<strong>2011</strong>, A&A, 530, A64), we<br />

derived extinction maps <strong>for</strong> 23 nearby molecular clouds and<br />

studied with the maps the probability distributions of column<br />

densities in them. Based on our findings in these works, we<br />

proposed a new evolutionary scheme <strong>for</strong> molecular clouds<br />

in which the pressure from the diffuse medium surrounding<br />

denser clumps in the clouds plays a significant role in the cloud<br />

evolution.<br />

Galactic latitude<br />

20<br />

16<br />

12<br />

10<br />

5 0<br />

Galactic longitude<br />

is organized. However on the other hand, the star-<strong>for</strong>mation<br />

process itself is a great sculptor of molecular clouds.<br />

Once started in the cloud, active star <strong>for</strong>mation will efficiently<br />

restructure the cloud material with jets and<br />

outflows from young stars, radiation pressure from massive<br />

stars, and powerful shock waves from dying stars.<br />

These processes rapidly erase the structural characteristics<br />

of the clouds that were prevalent be<strong>for</strong>e the star <strong>for</strong>mation<br />

started in them.<br />

How exactly the molecular clouds in the ISM come to<br />

be and what are the physics driving their <strong>for</strong>mation and<br />

evolution are fundamental open questions in the field<br />

of ISM- and star <strong>for</strong>mation-research today. One way to<br />

study these processes is borne out by the fact that different<br />

physical mechanisms cause the material in the clouds<br />

to be organized in different ways. There<strong>for</strong>e, accurate<br />

measurements of the clouds mass distribution lead to in<strong>for</strong>mation<br />

on what mechanisms are responsible <strong>for</strong> shaping<br />

the clouds.<br />

What regulates the structure-and star <strong>for</strong>mation in molecular<br />

clouds?<br />

We know today that the molecular clouds are <strong>for</strong>med and<br />

shaped primarily by the interplay of three <strong>for</strong>ces: the turbulent<br />

energy in the ISM, gravitational <strong>for</strong>ces, and the<br />

support of magnetic fields within them. Schematically,<br />

the pathway of gas in galaxies towards star <strong>for</strong>mation<br />

begins from large-scale instabilities, e.g. from atomic<br />

gas flows colliding at supersonic velocities, resulting<br />

in shocks, and further, to strong density fluctuations in<br />

7 deg = 15 pc<br />

355 350<br />

Credit: J. Kainulainen


the post-shock gas. Some of these density fluctuations<br />

contain enough material so that the (still atomic) gas in<br />

them becomes well-shielded from any outside sources<br />

of radiation. This enables the <strong>for</strong>mation and survival of<br />

molecules, thereby giving birth to molecular clouds.<br />

Statistical arguments suggest that stars begin to <strong>for</strong>m<br />

in molecular clouds relatively rapidly after their <strong>for</strong>mation.<br />

Yet in this short time, the clouds evolve from a diffuse,<br />

barely molecular state to a state of clearly higher<br />

density and average central concentration. The most important<br />

consequence of this evolution and gas compression<br />

is that some density fluctuations in the cloud are<br />

massive enough to become locally gravitationally supercritical.<br />

These extreme density enhancements, commonly<br />

referred to as dense cores, undergo a gravitational collapse<br />

and ignite the actual star-<strong>for</strong>ming process.<br />

The analytic and numerical theories of how star <strong>for</strong>mation<br />

proceeds in molecular clouds aim at explaining<br />

how the interplay of turbulence, gravity, and magnetic<br />

fields can produce dense cores in the clouds. What is currently<br />

not well-known in these theories is how strong the<br />

impact the different <strong>for</strong>ces have on the molecular cloud<br />

structure at different stages of the clouds evolution. As a<br />

result of this lack of knowledge, some fundamental questions<br />

remain open: How efficiently molecular clouds<br />

convert their gas into dense cores? At what rate this conversion<br />

takes places? What keeps the clouds from collapsing<br />

rapidly under their own gravitation? These questions<br />

are of crucial importance, as they ultimately set the<br />

star <strong>for</strong>mation efficiencies and -rates of the clouds and of<br />

galaxies. The questions are also closely linked to understanding<br />

the origin of statistical properties of stars such<br />

as their initial mass function (IMF).<br />

From the observational point-of-view, constraining<br />

the roles of different cloud-shaping processes translates<br />

into determining the mass distribution, the kinetic energy<br />

content, temperature, and the magnetic field strength<br />

of cloud structures across entire molecular cloud entities.<br />

These data can be, in some cases, used directly to assess<br />

the strengths of processes acting in the clouds. However<br />

more often, the data must be used indirectly by comparing<br />

them to predictions resulting from numerical and/or<br />

analytical theories. In particular, such studies should be<br />

per<strong>for</strong>med <strong>for</strong> young clouds that only show little or no<br />

star-<strong>for</strong>ming activity at all. This is the only way to reach<br />

the maternal cloud structure that still bears the imprints<br />

of the processes that acted during the <strong>for</strong>mation of the<br />

cloud. The scientists at MPIA are actively studying this<br />

defining stage of molecular cloud evolution.<br />

Probing the clouds density structure with the extinction<br />

of starlight<br />

One powerful tool to study how the material is distributed<br />

in molecular clouds is to measure the extinction of<br />

background starlight by dust towards them. This tech-<br />

III.2 Formation of star-<strong>for</strong>ming structures in the interstellar medium 49<br />

nique, developed primarily during the past decade, also<br />

with the help of MPIA scientists, is based on observations<br />

of a myriad of stars that shine through molecular<br />

clouds at near-infrared (NIR) wavelengths. When the<br />

light from the stars travels through the molecular cloud,<br />

the dust that is mixed with the gas in the cloud absorbs<br />

and reflects away part of the light. This extinction of<br />

starlight is wavelength dependent, causing the light that<br />

travels through the cloud to redden. The amount of reddening<br />

depends linearly on the amount of intervening<br />

dust, and can there<strong>for</strong>e be used as a measure of total<br />

mass along the line-of-sight to the star that emitted<br />

the light. Thus, observing the reddening towards tens of<br />

thousands of stars behind a molecular cloud complex can<br />

be converted into a map describing its mass distribution.<br />

This NIR dust extinction mapping technique has<br />

some profound advantages compared to other commonly<br />

used techniques to measure mass distributions.<br />

For one, the technique is applicable over a relatively<br />

wide column density range that extends from diffuse,<br />

partly atomic material (N(H 2 ) 1 10 21 cm −2 )<br />

in the clouds to the column densities of dense cores<br />

(N(H 2 ) 50 10 21 cm −2 ). It also does not depend on the<br />

temperature of gas or dust in the cloud, which is a major<br />

advantage compared to measurements of column densities<br />

via dust continuum emission, e.g., with the herschel<br />

satellite. Finally, the technique is based on photometric<br />

data of stars in the NIR, which type of data is relatively<br />

straight<strong>for</strong>ward to gather and analyze with the current<br />

observational techniques.<br />

Figure III.2.1 shows as an example the dust extinction<br />

map derived <strong>for</strong> the Ophiuchus star-<strong>for</strong>ming cloud<br />

by Kainulainen et al. (2009, A&A, 508, L35). The data<br />

have an angular resolution of 2, which at the distance<br />

of Ophiuchus is about 0.07 pc. The data show particularly<br />

well the diffuse structures surrounding the sites of<br />

star <strong>for</strong>mation in the complex, thus allowing a view of<br />

the structures that envelope the dense cores inside where<br />

stars in the cloud are <strong>for</strong>ming. This technique to trace the<br />

mass in molecular clouds has been exploited in several<br />

works by MPIA scientists, including studies of the fragmentation<br />

of filamentary molecular clouds (Schmalzl<br />

et al. 2010, ApJ, 725, 1327; Beuther et al. <strong>2011</strong>, A&A,<br />

533, A17), properties of young star populations inside<br />

molecular clouds, (Sicilia-Aguilar et al. <strong>2011</strong>, ApJ, 736,<br />

137), and the temperature structure of isolated molecular<br />

cloud cores (Stutz et al. 2010, 518, L87; Nielbock et<br />

al. submitted).<br />

What does the clouds density structure tell about the<br />

physical processes shaping it?<br />

As described earlier, density fluctuations in newly<strong>for</strong>med<br />

molecular clouds act as seeds of dense cores that<br />

can further evolve towards gravitational collapse and<br />

star <strong>for</strong>mation. The occurrence of these fluctuations can


50 III. Selected Research Areas<br />

N / N peak<br />

Log (N / N peak )<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0<br />

–1<br />

–2<br />

–3<br />

Taurus<br />

Av [mag]<br />

1 10<br />

0<br />

–4<br />

0 5<br />

1<br />

ln (A v / A v )<br />

10<br />

A v [mag]<br />

be described efficiently with the help of the mass distribution<br />

data derived using the dust extinction mapping<br />

technique. This topic has been pursued actively in MPIA<br />

recently. The frequency at which density fluctuations occur<br />

in a molecular cloud can be expressed through the<br />

so-called probability density function (PDF, hereafter)<br />

of volume densities in the cloud. This function describes<br />

the probability of a volume dV to have a density between<br />

[ρ, ρ dρ]. The PDF function <strong>for</strong>ms a cornerstone <strong>for</strong><br />

many analytic star <strong>for</strong>mation theories, in which its role<br />

is to describe the basic statistics of the density field. In<br />

these theories, the function is directly linked to the <strong>for</strong>mation<br />

rate of self-gravitating dense cores, and hence, to<br />

the rate at which new stars <strong>for</strong>m.<br />

Theoretical and numerical works predict that the volume<br />

density PDF takes a log-normal shape in isothermal,<br />

turbulent media not significantly affected by the<br />

self-gravity of gas or magnetic fields. However, in the<br />

presence of strong gravitational <strong>for</strong>ces, non-isothermal<br />

equation of state, or strong magnetic field support, deviations<br />

(usually an excess) to this shape can develop,<br />

especially at the high-density side of the PDF. Since the<br />

functional <strong>for</strong>m of the PDF is directly linked to the abil-<br />

2<br />

star-<strong>for</strong>ming clouds<br />

quiescent clouds<br />

15 20<br />

N / N peak<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

Lupus V<br />

Av [mag]<br />

1 10<br />

0<br />

1<br />

ln (A v / A v )<br />

Fig. III.2.2: Top: Column density PDFs <strong>for</strong> the Taurus and Lupus<br />

V molecular clouds. Taurus is an active star <strong>for</strong>ming cloud,<br />

but Lupus V shows very little signs of star <strong>for</strong>mation. Left:<br />

Cumulative mass distributions of 23 nearby molecular clouds.<br />

The star-<strong>for</strong>ming clouds are shown with blue curves and nonstar-<strong>for</strong>ming<br />

clouds with red curves. The figure shows that the<br />

star-<strong>for</strong>ming clouds contain greatly more material at high column<br />

densities compared to the non-star-<strong>for</strong>ming clouds.<br />

ity of the media to <strong>for</strong>m dense cores, it is crucially important<br />

to constrain the PDF through observational data.<br />

However, because of the observational restrictions such<br />

works have been rare in the past.<br />

Observations are always per<strong>for</strong>med in the two-dimensional<br />

plane of the sky and they can only recover<br />

column densities, not directly three-dimensional volume<br />

densities. However importantly, some properties<br />

of the volume density PDFs can be derived through observations<br />

of their column density PDFs. For example,<br />

a log-normal shape of the volume density PDF should<br />

remain invariant in trans<strong>for</strong>mation to column densities.<br />

Similarly, under certain conditions, it is possible to derive<br />

the shape parameters of the volume density PDF,<br />

i.e., mean and dispersion, from the column density PDF.<br />

In other words, by measuring accurately the column density<br />

PDFs in molecular clouds it is possible to present<br />

constraints to both processes that regulate structure <strong>for</strong>mation<br />

in molecular clouds and the theories that use the<br />

function as an input in predicting star-<strong>for</strong>ming rates and<br />

-efficiencies in the clouds.<br />

What do the column density PDFs in molecular<br />

clouds then look like? The MPIA scientists per<strong>for</strong>med<br />

recently the first systematic study of the column density<br />

PDFs in molecular clouds (Kainulainen et al. 2009,<br />

A&A, 508, L35; Kainulainen et al. <strong>2011</strong>, A&A, 530,<br />

A64). This study presented mass distribution data <strong>for</strong> 23<br />

nearby molecular clouds, derived using the NIR dust extinction<br />

mapping technique. Most importantly, the work<br />

showed that the PDFs of star-<strong>for</strong>ming and non-star-<strong>for</strong>ming<br />

clouds are fundamentally different from each others,<br />

so that only non-star-<strong>for</strong>ming clouds have column density<br />

PDFs that are consistent with a log-normal shape.<br />

2<br />

Credit: J. Kainulainen


Credit: J. Kainulainen<br />

Star-<strong>for</strong>ming clouds deviate from this shape by having a<br />

significantly higher relative amount of high-column density<br />

fluctuations. The result is illustrated in Fig. III.2.2,<br />

which shows the column density PDFs <strong>for</strong> a typical star<strong>for</strong>ming<br />

(Taurus) and a quiescent (Lupus V) cloud. In the<br />

context of turbulent molecular clouds, the result suggests<br />

that only the low-column density regions in the clouds<br />

are dominantly shaped by turbulent motions, while higher-column<br />

density regions are affected more crucially<br />

by some other process. Interestingly, the PDFs of active<br />

star-<strong>for</strong>ming clouds have all rather similar PDFs (similar<br />

to that of Taurus in Fig. III.2.2). This suggests that there<br />

exists some fundamental state that the cloud structures<br />

have to reach be<strong>for</strong>e significant star <strong>for</strong>mation can occur.<br />

The difference between the PDFs of quiescent and<br />

star-<strong>for</strong>ming clouds also means that star-<strong>for</strong>ming clouds<br />

contain higher relative amount of high-column density<br />

material than quiescent clouds. This result is illustrated<br />

in the lower left panel of Fig. III.2.2, which shows<br />

the cumulative mass functions of a sample of molecular<br />

clouds. The cumulative mass functions describe what<br />

fraction of the clouds mass is at column densities higher<br />

than the value at x-axis. The star-<strong>for</strong>ming clouds that are<br />

shown with blue curves in Fig. III.2.2 harbour a clearly<br />

higher fraction of material at high column densities than<br />

quiescent clouds that are shown with red curves.<br />

An immediate question arising from the observed<br />

PDFs is: What physics exactly cause the deviation from<br />

the log-normal shape in the PDFs on star-<strong>for</strong>ming clouds?<br />

As described earlier, a log-normal column density PDF<br />

Fig. III.2.3: Virial parameters of clumps that represent structures<br />

in the “tail” part of the column density PDFs as a function of<br />

the clumps’ mass. Virial parameter of α 1 reflects equipartition<br />

between gravitational and kinetic energies of the structure.<br />

The relation shows that the structures are not significantly supported<br />

by their self-gravity, and it also suggests that external<br />

pressure might play a significant role in supporting them.<br />

log a<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0.5<br />

a = 1<br />

1 1.5<br />

2<br />

log (M /M s )<br />

13 CO: a M –0.640.13<br />

2.5 3 3.5<br />

III.2 Formation of star-<strong>for</strong>ming structures in the interstellar medium 51<br />

is expected <strong>for</strong> turbulent, isothermal media, with possible<br />

deviations caused by various other processes. An<br />

intuitive option would be to relate the deviation to selfgravitating<br />

structures <strong>for</strong>ming in the cloud. However,<br />

the deviation from the log-normal <strong>for</strong>m seems to occur<br />

at column densities clearly lower (A V 2 – 5 mag) than<br />

traditionally connected to self-gravitating dense cores.<br />

This question was further looked into by Kainulainen et<br />

al. (<strong>2011</strong>, A&A, 530, A64), and interestingly, it seems<br />

that self-gravity does not provide significant support <strong>for</strong><br />

structures above the threshold of A V 2 − 5 mag. This<br />

is illustrated in Fig. III.2.3 which shows the virial parameters<br />

of structures above the threshold. Virial parameters<br />

are clearly higher than unity, which indicates they<br />

are not gravitationally bound. Instead of self-gravity, the<br />

structures above that column density can be significantly<br />

supported against dispersal by the external pressure that<br />

is imposed to them by the massive, but more diffuse,<br />

cloud material surrounding them. This inwards pressure<br />

can roughly match the internal thermal pressure of the<br />

structures, making them more long-lived, or even quasistable.<br />

With this mechanism, structures <strong>for</strong>med in a turbulent,<br />

atomic flow could survive <strong>for</strong> the time required<br />

<strong>for</strong> molecule <strong>for</strong>mation, cooling, and hence decreased<br />

thermal support. This can be followed by further accretion<br />

of material, structure <strong>for</strong>mation, and eventually star<br />

<strong>for</strong>mation to take place.<br />

Summarizing the above, star-<strong>for</strong>ming clouds seem<br />

to contain pressure-confined structures that also leave<br />

their imprint to the column density PDFs. Non-star<strong>for</strong>ming<br />

clouds do not contain such pressure-confined<br />

structures. This leads to a picture in which the <strong>for</strong>mation<br />

of pressure-confined structures introduces a pre-requisite<br />

<strong>for</strong> star <strong>for</strong>mation. This picture emphasizes the role<br />

of the pressure from the large-scale, diffuse molecular<br />

cloud <strong>for</strong> the stability of structures <strong>for</strong>ming in the cloud.<br />

Subsequent studies on the dynamic structure of molecular<br />

clouds that cover the regime of both the dense cores<br />

and diffuse material surrounding them are needed to affirm<br />

the global nature of this picture. Such studies are<br />

currently in progress at MPIA.<br />

From low-mass to high-mass star-<strong>for</strong>ming regions<br />

The results discussed above are best suited to describe<br />

structure <strong>for</strong>mation in relatively low-mass clouds that<br />

<strong>for</strong>m low-mass stars, much like that of our own Sun. It<br />

is an imminent question whether the same results hold<br />

when the birth-places of high-mass stars or star-clusters<br />

are considered.<br />

In the case of massive stars, the need to reach the quiescent<br />

stage of cloud evolution to study the natal cloud<br />

structure is even more pressing than in the case of lowmass<br />

clouds, because of the more violent nature of the<br />

high-mass star <strong>for</strong>mation. The best candidates <strong>for</strong> the future<br />

high-mass star <strong>for</strong>mation are the dense and massive


52 III. Selected Research Areas<br />

6 pc 1 1.2 pc<br />

Fig. III.2.4: Infrared dark cloud G11.10-0.10, also known as<br />

“The Snake”. The top image shows a three-color-composite<br />

made out of 8 µm, 24 µm, and 70 µm band data from the<br />

spitzer/GliMpse MipsGal surveys (credit: www.alienearths.<br />

com/glimpse). Bottom Left: Dust extinction map of the cloud<br />

cores inside Infrared Dark Clouds (IRDCs, hereafter).<br />

These objects, discovered only relatively recently, harbor<br />

dense cores whose sizes and densities match those<br />

of the “hot cores” that harbor very young massive stars,<br />

yet they seem to be cold and contain no point sources.<br />

Consequently, it seems clear that at least some fraction<br />

of the IRDCs will be able to <strong>for</strong>m massive stars in the<br />

future, and thus they provide a great opportunity to study<br />

the molecular cloud structure that priors the <strong>for</strong>mation of<br />

massive stars and star clusters.<br />

However, the IRDCs are typically located at distances<br />

greater than a few kiloparsecs – that is 20 times farther<br />

away than nearby, low-mass molecular clouds. This<br />

makes characterizing their physics observationally very<br />

challenging, and indeed, in<strong>for</strong>mation about the structure<br />

of IRDC complexes and the cores inside them is still to<br />

a large degree lacking. Scientists at MPIA have been active<br />

in both using state-of-the-art observing facilities to<br />

determine physical conditions in IRDCs (e.g., Beuther et<br />

al. 2010, A&A, 518, L78; Henning et al. 2010, A&A,<br />

518, L95; Ragan et al. <strong>2011</strong>, ApJ, 736, 163; Ragan et<br />

al., submitted) and in developing new techniques to ob-<br />

5 0.1 pc<br />

derived using a new technique that combines near-infrared<br />

and mid-infrared data. Bottom Right: A zoom-in to the center<br />

region of the map, showing the multitude of structures at the<br />

size-scale of the dense cores in the cloud (i.e., 0.1 pc).<br />

serve them (Kainulainen et al. <strong>2011</strong>, A&A, 536, A48;<br />

Kainulainen & Tan, submitted).<br />

In particular, knowledge on the relation of the IRDCs<br />

with their lower-density surroundings is virtually nonexistent.<br />

This makes it hard to examine whether the diffuse<br />

cloud material in IRDCs imposes similar external<br />

pressure to the cores within them as it does in the case of<br />

low-mass clouds.<br />

To approach this problem, Kainulainen et al. (<strong>2011</strong>,<br />

A&A, 536, A48) and Kainulainen & Tan (submitted)<br />

recently developed a new dust extinction mapping technique<br />

that provides a very potential tool <strong>for</strong> measuring<br />

mass distributions in IRDCs. This technique refines the<br />

NIR dust extinction mapping scheme described earlier<br />

to suit IRDCs and combines the resulting data with<br />

mid-infrared (8 µm, Mir) data from the spitzer satellite.<br />

At Mir wavelengths, the IRDCs manifest themselves as<br />

dark “shadows” against the bright Mir background radiation<br />

emitted by the Galactic plane. An example of this<br />

is shown in Fig. III.2.4, which shows a three-color (falsecolor)<br />

composite picture made out of 8 µm, 24 µm, and<br />

70 µm data of the spitzer satellite. The figure shows a<br />

Credit: J. Kainulainen


dM (A v )<br />

1<br />

0.1<br />

0.01<br />

p (ln (A v / mag)) (normalized)<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

2<br />

Cali<strong>for</strong>nia<br />

exp (–0.49 A v )<br />

A B C D F G H I J<br />

exp (–0.12 Av )<br />

10<br />

A B C D F G H I J<br />

filamentary IRDC called “The Snake”. The shadowing<br />

is caused by dust particles in the cloud that absorb the<br />

background radiation. From the amount of this absorption<br />

it is possible to estimate the mass of intervening<br />

dust, and hence, the mass distribution of the cloud.<br />

Kainulainen & Tan (submitted) presented a scheme<br />

<strong>for</strong> combining these two types of data, Nir extinction<br />

mapping with background stars and Mir extinction mapping<br />

with surface brightness data, into mass distribution<br />

data with unprecedented high sensitivity and spatial<br />

Av [mag]<br />

10 100<br />

2.5<br />

Orion B<br />

exp (–0.22 A v )<br />

Orion A<br />

exp (–0.18 A v )<br />

15<br />

Av [mag]<br />

20 25<br />

3 3.5<br />

ln (A v / mag)<br />

III.2 Formation of star-<strong>for</strong>ming structures in the interstellar medium 53<br />

4 4.5 5<br />

Fig. III.2.5.: Top: Column density PDFs of ten IRDCs (colored<br />

lines) and the nearby Ophiuchus star-<strong>for</strong>ming cloud (black<br />

dashed line). The shapes of the PDFs of the IRDCs are, on<br />

average, compatible with a log-normal function (shown with<br />

a dotted black line). Left: The cumulative <strong>for</strong>ms of the PDFs<br />

<strong>for</strong> the IRDCs (colored lines) and <strong>for</strong> three nearby molecular<br />

clouds (black dotted lines). The IRDCs contain somewhat<br />

more high-column density material than nearby clouds, which<br />

might reflect their location at smaller Galacto-centric radii, and<br />

hence, higher pressures.<br />

resolution. The bottom panels of Figure III.2.4 show as<br />

an example the mass distribution map derived <strong>for</strong> “The<br />

Snake”. The data reaches the resolution of 2, which<br />

at the distance of “The Snake” corresponds to about<br />

0.04 Pc.<br />

The high-dynamic-range data resulting from the new<br />

technique makes it possible not only to examine the<br />

column density PDFs in potential high-mass star-<strong>for</strong>ming<br />

sites, but also to examine the PDFs of molecular<br />

clouds over a greatly wider dynamic range than the data<br />

discussed in the context of low-mass clouds (see Fig.<br />

II.2.2). Figure III.2.5 shows the column density PDFs<br />

of 10 IRDCs and that of Ophiuchus, which is a typical<br />

nearby star-<strong>for</strong>ming cloud. The PDFs of IRDCs are<br />

quite similar to that of Ophiuchus (they extend to higher<br />

column densities because the dynamic range of their data<br />

is wider). This, first of all, suggests that star-<strong>for</strong>mation<br />

may have already started in the IRDCs. Indeed, some<br />

of the IRDCs included in Fig. III.2.5 show some typical<br />

star-<strong>for</strong>ming signs in the near-and mid-infrared, such<br />

as bubbles and reflection nebulae. However, finding out<br />

exactly how many young stars are currently <strong>for</strong>ming in<br />

Credit: J. Kainulainen


54 III. Selected Research Areas<br />

Fig. III.2.6.: Relation between the non-thermal sonic Mach number<br />

(ℳ s ) and the standard deviation of the column density PDF<br />

in IRDCs (blue diamonds) and in nearby molecular clouds (red<br />

diamonds). The sonic Mach number is a measure of turbulent<br />

energy in the clouds and the standard deviation of column<br />

density a measure of the magnitude of density fluctuations in<br />

it. The correlation coefficient between these two parameters<br />

describes how efficiently turbulence is inducing density fluctuations<br />

in the cloud.<br />

the IRDCs is difficult because of their distance. It would<br />

be possible to build a census of low-mass star <strong>for</strong>mation<br />

in IRDCs using X-ray observations, and MPIA scientists<br />

are involved in programs aiming at this.<br />

Figure III.2.5 (bottom panel) shows the cumulative<br />

PDFs <strong>for</strong> the same IRDCs. The panel also shows cumulative<br />

PDFs of three nearby clouds: Orion A, Orion B,<br />

and the Cali<strong>for</strong>nia cloud. The figure shows that IRDCs<br />

contain a relatively high amount of high-column density<br />

material, even more than the most active nearby clouds<br />

(Orion A). This may indicate that also star-<strong>for</strong>ming rates<br />

in the IRDCs will be significantly higher than in nearby<br />

clouds.<br />

The similarity of the PDFs of IRDCs with star-<strong>for</strong>ming<br />

low-mass clouds suggests that the pressure-confined<br />

structures that were earlier hypothesized to be a<br />

pre- requisite <strong>for</strong> star <strong>for</strong>mation have already <strong>for</strong>med in<br />

IRDCs. If so, it would indeed appear that the requirement<br />

<strong>for</strong> pressure-confined structures can <strong>for</strong>m a paradigm<br />

that covers the entire mass-spectrum of star <strong>for</strong>mation.<br />

However, confirming this requires further studies<br />

of the kinematic structure in IRDCs that could connect<br />

pressure to the shapes of the column density PDFs.<br />

These studies will become possible once the combined<br />

Nir Mir mass distribution mapping technique will be<br />

applied to a large set of IRDCs.<br />

Another interesting application of the high-dynamicrange<br />

column density data is using them to determine<br />

the total column density variance in molecular clouds.<br />

As described earlier, the density fluctuations in molecular<br />

clouds are induced by the turbulent motions in the<br />

clouds. The magnitude of these fluctuations, or in other<br />

words the total density variance, σ(ρ), is expected to depend<br />

on the total turbulent energy: ℳ s b σ(ρ). In<br />

this relation, ℳ s stands <strong>for</strong> the non-thermal sonic Mach<br />

number, which is a measure of the non-thermal kinetic<br />

(assumably, turbulent) energy in the cloud. The coefficient<br />

b is a constant that describes the strength of the<br />

coupling of the two parameters. The relation is particularly<br />

important, because the star <strong>for</strong>mation theories that<br />

use the density PDF as a measure of density statistics use<br />

this to scale the density fluctuations based on the turbulent<br />

energy content in the cloud.<br />

Figure III.2.6 shows tentatively the first direct measurement<br />

of the ℳ s b σ(ρ) relation in molecular<br />

clouds, per<strong>for</strong>med by Kainulainen & Tan (submitted).<br />

The total density variance <strong>for</strong> the plot was measured us-<br />

sln N / N<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Region: A v 7 mag box<br />

ℳ s from a Gaussian fit<br />

a 1 = 0.0520.016<br />

a 2 = 0.2200.21<br />

J<br />

0<br />

0 10<br />

ing the high-dynamic-range dust extinction maps. The<br />

result indicates the correlation coefficient b 0.23 (3– σ<br />

interval [0.02, 0.81]). While the detection is tentative,<br />

the work demonstrates the feasibility of the technique<br />

to probe the relation when applied <strong>for</strong> a larger sample<br />

of IRDCs.<br />

In the future: improving the link between the<br />

observations and numerical modeling<br />

I<br />

B<br />

A<br />

D<br />

IRDCs<br />

nearby clouds<br />

Brunt et al. (2010)<br />

Padoan et al. (1997)<br />

The dust extinction mapping techniques developed and<br />

used by scientists in MPIA offer highly-capable observational<br />

tools <strong>for</strong> constraining current models of star<br />

<strong>for</strong>mation through accurate measurements of the mass<br />

distribution in molecular clouds. The structural characteristics<br />

derived from those data can be connected to<br />

predictions given by numerical simulations, and from<br />

therein, they can constrain the physics of the molecular<br />

cloud evolution. The current times are particularly interesting<br />

in this respect, because the state-of-the-art simulations<br />

are now starting to reach the level in which they<br />

can include all physical processes that are believed to<br />

play a role in shaping the ISM. Consequently, it will be<br />

of great interest and urgency to the community to link<br />

these simulations with observational data in a physically<br />

meaningful way. The particular questions to consider<br />

under this topic are: What structural parameters are the<br />

most meaningful probes of the underlying physical processes?<br />

What are the requirements of different observational<br />

techniques when connecting them with simulations?<br />

What is the framework, or a set of practices, that<br />

can be commonly used in trans<strong>for</strong>ming simulated structural<br />

parameters to an observational plane? Establishing<br />

this framework is the first step in the work required to<br />

take the advantage of the most recent numerical and observational<br />

studies of the ISM structure.<br />

In the context of the paradigm of pressure confinement<br />

in molecular clouds, an impending question is<br />

20<br />

ℳ s<br />

G<br />

F<br />

C<br />

30 40<br />

Credit: J. Kainulainen


whether the external pressure imposed to cloud structures<br />

results from turbulent pressure in the diffuse medium,<br />

or from gravitation-induced global contraction of the<br />

cloud. This question is not trivial to approach, because it<br />

is not clear how to observationally distinguish turbulent<br />

motions from global collapsing motions. Again, close<br />

interaction between numerical and observational communities<br />

are needed to develop tools that can approach<br />

the question.<br />

Given the above considerations, one important nearfuture<br />

goal of the MPIA scientists working on the ISM<br />

structure is to improve the interfacing between the observational<br />

work done at MPIA and the work of key<br />

numerical communities. This is being done by building<br />

and rein<strong>for</strong>cing collaborations with research groups<br />

per<strong>for</strong>ming numerical simulations and through projects<br />

that specifically not only provide predictions <strong>for</strong> various<br />

III.2 Formation of star-<strong>for</strong>ming structures in the interstellar medium 55<br />

physical parameters, but in fact make a direct connection<br />

between those parameters and observed quantities.<br />

Such work, together with the recent advances in the numerical<br />

and observational domains, can open a new era<br />

in our understanding of what controls star <strong>for</strong>mation in<br />

the ISM.<br />

Jouni Kainulainen, Henrik Beuther,<br />

Thomas Henning<br />

In collaboration with:<br />

<strong>Institute</strong> of Theoretical Astrophysics, Heidelberg,<br />

Ecole Normale Suprieure de Lyon/France,<br />

University of Vienna, University of Florida,<br />

Cali<strong>for</strong>nia <strong>Institute</strong> of Technology,<br />

Jet Propulsion Laboratory,<br />

MPI für Radioastronomie, Bonn


56 III. Selected Research Areas<br />

III.3 Dynamics of Galaxies: inferring their mass distribution and <strong>for</strong>mation history<br />

What is the distribution of luminous and dark matter<br />

in galaxies? How much of the <strong>for</strong>mation history of galaxies<br />

has been preserved in their internal dynamical<br />

structure? Is the mass of a central black hole correlated<br />

with the mass of the host galaxy? Is the concordance<br />

cosmological model in agreement with these findings<br />

on the scales of galaxies? These key questions regarding<br />

galaxy <strong>for</strong>mation in a cosmological context can be<br />

answered by studying the dynamics of galaxies. Here<br />

we present our research in this area.<br />

Kinematic tracers<br />

The motion or kinematics of astronomical objects is sensitive<br />

to the underlying gravitational potential, which<br />

is related, through Poisson’s equation, to the density<br />

of all matter, including any possible dark components.<br />

Consider, <strong>for</strong> example, gas moving in a circular orbit at<br />

radius R in the equatorial plane of a galaxy. The mass<br />

of the galaxy enclosed within this radius M ( R) determines<br />

the circular velocity V c (R) of the gas, because<br />

G M ( R)/R V c 2 , with G Newton’s constant of gravity.<br />

This means that if we can measure the gas velocity<br />

over a range of radii, we can infer the distribution of the<br />

galaxy’s total mass, i.e., including any possible contribution<br />

from unseen components.<br />

This is illustrated in Fig. III.3.1 <strong>for</strong> the elliptical galaxy<br />

NGC 2974. The top panel shows the projected stellar<br />

distribution, while the middle panel shows the velocity<br />

field of gas in the outer and inner parts. Red/blue<br />

indicates gas moving away/toward us along our lineof-sight,<br />

while green indicates gas that is moving in the<br />

plane of the sky. Taking out these projection effects, the<br />

red circles with error bars in the bottom panel show the<br />

Fig. III.3.1: Dark matter in the elliptical galaxy NGC 2974. Top:<br />

Digital Sky Survey optical image showing the projected stellar<br />

distribution. Middle: Gas velocity map of the outer parts<br />

via atomic hydrogen HI gas obtained with the VLA radiointerferometer,<br />

and of the inner parts via ionized [OIII] gas<br />

obtained with the sauroN integral-field spectrograph. Red/blue<br />

indicates gas moving away/toward along our line-of-sight,<br />

while green indicates gas that is moving in the plane of the sky.<br />

Bottom: The resulting circular velocity curve of red circles with<br />

error bars clearly shows that the gas and stars alone cannot explain<br />

the corresponding total mass distribution. Adding a dark<br />

matter halo which is consistent with cosmological simulations<br />

can explain the observations as indicated by the upper black<br />

solid line. (Extracted from Weijmans, Krajnović, van de Ven et<br />

al. 2008, MNRAS, 383, 1343).<br />

Declination (J2000)<br />

y<br />

V c [km/s]<br />

–340<br />

–42<br />

–44<br />

150<br />

100<br />

50<br />

0<br />

–50<br />

–100<br />

–150<br />

400<br />

300<br />

200<br />

100<br />

9h42m45s 40s 35s 30<br />

Right Ascension (J2000)<br />

s 25s 20s –100<br />

–50<br />

Sauron V [OIII]<br />

0<br />

0<br />

0 20 40 60<br />

radius<br />

x<br />

50<br />

n [km/s]<br />

300<br />

200<br />

100<br />

0<br />

–100<br />

–200<br />

–300<br />

100 150<br />

halo<br />

stars<br />

gas<br />

Credit: Weijmans, Krajnović, van de Ven<br />

80 100 120


y<br />

30<br />

20<br />

10<br />

0<br />

–10<br />

–20<br />

–30<br />

30<br />

20<br />

10<br />

0<br />

–10<br />

–20<br />

Vobs [km/s] sobs [km/s]<br />

–193 193 0 210<br />

V rms, obs [km/s]<br />

–30<br />

–30 –20 –10 0 10 20 30 –30<br />

x<br />

–20 –10 0 10 20 30<br />

Fig. III.3.2: Dark matter content in nearby galaxies. Top: Oblate<br />

axisymmetric dynamical model of NGC 488. Maps of the observed<br />

line-of-sight mean velocity Vobs and velocity dispersion<br />

σobs are combined into the second velocity moment VRMS <br />

V 2 σ2 , which is then fitted by a solution of the Jeans equa-<br />

tions based on the de-projected stellar light distribution multiplied<br />

with a constant mass-to-light ratio (M/L) DYN . Right: The<br />

resulting total mass-to-light ratios (M/L) DYN are compared<br />

with stellar mass-to-light ratio (M/L) POP estimated based on<br />

fitting stellar population models to multi-band photometry. The<br />

(M/L) DYN <strong>for</strong> the circles/triangles are based on sauroN/califa<br />

stellar kinematics. The coloring and symbol size represent galaxy<br />

type and luminosity as indicated in the legend. The dashed<br />

line indicates the increase in (M/L) POP when going from a<br />

Chabrier to Salpeter initial mass function, reflecting the effect<br />

of increasing the relative fraction of low-mass stars.<br />

circular velocity of the gas as function of radius from<br />

the center of the galaxy, tracing the total mass distribution.<br />

The contribution of the gas to the total mass distribution<br />

as indicated by the lower curve is minimal. As<br />

can be readily seen from the first panel, the distribution<br />

of the stars drops with radius, so that – in the framework<br />

of Newtonian dynamics – we need a dark matter halo<br />

to explain why the observed circular velocity curve remains<br />

flat.<br />

Inferring the total mass distribution directly from the<br />

observed mean velocity only works <strong>for</strong> tracers on circu-<br />

III.3 Dynamics of Galaxies: inferring their mass distribution and <strong>for</strong>mation history 57<br />

Vrms, mod [km/s]<br />

0 229 0 229<br />

(M/L) DYN<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0<br />

E<br />

S0<br />

Sab<br />

Sb<br />

Sbc<br />

Sc<br />

Scd<br />

Sd<br />

Salpeter<br />

Chabrier<br />

r-band<br />

1 2<br />

(M/L) POP<br />

lar orbits, like cold gas. Cold gas can be detected through<br />

CO and HI emission at radio wavelengths, but (1) is typically<br />

not present at all radii in galaxies and sometimes<br />

not at all, (2) settles in a plane (equatorial and/or polar)<br />

and, hence, is insensitive to the mass distribution perpendicular<br />

to it, and (3) is dissipative and, there<strong>for</strong>e, easily<br />

disturbed by perturbations in the plane from e.g. a bar<br />

or spiral arm. Stars, on the other hand, are present in all<br />

galaxy types, distributed in all three dimensions, and as<br />

Credit: Glenn van de Ven<br />

(00.5 – 10.0) 10 10 L <br />

(10.0 – 20.0) 10 10 L <br />

(20.0 – 40.0) 10 10 L <br />

Error bar<br />

3 4<br />

Credit: Glenn van de Ven


58 III. Selected Research Areas<br />

they are collision-less much less sensitive to perturbations.<br />

The kinematics of stars are now routinely measured:<br />

along the line of sight via the Doppler shifts in absorption<br />

features in spectra, and in the sky-plane via the<br />

proper motion of stars that are close enough.<br />

Stars, however, are not cold tracers as they generally<br />

move on orbits that are neither circular nor confined to<br />

a single plane. This means that in order to recover the<br />

mass distribution we need to know their velocity dispersion<br />

in addition to their mean velocity, i.e., their random<br />

motion as well as their ordered motion. Whereas<br />

the ordered motion is always around the short or long<br />

axis, the random motion can be different in all three directions,<br />

which is also referred to as velocity anisotropy.<br />

Ordered motion around the intermediate axis is unstable,<br />

but in a triaxial system a mix of ordered motion<br />

around short and long axis is possible. Moreover, we<br />

need to know the ordered and random motion throughout<br />

the galaxy to recover the intrinsic 3D mass distribution.<br />

Un<strong>for</strong>tunately, except <strong>for</strong> the Milky Way (see below<br />

“Dynamics in the Solar Neighborhood”), we observe<br />

every galaxy in projection, and except <strong>for</strong> the nearest<br />

stellar systems (see below “Lighting up the dark in the<br />

Local Group”), we only have access to the line-of-sight<br />

stellar kinematics. This means the recovery of the mass<br />

distribution is not only degenerate with the 3D shape<br />

but also with the velocity anisotropy. The mass-shape<br />

degeneracy can be reduced, or even be broken, by constraints<br />

on the symmetry and/or viewing direction of<br />

the galaxy. For example, the case that the stellar rotation<br />

and photometry are aligned is consistent with oblate axisymmetry,<br />

and moreover, if we can infer the inclination<br />

from the presence of a dust disk, the 3D oblate shape<br />

is well constrained. The mass-anisotropy degeneracy<br />

can be reduced by observing moments of the line-ofsight<br />

velocity distribution (LOSVD) beyond the mean<br />

velocity V and velocity dispersion σ like the skewness<br />

and kurtosis. In practice, we use the higher-order moments<br />

of a Gauss-Hermite distribution (h 3 , h 4 , …) because<br />

they are less sensitive to the difficult-to-measure<br />

wings of the LOSVD.<br />

It is evident that to reliably infer the total mass distribution,<br />

one needs high-quality imaging and kinematics<br />

fitted with sophisticated dynamical models. We are<br />

in particular using integral-field spectrographs – delivering<br />

spectra in two dimensions across galaxies – to<br />

obtain maps of stellar and gas kinematics, as shown in<br />

the Figures III.3.1 and III.3.2. At the same time, we are<br />

developing dynamical modeling tools that allow us to<br />

infer both the 3D mass distribution as well as the internal<br />

dynamical structure of galaxies. In what follows,<br />

we give a brief description of the results obtained so far<br />

on external galaxies, the Milky Way, and supermassive<br />

black holes in the centers of galaxies.<br />

Dark matter in nearby galaxies<br />

One can infer the fraction of dark matter in nearby galaxies<br />

by comparing the total mass-to-light ratio (M/L) DYN ,<br />

derived through detailed dynamical modeling of the galaxy<br />

under study, to the total baryonic mass-to-light ratio<br />

(M/L) BAR , as derived from the properties of the stellar<br />

populations and gas in it.<br />

To construct a dynamical model of a galaxy, we start<br />

by expanding its surface brightness image into a sum<br />

of two-dimensional Gaussians. In this way, seeing effects<br />

are easily taking into account and the de-projection<br />

<strong>for</strong> a given viewing direction – the inclination in the<br />

case of axisymmetry – is analytical. Another advantage<br />

is that, after multiplying each luminous Gaussian with<br />

a mass-to-light ratio, the resulting intrinsic mass density<br />

yields the gravitational potential after a straight<strong>for</strong>ward<br />

single numerical integral. Whereas the contribution of<br />

a dark matter halo to the gravitational potential can be<br />

achieved by including additional Gaussians, the (preliminary)<br />

results shown in Fig. III.3.2 are under the assumption<br />

that mass follows light. In this case, each luminous<br />

Gaussian is multiplied with the same mass-to-light ratio<br />

(M/L) DYN – still allowing <strong>for</strong> a constant dark matter fraction<br />

– to arrive at the total gravitational potential. Even<br />

though a central black hole is not resolved here (but see<br />

below “Super-massive black holes”), we do add a central<br />

round Gaussian with mass predicted from the (cor)<br />

relation between black-hole mass and host galaxy velocity<br />

dispersion.<br />

Next, we use a solution of the Jeans equations in<br />

axisymmetric geometry to turn the multi-Gaussian luminosity<br />

density and total gravitational potential into a<br />

prediction <strong>for</strong> the line-of-sight second velocity moment<br />

V RMS <br />

V 2 σ 2 . As shown in the top panel of Fig.<br />

III.3.2 <strong>for</strong> the galaxy NGC 488, combining the observed<br />

line-of-sight mean velocity V obs and velocity dispersion<br />

σ obs yields the observed second velocity moment V RMS, obs<br />

which can be compared with the predicted V RMS, mod to<br />

infer the best-fit model parameters: inclination, velocity<br />

anisotropy in the meridional plane, and total massto-light<br />

ratio.<br />

The bottom panel of Fig. III.3.2 shows the total massto-light<br />

ratio (M/L) DYN <strong>for</strong> a range of galaxy types from<br />

spheroid-dominated ellipticals (red) through disk-dominated<br />

spirals (purple), based on fitting stellar kinematic<br />

maps obtained with either the sauroN (triangles) or<br />

PPAK (circles) integral-field unit – the latter as part of<br />

the califa survey (Calar Alto Legacy Integral Field<br />

Area survey: http://www.caha.es/CALIFA/) to obtain<br />

integral-field spectroscopic data of 600 nearby galaxies.<br />

The horizontal axis shows the mass-to-light ratio of the<br />

stars (M/L) POP , based on fitting stellar population models<br />

to multi-band photometry of each galaxy, assuming a<br />

Chabrier initial mass function (IMF). The notable scat-


[a / Fe]<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

III 25% II 22%<br />

3%<br />

I 50%<br />

ter above the diagonal solid one-to-one line is indicative<br />

of a significant dark matter fraction in the inner parts of<br />

the explored sample of galaxies. Combining the stars and<br />

gas to obtain (M/L) BAR can bring the spiral galaxies up to<br />

20 % closer to the diagonal line, and adopting a Salpeter<br />

IMF as more appropriate <strong>for</strong> elliptical galaxies increases<br />

their (M/L) POP as indicated by the dashed line. Finally,<br />

we are improving the dynamical model fits by including<br />

a dark matter halo, but several galaxies will remain<br />

with (M/L) DYN (M/L) BAR . Hence, significant amounts<br />

of dark matter seem to be present in the inner parts of<br />

galaxies, unless their distribution of stars is dominated<br />

by either dwarf stars (bottom-heavy IMF) and/or dark<br />

remnants (top-heavy IMF).<br />

Dynamics in the Solar Neighborhood<br />

In contrast to the study of nearby galaxies, the stars in<br />

the Milky Way are resolved; thus we can estimate their<br />

distances in addition to their sky positions, and we can<br />

measure their proper motions in the plane of the sky<br />

in addition to their line-of-sight velocities – often confusingly<br />

called radial velocities. This means we have access<br />

to all six phase space coordinates <strong>for</strong> at least a subset<br />

of the stars. For example, we use G-type dwarf stars<br />

from the Sloan Extension <strong>for</strong> Galactic Understanding<br />

and Exploration (seGue DR7) survey, leading to a sample<br />

of 13000 stellar tracers with galactocentric radius<br />

7 R 9 kpc and height above the Galactic plane<br />

0.5 |z| 2.5 kpc. Taking into account the selection of<br />

spectroscopically-targeted stars from the color-selected<br />

photometric sample, the left panel of Fig. III.3.3 shows<br />

the number density of G dwarfs as function of their [α/<br />

Fe] abundance – a proxy <strong>for</strong> age – and [Fe/H] metallicity.<br />

III 13% II 17%<br />

4% I 66%<br />

Total (100%) Circular (65%) Eccentric (23%)<br />

–1<br />

III 53% II 31%<br />

2% I 13%<br />

–0.6 –0.2 –1 –0.6 –0.2 –1 –0.6 –0.2 1.2<br />

[Fe/H] [Fe/H]<br />

[Fe/H]<br />

Fig. III.3.3: The number density of SDSS/seGue G-dwarf stars<br />

in the Solar Neighborhood as function of their [α/Fe] abundance<br />

and [Fe/H] metallicity. Left: The number density of<br />

all G dwarfs shows a clear bi-modality that naturally inspires<br />

a separation into α-young stars and α-old stars. Since all six<br />

phase-space coordinates are measured, the orbits of all stars<br />

can be computed in a Milky Way gravitational potential model.<br />

III.3 Dynamics of Galaxies: inferring their mass distribution and <strong>for</strong>mation history 59<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Middle: Nearly all of the α-young stars are on near-circular<br />

orbits as expected <strong>for</strong> thin-disk stars, but also a significant<br />

fraction of the α-old stars, consistent with outward radial migration.<br />

Right: The remaining α-old stars on eccentric orbits,<br />

including nearly all old metal-poor stars, are difficult to explain<br />

with radial migration alone, but might have <strong>for</strong>med through<br />

early-on gas-rich mergers.<br />

Given the stars’ current position and space motion,<br />

we numerically integrate their orbits in a gravitational<br />

potential Φ(R, z) of the Milky Way that includes a disk,<br />

bulge and dark matter halo. As a measure of the orbital<br />

eccentricity, we compute L z /L c the ratio of the conserved<br />

z-component of the orbital angular momentum<br />

to the maximum angular momentum when the orbit is<br />

circular. Even if at their birth radii the stars move on<br />

circular orbits with L z /L c 1, the current distribution<br />

in L z /L c at the Solar Neighborhood is expected to extend<br />

toward values below unity, both because of stars<br />

scattering to more eccentric orbits, as well as due to<br />

measurement errors, mainly in their distance and proper<br />

motions. We choose L z /L c 0.85 <strong>for</strong> stars being on<br />

(near-)circular orbits, and L z /L c 0.80 <strong>for</strong> stars being<br />

on eccentric orbits, although the results are robust<br />

against the precise limits adopted.<br />

The middle panel of Fig. III.3.3 shows that nearly<br />

all of the α-young stars are on circular orbits as expected<br />

<strong>for</strong> thin-disk stars, but a significant fraction of<br />

the α-old stars also follow circular orbits. The latter is<br />

consistent with radial migration in which stars, due to<br />

interaction at the co-rotation radius of non-axisymmetric<br />

(transient) structures such as spiral arms and bars, are<br />

efficiently moved in radius away from their birth radii<br />

while remaining on near-circular orbits. Indeed, other<br />

properties of the stars on circular orbits, such as the<br />

vertical scale height, the average rotational velocity<br />

and vertical velocity dispersion, show a smooth change<br />

with [α/Fe] as expected from in-situ <strong>for</strong>mation of the<br />

thick disk through radial migration.<br />

On the other hand, the α-old stars on eccentric orbits,<br />

including nearly all old metal-poor stars, are difficult<br />

to explain with radial migration alone. Their average<br />

properties show no significant trends with nei-<br />

0<br />

Star Count<br />

Credit: Glenn van de Ven


60 III. Selected Research Areas<br />

ther [α/Fe] nor [Fe/H], and are very different from the<br />

α-old stars on near-circular orbits: going from stars on<br />

near-circular to those on eccentric orbits, the vertical<br />

scale height nearly doubles, and around [Fe/H] –0.6<br />

the average rotational velocity halves while the vertical<br />

velocity dispersion doubles. These differences<br />

might, however, be naturally explained if the stars on<br />

eccentric orbits <strong>for</strong>med through a gas-rich merger at<br />

high redshift. It is expected that the disk from which<br />

the stars <strong>for</strong>m is not smooth and thin, but clumpy with<br />

already a significant dispersion. Together with further<br />

blurring over the long time since the merger, it might<br />

well be that if any correlation with [α/Fe] nor [Fe/H]<br />

existed, it is washed out by now. Even more so, an early-on<br />

merger origin from an already hotter disk might<br />

help explain the apparent jump between the average<br />

orbital properties of G dwarfs on near-circular and eccentric<br />

orbits.<br />

Aside from understanding the origin of the Milky<br />

Way disk(s), we are also using these G dwarfs as kinematic<br />

tracers to infer the amount of dark matter in the<br />

Solar Neighborhood, which in turn is a crucial ingredient<br />

<strong>for</strong> experiments designed to detect dark matter particles.<br />

This requires a precision determination of the<br />

local gravitational potential Φ(R, z), yielding the total<br />

mass density from which the accurately measured luminous<br />

density is subtracted to recover the dark matter<br />

density. The simplest way is to solve the vertical<br />

Jeans equation d (νzσ2 z )/dz –νz dF (R0 , z)/dz <strong>for</strong> a<br />

measured vertical density νz and vertical velocity dispersion<br />

σz <strong>for</strong> a tracer (sub)population around the Solar<br />

radius R0 .<br />

However, after carefully measuring νz and σz <strong>for</strong><br />

sub-samples of G dwarfs with similar [α/Fe] and<br />

[Fe/H], we find that the best-fit vertical Jeans solutions<br />

do not yield a consistent underlying Galactic potential;<br />

the α-young stars require a significant local dark matter<br />

density, while the α-old can be fitted without dark<br />

matter. We expect that this is, at least partly, because<br />

the underlying assumption that vertical and radial motions<br />

can be decoupled breaks down; indeed, whereas<br />

this assumption requires that the velocity cross term<br />

νR νz vanishes, initial challenging measurements<br />

show that it is non-zero and varying with height with<br />

an indication that the variation is stronger with increasing<br />

[α / Fe].<br />

To overcome this assumption on the velocity anisotropy,<br />

we are looking into solutions of the axisymmetric<br />

Jeans equations along curvilinear coordinates that<br />

naturally allow this cross term to vary with height. We<br />

also aim to fit Schwarzschild models that do not make<br />

any assumption about the velocity anisotropy by numerically<br />

integrating in an arbitrary gravitational potential<br />

a representative set of orbits and weighting them<br />

such that observed stellar positions and motions are<br />

fitted simultaneously; the weighted orbital kinematics<br />

yield the velocity anisotropy.<br />

Super-massive black holes<br />

In the last two decades, observational evidence has<br />

mounted that Supermassive Black Holes (SMBH), defined<br />

as black holes with mass, M , above 10 6 M 0 ,<br />

lurk at the centres of most, if not all, massive galaxies.<br />

Measuring M directly is difficult and, with the current<br />

observational means, usually achievable only in nearby<br />

(d 100 Mpc) galaxies. It requires spectroscopic data,<br />

typically with sub-arcsecond angular resolution, as<br />

well as careful dynamical modelling of the stars (or gas)<br />

surrounding the SMBH. Yet, the number of galaxies with<br />

directly measured M has grown considerably, reaching<br />

70 as of 2012.<br />

From this sample, it was found that the M are suprisingly<br />

tightly correlated with several of their host galaxy<br />

(bulge) properties, most prominently the stellar velocity<br />

dispersion, σ, and luminosity, L. A SMBH comprises a<br />

small fraction (on average approximately 1/500) of its<br />

host mass, and accordingly wields significant gravitational<br />

influence only in a tiny region of its host. Hence,<br />

the correlations, also termed “Black Hole scaling relations”,<br />

are not explained trivially. Instead, they are<br />

thought to reflect a co-evolution of SMBHs and their<br />

host galaxies, with the responsible astrophysical mechanisms<br />

currently being subject of investigation. Apart<br />

from their significance towards understanding the <strong>for</strong>mation<br />

of galaxies, as well as the origin and growth of<br />

SMBHs, the scaling relations are nowadays widely used<br />

to determine the M distribution and space density, including<br />

evolution on cosmological timescales. Here, the<br />

empirical scaling relations serve to predict M in a large<br />

number of galaxies, or in galaxies too distant <strong>for</strong> a direct<br />

measurement. Moreover, secondary (indirect) M estimators,<br />

such as reverberation mapping (<strong>for</strong> active galaxies)<br />

and the broadline-width method (quasars), are calibrated<br />

by means of the locally-defined scaling relations.<br />

Given the importance of the SMBH scaling relations<br />

in current astrophysics, it is worth noting that their characterisation<br />

is far from secure. The uncertainties pertain,<br />

amongst others, to the universality with respect to host<br />

morphology, the validity range and functional <strong>for</strong>m at the<br />

extreme mass ends, to consistency between scaling relations,<br />

as well as the precision of and especially systematic<br />

errors in the measured M and host galaxy properties.<br />

Tackling the last of these mentioned, we currently work<br />

with a new high-resolution, deep near-infrared data set,<br />

obtained by the WIRCam imager on the Canada-France-<br />

Hawaii Telescope and designed to improve the determination<br />

of bulge luminosity, L bul , of SMBH host galaxies<br />

with directly measured M . Near-infrared luminosity is<br />

of special interest as it serves as a proxy <strong>for</strong> stellar mass,<br />

and is hardly affected by the presence of dust. We use<br />

these superior data to model bulges by careful and comprehensive<br />

image decomposition. Simultaneously, we<br />

establish the correlation of M with total host luminosity,<br />

L tot . Our results imply that the M – L bul correlation


Fig. III.3.4: hubble Space Telescope image of the compact lenticular<br />

galaxy NGC 1277, the host of an “übermassive” black<br />

hole. The image size is 19 8 kpc. The galaxy has a half-light<br />

radius of 1 kpc, is strongly flattened, and is disky. North is up<br />

and East is to the left.<br />

power-law index is decidedly below unity, in contrast<br />

to early (and widely adopted) studies. We find it likely<br />

to be not as “fundamental” as previously thought, while<br />

L tot poses an equivalently strong predictor of M .<br />

Our group also is strongly involved in expanding our<br />

knowledge of the SMBH scaling relation with respect to<br />

the highest SMBH masses. This part of the scaling relations<br />

is of special interest not only because it is hitherto<br />

sparsely sampled. There is also doubt in the scientifc<br />

community concerning the validity of the power law established<br />

<strong>for</strong> the intermediate-mass range of SMBHs. We<br />

here specifically investigate compact galaxies with unusually<br />

high velocity dispersion, and conducted a dedicated<br />

spectroscopic survey on the Hobby-Eberly Telescope<br />

in order to find such galaxies and single out objects<br />

most promising to allow the measurement of M . We<br />

subsequently acquired integral-field spectroscopic data<br />

of the resulting sample, using PPAK on the Calar Alto<br />

3.5 m telescope. We were able to detect a SMBH with a<br />

mass far exceeding the prediction of current scaling relations,<br />

constituting 14 % (instead of 0.2 %) of the<br />

host (bulge) mass. This peculiar galaxy is shown in Fig.<br />

III.3.4. Its “übermassive” SMBH may be interpreted as<br />

a statistical outlier of the currently adopted scaling relations,<br />

but nevertheless demands a corresponding <strong>for</strong>mation<br />

scenario. Whether the latter is feasible within the<br />

hitherto proposed galaxy-SMBH co-evolution models is<br />

currently unclear. As a consequence, there may be more<br />

than one principal SMBH <strong>for</strong>mation channel and the established<br />

scaling relations may thus not be universal.<br />

What next? Lighting up the dark in the Local Group<br />

For objects in the Local Group – that is our own Milky<br />

Way, sister galaxy Andromeda (M 31) and their globular<br />

clusters and dwarf galaxy satellites – we are in the very<br />

III.3 Dynamics of Galaxies: inferring their mass distribution and <strong>for</strong>mation history 61<br />

Credit: Glenn van de Ven<br />

<strong>for</strong>tunate position of being able to measure photometric<br />

and spectroscopic quantities <strong>for</strong> individual stars, often to<br />

very high precision, thanks to both their proximity and<br />

the advances in modern observing techniques. These data<br />

include not only line-of-sight velocities, but motions<br />

in the plane of the sky (proper motions) and metal abundances.<br />

Having the full 3D velocity in<strong>for</strong>mation means<br />

we can directly calculate the velocity anisotropy, and<br />

thus break the shape-mass-anisotropy degeneracy (see<br />

Fig. III.3.5). Furthermore, by studying separately the dynamics<br />

of chemically different stellar populations, we<br />

can recover the <strong>for</strong>mation history of these objects.<br />

The hubble Space Telescope (HST) has delivered<br />

photometric and proper motion data of exceptional accuracy<br />

and also ground-based facilities provide remarkable<br />

data-sets of line-of-sight velocities and metal abundances,<br />

as well as proper motions. Large-scale surveys may<br />

lack the sensitivity of the HST but are a vital tool due to<br />

the sheer number of stars that they have observed; surveys<br />

such as hipparcos, SDSS, and the RAdial Velocity<br />

Experiment (rave) have provided a wealth of in<strong>for</strong>mation<br />

over large regions of the sky, which have been used<br />

to good effect in studies of the Milky Way. For studying<br />

the smaller denizens of the Local Group, there have also<br />

been a number of focused observing ef<strong>for</strong>ts; <strong>for</strong> example<br />

thousands of line-of-sight velocities have been published<br />

<strong>for</strong> four of the Milky Way’s classical dwarfs: cariNa,<br />

<strong>for</strong>Nax, sculptor and sextaNs. And the future is bright:<br />

there are a number of surveys coming online over the<br />

next few years that will expand the data sets that are currently<br />

available. In particular, Gaia will provide distances,<br />

velocities, metallicities and even age estimates of<br />

unprecedented accuracy over the whole sky.<br />

We must ensure we have tools in place both to analyse<br />

the existing data and to fully exploit the upcoming<br />

data. To this end, we are extending existing dynamical<br />

modeling techniques to include proper motions as well<br />

as line-of-sight velocities, and to directly fit discrete<br />

data using maximum likelihood methods. Apart from<br />

the loss of in<strong>for</strong>mation when binning discrete data, the<br />

likelihood method can also be extended easily to incorporate<br />

further in<strong>for</strong>mation. For example: typically, and<br />

unavoidably in case of binning, contaminants (e.g. a


62 III. Selected Research Areas<br />

q<br />

0.9<br />

0.86<br />

0.82<br />

0.9<br />

0.86<br />

0.82<br />

a)<br />

c)<br />

–0.3<br />

–0.2 –0.1 0<br />

Fig. III.3.5: Posterior distribution <strong>for</strong> median projected axis ratio<br />

(shape) versus velocity anisotropy at the end of an MCMC<br />

run <strong>for</strong> Centauri with the points coloured according to their<br />

likelihood (red high, blue low). a): likelihood <strong>for</strong> x proper<br />

motions only, b) likelihood <strong>for</strong> y proper motions only, c) likelihood<br />

<strong>for</strong> line-of-sight velocities only, d) total likelihood. The<br />

<strong>for</strong>eground or background population) are removed via<br />

a series of cuts be<strong>for</strong>e proceeding with the modeling;<br />

this is a tricky process – make the cuts too conservative<br />

and true members will be excised as well as the<br />

contaminants, make the cuts too generous and contaminants<br />

will still remain. A better approach is to include<br />

all stars in a model, both likely members and suspected<br />

contaminants, and allow <strong>for</strong> the presence of a contaminant<br />

population in the likelihood calculations. As our<br />

models have many parameters a simple grid search is<br />

not feasible, so we turn to Markov-Chain Monte Carlo<br />

(MCMC) methods in order to sample the large parameter<br />

space efficiently.<br />

One prime example that highlights what we are currently<br />

able to achieve is the Galactic globular cluster<br />

w Centauri. Located only 5 kpc from the Sun, it is large<br />

and bright and has been observed many times with many<br />

different instruments, over a long time baseline. As a result,<br />

there are line-of-sight velocities and metal abundances<br />

available <strong>for</strong> thousands of stars, and proper motions<br />

measurements available <strong>for</strong> hundreds of thousands<br />

0.1<br />

ln L x<br />

ln L z<br />

b)<br />

d)<br />

ln L y<br />

ln L total<br />

0.2 –0.3<br />

b<br />

–0.2 –0.1 0 0.1 0.2<br />

degeneracy between shape and anisotropy is seen in the scatter<br />

of the points. It is clear from the first three panels that the<br />

individual velocities do not converge on the correct answer;<br />

however their combination (as shown in panel d) does break<br />

the degeneracy and converges nicely.<br />

of stars. w Centauri is an interesting object to study as<br />

it demonstrates many qualities in common with globular<br />

clusters, such as an apparent absence of dark matter,<br />

and also many qualities in common with dwarf spheroidal<br />

galaxies, such as a complex star <strong>for</strong>mation history.<br />

There is also an ongoing debate concerning the presence<br />

(or absence) of an intermediate-mass black hole (IMBH)<br />

at its center. High-quality data and sophisticated modeling<br />

techniques should enable us to finally answer some<br />

of the questions that linger over the nature of this curious<br />

object and how it has <strong>for</strong>med and evolved. The result<br />

of one MCMC model run <strong>for</strong> w Centauri is shown in<br />

Fig. III.3.5 <strong>for</strong> two of our parameters: the median deprojected<br />

axis ratio (q, a proxy <strong>for</strong> shape) and velocity anisotropy<br />

(b). These plots demonstrate the shape-anisotropy<br />

degeneracy that exists, and that proper motions and<br />

line-of-sight velocities must be used together in order to<br />

break the degeneracy.<br />

A second object to which we are applying our modeling<br />

tools is the prototypical core collapsed Galactic<br />

globular cluster M 15. A longstanding debate is wheth-<br />

Credit: Glenn van de Ven


er the increase in the mass-to-light ratio (M/L) toward<br />

the center is purely due to stellar remnants that arrived<br />

at the center as a result of mass segregation, or if there<br />

is also an IMBH present. Since with our discrete likelihood<br />

fitting method we do not lose spatial in<strong>for</strong>mation<br />

as in the case of binning, we can measure the dark central<br />

mass to higher accuracy than be<strong>for</strong>e. Our resulting<br />

density profile <strong>for</strong> M 15 is in excellent agreement with<br />

predictions from stellar cluster simulations, without the<br />

presence of an IMBH.<br />

This is a promising start. However, in these preliminary<br />

models we have not yet chemical in<strong>for</strong>mation<br />

and we have used simplified contamination models.<br />

III.3 Dynamics of Galaxies: inferring their mass distribution and <strong>for</strong>mation history 63<br />

Nevertheless, these results demonstrate that we have<br />

the machinery in place to handle both current and upcoming<br />

datasets in the Local Group, now we can work<br />

on further developing the maximum likelihood techniques<br />

and incorporating more in<strong>for</strong>mation to truly exploit<br />

the data.<br />

Glenn van de Ven, Laura Watkins,<br />

Remco van den Bosch, Mariya Lyubenova,<br />

Akin Yildirim, Alex Büdenbender, Ronald Läsker,<br />

Vesselina Kalinova, Chao Liu, Mark den Brok


64 III. Selected Research Areas<br />

III.4 The Interstellar Medium of Nearby Galaxies<br />

The temperature and corresponding phase transitions of<br />

the interstellar medium (ISM) play key roles in the <strong>for</strong>mation<br />

of stars, and thus galaxy evolution. Yet the heating<br />

and cooling of the ISM and associated transitions<br />

between phases are still not fundamentally understood.<br />

This section describes some of our ongoing multiwavelength<br />

work at MPIA to understand these processes and<br />

the fundamental connections between the stars and ISM<br />

of galaxies.<br />

To understand galaxies we must first understand the<br />

physical processes that regulate their evolution: the cooling<br />

and corresponding phase transitions in the interstellar<br />

medium (ISM), the <strong>for</strong>mation of stars from the cold<br />

ISM, and the return of radiant and mechanical energy<br />

from those stars, heating the ISM. Together, the structure<br />

and composition of the ISM are tracers of, and direct results<br />

from, the <strong>for</strong>mation of and the feedback from stars.<br />

The ISM is generally considered to be in three phases;<br />

ionized, atomic and, molecular, each with a range of densities<br />

and temperatures. Throughout these phases exists<br />

interstellar dust, thought to be composed mostly of carbonaceous<br />

grains and silicates, and ranging from micronsized<br />

grains to large molecules, such as polycyclic aromatic<br />

hydrocarbons (PAHs). This ISM has a still poorly<br />

understood structure, consisting of diffuse gas, clumpy<br />

clouds, and large scale features such as spiral arms.<br />

The heating in the ISM is dominated by young, massive<br />

stars, with large UV fluxes that ionize interstellar<br />

gas, eject photoelectrons from dust grains, and heat the<br />

same dust grains to high temperatures. These stars also<br />

have a large mechanical energy input into the ISM due to<br />

their strong winds during their lifetimes, and the supernova<br />

at the end of their lives. ISM cooling is dominated<br />

by recombination and <strong>for</strong>bidden lines within ionized regions,<br />

and far-infrared continuum and line emission (e.g.<br />

from HI and CO) in neutral gas and in the cold molecular<br />

clouds from which stars <strong>for</strong>m. It is this emission that allows<br />

us to trace the ISM structure and its phases.<br />

The processes that shape the ISM occur on varying<br />

scales; the galactic scale spiral density waves observable<br />

at both optical and infrared wavelengths, the large scale<br />

outflows driven by starbursts and supernovae, the small<br />

scale molecular clouds that <strong>for</strong>m stars, and the individual<br />

HII regions and the photo-dissociation regions that surround<br />

them. While observations of individual interstellar<br />

clouds and star-<strong>for</strong>ming regions within the Milky Way<br />

provide the highest spatial resolution, studying the various<br />

scales of energy and heating balance within our own<br />

Galaxy proves difficult as line-of-sight reddening in the<br />

optical and UV, uncertain distances, and background/<br />

<strong>for</strong>eground confusion lead to enormous complications.<br />

Observations of external galaxies avoid these problems<br />

and in addition allow one to explore a significantly<br />

wider range of physical properties, such as metallicity,<br />

ISM densities, and star <strong>for</strong>mation rates (SFR). In particular,<br />

nearby galaxies provide a vital bridge between<br />

in-depth, resolved studies in our Galaxy and the globally<br />

integrated measurements of distant galaxies. In nearby<br />

galaxies it is possible to explore the ways and the scales<br />

over which different stellar populations affect the surrounding<br />

ISM in different regions of galaxies (i.e. spiral<br />

arms and inter arm regions, bulge, and disk, etc.) and at<br />

different metallicities, as well as large ranges in gas and<br />

dust column densities.<br />

Nearby Galaxies at all Wavelengths<br />

MPIA has conducted several multiwavelength surveys<br />

of nearby galaxies, and is part of several more through<br />

collaborations. These multiwavelength surveys enable<br />

the delineation of both the stars and multi-phase ISM in<br />

these galaxies. We detail a fraction of these below that<br />

are ongoing.<br />

• The Andromeda Galaxy (Messier 31) is the nearest<br />

massive spiral galaxy to our own, and thus provides the<br />

best spatial resolution while still giving an integrated<br />

galaxy view. We have recently obtained herschel Space<br />

Observatory images from 70 – 500 µm of Andromeda<br />

(see Fig. III.4.1) and in association with existing multiwavelength<br />

observations, this allows us to directly connect<br />

the dust with stars and all phases of gas. By including<br />

a MPIA-involved heritage hubble survey of M 31<br />

that resolves individual stars (phat; Dalcanton et al.,<br />

2012) we can directly determine ISM heating input from<br />

stars to dust.<br />

• The Whirlpool Galaxy (Messier 51) is an interacting<br />

grand-design spiral galaxy that is face-on (i 23), extremely<br />

gas rich, with a high current rate of star <strong>for</strong>mation.<br />

With the Plateau de Bure Interferometer Arcsecond<br />

Whirlpool Survey (paws) we have mapped 12 CO(1−0)<br />

in the central 11 8 kpc of M 51, detecting molecular<br />

clouds down to 40 pc scales and masses down to 10 5<br />

M 0 , typical values <strong>for</strong> Galactic GMCs. In association<br />

with an existing multiwavelength dataset, this allows us to<br />

directly connect the molecular gas clouds with dust, stars,<br />

star-<strong>for</strong>mation (i.e. HII regions) and atomic (HI) gas.<br />

• The SingS/KingfiSh/ThingS/heracleS sample<br />

MPIA is part of and has contributed to the largest multiwavelength,<br />

resolved sample of galaxies with the combination<br />

of the Infrared siNGs (spitzer; Kennicutt et al.,<br />

2003) and KiNGfish (herschel; Kennicutt et al., <strong>2011</strong>)<br />

surveys and the HI thiNGs (Walter et al., 2008) and iraM


2.3 kpc<br />

Fig. III.4.1: A herschel far-infrared image of the Andromeda<br />

galaxy showing 70 µm (blue), 100 µm (green), and 250 µm<br />

(red). The bluer colors indicate hotter dust.<br />

CO heracles (Leroy et al., 2009) large surveys. Along<br />

with ancillary Galex-, optical- and radio data these surveys<br />

provide resolved ultraviolet to radio imaging of<br />

50 nearby galaxies, and the ISM gas traced via HI and<br />

CO line emission and spectral maps of other optical to<br />

far-IR emission lines. These data provide the best opportunity<br />

to link resolved galaxy ISM and stellar properties<br />

with the global galaxy type and environment. In the following<br />

we highlight some of our recent findings from<br />

these projects.<br />

Dust heating: Andromeda’s Hot Dust<br />

The dust in the ISM of galaxies is strongly associated<br />

with the gas, with the total dust column being a function<br />

of the gas column. However, the IR emission from dust<br />

in galaxies is also dependent upon the dust temperature,<br />

which is determined by the interstellar radiation field.<br />

As dust opacity is strongly biased to the UV, massive<br />

stars tend to dominate the heating of dust. Due to this,<br />

IR emission, either alone or in association with another<br />

tracer such as Hα or UV emission, is used as a measure<br />

of the current star <strong>for</strong>mation rate (SFR).<br />

The center of Andromeda presents a difficulty in this<br />

standard paradigm of dust IR emission. As seen in Figure<br />

III.4.1, the center is particularly bright in IR, with the blue<br />

colors indicating warm (30 K) dust. Yet high resolution<br />

imaging (e.g. from hubble; Rosenfeld et al., in prep.)<br />

reveal no massive stars and no ongoing star <strong>for</strong>mation.<br />

However, the heating mechanism of the dust is revealed by<br />

the steep radial profile in dust temperatures at the center,<br />

determined from simple fits to the herschel far-IR bands<br />

in each pixel with emissivity modified-blackbodies, shown<br />

in Figure III.4.2 (from Groves et al., 2012). This dust temperature<br />

distribution is overlaid with a scaled version of<br />

III.4 The Interstellar Medium of Nearby Galaxies 65<br />

the expected dust temperature from heating by the diffuse<br />

radiation field arising from the old stellar population of the<br />

bulge of M 31, with the profiles showing a close match.<br />

This match indicates that it is the bulge stars that are<br />

heating the dust, with the high density of stars in this<br />

region providing a sufficiently strong radiation field to<br />

heat the dust to warm temperatures. This is significant<br />

<strong>for</strong> two reasons; it demonstrates that warm dust emission<br />

is not always associated with young, massive stars, and<br />

that, given the very red optical spectra of the bulge, optical<br />

light, not UV, can dominate the heating of the dust.<br />

Given the “early-type” nature of Andromeda’s bulge,<br />

such heating may also be occurring in other early-type<br />

galaxies that also show warm dust emission.<br />

Fig. III.4.2: The distribution of dust temperatures within the inner<br />

2 kpc (530) of M 31. The colors show the number density<br />

of the 23 pc pixels dust temperature (T d ) and distance from<br />

the center, as labeled by the color bar. Overlaid is a curve<br />

showing a scaled version of the expected dust heating given the<br />

bulge radiation field from old stars.<br />

T dust [K]<br />

40<br />

35<br />

30<br />

25<br />

20<br />

aT d, bulge<br />

15<br />

0 0.5<br />

0 26<br />

1<br />

Radius [kpc]<br />

#pixels<br />

N<br />

E<br />

53 80 107 134<br />

1.5 2<br />

Credit: Groves et al. (2012)<br />

Credit: Groves et al. (2012)


66 III. Selected Research Areas<br />

Tracing “hidden”ʼ gas: the gas to dust ratio<br />

While tracing atomic gas is relatively simple through<br />

observations of the HI hyperfine line at 21 cm, observing<br />

cool, molecular H 2 is difficult due to its lack of a<br />

dipole moment. The standard method is to observe the<br />

CO (submm) emission lines and convert to the total H 2<br />

through a conversion factor, α CO . This factor is determined<br />

in the Galaxy using dynamical methods yet remains<br />

relatively uncertain because of possible variations<br />

due to abundance effects, or “hidden”, CO-absent, molecular<br />

gas. However, as dust and gas are closely coupled,<br />

it is possible to use the total dust mass to trace the total<br />

gas mass and constrain α CO . Using a technique based<br />

on Leroy et al. (<strong>2011</strong>), and data from the KiNGfish and<br />

heracles surveys, we constrained α CO and the dustto-gas<br />

mass ratio (DGR) on kpc scales across the<br />

disks of 26 galaxies (Sandstrom et al., 2012). We ob-<br />

Fig. III.4.3: Left: Solutions <strong>for</strong> DGR (top) and α CO (bottom)<br />

plotted versus oxygen abundance based on the Pilyugin &<br />

Thuan (2005) calibration. The gray points show all of the individual<br />

solutions. The green points show the highest-confidence<br />

solutions. The weighted mean and standard deviation of all of<br />

the solutions in 0.1 dex bins are shown with red symbols. The<br />

log(a CO / (M pc–2 / (K km s –1 ))) log(DGR)<br />

–1<br />

–1.5<br />

–2<br />

–2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

–0.5<br />

–1<br />

Weighted Mean<br />

Da Co 0.2<br />

All Solutions<br />

Weighted Mean<br />

Da Co 0.2<br />

All Solutions<br />

7.8 8<br />

8.2<br />

8.4 8.6 8.8<br />

12 log(O/H)<br />

serve several trends in α CO , based on our nearby galaxy<br />

sample. Galaxy centers frequently show low values of<br />

α CO , in some cases nearly an order of magnitude below<br />

the typically assumed local Milky Way value of α CO<br />

4.35 M 0 pc –2 (K km s −1 ) −1 . Using uni<strong>for</strong>mly determined<br />

metallicities from H II region spectra, we find a<br />

general trend of decreasing α CO with increasing metallicity,<br />

while <strong>for</strong> DGR we measure a clear, positive, linear<br />

trend with metallicity (Fig. III.4.3). However, large<br />

galaxy-to-galaxy offsets in the relationship between metallicity<br />

and α CO suggest that metallicity may not be the<br />

primary driver of variations in α CO in the central, higher<br />

metallicity regions of galaxies. Due to the strong radial<br />

gradients in many quantities, it is difficult to isolate<br />

which physical process is the driver of α CO variations,<br />

but in general regions with intense UV fields, high star<strong>for</strong>mation<br />

rate surface densities and/or high stellar mass<br />

surface densities show low α CO .<br />

shaded yellow region shows the approximate range of α CO values<br />

determined in the Milky Way. Right: The dust mass surface<br />

density in NGC 6946 (top) showing both the apertures and region<br />

over which the values were determined, and the resulting<br />

α CO <strong>for</strong> the same galaxy (bottom), revealing significantly lower<br />

values in the central region.<br />

Log(S D ) (M e pc –2 )<br />

–1 –0.8 –0.5 –2 0 0.2 0.5<br />

NGC 6946<br />

3.2 kpc<br />

3<br />

–1 –0.5<br />

3.2 kpc<br />

3<br />

Log(a CO )<br />

0 0.5 1 1.5 2<br />

Credit: E. Schinnerer


SFR Surface Density [M yr –1 kpc –2 ]<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

0.1<br />

SFR vs H,<br />

0.1 Gyr<br />

0.1 Gyr<br />

10 Gyr SFR vs HH2<br />

1 10 10 2 10 3 0.1 1 10<br />

Gas Surface Density [M pc –2 ]<br />

Fig. III.4.4: The star <strong>for</strong>mation relation <strong>for</strong> different types of<br />

gas: (left) atomic gas seen in HI, (middle) total neutral gas<br />

(HIH 2 ), and (right) only molecular gas (H 2 ). We use sensitive<br />

molecular CO gas data from heracles and a novel technique<br />

to stack spectra that allows us to measure faint CO emission<br />

with high significance in regions dominated by atomic gas<br />

(HI). While the SFR is not correlated to HI, it does correlate<br />

with H 2 and total gas column. However, the scaling is uni<strong>for</strong>m<br />

<strong>for</strong> all regimes only <strong>for</strong> H 2 .<br />

Star-Formation Relations: Connecting stars and gas<br />

While stars <strong>for</strong>m out of molecular gas – a process that is<br />

confirmed by observations of Giant Molecular Clouds in<br />

the Galaxy and supported by the strong correlation of gas<br />

and SFR in nearby galaxies (see e.g. Bigiel et al., 2008) –<br />

there has been a long standing debate of the role atomic<br />

gas has on star <strong>for</strong>mation on large scales. The lack of a<br />

clear correlation of HI and SFR in the inner parts of galaxy<br />

disks offers circumstantial evidence that star <strong>for</strong>mation<br />

remains coupled to the molecular, rather than the total<br />

gas even where the ISM is mostly atomic. However,<br />

the exact relationship remained largely unexplored in the<br />

HI dominated regime, until the thiNGs and heracles surveys<br />

revealed the most sensitive view of the entire star<strong>for</strong>ming<br />

disks of nearby galaxies to date. Using the HI<br />

and CO data from these surveys we applied a novel technique<br />

to stack CO spectra and thus measure extremely<br />

faint emission (Schruba et al. <strong>2011</strong>). Using HI velocities<br />

to shift the CO to a common velocity and then stacking<br />

and radially average, significantly increases the signal-to<br />

noise and allows to detect CO down to Σ H2 1M 0 pc –2 ,<br />

or one order of magnitude deeper than previous studies.<br />

Combining the far-UV and 24 µm emission from<br />

the siNGs survey to measure the SFR, we compared the<br />

role of different phases in the ISM to star <strong>for</strong>mation<br />

(Fig. III.4.4). We found that while HI and SFR are only<br />

weakly correlated, H 2 and total gas column show strong<br />

correlations with SFR. However, only the H 2 –SFR relation<br />

can be parametrized by a unique (linear) function<br />

0.1 Gyr<br />

III.4 The Interstellar Medium of Nearby Galaxies 67<br />

0.1 Gyr<br />

10 Gyr SFR vs H2<br />

0.1 Gyr<br />

10 2 10 3 0.1 1 10 10 2 10 3<br />

that is valid in both the H 2 and HI dominated regime.<br />

Thus, star <strong>for</strong>mation in molecular clouds appears to be<br />

independent of environment (e.g., the local gas density),<br />

however, the <strong>for</strong>mation of molecular gas out of the atomic<br />

gas shows systematic variations across galaxies and<br />

a strong dependence on galactic environment.<br />

Clouds and Clumps: Tracing the molecular ISM<br />

structure in the Whirlpool galaxy.<br />

0.1 Gyr<br />

10 Gyr<br />

The assembly of giant molecular clouds (GMCs) out of<br />

the diffuse interstellar medium (ISM) and subsequent<br />

onset of star <strong>for</strong>mation is an active area of astrophysical<br />

research. In normal galaxies, these GMCs are often<br />

described as the basic unit of structure in the molecular<br />

ISM, with typical GMC masses of 10 4 to 10 6 M 0<br />

and sizes of 10 to 50 pc observed. Most Galactic star<br />

<strong>for</strong>mation activity appears to occur within GMCs, but<br />

our knowledge of the processes that regulate the physical<br />

and chemical properties of GMCs is far from being<br />

complete.<br />

To date, wide-field CO observations that can resolve<br />

individual GMCs have been restricted to the Local<br />

Group, mostly surveying low mass galaxies where atomic<br />

gas dominates the interstellar medium (<strong>for</strong> a review,<br />

see Fukui & Kawamura 2010). This is a major shortcoming<br />

since massive disk galaxies dominate the mass and<br />

light budget of star-<strong>for</strong>ming galaxies and host most of<br />

the star <strong>for</strong>mation in the present-day universe. With paws<br />

we resolve this issue, exploring a massive, molecular gas<br />

dominated galaxy at high physical resolution. In Figure<br />

III.4.5, we present the map of CO integrated intensity<br />

within M 51 obtained by paws. For comparison, the<br />

other panels of this figure show CO integrated intensity<br />

maps of M 33 (Rosolowksy 2007) and the LMC (Wong<br />

et al <strong>2011</strong>), after smoothing the three datasets to the same<br />

resolution and extrapolating them onto the same pixel<br />

grid. Unlike the CO emission in the low-mass galaxies,<br />

it is obvious that much of the emission in M 51 arises in<br />

Credit: E. Schinnerer


68 III. Selected Research Areas<br />

M51<br />

Fig. III.4.5: Maps of CO integrated intensity in M 51 (Schinnerer<br />

et al, in preparation), M 33 (Rosolowsky et al. 2007), and the<br />

LMC (Wong et al. <strong>2011</strong>) after matching the spatial and spectral<br />

resolution of the data-cubes and interpolating them onto a<br />

pixel grid with the same physical dimensions. For all panels,<br />

the telescope beam is shown as the small red circle in the bot-<br />

bright kiloparsec-sized structures that bear little resemblance<br />

to the discrete isolated clouds that are present in<br />

the low-mass galaxies. Bright CO emission is also clearly<br />

detected between the spiral arms, both in cloud-like<br />

structures and as thin filaments that appear to span the<br />

inter-arm region.<br />

Assuming that CO integrated intensity is a reliable<br />

tracer of molecular gas column density, our observations<br />

indicate that regions of high gas column density develop<br />

within M 51’s spiral arms and in a central region that we<br />

identify as the “molecular ring”, a zone where molecular<br />

gas accumulates due to the action of opposing torques<br />

from the nuclear stellar bar and first spiral arm pattern.<br />

Gas in the inter-arm, by contrast, achieves lower maximum<br />

column densities and the probability density function<br />

(PDF) of line intensity tends towards a characteristic<br />

lognormal shape, suggesting that the gas density distribution<br />

in the inter-arm region is determined by physical<br />

processes occurring on relatively small scales. Overall,<br />

1.3 kpc<br />

0.6<br />

LMC 0.84kpc M33 1.5 kpc<br />

60<br />

6<br />

150<br />

tom left corner, and the image scale by the bar and text in the<br />

top right. The maps are presented using a square-root intensity<br />

scale with the limits of the color stretch the same to highlight<br />

the significant difference in CO brightness between M 51 and<br />

the other galaxies.<br />

our results confirm the standard argument that lognormal<br />

PDFs in galactic disks emerge via the central limit theorem<br />

from the combined action of independent physical<br />

processes that modify the gas density distribution locally.<br />

What was less expected from numerical models is that<br />

galactic structure (i.e. M 51’s stellar spiral arms and bar)<br />

clearly plays an important role in organizing the density<br />

distribution of the molecular ISM on 50 pc scales.<br />

Using the paws data and a novel finding method, we<br />

have identified over 1500 GMCs within the inner disk<br />

of M 51. This is the largest GMC catalogue that has ever<br />

been constructed <strong>for</strong> any galaxy including the Milky Way.<br />

We have studied the physical properties of GMCs located<br />

in different dynamical environments within M 51, and<br />

compared the properties of GMCs in M 51 to the GMC<br />

populations of M 33 and the LMC. Contrary to previous<br />

comparative studies that analyzed modest, observationally<br />

heterogeneous samples of GMCs (e.g. Bolatto et al<br />

2008), we find clear evidence <strong>for</strong> environmental effects<br />

I CO [K km s –1 ]<br />

100<br />

50<br />

0<br />

Credit: E. Schinnerer


Credit: E. Schinnerer<br />

on GMC properties: clouds in M 51 are brighter, and<br />

they have higher mass surface densities and larger velocity<br />

dispersions relative to GMCs of comparable size<br />

and mass in low-mass galaxies. These trends are also<br />

observed within M 51 (Fig. III.4.6): GMCs in the spiral<br />

arms and central region of M 51 tend to have higher CO<br />

masses than GMCs located between the arms. One possible<br />

explanation <strong>for</strong> the difference in CO brightness is that<br />

the neutral ISM in the low-mass galaxies and inter-arm<br />

region has a lower dust abundance and/or more clumpy<br />

structure, enhancing the selective photodissociation of<br />

CO molecules and reducing the filling factor of CO emission<br />

on 50 pc scales. We are currently investigating<br />

the physical processes, e.g. galactic rotation, spiral arm<br />

streaming and feedback from star <strong>for</strong>mation activity, that<br />

potentially contribute to our measurement of a GMC’s<br />

velocity dispersion within different M 51 environments.<br />

ISM kinematics influence the <strong>for</strong>mation of stars<br />

Gas kinematics on the scales of Giant Molecular Clouds<br />

(GMCs) are essential <strong>for</strong> probing the framework that<br />

links the large-scale organization of interstellar gas to<br />

cloud <strong>for</strong>mation and subsequent star <strong>for</strong>mation. The<br />

M 51 paws observations permit the first such study in<br />

a galaxy outside the Local Group, in an environment<br />

which is dynamically rich and characterized by strong<br />

non-circular gas flows. To interpret these motions we<br />

combine the paws data with a profile of present-day spiral<br />

arm torques newly derived from the stellar mass distribution<br />

mapped with spitzer / irac 3.6 µm and 4.5 µm<br />

images (Meidt et al. 2012). The observed gas motions<br />

suggest a strong response to torquing by the stellar spiral<br />

pattern, and dynamically distinct zones exhibit different<br />

GMC properties as well as distinct patterns of<br />

star <strong>for</strong>mation.<br />

log (n (M M) / kpc 2 )<br />

2<br />

1<br />

0<br />

–1<br />

–2<br />

Inter-arm (25 kpc 2 )<br />

Spiral Arms (16 kpc 2 )<br />

Central region (4 kpc 2 )<br />

Full sample (47 kpc 2 )<br />

5<br />

5.5 6<br />

log (M lum / M )<br />

6.5 7<br />

III.4 The Interstellar Medium of Nearby Galaxies 69<br />

By comparing gas inflow and star <strong>for</strong>mation rates<br />

throughout the disk, we assemble a view of the spatialdependence<br />

of gas depletion times <strong>for</strong> the current gas<br />

reservoir (Fig. III.4.7). We find that the lowest azimuthally<br />

averaged star <strong>for</strong>mation efficiencies (highest depletion<br />

times) coincide with zones of elevated radial gas<br />

inflow. We interpret this as the dependence of GMC stabilization<br />

on dynamical environment via the Bernoulli<br />

principle, which raises the stable cloud mass in the presence<br />

of strong spiral streaming. We find that this picture<br />

can reproduce the observed pattern of star <strong>for</strong>mation efficiency<br />

where conventional sources of GMC stabilization,<br />

such as shear and turbulence, fail. High streaming<br />

motions along the spiral arm can reduce the cloud<br />

surface pressure by an order of magnitude compared to<br />

virialized clouds, with the outcome that there are fewer<br />

clouds unstable to collapse per free-fall time along particular<br />

segments of the spiral arm. Such dynamical effects<br />

contribute to the observed scatter in the standard ‘cloud<br />

equilibrium’ relations and star <strong>for</strong>mation laws.<br />

Magnetic fields in nearby galaxies<br />

Understanding the role of magnetic fields in the appearance<br />

and evolution of galaxies is an important concern<br />

in modern astrophysics. Magnetic fields can significantly<br />

shape the ISM, and the pressure provided by<br />

magnetic fields and turbulent motions can be greater<br />

than the thermal pressure provided by the different gaseous<br />

phases (e.g., Tabatabaei et al. 2008). Radio synchrotron<br />

emission, and its polarization and Faraday rotation,<br />

are powerful tools in the study of the strength<br />

and structure of magnetic fields in galaxies. Polarized<br />

emission traces ordered magnetic fields, which can follow<br />

a large-scale spiral pattern in grand-design, barred<br />

and flocculent galaxies. Unpolarized emission traces<br />

random magnetic fields which are strongest in spiral<br />

arms and in central starburst regions. Our recent studies,<br />

based on the nearby late type spiral galaxy and<br />

KiNGfish target NGC 6946, show a power-law correlation<br />

between star <strong>for</strong>mation rate surface density and<br />

the random magnetic field strength (Tabatabaei et al.,<br />

subm). This is observational evidence of generation<br />

Fig. III.4.6: Cumulative number surface density <strong>for</strong> M 51’s<br />

Giant Molecular Clouds (GMCs) with masses greater than M’,<br />

as identified within the paws field of view. The full sample<br />

of 1507 GMCs (dark-blue squares) has been divided in three<br />

main regions: central (red), spiral arm (light blue) and interarm<br />

regions (green). The three regions encompass dynamically<br />

distinct environments (see Meidt et al. 2012). The mass functions<br />

show a clear change in both the slope and density between<br />

different galactic environments. The vertical dashed line indicates<br />

the completeness limit of the catalog set (3.6 10 5 M 0 ).<br />

The surface area of each region over which the mass spectra is<br />

determined as labeled.


70 III. Selected Research Areas<br />

Credit: E. Schinnerer<br />

G (R) (|G|)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

–10<br />

–20<br />

0<br />

Azimuthally-averaged torques<br />

Molecular gas depletion time<br />

20 40 60 80<br />

R<br />

100 120 140<br />

Fig. III.4.7: Azimuthally-averaged torques (black and white)<br />

and molecular gas depletion time (or inverse star <strong>for</strong>mation efficiency;<br />

blue) calculated in radial bins in M 51. Each crossing<br />

from negative to positive torque corresponds to the location of<br />

the co-rotation resonance (CR) of the structure: inside CR material<br />

moves inward and outside material is ‘pushed’ outward.<br />

The longest gas depletion times coincide with radial inflow,<br />

which can be mapped to the largest non-circular streaming<br />

velocities along the arm.<br />

and/or amplification of the random magnetic field by<br />

the turbulent gas motions induced by star <strong>for</strong>mation.<br />

The ordered magnetic field has, however, no correlation<br />

with star <strong>for</strong>mation rate in NGC 6946. The origin<br />

of the ordered magnetic field is believed to be linked to<br />

a mean field dynamo effect that depends on galactic differential<br />

rotation (Fletcher et al. <strong>2011</strong>).<br />

6<br />

4<br />

2<br />

0<br />

–2<br />

t dep [Gyr]<br />

The ISM in detail: The future of nearby galaxy studies<br />

The future of ISM studies in nearby galaxies at MPIA<br />

is very bright, with a wealth of optical, infrared and<br />

sub-mm data becoming available. Using the PPaK /<br />

pMas instrument at Calar Alto, we have obtained integral<br />

field spectroscopy of a sample of the KiNGfish<br />

galaxies. Using these we are tracing the excitation and<br />

attenuation of the ionized ISM in the galaxies, which<br />

we can directly compare to the dust distribution from<br />

KiNGfish, and the excitation of the molecular gas from<br />

heracles and new herschel-spire spectra currently being<br />

obtained and reduced. In the far-IR we have recently<br />

obtained herschel-pacs spectral maps of the [CII]<br />

158 µm emission line, one of the dominant coolants of<br />

the diffuse ISM, <strong>for</strong> selected regions in M 31. Along<br />

with the resolved stars from phat and the high resolution<br />

dust maps from herschel, the direct input, heating<br />

and cooling of the diffuse ISM can now be determined.<br />

Finally, with alMa now fully starting its science operation,<br />

and the NoeMa extension to the iraM Plateau de<br />

Bure Interferometer, the molecular ISM of nearby galaxies<br />

can be observed at even higher resolution and higher<br />

sensitivity, resolving molecular clouds into individual<br />

clumps and cores down to the scales at which star <strong>for</strong>mation<br />

is occurring. In addition, these new instruments<br />

will <strong>for</strong> the first time allow <strong>for</strong> the extensive study of the<br />

molecular gas composition using chemical tracers, i.e.<br />

different molecules and ions, <strong>for</strong> the dense, shocked, and<br />

ionized molecular gas in galaxies.<br />

Eva Schinnerer, Brent Groves, Fabian Walter,<br />

Oliver Krause, Andreas Schruba, Karin Sandstrom,<br />

Annie Hughes, Dario Colombo, Sharon Meidt,<br />

Fatemeh Tabatabaei, Hendrik Linz


IV. Instrumental Developments and Projects<br />

Here we report on further activities mainly belonging<br />

to our instrumentation projects and related technical<br />

developments. Since the number of ongoing projects is<br />

rather large, we are only presenting a selection of our<br />

current activities. Since this selection varies over the<br />

years, we encourage the reader to have also a look into<br />

other <strong>Annual</strong> <strong>Report</strong>s of MPIA.<br />

IV.1 The Pan-StarrS1 surveys and<br />

some early results<br />

The Pan-StarrS1 project is the first of a new generation<br />

of imaging survey telescopes of “extremely<br />

large” figure of merit and powerful data processing<br />

pipeline. Pan-StarrS stands <strong>for</strong> the PANoramic Survey<br />

Telescope And Rapid Response System, and its first<br />

unit out of four planned is called Pan-StarrS1 (or<br />

PS1 <strong>for</strong> short) and is located on Haleakala in Hawaii.<br />

MPIA and its other partner institutes of the MPG and<br />

elsewhere founded in 2006 the PS1 Science Consortium<br />

to support the telescope operations and conduct the PS1<br />

surveys; and to organise the scientific work. As a major<br />

contributor, MPIA enjoys full access rights and leads<br />

several scientific areas called “key projects”. In addition,<br />

the institute may offer access rights to six German<br />

scientists. We used this opportunity to strengthen our<br />

scientific ties to university colleagues. During the commissioning<br />

phase, MPIA contributed to the characterisation<br />

of the telescope per<strong>for</strong>mances. After almost a<br />

year of further system optimisation and partial scientific<br />

operations, the telescope and camera were deemed<br />

ready <strong>for</strong> regular survey operations, which started in<br />

April 2010.<br />

An extremely large camera<br />

The PS1 project features a fast, 1.8-m telescope, with<br />

an average overhead of 13 seconds between two exposures;<br />

the largest-ever built camera with 1.4-Gigapixel,<br />

7-square degrees field of view, and sensitivity between<br />

0.35 and 1.02 μm; and a dedicated pipeline capable of<br />

reducing the night’s observations and delivering catalogues<br />

be<strong>for</strong>e tea time. The pipeline also produces advanced<br />

data products such as stacked images, which are<br />

the sum of all the images observed over a given sky area,<br />

and differential imaging, which in contrast one subtracts<br />

the most recent image to a template of the field, in order<br />

to easily detect variable sources, or new astronomical objects<br />

such as supernovae.<br />

The large field of view of the camera, six times the<br />

Full Moon in diameter, and 35 times in solid angle, allows<br />

to cover the whole sky visible from Haleakala with<br />

about 4300 telescope pointings. After 1.5 years of regular<br />

survey operations, PS1 has covered a few times the<br />

sky North of DEC –30 (3π-steradian survey) in five<br />

optical bands. This is twice the area covered by the Sloan<br />

Digital Sky Survey (SDSS), a PS1 precursor and one of<br />

most successful astronomical projects ever, over its decade<br />

of imaging operations.<br />

The photometric calibration is on-going, either against<br />

SDSS photometry or using PS1 overlapping observations<br />

with “übercalibration”. Proper motions calculated<br />

using 2MASS as the first epoch have a typical accuracy<br />

of 10 mas/yr.<br />

In addition, shallower imaging is obtained in parallel<br />

to the CPG1 observations, at low spatial resolution.<br />

Fig. IV.1.1: NGC 894 in gri colours, in the Medium Deep Field 01.<br />

Credit: N. Metcalfe et al.<br />

71


72 IV. Instrumental Developments and Projects<br />

Credit: Morganson et al., arXiv:1109.6241<br />

Flux [10 –21 W / (m 2 nm)]<br />

0.9<br />

0.6<br />

0.3<br />

0<br />

0.9<br />

0.6<br />

0.3<br />

0<br />

0.9<br />

0.6<br />

0.3<br />

0<br />

MMT spectrum<br />

CAHA spectrum<br />

PS1 total efficiency<br />

700<br />

i z y<br />

800 900 1000<br />

Observed Wavelength [nm]<br />

Fig. IV.1.2: The spectra of the first PS1 high-redshift quasar<br />

obtained by MMT and Calar Alto as well as the PS1 iP1, zP1,<br />

yP1 filter curves.<br />

These data will fill the V 10–15 mag gap between the<br />

Hipparcos photometry of bright stars, the deep photometry<br />

of PS1 and SDSS. This range is crucial <strong>for</strong> the detailed<br />

study of the closest cool stars and is only available<br />

with large uncertainties from the plate surveys.<br />

Other surveys of interest to us are the Medium Deep<br />

Survey, which monitors daily up to four pointings, and<br />

cover 70 square degrees, and the PanPlanets survey dedicated<br />

to the search over transiting exoplanets, particularly<br />

around M-type dwarfs.<br />

Published results cover the Solar system and near-<br />

Earth asteroids up to the most distant quasars, with a<br />

z 6.0 quasar discovered at MPIA. As the first deep,<br />

wide, high-accuracy optical survey, PS1 is a unique<br />

resource <strong>for</strong> the community. Prior to its full data release<br />

expected 2015, it has established Memoranda of<br />

Understanding with several large projects with other<br />

wavelength coverage or spectral resolutions, which<br />

greatly benefit from the PS1 catalogue. High-schools in<br />

Heidelberg and world-wide have access to the images to<br />

search <strong>for</strong> asteroids, and have successfully done so.<br />

Early Results obtained at MPIA<br />

MPIA has concentrated its ef<strong>for</strong>ts in four main areas:<br />

very-low mass stars and brown dwarfs of the solar<br />

neighbourhood, exoplanets, the structure of the Milky<br />

Way, and Quasars.<br />

Our search <strong>for</strong> cool brown dwarfs of the solar neighbourhood<br />

firstly involved cross-matching with 2MASS<br />

and selecting red y-J candidates. As SDSS be<strong>for</strong>e, PS1<br />

has the right wavelength sensitivity to detect the early<br />

T-type dwarfs. Over 40 new T-type dwarfs have been<br />

discovered (Deacon et al., <strong>2011</strong>, AJ 142, 77). A crossmatch<br />

with WISE is underway. Proper motions based<br />

on 2MASS and PS1 data also revealed new brown<br />

dwarf companions to Hipparcos stars (Deacon et al.,<br />

arXiv:1109.6319), providing new benchmark objects to<br />

calibrate the brown dwarf models.<br />

We take advantage of the wide sky coverage of PS1<br />

to study the nearby 625-Myr-old Hyades cluster. We<br />

can select cluster candidates to large cluster radii (30<br />

pc) to study the cluster evaporation, especially close to<br />

the stellar/brown dwarf boundary (Goldman et al., submitted<br />

to A&A). We confirm previous indications of<br />

mass segregation with a larger significance and the lack<br />

of low-mass members at the cluster centre. The PS1<br />

survey also offers an unprecedented look at the structure<br />

of our Galaxy, with deep, uni<strong>for</strong>m optical data in<br />

five bands covering the whole Galactic plane in addition<br />

to the Northern Galactic Cap. The MPIA leads the<br />

PS1 science collaboration’s study of the Galaxy. Our<br />

research in this area includes: a search <strong>for</strong> new dwarf<br />

galaxies, the characterisation of the structure of the<br />

Monoceros stream, and mapping the Galaxy’ dust.<br />

Regarding our quasar work, we first use the deep z–<br />

and y–band imaging to select <strong>for</strong> optical dropout highredshift<br />

candidates. We found the first PS1 high-redshift<br />

quasar (Morganson et al., arXiv:1109.6241: The<br />

First High-redshift Quasar from Pan-StarrS) at redshift<br />

6 (see Figure IV.1.2); the prospect to discover z 7<br />

QSOs is promising.<br />

B. Goldman, E. Bañados, N. Deacon,<br />

T. Henning, N. Martin, E. Morganson,<br />

H.-W. Rix, B. Venemans, F. Walter<br />

In collaboration with partner institutes of the<br />

PS1 Science Consortium,in particular the<br />

<strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong> of the University of Hawaii;<br />

as well as the ZAH of the University of Heidelberg<br />

through the SFB 881 “The Milky Way”


IV.2 argoS: Laser guided Ground Layer Adaptive Optics <strong>for</strong> the LBT<br />

argoS, the Advanced Rayleigh Ground layer adaptive<br />

Optics System <strong>for</strong> the LBT goals on the improvement of<br />

the image quality <strong>for</strong> both Luci instruments by a factor<br />

of 2–3 in full width half maximum, which increases the<br />

spectroscopic efficiency by a factor of 4–9. All this will<br />

be provided <strong>for</strong> the full 4 arcmin field of view of both<br />

Luci instruments and their multi-object capability by the<br />

means of 6 green Rayleigh laser guide stars. As argoS<br />

only corrects <strong>for</strong> the turbulence in the lower atmosphere<br />

(the so called ground layer) the full diffraction limit will<br />

not be reached. However, from the beginning argoS incooperated<br />

an on-axis diffraction limited upgrade with<br />

a Sodium laser into the design.<br />

MPIA is one of the three bigger partners in the argos<br />

consortium. In this role MPIA is responsible <strong>for</strong> the overall<br />

software and control, the calibration unit and the procurement<br />

of the dichroics, which separate the laser light<br />

to the wavefront sensor.<br />

Fig. IV.2.1: The swing arms in their shipping containment<br />

starting the long way from MPIA to the LBT at Mt. Graham,<br />

Arizona.<br />

In the last year the swing arm, which holds the calibration<br />

unit, was assembled at MPIA and shipped to the<br />

LBT. The swing arm is built out of carbon fiber, a new<br />

material, which will be also very important <strong>for</strong> building<br />

new large scale telescopes to light weight their structure.<br />

In August the swing arm was then installed at the<br />

telescope.<br />

The green laser light of the artificial guide stars has<br />

to be directed to the wavefront sensor. While the infrared<br />

light, used <strong>for</strong> science, should still reach the Luci<br />

instruments. This is done by the means of a so called<br />

dichroic, which transmits light of certain wavelengths,<br />

in our case the near infrared, and reflects light of other<br />

wavelengths, in our case the green light of the laser<br />

guide star. Such dichroics are often used in optical instruments<br />

but the size and shape, which was needed <strong>for</strong><br />

argos was much bigger and more challenging as usual.<br />

During this year, the two dichroics needed <strong>for</strong> the right<br />

and left side of argos have been delivered to MPIA.<br />

They have been tested <strong>for</strong> transmission and reflection.<br />

The result of the measurements shows that they comply<br />

with all specifications and even surpass some of them.<br />

With this positive result one of the most critical components<br />

of argos are ready in time. At the end of next<br />

Credit: W. Gässler<br />

73


74 IV. Instrumental Developments and Projects<br />

Credit: W. Gässler<br />

Credit: W. Gässler<br />

Fig. IV.2.2: The swing arms mounted on the LBT. They are retracted<br />

in their park position at the inner windbrace.<br />

Fig. IV.2.3: The dichroic in its test mount. The reflection and<br />

transmission of the unit was measured and verified.<br />

year the laser system will be installed at the telescope<br />

followed by the wavefront sensor in summer of the year<br />

after. Finally, in 2014, argos is supposed to be handed<br />

over to the user community.<br />

Involved at MPIA:<br />

Wolfgang Gässler (Co-I), Thomas Blümchen,<br />

Jose Borelli, Martin Kulas,<br />

Michael Lehmitz, Diethard Peter.<br />

Partners (local representatives only):<br />

Wolfgang Gässler (MPIA),<br />

Sebastian Rabien (MPE),<br />

Simone Esposito (INAF-OAA),<br />

Michael Loyd-Hardt (UA),<br />

Andreas Quirrenbach (LSW),<br />

Jesper Storm (AIP),<br />

Richard Green (LBTO),<br />

Udo Beckmann (MPIfR)


IV.3 MatiSSe – Interferometric Imaging in the Mid-Infrared<br />

MatiSSe – the Multi Aperture Mid-Infrared SpectroScopic<br />

Experiment – is one of two second generation instruments<br />

which had been selected by eSo <strong>for</strong> the VLTI at<br />

Paranal. Thus MatiSSe is in a sense the successor of<br />

Midi, the Mid-Infrared Interferometric Instrument, which<br />

has been built at MPIA and which is working on Paranal<br />

since 2003.<br />

Matisse will combine the beams of up to four of the 8 m<br />

UTs (Unit Telescopes) or of up to four of the 1.8 m ATs<br />

(Auxiliary Telescopes) and thus will be able to measure<br />

in “closure phase mode”, i.e. it offers an efficient capability<br />

<strong>for</strong> image reconstruction with a spatial resolution<br />

of up to 7 milliarcsec. The instrument will work at three<br />

wavelength bands: L (3.2 – 3.9 μm), M (4.5 – 5 μm), and<br />

N (8 – 13 μm), where the L and M band observations are<br />

per<strong>for</strong>med simultaneously to the N band.<br />

With the three different spectroscopic resolutions in<br />

the range of R 30 – 1500 it will provide the basis <strong>for</strong><br />

a fundamental analysis of the composition of gas and<br />

dust grains in various astrophysical environments. Key<br />

science programs <strong>for</strong> the ATs cover <strong>for</strong> example the <strong>for</strong>mation<br />

and evolution of planetary systems, the birth of<br />

massive stars as well as the observation of the highcontrast<br />

environment of hot and evolved stars. With the<br />

UTs selected astrophysical programs such as the study<br />

of Active Galactic Nuclei and Extrasolar Planets shall<br />

be possible.<br />

Matisse is developed and built by a collaboration<br />

of the Observatoire de la Cote d’Azure, the MPIA, the<br />

MPI <strong>for</strong> Radio <strong>Astronomy</strong> in Bonn and two institutions<br />

(astron/Dwingeloo and Leiden University) from the<br />

Netherlands. In this consortium MPIA is responsible <strong>for</strong><br />

the cryogenics system, the entire control electronics, and<br />

the instrument control software.<br />

After the successful Preliminary Design Review<br />

(PDR) in December 2010 the year <strong>2011</strong> was dominated<br />

by the preparations <strong>for</strong> the first part of the Final Design<br />

Fig. IV.3.1: Pulse tube cooler PTC 410 from Cryomech. The two<br />

copper plates mark the two stages.<br />

Fig. IV.3.2: Head of Pulse tube cooler with damping system on<br />

test set-up.<br />

Review (FDR) in September <strong>2011</strong>, where the cryogenic system and the design of the optics were reviewed by<br />

eso. For the development of the cryostats several tests<br />

Table. IV.3.1: The characteristic parameters of Matisse.<br />

Number of beams/<br />

telescopes<br />

4 (2 or 3 possible)<br />

Field of view 2 arcsec<br />

Spectral resolution L/M N<br />

Low 20 R 40 20 R 40<br />

Medium 200 R 400 200 R 400<br />

High 750 R 1250<br />

Spatial resolution 0.007 arcsec 0.02 arcsec<br />

had to be per<strong>for</strong>med. By using an auxiliary cryostat we<br />

specified the characteristics of the selected Pulse Tube<br />

Cooler PT410 from Cryomech (Fig. IV.3.1). With using<br />

such a device the induced vibrations are typically factors<br />

of 10–50 lower than with normal Closed Cycle Coolers<br />

of similar cooling power.<br />

Besides the vibrations inside and outside of the test<br />

cryostat we also tested <strong>for</strong> the minimum temperatures to<br />

be reached with this kind of cooler at its first and second<br />

stage and <strong>for</strong> the temperature variations caused by the<br />

cooler when connected to a dummy cold optical bench<br />

(first stage) and a dummy detector (second stage). Here<br />

the copper braid used <strong>for</strong> this connection had to be opti-<br />

Credit: U. Graser<br />

Credit: U. Graser<br />

75


76 IV. Instrumental Developments and Projects<br />

Cryostat <strong>for</strong>: L/M-Band (3 – 5 mm) N-Band (8 – 13 mm)<br />

Cooler Pulse Tube Cooler (Cryomech PT 410)<br />

Detector Hawai II RG 5 mm Raytheon Aquarius<br />

Pixel / pixel size 2K3 2K/18mm 1K3 1 K / 30 mm<br />

Cryostat: Size (h 3 w 3 l) / weight: 205 3 98 3 68 cm / 1500 kg<br />

Temperature Detector / Optics 40K/40K 8K/40K<br />

Temperature stability 0.1 K<br />

Adjustable support (range / accuracy) 5 mm (in h, x, y) / 0.2 mm<br />

Cool-down time < 3.5 days<br />

Accessibility of cold optics / detector Accessible without dismounting the cryostat<br />

Detector displacement from vibrations < 2 mm < 3.5 mm<br />

Table IV.3.2: The main requirements <strong>for</strong> the two cryostats.<br />

mized between the contradicting properties of a sufficient<br />

cooling on the one hand and an efficient vibration<br />

damping on the other side.<br />

In addition to these tests we had to per<strong>for</strong>m several calculations,<br />

e.g. a Finite Element Analysis <strong>for</strong> the characterization<br />

of damage-prevention against Paranal-typical<br />

earth-quakes or the temperature distribution of the optics<br />

during cool-down. Also a thorough hazard analysis<br />

<strong>for</strong> the cryostat operation had to be delivered to eso.<br />

Table IV.3.2 shows the main requirements <strong>for</strong> the two<br />

cryostats.<br />

In parallel we continued in finalizing the design of<br />

the control electronics <strong>for</strong> the upcoming second part of<br />

the FDR in April 2012. Because of the limited space<br />

in the labs on Paranal a major ef<strong>for</strong>t had to flow into<br />

a compact design of the electronics. The control of<br />

70 motors and of a lot of additional devices had to be<br />

packed into 3 cabinets.<br />

Thomas Henning, Uwe Graser,<br />

Werner Laun, Michael Lehmitz,<br />

Marcus Mellein, Udo Neumann,<br />

Vianak Naranjo


IV.4 The eucLid Dark Energy mission<br />

eucLid is a cosmology satellite mission in the framework<br />

of eSa's Cosmic Vision programme. It will characterize<br />

the nature of Dark Matter and Dark Energy by measuring<br />

the clustering of matter and the expansion history<br />

of the Universe since redshift 2. The task of designing<br />

and building the Euclid instruments is coordinated by a<br />

consortium of 13 European countries, bringing together<br />

scientists and engineers from more than 100 individual<br />

institutions. eucLid will launch in 2020 to the Earth-Sun<br />

L2 point from where 15 000 square degrees of extragalactic<br />

sky will be observed over a six year mission<br />

duration.<br />

Eighty years ago we seemed to know a lot about the<br />

Universe. Galaxies were identified as “island universes”<br />

similar to our own Milky Way, made up of stars and<br />

gas and dust. All constituents of mass seemed to have<br />

been found – until in the 1930s the outer rotation curves<br />

of galaxies proved to be incompatible with the mass of<br />

visible matter given the laws of gravitation. With the<br />

addition of similar discrepancies in galaxy clusters it<br />

became clear that a hereto<strong>for</strong>e unrecognized and invisible<br />

component – coined “Dark Matter” – must contain<br />

5 times more mass than the visible “Baryonic”<br />

matter that makes up stars and galaxies.<br />

70 years later, by the end of the 1990s, another discrepancy<br />

was noticed. The expansion history of the<br />

Universe did not obey the law of gravitation yet again.<br />

Contrary to expectations, the expansion of the Universe<br />

was observed to be accelerating, requiring an additional<br />

ingredient, termed "Dark Energy", in the massenergy<br />

content of the universe. This discovery was<br />

awarded with the Nobel-Prize in physics in <strong>2011</strong>. Dark<br />

Energy must provide a mass density, to accommodate a<br />

near-euclidian flat space as identified by the cobe and<br />

WMAP missions, but at the same time deliver a repulsive<br />

effect.<br />

eucLid: a quest <strong>for</strong> bringing light into darkness<br />

esa’s eucLid mission is designed to investigate the nature<br />

of Dark Energy, and Dark Matter, with the aim to<br />

pin down its equation of state parameters. These differ<br />

between various proposals <strong>for</strong> the nature of Dark<br />

Energy and can at the same time test predictions made<br />

by modified models of gravitation. eucLid will utilize<br />

Weak Gravitational Lensing measurements to map the<br />

Dark Matter density in 3D-space and at the same time<br />

measure the expansion history of the Universe from<br />

z 2 to today. This combination will allow scientists to<br />

determine the equation of state parameters by a factor<br />

of 30 better than any current or planned measurements<br />

<strong>for</strong> the next two decades.<br />

eucLid's diagnostic require mapping of 15 000 square<br />

degrees of extragalactic sky with (1) high resolution<br />

imaging, (2) near-infrared spectroscopy, and (3) near-<br />

infrared photometry. While the <strong>for</strong>mer will be implemented<br />

in the VIS visual imager, MPIA’s involvement<br />

lies mainly with the latter two, realized in the NISP (Near<br />

Infrared Spectro-Photometer) instrument. We are directly<br />

responsible <strong>for</strong> two hardware contributions, the NIR<br />

filters as well as a calibration light source to support the<br />

instrumental calibrations in flight. MPIA also fills the<br />

position of instrument scientist and image simulator <strong>for</strong><br />

the photometry channel and is hence centrally involved<br />

in the planning and definition aspects of the mission.<br />

The mission was officially selected <strong>for</strong> the 2 nd M-class<br />

launch slot in esa’s Cosmic Vision Programme in late<br />

Fig. IV.4.1: An early concept of the Euclid telescope. A 1.2 mdiameter<br />

off-axis mirror will feed the two instruments VIS<br />

and NISP, mounted to the lower side of the optical bench.<br />

The light-path will be deliberately simple to allow a very high<br />

image quality <strong>for</strong> the VIS imager (from the eucLid Red Book,<br />

esa, <strong>2011</strong>).<br />

Secondary<br />

Mirror<br />

Structure<br />

Ultra Stable<br />

Support<br />

Truss<br />

Optical<br />

Bench<br />

Secondary Mirror<br />

and Focus System<br />

Primary<br />

Mirror<br />

Credit: A. Anselmi, Thales Alenia Space Italia<br />

77


78 IV. Instrumental Developments and Projects<br />

Credit: MPIA<br />

<strong>2011</strong> and is awaiting its final adoption in mid 2012, with<br />

the implementation phase scheduled to start immediately<br />

thereafter. Overall, Germany is mostly involved with<br />

NISP – the optical assembly is provided by the MPE –<br />

and the German eucLid national data center with contributions<br />

by the Universities in Bonn, LMU Munich, MPE<br />

and MPIA. Part of the institute's involvement is being<br />

funded through the DLR. This includes four positions <strong>for</strong><br />

instrument scientist, image simulations, calibrations, and<br />

hardware, as well as in-house contributions concentrated<br />

on the science side.<br />

MPIA hardware contributions: Near infrared filters and<br />

calibration source<br />

While we are not responsible <strong>for</strong> mechanisms, the NIR<br />

filters provide specific challenges with a diameter of<br />

140mm, necessitated by the 0.730.7-wide field of<br />

view of eucLid. These diameters are larger by a factor<br />

of three compared to any of the WFC3/IR filters on HST<br />

and by a factor of two compared to JWST’s NIRcam.<br />

Aside from the mere material challenge of a pound of<br />

glass being homogeneously coated to very high accuracy,<br />

the three filter bandpasses (Y, J, H) have rather stringent<br />

requirements on throughput, out-of-band-blocking,<br />

and shape.<br />

Fig. IV.4.2: Current mechano-optical design of the Near Infrared<br />

Spectrophotometer (NISP) onboard eucLid. MPIA’s contribution<br />

lies in the supervision of the scientific per<strong>for</strong>mance of<br />

NISP, the internal Calibration Source, needed to calibrate the<br />

instrument's detectors, as well as the three infrared science<br />

filters <strong>for</strong> NISP.<br />

The NISP calibration source is being designed to<br />

provide the photometric accuracy levels required by the<br />

mission. An overall 1.5 % accuracy <strong>for</strong> all positions and<br />

epochs of the survey is the basis <strong>for</strong> the photometric redshifts<br />

to be computed <strong>for</strong> all of the faint galaxies to be<br />

used in the weak lensing diagnostic. This leaves little<br />

margin <strong>for</strong> the characterization of the detector array (16<br />

Hawaii 2RG chips). The calibration source there<strong>for</strong>e has<br />

to provide flat-field and non-linearity characteristics of<br />

the arrays in flight and monitor their radiation-induced<br />

degradation with increasing mission duration.<br />

The demands of the filter and calibration source design<br />

combined with the overall development of the mission<br />

will make <strong>for</strong> very interesting years ahead of us.<br />

Legacy science: A place to participate<br />

Scientifically, eucLid offers endless opportunities beyond<br />

the core cosmology science. 15 000 square degrees<br />

of imaging data of a 5000–9000 Å band at 0.1<br />

sampling, complemented with somewhat undersampled<br />

NIR photometry at 0.3 pixel scale, as well as slit-less<br />

spectroscopy will provide data input to topics ranging<br />

from AGN and galaxy evolution to Milky Way science,<br />

and from supernovae to planet searches. eucLid’s extensive<br />

Science Working Groups are starting to plan projects<br />

and opportunities in these legacy science areas, to<br />

exploit imaging data of billions of objects and spectroscopy<br />

of several tens of millions.<br />

Knud Jahnke, Rory Holmes, Gregor Seidel,<br />

Felix Hormuth, Stefanie Wachter


IV.5 Special Developments in the Technical Departments<br />

trac: A versatile Teamwork Plat<strong>for</strong>m used in<br />

Instrumentation Development<br />

The accessibility, organization and presentation of all<br />

project related in<strong>for</strong>mation is a key to efficient collaboration<br />

within development teams. The value of a structured<br />

in<strong>for</strong>mation plat<strong>for</strong>m increases with the number<br />

of team members and the duration of the projects. It<br />

provides a common pool of knowledge to the various<br />

disciplines within the development team. And it helps<br />

the Systems Engineering to manage the interdependencies<br />

and to monitor the progress in the different areas<br />

and phases of the development. A wide range of commercial<br />

groupware solutions promise help by supplying<br />

collaboration tools, such as centralized file exchange,<br />

document management, task management, discussion<br />

<strong>for</strong>ums and wikis.<br />

Fig. IV.5.1: : The wiki start page <strong>for</strong> LINC-NIRVANA's Trac<br />

Credit: MPIA<br />

79


80 IV. Instrumental Developments and Projects<br />

Credit: MPIA<br />

trac at a glance<br />

trac (http://trac.edgewall.org) is a free and open source<br />

groupware alternative. Mainly developed as web-based<br />

management tool <strong>for</strong> software projects, it supports software<br />

development teams with tools that are specific to<br />

their needs, such as software configuration management<br />

/ version control or a code browser. Although made<br />

to help software developers, its minimalist approach allows<br />

adapting trac to a wide range of projects, including<br />

instrumentation development.<br />

At MPIA several software and instrumentation projects<br />

now make use of trac and of many of its features:<br />

• The wiki. It is the main access point <strong>for</strong> the team<br />

members. A simple interface allows them to create<br />

and edit wiki pages. The team can gather con-<br />

Fig. IV.5.2: Each subsystem of Linc-nirvana has a wiki page<br />

with all related in<strong>for</strong>mation, including meeting minutes, documents,<br />

notes and tickets.<br />

tent; the pages can be structured and <strong>for</strong>matted in a<br />

com<strong>for</strong>tably readable way. Pictures and other types<br />

of media can be embedded, as well as content from<br />

other trac modules like the ticket system or the<br />

blog plugin. Files can be attached and referenced<br />

within the wiki page.<br />

• The ticket system. It allows following up issues that<br />

are identified in the course of the project. For software<br />

projects tickets are often used to describe bugs<br />

and their solutions. But tickets can also be used to organize<br />

the workflow and dependencies when developing<br />

hardware. Tickets can be associated with project<br />

milestones and with entities such as systems or


components. The owner of the ticket is in charge of<br />

the underlying task. Additional in<strong>for</strong>mation, such as<br />

due dates or dependencies on other tickets can be reflected.<br />

All in<strong>for</strong>mation is kept in a database. A simple<br />

interface allows to query and filter the tickets and,<br />

by that, to monitor the progress of the project or to<br />

identify open issues <strong>for</strong> upcoming milestones.<br />

• The version control system. Each trac project is associated<br />

with a subversion repository. For software<br />

development projects it is the place to store the code,<br />

but it can also be used to archive and control versions<br />

of documents.<br />

• Seamless interaction. Within trac it is very simple<br />

to introduce references to tickets, wiki pages, files in<br />

the repository, blog entries etc. All content within<br />

trac is also searchable.<br />

• Expandability. trac capabilities can easily be expanded<br />

by adding plugins. There is an active community<br />

developing a wide variety of plugins, such as the<br />

blogging system, user account management or Latex<br />

support in wiki pages. trac and its plugins are developed<br />

in the Python programming language; with<br />

reasonable ef<strong>for</strong>t it is possible to develop custom solutions<br />

needed <strong>for</strong> a project.<br />

trac and Linc-nirvana<br />

Linc-nirvana introduced trac in 2010 and uses it since<br />

with great success. More than 70 team members and reviewers<br />

from inside and outside of MPIA have access to<br />

Linc-nirvana’s trac.<br />

The project uses tickets to organize and follow up<br />

most development activities. Each team member involved<br />

in an activity gets in<strong>for</strong>med by email about updates.<br />

The tickets increase the efficiency of status meetings<br />

– they help to stay focused and provide all important<br />

in<strong>for</strong>mation on its subject in a commonly accessible<br />

1 Push-Pull<br />

2 Push-Pulls<br />

4 Push-Pulls<br />

8 Push-Pulls<br />

IV.4 Special Developments in the Technical Departments 81<br />

place. The tickets have demonstrated to be very helpful<br />

when collaborating with partners in different institutes.<br />

All project related documentation is archived in trac<br />

and is easily accessible in various places on the wiki,<br />

depending on their context. So are meeting minutes and<br />

notes, which are stored as blog posts.<br />

Thomas Bertram, Florian Briegel<br />

Interaction Matrix Calibration <strong>for</strong> Adaptive Optics:<br />

What is the best method?<br />

For an adaptive optics (AO) system it is necessary to<br />

characterize how the de<strong>for</strong>mable mirror (DM) interacts<br />

with the complete optical system up to the wavefront<br />

sensor. This procedure, commonly referred to as “calibrating<br />

the interaction matrix” (a matrix which is then inverted<br />

to produce the matrix <strong>for</strong> reconstructing the wavefront)<br />

is a process which is a key to achieve an optimal<br />

control of the DM. Members of the technical department<br />

at MPIA, working together with graduate student Xianyu<br />

Zhang and colleagues from INAF, have determined an<br />

optimal method <strong>for</strong> per<strong>for</strong>ming this calibration. These<br />

results appear in the article “Calibrating the interaction<br />

matrix <strong>for</strong> the Linc-nirvana high layer wavefont sensor”<br />

which was recently published in the journal Optics<br />

Express.<br />

Traditionally, interaction matrices have been calibrated<br />

by commanding the DM to a sequence of well-defined<br />

shapes, and, at each step in the sequence, taking<br />

a measurement of the light pattern seen by the sensor.<br />

But this process is affected by various sources of noise.<br />

Fig. IV.5.3: See text <strong>for</strong> details<br />

4 Frames<br />

3 Frames<br />

2 Frames<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1 Frame<br />

Credit: MPIA


82 IV. Instrumental Developments and Projects<br />

More recently, engineers and astronomers have determined<br />

that measurement noise can be reduced using<br />

standard statistical techniques. By alternating between<br />

each shape and its negative, and taking multiple measurements<br />

of each state, these data can be combined to<br />

get a more accurate value. This technique is called the<br />

“push-pull” method.<br />

For example, one of the fundamental shapes that is<br />

applied in the sequence is “pure focus.” This is a parabolic<br />

shape that appears somewhat like the shape of a<br />

cereal bowl. With the push-pull method, both the rightside-up<br />

cereal bowl and the upside-down cereal bowl<br />

shape are measured, and these shapes are measured several<br />

times each. All data is then combined to produce a<br />

single measurement.<br />

But if there is time to take only 8 measurements per<br />

mode, which is better: To take 4 positives in sequence<br />

and then 4 negatives; or to alternate, positive-then-negative,<br />

4 times? Or is a compromise best: 2 positives and<br />

2 negatives repeated twice?<br />

Prior to this study, engineers and astronomers based<br />

this decision on intuition. But from the study per<strong>for</strong>med<br />

at MPIA, it has been determined that it is the second option<br />

listed above, alternating positive and then negative,<br />

one frame at a time, which gives the best result. This is<br />

shown in Figure IV.5.3 taken from the publication. The<br />

purple column on the far right of the figure is shorter<br />

than the blue column on the far left (and also shorter<br />

than the orange and green columns in between). Since<br />

a smaller value indicates a more well-determined interaction<br />

matrix in this figure, it is clear that 8 push-pulls,<br />

with one frame per dwell, is the preferred method.<br />

Albert Conrad, Thomas Bertram,<br />

Florian Briegel, Frank Kittmann,<br />

Daniel Meschke, Fulvio De Bonis,<br />

Jürgen Berwein


V People and Events<br />

V.1 Looking back at <strong>2011</strong><br />

Exactly three years after the foundation we could celebrate<br />

the inauguration of the Haus der Astronomie (literally:<br />

House of <strong>Astronomy</strong> (HdA)) on December 16, <strong>2011</strong> with<br />

a number of prominent guests on the campus of the MPIA.<br />

Within the special chapter V.2 of this annual report we<br />

present details about this very important event and show<br />

with many illustrations particularly some highlights<br />

from the emergence of the building. Of course, we also<br />

report about organizational developments and the mission<br />

of the HdA. But the year <strong>2011</strong> had to offer many other<br />

remarkable events as the following section will show.<br />

Academic life and conferences<br />

One of the first special events throughout the year was<br />

a meeting titled <strong>Astronomy</strong> meets Business which took<br />

place on January 27 in the MPIA lecture hall and which<br />

was also attended by colleagues from the other astronomical<br />

institutes in Heidelberg.<br />

Fig. V.1.1: Members of the Board of Trustees and the institute<br />

management during a tour through the new HdA building in<br />

November <strong>2011</strong>. From left to rigth: Oliver Krause (MPIA),<br />

Stephan Plenz (Heidelberger Druck), Markus Pössel (HdA/<br />

Following a suggestion by the students and postdocs,<br />

MPIA had invited a number of representatives from industry,<br />

the Federal Ministry of Education and Research<br />

(BMBF), and the German Center <strong>for</strong> Aerospace (DLR).<br />

The aim of this event was to discuss the chances <strong>for</strong><br />

astrophysicists to pursue a professional career outside<br />

scientific institutions. Also aimed on the opportunities<br />

<strong>for</strong> scientists was the Naturejobs Conference on May 9<br />

at the European Molecular Biology Laboratory (EMBL)<br />

in Heidelberg. MPIA supported this conference with a<br />

booth and a presentation.<br />

Part of the academic life at MPIA was again an<br />

Internal Symposium on May 25. The all-day event with<br />

scientific presentations by students and postdocs from<br />

the different departments provided a wonderful opportunity<br />

to get an overview about the manifold research<br />

projects at the <strong>Institute</strong>. In <strong>2011</strong>, also the new Visitor<br />

Colloquium was launched – a plat<strong>for</strong>m <strong>for</strong> high quality<br />

talks given by special scientific visitors of the <strong>Institute</strong>.<br />

Furthermore, we introduced welcome events <strong>for</strong> new<br />

students and postdocs at the <strong>Institute</strong> and (<strong>for</strong> about three<br />

MPIA), Thomas Henning (MPIA), Renate Fischer (MWK),<br />

Klaus Tschira (KTS), Lisa Kaltenegger (MPIA), Matthias Voss<br />

(MPIA), Klaus Jäger (MPIA), Susanne Mellinghoff (MPG),<br />

Reinhold Ewald (ESA), Roland Gredel (MPIA)<br />

Credit: D.Anders<br />

83


84 V. People and Events<br />

times a year) a new, so-called, Faculty Meeting. In this<br />

meeting MPIA senior scientists and research group leaders<br />

are invited to discuss scientific and organizational<br />

matters with the institute management. Due to its special<br />

composition, the Faculty Meeting complements the<br />

existing committees such as the <strong>Institute</strong>- or the Scientific<br />

Advisory Board Meeting.<br />

Like every year, MPIA scientists organized local and<br />

external conferences or participated significantly in the<br />

organization and management of other meetings. This included<br />

two workshops at Ringberg Castle (Baroclinic Instability<br />

and Proto – Planetary Accretion Discs, June 14–<br />

18, as well as Transport Processes and Accretion in Young<br />

Stellar Objects, February 7–11) and, as in recent years,<br />

the IMPRS Summer School at the <strong>Max</strong> <strong>Planck</strong> House Heidelberg<br />

(August 1–5) which was combined with a trip to<br />

MPIA. This time, the workshop was about Characterizing<br />

Exoplanets – from Formation to Atmospheres.<br />

MPIA was also heavily involved in the fall meeting of<br />

the German Astronomical Society (AG) through organizational<br />

and financial support, but also through scientific<br />

presentations and Splinter Meetings, teacher training,<br />

and a special meeting <strong>for</strong> Public Outreach in <strong>Astronomy</strong>.<br />

The conference entitled Surveys and Simulations – The<br />

Real and the Virtual Universe was held at Heidelberg<br />

University between September 19 and 23. In the numerous<br />

PR activities surrounding the conference also <strong>for</strong> the<br />

first time the HdA was involved since the new and nearly<br />

finished building was presented to numerous visitors of<br />

the conference in several organized guided tours.<br />

Public outreach and special guests at MPIA<br />

Again this year employees of MPIA/HdA where very<br />

active in order to present astrophysics to a broader public<br />

(see also Chapter V.2).<br />

Credit: D.Anders<br />

A “fast-sell” since 2006 is the <strong>Astronomy</strong> Lecture Series<br />

on Sunday Morning and once again more than 1000<br />

people attended the 8 popular presentations on Königstuhl<br />

in early summer <strong>2011</strong>.<br />

A total of 15 MPIA scientists also participated in the<br />

70 presentations of the lecture series (Uni)versum für<br />

Alle in the Peterkirche Heidelberg. The lectures which<br />

took place almost daily at noon between April and July<br />

were organized by the Center <strong>for</strong> <strong>Astronomy</strong> of Heidelberg<br />

University (ZAH).<br />

It has long been an important issue <strong>for</strong> MPIA to inspire<br />

young people <strong>for</strong> physics and astronomy and this<br />

was also one reason <strong>for</strong> the institute management to<br />

stand up <strong>for</strong> the HdA. Thus, also in <strong>2011</strong>, the <strong>Institute</strong><br />

and the HdA team organized a local program during<br />

the Girls’ Day (April 14), provided (together with ZAH<br />

institutes) a one-week internship <strong>for</strong> pupils from high<br />

school (October 24 – 28), supported in July and August<br />

the International Science School of Heidelberg with internships,<br />

contributed to Explore Science in Mannheim<br />

(May 19 – 21) organized by the Klaus Tschira Foundation<br />

(KTS), and supported a ceremony at MPIA held by<br />

the Lord Mayor of Heidelberg, Eckart Würzner, to award<br />

17 schools from Heidelberg and their successful energy<br />

teams (April 19).<br />

Even be<strong>for</strong>e the official opening the HdA building has<br />

been shown to visitors at various events during the last<br />

quarter of the year. Besides the above mentioned tours<br />

during the AG meeting, this was the case at the <strong>Max</strong>-<br />

<strong>Planck</strong>-Day (November 11), at an in<strong>for</strong>mation day <strong>for</strong><br />

partners and friends of the HdA (November 25), during<br />

the visit of the MPIA Board of Trustees (November 29,<br />

Fig. V.1.2: Great interest to get hold of the new book about<br />

MPIAs history after the presentation of “Im Himmel über<br />

Heidelberg” in the lecture hall.


Fig. V.1.3: The author, Dietrich Lemke (left), in conversation<br />

with Immo Appenzeller, the <strong>for</strong>mer director of MPIA’s neighbour<br />

institute on Königstuhl, the Landessternwarte.<br />

see Fig.V.1.1), and when the German-Japan Round Table<br />

(organized by KTS) came up to the Königstuhl (December<br />

1).<br />

And on November 15, we had the first event in the<br />

HdA’s Klaus Tschira Auditorium. We celebrated with<br />

a special scientific symposium including international<br />

guests the retirement of Jakob Staude, the long-time head<br />

of public outreach at MPIA and chief editor of Sterne und<br />

Weltraum. Even the editorial office of this astronomy<br />

magazine (published by Spektrum) which has been produced<br />

<strong>for</strong> decades at MPIA moved into the new building<br />

together with the MPIA graphics department and, of<br />

course, the HdA-team already on September 26.<br />

If someone wants to learn more about the institute –<br />

from its beginnings in the 1960s until the construction<br />

of the HdA – one now has a new opportunity: since <strong>2011</strong><br />

we have released an intriguing book authored by MPIA<br />

scientist Dietrich Lemke entitled Im Himmel über Heidelberg.<br />

The book was presented at a ceremony held in<br />

the MPIA lecture hall on May 23 (see Fig.V.1.2 and 3).<br />

Other developments at the <strong>Institute</strong><br />

What has been described in the previous chapters I to IV<br />

represents only a relatively small part of the total scientific<br />

or technical activities done at MPIA in <strong>2011</strong>. Since<br />

we vary the topics described in the annual reports over<br />

the years to avoid excessive lengths we recommend to<br />

look at several annual reports <strong>for</strong> a more complete picture.<br />

This explains that some of the currently very important<br />

topics <strong>for</strong> MPIA are only marginally mentioned in<br />

Chapter I to IV or even be missing. There<strong>for</strong>e, we would<br />

like to mention here <strong>for</strong> example, that the technical departments<br />

in collaboration with colleagues at Calar Alto<br />

successfully managed to solve a very difficult problem at<br />

the mount of the 3.5 m telescope at the beginning of the<br />

year and there<strong>for</strong>e secured the continued operation of the<br />

telescope. This was of particular importance since the<br />

new agreement between the <strong>Max</strong> <strong>Planck</strong> Society and its<br />

Spanish counterpart, the CSIC, entered into <strong>for</strong>ce. This<br />

agreement regulates the continued operation of Caha until<br />

2018.<br />

The year <strong>2011</strong> was also another successful year in the<br />

use of hersChel – both from a scientific as well as from a<br />

technical perspective, because the currently largest space<br />

telescope with instrumental contributions from MPIA<br />

worked flawlessly and provided excellent data <strong>for</strong> MPIA<br />

scientists which are involved in several key projects.<br />

It is also remarkable that we already successfully completed<br />

the work on the instruments Miri and NirspeC <strong>for</strong><br />

the James Webb Space Telescope (JWST) which is expected<br />

<strong>for</strong> launch in 2018. And finally, we should also<br />

mention that we have started further initiatives to improve<br />

the long-term project planning and project management<br />

(<strong>for</strong> example through a special course about Scientific<br />

Project Management kindly held by Michael Perryman<br />

in February <strong>2011</strong>).<br />

Bereavement<br />

V.1 Looking back at <strong>2011</strong> 85<br />

Credit: D.Anders<br />

Besides all these positive events, there was un<strong>for</strong>tunately<br />

cause <strong>for</strong> mourning. On May 7, suddenly and<br />

unexpectedly died Crystal Brasseur. Be<strong>for</strong>e she became<br />

a PhD student in the Galaxy and Cosmology department<br />

of MPIA, she completed her M.Sc. degree in<br />

<strong>Astronomy</strong> in 2009 at the University of Victoria. We<br />

will keep her in our thoughts.<br />

Klaus Jäger, Thomas Henning,<br />

Markus Pössel, Axel M. Quetz,<br />

Hans-Walter Rix, Mathias Voss


86 V. People and Events<br />

Credit: D. Gouliermis<br />

V.2 Haus der Astronomie – Centre <strong>for</strong> <strong>Astronomy</strong> Education and Outreach<br />

<strong>2011</strong> was a crucial year <strong>for</strong> the Haus der Astronomie<br />

(HdA). Where we had spent the last two years establishing<br />

the HdA as an institution, this December saw the<br />

official opening of our spectacular, galaxy-shaped building.<br />

Thus, our mission this year was to hit the ground<br />

running: As soon as possible after the opening, we wanted<br />

to make the best use possible of the building and<br />

the new opportunity it represented. That meant having<br />

almost all of the center’s planned outreach activities already<br />

in place by the end of the year.<br />

We started into <strong>2011</strong> with an experienced team: Markus<br />

Pössel as the HdA’s Managing Scientist (funded by<br />

<strong>Max</strong> <strong>Planck</strong> Society) had been with the center since<br />

2009. Olaf Fischer (funded by the City of Heidelberg’s<br />

Foundation <strong>for</strong> Youth and Science), our resident specialist<br />

<strong>for</strong> high-school astronomy, had moved to the<br />

HdA in late 2009. Carolin Liefke (funded by the Klaus<br />

Tschira Foundation and Baden-Württemberg’s Ministry<br />

of Science and Research), whose focus areas include<br />

student research and university teaching <strong>for</strong> future<br />

physics teachers, has been with us since spring<br />

2010. Cecilia Scorza, who specializes in middle school<br />

astronomy education, joined us in 2009; since early<br />

<strong>2011</strong>, she works at HdA as a project scientist funded by<br />

the Special Research Programme SFB 881 “The Milky<br />

Way System”. Jakob Staude, one of the driving <strong>for</strong>ces<br />

behind the HdA project as a whole, remains our mentor-in-residence.<br />

In May, we were joined by Natalie<br />

Fischer, who became the National Project Manager <strong>for</strong><br />

the EU-UNAWE project, which aims to bring astronomy<br />

to young, disadvantaged children; also <strong>for</strong> EU-UN-<br />

AWE, the developmental psychologist, Anita Mancino,<br />

joined our team in September. Also in September, two<br />

teachers (Gymnasium and Realschule), on loan from<br />

Baden-Württemberg’s Ministry of Education, joined<br />

our team: Alexander Ludwig and Tobias Schultz will<br />

spend 50% of their time in the HdA, where, among<br />

other tasks, they will be involved in holding highschool<br />

student workshops. Intern Marcel Frommelt<br />

and student assistants Stephan Fraß and Sophia Haude<br />

completed our roster.<br />

Our threefold mission is unchanged: To communicate<br />

the fascination of astronomy to the general public,<br />

to support astronomy education, and to foster the exchange<br />

of knowledge between scientists.<br />

Fig. V.2.1: The Haus der <strong>Astronomy</strong> at dusk (30 November<br />

<strong>2011</strong>).


Whereas scientific exchange in its usual incarnation,<br />

as meetings and conferences, is contingent on the use<br />

of our new building and will come into its own starting<br />

in 2012, our outreach and educational activities in <strong>2011</strong><br />

were many and manifold.<br />

In the area of outreach, we continue to combine „classic“<br />

astronomical PR, online outreach and public events.<br />

In particular, we continued our work as German node of<br />

the eso Science Outreach Network, where our contributions<br />

include German translations of all eso press releases<br />

(Liefke / Pössel) and, this year, support of the Open<br />

Day at eso headquarters in Garching (Liefke). As far as<br />

public events go, our highlight was once more the Klaus<br />

Tschira Foundation’s five-day family science festival<br />

“Explore Science” in May (with a total of 55 000 visitors),<br />

where we presented hands-on stations about basic<br />

astronomy and spectroscopy.<br />

Additional events included in<strong>for</strong>mation booths, complete<br />

with sidewalk astronomy activities, at both the<br />

“Lange Nacht der Museen” (literally the “Long Night<br />

of the Museums”) at the Planetarium Mannheim and at<br />

Heidelberg University’s “Uni-Meile”, the street fair celebrating<br />

the university’s 625 th anniversary. HdA staff also<br />

gave more than a dozen public talks, including six that<br />

were part of the lunchtime lecture series on basic astron-<br />

Fig. V.2.2a: Two neigbouring buildings: the main MPIA building<br />

and, still under construction, the HdA building. (2 March<br />

<strong>2011</strong>)<br />

V.2 Haus der Astronomie – Centre <strong>for</strong> <strong>Astronomy</strong> Education and Outreach 87<br />

omy organized by J. Wambsganss of Heidelberg University’s<br />

Center <strong>for</strong> <strong>Astronomy</strong>.<br />

Our visualization ef<strong>for</strong>ts also took off this year as,<br />

with the help of scientists from MPIA, from Heidelberg<br />

University and the Heidelberg <strong>Institute</strong> <strong>for</strong> Theoretical<br />

Studies (Volker Springel, Andreas Bauer, Hubert Klahr,<br />

Mario Flock, Kees Dullemond, Ralf Klessen), we produced<br />

a set of brief movies <strong>for</strong> use in our fulldome projection<br />

system. Even the background music was composed<br />

and produced by ourselves in the free time KLaus<br />

Jäger). The movies were premiered at the HdA’s official<br />

opening, and have been used in our work ever since.<br />

On the education side, “Wissenschaft in die Schulen!”<br />

(literally “Science into the schools!”, abbreviated WIS)<br />

in cooperation with the popular astronomy magazine<br />

Sterne und Weltraum remains our flagship project. HdA<br />

senior staff member Olaf Fischer, in charge of WIS-<br />

<strong>Astronomy</strong>, and his team of (mostly external) authors<br />

created 24 sets of curricular materials – two per months<br />

– <strong>for</strong> teachers to use in bringing cutting-edge astronomy<br />

into their classrooms. Each set is directly linked to<br />

an article or news item in a current issue of Sterne und<br />

Weltraum. The HdA’s activities <strong>for</strong> WIS-<strong>Astronomy</strong> are<br />

kindly supported by the Reiff Foundation <strong>for</strong> Amateur<br />

<strong>Astronomy</strong>.<br />

The development of hands-on experiments remains<br />

another mainstay of our work. This year saw the production<br />

of 15 infrared kits (C. Scorza and M. Frommelt)<br />

funded by he Baden-Württemberg Stiftung and the development<br />

and production (N. Fischer and C. Scorza<br />

Credit: M. Pössel/HdA


88 V. People and Events<br />

Fig. V.2.2c: Inside, the building’s<br />

basic structure is now clearly<br />

defined. (22 March <strong>2011</strong>)<br />

Credit: M. Pössel/HdA<br />

Credit: M. Pössel/HdA<br />

Credit: M. Pössel/HdA<br />

Fig. V.2.2b: Installing façade<br />

elements. (20 April <strong>2011</strong>)<br />

Fig. V.2.2d: Scaffolding in the<br />

Klaus Tschira auditorium in<br />

preparation <strong>for</strong> the installation<br />

of the planetarium dome (20<br />

April <strong>2011</strong>)


Fig. V.2.3a: Inside, the offices are taking shape. (9 September<br />

<strong>2011</strong>)<br />

in cooperation with Astronomieschule e.V.) of the EU-<br />

UNAWE astronomy kit “An adventure in astronomy – a<br />

trip through the universe <strong>for</strong> elementary students”, again<br />

funded by the Baden-Württemberg Stiftung. C. Scorza<br />

and A. Ludwig also developed hands-on material <strong>for</strong> the<br />

interplanetary probe Mars Express <strong>for</strong> esa’s European<br />

Space Operations Center in Darmstadt.<br />

Our activities in training teachers – and aspiring<br />

teachers – span the whole spectrum from initial teacher<br />

education to in-service training. Teacher education at<br />

Fig. V.2.3b: Ready <strong>for</strong> work: the new HdA offices. (18 October<br />

<strong>2011</strong>)<br />

V.2 Haus der Astronomie – Centre <strong>for</strong> <strong>Astronomy</strong> Education and Outreach 89<br />

the University of Heidelberg featured two seminars<br />

(“ <strong>Astronomy</strong> in the headlines” and “The Milky Way”,<br />

C. Liefke and O. Fischer), while N. Fischer held a lecture<br />

on “Basic <strong>Astronomy</strong> in School” at Heidelberg’s<br />

University of Education (Pädagogische Hochschule).<br />

Olaf Fischer and Cecilia Scorza (co-)advised on a total<br />

of three “Staatsexamensarbeiten”, the research-oriented<br />

thesis aspiring teachers need to write as a requirement<br />

<strong>for</strong> their degree.<br />

In-service teacher training took place • locally, e.g.<br />

teacher training on the occasion of the <strong>Annual</strong> Meeting<br />

of the Astronomische Gesellschaft in Heidelberg (O.<br />

Fischer, C. Liefke), four teacher training sessions <strong>for</strong> the<br />

UNAWE elementary school kit (N. Fischer), training<br />

<strong>for</strong> kindergarten teachers in cooperation with Forscherstation<br />

Heidelberg (N. Fischer), • regionally, including<br />

Credit: M. Pössel/HdA Credit: M. Pössel/HdA


90 V. People and Events<br />

Fig. V.2.4a: Model telescopes<br />

and astronomical images: The<br />

exhibition in the HdA foyer.<br />

(21 December <strong>2011</strong>)<br />

Fig. V.2.4c: The UNAWE room<br />

is ready to receive our youngest<br />

visitors. (28 October <strong>2011</strong>)<br />

Credit: M. Pössel/HdA<br />

Credit: M. Pössel/HdA<br />

Credit: M. Pössel/HdA<br />

Fig. V.2.4b: Astronomical<br />

images along the ramp. (18<br />

October <strong>2011</strong>)


Credit: M. Pössel/HdA<br />

Fig. V.2.5: HdA staff member Natalie Fischer at the joint presentation<br />

of Haus der Astronomie and Astronomieschule e.V.<br />

at Explore Science, the Klaus Tschira Foundation’s festival of<br />

science in Mannheim (20 May <strong>2011</strong>)<br />

the interdisciplinary teacher training “Let’s go to Mars”<br />

<strong>for</strong> teachers from Baden-Württemberg (O. Fischer, C.<br />

Scorza, M. Pössel, T. Schultz, A. Ludwig); participation<br />

in teacher training activities in Biberach, Stuttgart,<br />

Marbach (all C. Scorza and O. Fischer), Heilbronn (C.<br />

Scorza), and • nationally: National <strong>Astronomy</strong> Teacher<br />

Training in Jena (C. Liefke), E-HOU Teacher Training<br />

at the Stockert Radio Telescope, teacher training in Sonneberg<br />

/ Thuringia (both O. Fischer and C. Scorza).<br />

We also reached out directly to pupils and preschool<br />

children: In a total of 15 workshops at the HdA<br />

V.2 Haus der Astronomie – Centre <strong>for</strong> <strong>Astronomy</strong> Education and Outreach 91<br />

<strong>for</strong> various age groups with a total of 530 participants,<br />

making use of the brand-new building (C. Scorza, T.<br />

Schultz, N. Fischer, A. Mancino), an astronomy course<br />

<strong>for</strong> the Hector-Kinderakademie (N. Fischer), courses<br />

at the Deutsche Schülerakademie Rostock (O. Fischer)<br />

and at the Science Academy Baden-Württemberg in<br />

Adelsheim (O. Fischer, C. Scorza) and an event <strong>for</strong> pupils<br />

on the 11th of November, namely <strong>Max</strong> <strong>Planck</strong> Day<br />

(O. Fischer, C. Liefke, M. Pössel, C. Scorza). Outreach<br />

to younger children is in the context of our international<br />

collaboration as German node of the EU-funded part<br />

of the global “Universe Awareness” project (EU-UN-<br />

AWE; C. Scorza, N. Fischer, A. Mancino). The goal of<br />

UNAWE is to use the beauty and grandeur of the Universe<br />

to inspire young children, encourage them to develop<br />

an interest in science and technology, and introduce<br />

them to ideas of global citizenship and tolerance.<br />

We are very pleased that Theresia Bauer, Baden-Württemberg’s<br />

minister <strong>for</strong> science, research and the arts,<br />

has agreed to act as patron to EU-UNAWE in Baden-<br />

Württemberg, while the Astronomische Gesellschaft<br />

has agreed to act as the program’s patron throughout<br />

Germany.<br />

A key component of science literacy is first-hand research<br />

experience <strong>for</strong> high-school students. To this end,<br />

we continued our collaboration with the International<br />

Fig. V.2.6: Autumnal impressions of an earthbound galaxy (30<br />

November <strong>2011</strong>)<br />

Credit: D. Gouliermis


92 V. People and Events<br />

Credit: C. Liefke/HdA<br />

Astronomical Search Collaboration (IASC) on the IASC-<br />

Pan-starrs asteroid search (high-school students searching<br />

<strong>for</strong> asteroids in Pan-starrs image data, with a realistic<br />

chance of discovering previously unknown main-belt<br />

asteroids), with Carolin Liefke supporting a total of 12<br />

German high-school groups participating in two search<br />

campaign. Most of our high-school student research activities<br />

involve much smaller groups, including students<br />

from the Hector-Seminar (C. Liefke, M. Pössel with A.<br />

van der Wel and J. Bouwman), the International Summer<br />

Science School Heidelberg (M. Pössel) and career orientation<br />

as well as regular interns (O. Fischer, C. Scorza,<br />

M. Frommelt, T. Schultz, A. Ludwig, C. Liefke, M.<br />

Pössel).<br />

Our intern Marcel Frommelt made his own contribution<br />

to our program (sponsored by C. Scorza) with a research<br />

project on a balloon mission to Titan – which included<br />

an experimental part (a home-made balloon with<br />

camera launched into the stratosphere) and placed first in<br />

the regional and third in the Baden-Württemberg State<br />

competition “Jugend <strong>for</strong>scht” in the category of Geo- and<br />

Space Sciences.<br />

Fig. V.2.7: The main protagonists at the official opening, left to<br />

right: the building’s architect, Manfred Bernhardt; MPIA director<br />

Thomas Henning; Bernhard Eitel, rector of Heidelberg<br />

University; MPIA director Hans-Walter Rix; Markus Pössel,<br />

managing scientist of the HdA; Peter Gruß, president of the<br />

<strong>Max</strong> <strong>Planck</strong> Society; Theresia Bauer, minister <strong>for</strong> science, re-<br />

Networking, cooperation and, given that we are a relatively<br />

new institution, outreach to the other members of<br />

the outreach community remain an important part of our<br />

work. Notably, we guided more than 350 participants on<br />

tours of the HdA construction site, including numerous<br />

participants of the Astronomische Gesellschaft’s annual<br />

meeting which, this year, took place in Heidelberg. To<br />

keep our partner institutions up to date, we also organized<br />

a special “HdA day” in our just-finished building in<br />

November. An anniversary colloquium on the occasion<br />

of the nominal retirement of MPIA/ HdA member Jakob<br />

Staude, who serves as one of the publishers of Sterne und<br />

Weltraum, also in November, provided excellent opportunities<br />

<strong>for</strong> introducing ourselves to additional members<br />

of the German outreach community. Last but certainly<br />

not least, our grand opening, attended by, among others,<br />

Baden-Württemberg State Minister <strong>for</strong> Science, Research<br />

and the Arts Theresia Bauer, Baden-Württemberg<br />

State Minister <strong>for</strong> Education, Youth and Sports Gabriele<br />

Warminski-Leitheußer, Peter Gruss as President of the<br />

<strong>Max</strong> <strong>Planck</strong> Society, Eckart Würzner as Lord Mayor of<br />

the City of Heidelberg, Bernhard Eitel as Rector of the<br />

search and the arts of the State of Baden-Württemberg; Klaus<br />

Tschira; Gabriele Warminski-Leitheußer, minister <strong>for</strong> education,<br />

youth and sports of the State of Baden-Württemberg;<br />

Eckart Würzner, Lord-mayor of Heidelberg; Mathias Voss,<br />

head of administration, MPIA; Klaus Jäger, scientific coordinator,<br />

MPIA, and Jakob Staude. (16 December <strong>2011</strong>).


University of Heidelberg and our principal benefactor,<br />

Klaus Tschira, took place on December 16. The opening<br />

lecture held by Michael Kramer of the <strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong><br />

<strong>for</strong> Radio <strong>Astronomy</strong>. The building was presented<br />

both <strong>for</strong>mally (in a small-scale meeting be<strong>for</strong>ehand) and<br />

symbolically (as part of the opening ceremony) by Klaus<br />

Tschira to the <strong>Max</strong> <strong>Planck</strong> Society.<br />

Internationally, our main collaborations are in the<br />

framework of the EU-UNAWE network (that is, with our<br />

counterparts in Italy, the Netherlands, the United Kingdom,<br />

South Africa and Spain) as well as with Chile (in<br />

cooperation with the Heidelberg University’s Center <strong>for</strong><br />

<strong>Astronomy</strong> and its Centre of Excellence in Chile).<br />

Key strands of our network are tied to specific persons:<br />

Olaf Fischer and Cecilia Scorza are members<br />

of the Schulkommission (School's committee) of the<br />

Astronomische Gesellschaft, and Fischer was elected its<br />

chairman this September. Cecilia Scorza is the German<br />

coordinator <strong>for</strong> the European Association <strong>for</strong> <strong>Astronomy</strong><br />

Education and <strong>for</strong> the EU-UNAWE program, as well as<br />

a member of IAU commission 46, “<strong>Astronomy</strong> Education<br />

and Development”.<br />

We are also pleased to announce that, at this year’s<br />

meeting of Astronomische Gesellschaft, Olaf Fischer<br />

was awarded the Hans-Ludwig Neumann Award <strong>for</strong> <strong>Astronomy</strong><br />

Education in Schools while, at the same meeting,<br />

our benefactor Klaus Tschira was made an honorary<br />

member of the Astronomische Gesellschaft – a rare honour<br />

bestowed upon those who have furthered the cause<br />

of astronomy in an exemplary manner; the Astronomische<br />

Gesellschaft explicitly mentions the Haus der Astronomie<br />

as a key example of Klaus Tschira’s contributions<br />

to astronomy.<br />

V.2 Haus der Astronomie – Centre <strong>for</strong> <strong>Astronomy</strong> Education and Outreach 93<br />

The highlight of <strong>2011</strong> was, without doubt, the opening<br />

of the Haus der Astronomie’s new, galaxy-shaped<br />

building. The building had begun the year as not much<br />

more than a concrete shell (with windows, to be sure).<br />

It gained shape, a planetarium dome, lecture-hall chairs,<br />

planetarium projectors, a clean white interior and a spectacular<br />

exterior facade, interior partition walls and office<br />

furniture. After moving in the last week of September,<br />

HdA staff began to discover the building, its rooms<br />

and their functionality. Of particular interest, of course,<br />

was the digital Zeiss planetarium, which includes a show<br />

manager <strong>for</strong> use e.g. with our own visualizations, and<br />

the Uniview software <strong>for</strong> visualizing astronomical catalogue<br />

data.<br />

If the last months of <strong>2011</strong> showed one thing, it is that<br />

2012 as the year <strong>for</strong> fully implementing HdA activities in<br />

their new setting, should be very exciting! The year <strong>2011</strong><br />

we will remember as the year the Haus der Astronomie<br />

found its home – and hit the ground running.<br />

Markus Pössel, Natalie Fischer,<br />

Olaf Fischer, Carolin Liefke,<br />

Alexander Ludwig, Anita Mancino,<br />

Tobias Schultz, Cecilia Scorza,<br />

Jakob Staude, Thomas Henning,<br />

Hans-Walter Rix, Klaus Jäger,<br />

Mathias Voss, Frank Witzel


94<br />

V.3 Honors and Awards<br />

Ernst Patzer Prize<br />

The annually presented Ernst Patzer Prizes are honouring<br />

the best publications produced in the course of<br />

doctoral studies or in the following postdoc phase. The<br />

publications must have been published in a refereed<br />

journal. The selection committee consists of two scientists<br />

from MPIA and one additional external scientist<br />

from Heidelberg.<br />

The Award was donated by the art-lover and philosopher<br />

Ernst Patzer and established by his widow.<br />

It is intended to support junior scientists. The Foundation<br />

awards its prizes to young researchers at the<br />

MPIA and other institutes in Heidelberg and wishes to<br />

support science and research particularly in the field<br />

of astronomy.<br />

This year’s prize winners were:<br />

Elisabetta Caffau, Postdoc at the Center <strong>for</strong> <strong>Astronomy</strong><br />

of Heidelberg University (ZAH), <strong>for</strong> her paper “An<br />

extremely primitive star in the Galactic halo” (<strong>2011</strong>,<br />

Nature 477, 67–69).<br />

Alexander Karim, IMPRS PhD student at MPIA, <strong>for</strong><br />

his publication “The star <strong>for</strong>mation history of mass-selected<br />

galaxies in the CosMos field” (<strong>2011</strong>, Astrophysical<br />

Journal 730(2), 1–31).<br />

Fig. V.3.2: Alexander Karim<br />

Fig. V.3.1: Elisabetta Caffau Fig. V.3.3: Andreas Schruba


Fig. V.3.4: Olaf Fischer Fig. V.3.5: Dimitrios A. Gouliermis<br />

Fig. V.3.6: Fabian Wipfler und Marc-Oliver Lechner<br />

V.3 Honors and Awards 95


96 V. People and Events<br />

Andreas Schruba, postdoc at MPIA, <strong>for</strong> his paper “A<br />

molecular star <strong>for</strong>mation law in the atomicgas-dominated<br />

regime in nearby galaxies” (<strong>2011</strong>, Astronomical Journal<br />

142, 37).<br />

As the years be<strong>for</strong>e, they were honored during the<br />

Patzer Colloquium which took place on December 2 nd in<br />

the lecture hall of the MPIA where the prize winners gave<br />

a 30 minutes presentation of their work.<br />

Further awards<br />

Olaf Fischer from the Haus der Astronomie was<br />

awarded by the German Astronomical Society (Astronomische<br />

Gesellschaft, AG) during the annual meeting in<br />

Heidelberg in September <strong>2011</strong> with the Hans-Ludwig<br />

Neumann Prize. This prize was established in 1996 to<br />

recognize outstanding activities <strong>for</strong> the advancement of<br />

astronomy at school.<br />

Dimitrios A. Gouliermis received the fellowships<br />

“Comprehensive Characterization with HST of Stellar<br />

Populations in Star-Forming Regions of the Large Magellanic<br />

Cloud” (DLR Program 50 OR 908) and “The Stellar<br />

Clusters Population of the Andromeda Galaxy from the<br />

Panchromatic HST Survey” (German Science Foundation<br />

(DFG) Program GO 1659/3–1).<br />

Jouni Kainulainen, Hua-Bai Li, Sarah Ragan,<br />

Amy Stutz und Svitlana Zhukovska had been equipped<br />

with a research budget from the DFG Priority Program<br />

“Physics of the Interstellar Medium” while Dmitry A.<br />

Semenov received a research budget, also from the DFG,<br />

within the program “The first 10 million years of the<br />

Solar System – a Planetary Materials Approach” (SPP<br />

1385)<br />

Natalie Raettig received an Annette Kade Fellowship<br />

<strong>for</strong> a three months visit to the American Museum of Natural<br />

History (AMNH) in New York, USA, while Karin<br />

Sandstrom was awarded with a Marie Curie International<br />

Incoming Fellowship.<br />

Since 2007 the <strong>Max</strong> <strong>Planck</strong> Society has been awarding<br />

up to 20 apprentices with the Apprenticeship Prize<br />

<strong>for</strong> excellent per<strong>for</strong>mance on the job and at school as<br />

well as <strong>for</strong> social involvement during the training period.<br />

For very good marks in his final year of training in the<br />

precision mechanics workshop of MPIA Fabian Wipfler<br />

received the Apprenticeship Prize <strong>for</strong> metal work as<br />

well as an award from the Chamber of Crafts Mannheim.<br />

The Apprenticeship Prize <strong>for</strong> administrative work went<br />

to Marc-Oliver Lechner who received his training in the<br />

MPIA administration department.<br />

Klaus Jäger, Martin Kürster,<br />

Axel M. Quetz


Staff<br />

Directors: Henning (Managing Director), Rix<br />

Scientific Coordinator: Jäger<br />

Public Outreach/Haus der Astronomie: Pössel (Head)<br />

Administration: Voss (Head)<br />

MPIA Observatories: Gredel<br />

Scientists: Afonso, Andrae (since 1.9.), Bailer-Jones, Balog,<br />

Bertram, Betremieux (since 15.9.), Beuther, Bik, Birnstiel<br />

(until 30.6.) Borelli, Bouwman, Brandner, Brieva (since<br />

1.10.), De Bonis, Deacon (since 1.10.), Decarli (since 1.2.),<br />

Döllinger (1.7. until 30.9.), Dullemond (until 31.8.), Dumas<br />

(until 15.3.), Dziourkevich (until 31.5.), Egner (parental<br />

leave), Feldt, Fendt, Fried, Gässler, Goldman, Gouliermis,<br />

Graser, Gredel, Hayfield (since 15.2.), Hennawi, Herbst,<br />

Hippler, Hofferbert, Ilgner (since 1.5.), Inskip (maternity<br />

protection and parental leave since 5.4.), Huisken, Jäger<br />

K., Jahnke, Kaltenegger, Klaas, Klahr, Köhler, Kreckel H.<br />

(since 15.9.), Kreckel K. (since 1.12.), Krause, Kürster,<br />

Launhardt, Leipski, Lenzen, Linz, Liu Chao, Macciò,<br />

Marien, Martin, Meisenheimer, Möller-Nilsson, Müller, F.,<br />

Mundt, Nielbock, Pavlov, Peter, Petitdemange (until 30.9.),<br />

Pössel, Pott, Rodriguez, Sandor (until 31.8.), Sandstrom<br />

(since 1.10.), Scheithauer (parental leave until 14.4.),<br />

Schmiedeke (until 30.4.), Schinnerer, Schreiber, Seidel (since<br />

15.2.), Semenov, Setiawan (until 30.9.), Sicilia-Aguilar<br />

(until 30.6.), K. Smith, Tabatabaei (since 1.3.), Trowitzsch,<br />

Tsalmantza, van Boekel, van de Ven (since 15.8.), Walter<br />

Postdocs: Adamo (since 1.9.), Benisty, Berg<strong>for</strong>s (since<br />

1.12.), Biller, Bonnefoy, Burtscher (since 1.6.), Chauvin,<br />

Cisternas (since 15.11.), Collins (since 15.9.), Commerçon<br />

(until 14.10.), Crighton, Da Cunha (since 1.3.), Decarli (until<br />

31.1.), Dean (since 1.11.), Doellinger (until 30.6.), Fang<br />

Min (1.3. until 30.6.), Fanidakis (15.9.), Fedele (until 30.7.),<br />

Gennaro (since 1.12.), Gielen (until 31.8.), Groves, Hatt<br />

(until 15.7.), Hodge, Johnston, Kainulainen, Karovicova<br />

(since 15.8.), Kendrew, Krasnokutskiy, Kulkarni (since<br />

1.10.), K. G. Lee, (since 15.9.<strong>2011</strong>, R. Lee (since 15.8.),<br />

H.-B. Li, Lusso (since 15.9.), Lyubenova, Mancini (since<br />

1.5.), Martinez-Delgado, Meidt, Miguel (since 1.4.),<br />

Mordasini, Morganson, Nikolov (since 11.4.), Noel (until<br />

30.9.), Olofsson, Ormel, Ragan, Rakic (since 1.11.), Rubin,<br />

Sandstrom (until 30.9.), Schlieder (since 1.9.), Schmalzl<br />

(1.2. until 31.3.), Schmidt T. (1.7.<strong>2011</strong> until 31.8.), Stinson<br />

(since 1.7.), Stutz, Thalmann (until 9.1.), van den Bosch R.,<br />

van der Wel, Venemans (since 15.9.), Wang Hsiang-Hsu<br />

(20.1. until 28.2.), Watkins, Xue (since 1.11.), Y. Yang,<br />

Zhukovska, Zimmerman (since 15.9.), Zsom<br />

PhD Students: Albertsson, Arrigoni Battaia (since 1.10.),<br />

Banados Torres (since 1.9.), Berg<strong>for</strong>s (until 30.11.),<br />

Besel, Boley, Brangier (since 1.11.), Brasseur (until 7.5.),<br />

Büdenbender (since 1.5.), Caldu Primo (since 1.9.), Cielo<br />

(since 1.9.), Burtscher (until 26.5.), Chang Yu-Yen, Chang<br />

Jiang (since 1.10.) Chen Guo, Cisternas (until 14.11.),<br />

Cologna, Colombo, Csak (until 31.8.), De Rosa, Dittrich,<br />

Dittkrist (since 1.4.), Dopcke, Fang Min (until 28.2.), Feng<br />

Fabo (since 15.9.), Feng, Siyi (since 15.9.), Flock, Follert,<br />

Gennaro (until 30.11.), Gerner (since 1.4.), Hansson A.<br />

(1.10. until 31.12.), Hanson R. (since 1.10.), Hegde (since<br />

1.4.), Golubov, Grootes, Holmes, M. Jäger, Jin (since<br />

1.11.), Kalinova, Kannan, Kapala (since 1.10.), Karim (until<br />

30.11.), Kurokawa (since 1.9.), Kudryavtseva, Läsker, L.<br />

Liu (until 30.9.), Lippok, C.-C. Lu, Ludwig, Maier, Malygin<br />

(since 1.11.), Manjavacas (since 15.10.), Micic (1.10. until<br />

31.12.), Mohler, Müller, A. (since 1.3.), Nikolic, Nikolov<br />

(until 10.4.), Nugroho, Pang (1.9. until 30.11.), Paudel<br />

(until 31.3.), Penzo (since 1.9.), Pitann (until 30.11.), Porth<br />

(until 31.10.), Potrick, Raettig, Ramkumar, Rochau, Rorai,<br />

Ruhland (until 31.5.), Sabri, Schmalzl (until 31.1.), K. B.<br />

Schmidt, T. Schmidt (until 30.6.), Schnülle (since 1.7.),<br />

Schruba (until 30.11.), Schulze-Hartung, Sheiknezami (since<br />

15.7.), Singh (since 1.10.), Steglich, Stepanovs (since<br />

1.7.), Sturm, Sun (since 1.11.), Uribe (until 31.10.), Vaidya<br />

(1.8. until 31.10.), Tackenberg, Trifonov, Uribe, Valente,<br />

Van der Laan (until 30.11.), Vasyunina (until 31.1.), H.-H.<br />

Wang (until 19.1.), Windmark (until 31.8.), Z. Yan, P. Yang,<br />

Zechmeister (until 15.2.), L. Zhang, M. Zhang, X. Zhang<br />

Diploma Students and Student Assistants (UH): Dittkrist<br />

(until 31.3.), Chira (14.3. until 31.8.), Hirsch (since 26.9.),<br />

Kopytova (since 27.5.), Molliere (11.4. until 11.7.), Pohl<br />

(1.4. until 31.8.), Shurkin (since 1.10.), Voggel (28.4. until<br />

21.7.), Wouter (since 1.9.)<br />

Diploma and Master Students (FH): Neumeier, Niemann,<br />

Panduro<br />

Interns: Abel, Baldauf, Betzold (until 14.5.), Brezinski,<br />

Ehret, Euler (until 28.2.), Jentsch (until 14.4.), Kugler, Li<br />

(1.3. until 31.8.), Lechner, Leonhardt (11.7. until 5.8.),<br />

Neidig (until 28.2.), Neumeier, Niemann (until 28.2.),<br />

Omari (1.3. until 31.8.), Specht (since 1.9.), Till (since 1.9.),<br />

Wipfler (until 31.7.)<br />

Student Assistants: Barboza (until 31.1.), Bihr (since 1.8.),<br />

Ciceri (since 11.7.), Dittkrist (until 31.3.), Fiedler (until<br />

22.8.), Fraß (since 1.10.), Haude (since 1.5.), Maseda (since<br />

15.8.), Morrison (until 30.6.), Neumeier (since 1.9.),<br />

Panduro, Schneider (until 12.12.)<br />

Public Outreach / Haus der Astronomie: Pössel (Head), N.<br />

Fischer, O. Fischer, Liefke, A. Ludwig, (since 8.9.), Quetz,<br />

Staff 97


98 Staff<br />

Schultz (since 8.9.), Scorza; trainees: Fraß (since 1.10.),<br />

Frommelt (until 31.5.), Haude (since 1.5.)<br />

Technical Departments: Kürster (Head)<br />

Mechanics Design: Rohloff (Head), Baumeister (Deputy),<br />

Blümchen (until 14.8.), Ebert, Huber, Münch, Rochau<br />

(since 1.8.), Schönherr (until 31.8.); Trainees, Student<br />

Assistants: Barboza (until 31.1.), Euler (until 28.2.)<br />

Precision Mechanics Workshop: Böhm (Head), W. Sauer<br />

(Deputy), Heitz, Maurer, Meister, Meixner, Stadler;<br />

Trainees, Student Assistants: Abel, Baldauf, Brezinski,<br />

Ehret, Kugler (since 1.9.), Merx, Neidig, Specht (since<br />

1.9.), Wipfler<br />

Electronics: Wagner (Head until 31.10.), Mohr (Head since<br />

1.11., Deputy until 31.10.), Ramos (Deputy since 1.11.),<br />

Adler, Alter, Bieler (until 30.9.), Ehret, Klein, Lehmitz,<br />

Mall, Ridinger, Wrhel; Trainees, Student Assistants: Jentsch<br />

(until 14.4.), Y. Li (1.3. – 31.8.), Niemann (until 28.2.),<br />

Neumeier, Omari (1.3. – 31.8.), Panduro<br />

Instrumentations-Software: Briegel (Head), Storz (Deputy),<br />

Berwein, Borelli, Kittmann, Kulas (since 1.6.), Möller-<br />

Nilsson, Neumann, Pavlov, Trowitzsch<br />

Engineering and Project Management: Marien (Head),<br />

Bizenberger (Deputy), Bertram, Brix (until 30.4.), Conrad,<br />

De Bonis, Gässler, Graser, Hofferbert, Laun, Mellein,<br />

Meschke, Naranjo, Peter<br />

Administrative and Technical Service Departments:<br />

Administration: Voss (Head); purchasing dept.: Wolf, Anders;<br />

finances dept.: Mantwill-Aue (since 1.7.), S. Schmidt, (until<br />

30.4.), Anders, Enkler, Zähringer; staff dept.: Apfel, Baier,<br />

Hölscher, Scheerer (until 31.5.), Schleich; reception: Beckmann;<br />

trainees: Lechner, Leonhard (11.7. – 6.8.), Till (since 1.9.<strong>2011</strong>)<br />

Library: Dueck<br />

Data Processing: Richter (Head), Piroth (Deputy), Hiller;<br />

Student Assistant: Fiedler<br />

Photographic Lab: Anders<br />

Graphic Artwork: Quetz (Head), Meißner, Müllerthann<br />

Secretaries: Bohm, Janssen-Bennynck, Koltes-Al-Zoubi<br />

(maternity protection and parental leave since 21.9.),<br />

Seifert, Witte-Nguy<br />

Technical Services and Cafeteria: F. Witzel (Head), Nauß<br />

(Deputy), Behnke, Drescher, Heller, Jung, Krämer (since<br />

1.10.), Lang, B. Witzel, E. Zimmermann<br />

Former Staff Members Acting <strong>for</strong> the <strong>Institute</strong>: Christoph<br />

Leinert, Dietrich Lemke, Jakob Staude<br />

Freelance Science Writer: Thomas Bührke<br />

Guests: Santiago Barboza, Obs. Bordeaux, 1. Sep. 2010 –<br />

31. Jan.; Neal Turner, Konkoly Obs., 6. Dec. 2010 – 7.<br />

March; Iva Karovicova, Univ. Salerno, 4. Jan.; Markus<br />

Janson, AIP, 9.–11. Jan.; Davide Fedele, Eso Garching,<br />

10.–14. Jan.; V. Roccatagliata, 10.–14. Jan.; Claudio<br />

Llinares, Univ. Michigan, 11.–12. Jan.; Jens Zuther, Univ.<br />

Austin, 13.–14. Jan.; Thomas Ruppel, MPA, 18. Jan.; Else<br />

Starckenburg, CfA, 18.–19. Jan.; Matthew Horrobin, Eso<br />

Garching, 19. Jan.; Benjamin Weaver, IAS Cambridge,<br />

22.–30. Jan.; Olia Panic, MPE, 24. Jan.–2. Feb.; Jonathan<br />

Menu, Eso Garching, 24.–25. Jan.; Steffi Walch, CEA/<br />

SACLAY, 24.–26. Jan.; Luigi Mancini, Univ. Bologna,<br />

25.–28. Jan.; Natasha Madox, Leiden Obs., 25.–26. Jan.;<br />

Giuseppa Battaglia, Inst. Scien. Espai, 25.–26. Jan.; Olivera<br />

Rakic, Univ. Barcelona, 23.–25. Jan.; Stefan Kraus, Univ.<br />

Groningen, 25.–27. Jan.; Josh Adams, Harvard Univ., 26.–<br />

28. Jan.; Roderick Overzier, SRON Groningen, 26.–27.<br />

Jan.; Thomas Robitaille, Univ., 26.–28. Jan.; Pamela<br />

Klaassen, 27. Jan.; Ryan Cooke, Univ. Madrid, 27.–28. Jan.;<br />

Thomas Müller, Univ. Florida, 27.–28. Jan.; Bram<br />

Venemans, Univ. Cambridge, 27.–28. Jan.; Mark Sargent,<br />

Univ. Milano, 27.–28. Jan.; Elisabeta Lusso, Obs. Bordeaux,<br />

29. Jan.; Eva Meyer, Leiden Observatory, 31. Jan.–4. Feb.;<br />

Andreu Font, Univ. Milano/Trieste, 1.–2. Feb.; Aday<br />

Robaina, Princeton, 6.–10. Feb.; Peter Barthel, Univ. Köln,<br />

6.–9. Feb.; Joanna Kuraszkiewicz, IAC, 6.–9. Feb.; <strong>Max</strong><br />

Avruch, IAC, 6.–9. Feb.; Luciano Casarini, CfA Harvard,<br />

7.–19. Feb.; Sebastian Daemgen, Eso, Chile, 7.–11. Feb.;<br />

Jose Caballero, MPA Garching, 8.–11. Feb.; Mark<br />

Keremedjiev, Univ. Cali<strong>for</strong>nia, 10.–13. Feb.; Michelle<br />

Colling, Black Bird Obs., 13.–14. Feb.; Luciano Casarini,<br />

Tokyo Inst. Techn., 7.–19. Feb.; Hincelin Ugo, Esa, 14.–18.<br />

Feb.; Joshua Schlieder, Praktikant, 8.–10. Feb.; Silvio<br />

Bonometto, LRA Paris, 14.–16. Feb.; Khee-Gan Lee,<br />

MPIfR Bonn, 21.–24. Feb.; Jens Zuther, MPIfR Bonn,<br />

22.–24. Feb.; Agnieszka Rys, Sobolev Inst., 25. Feb.–12.<br />

March; Jesus F. Barroso, Konkoly Obs., 2.–4. March; Lars<br />

E. Hernquist, JPL, 5.–9. March; Emanuela Pompei,<br />

Stockholm Univ., 7.–11. March; Ben Moster, Univ. Hawaii,<br />

7.–11. March; Imke de Pater, CfA, 13.–15. March; Jay<br />

Gabany, Leuven, 14.–17. March; Hiroyuki Kurokawa,<br />

UCLA, 14.–20. March; Torsten Böker, 14.–18. March;<br />

Roxana Chira, 15. March – 15. July; Patrick Hennebelle,<br />

16.–17. March; Arnaud Belloche, STScI, 16.–17. March;<br />

Anastasi Tsitali, Univ. Bologna, 16.–17. March; Nikolai<br />

Voshchinnikov, Eso, 17. March – 14. Apr.; Csaba Kiss,<br />

Univ. Torun, 21.–23. March; Roger Lee, Univ. Torun, 21.–<br />

23. March; Angela Adamo, MPE, 22.–25. March; Nader<br />

Haghighipour, Leiden Obs., 27.–30. March; Thomas<br />

Robitaille, Russ. Acad. Sci., 28. March; Katrina Exter,<br />

Kapteyn Inst., 28. March; Heike Schlichting, Univ.<br />

Cali<strong>for</strong>nia, 3.–4. Apr.; Brian Cobile, Kapteyn Inst., 4.–15.<br />

Apr.; Sabrina Nietzel, Ohio State Univ., 11.–15. Apr.; Paul<br />

Mollière, Ohio State Univ., 11. Apr.–6. July; Massimo<br />

Robberto, Konkoly Obs., 12.–14. Apr.; Camillo Penzo,


Konkoly Obs., 13.–15. Apr.; Bram Venemans, Univ. Chile,<br />

13.–14. Apr.; Joanna Drazkowska, Univ. Birmingham,<br />

17.–22. Apr.; Kacper Kowalik, Univ. Göttingen, 17.–22.<br />

Apr.; Clare Dobbs, College Charleston, 18.–20. Apr.; Eva<br />

Meyer, Leiden Observatory, 26.–29. Apr.; Yaroslav<br />

Pavlyuchenkov, Univ. Zürich, 20. Apr.–12. May.; Mark den<br />

Brok, Csiro, 1. May – 31. July; Andreas Seifahrt, Univ.<br />

Lancashire, 3.–6. May; Marco Spaans, AifA, 4.–5. May;<br />

Anton Vasyunin, Durham Univ., 8.–29. May; Tatiana<br />

Vasyunina, Oss. Astron. Trieste, 8.–29. May; Csaba Kiss,<br />

MPE, 9.–11. May; Nikolett Szalai, Univ. Warsaw, 9.–11.<br />

May; Markus Rabus, UC Berkeley, 9.–14. May; Vinothini<br />

Sangaralingam, Ruhr Univ. Bochum, 10.–11. May; Mathias<br />

Zechmeister, Inaf, 10.–13. May; Joe Carson, IAA, 10. May<br />

– 10. June; Olja Panic, LBTO, 10. May – 10. June; Silvia<br />

Garbari, LBTO, 12.–13. May; <strong>Max</strong>im Voronkov, Raytheon,<br />

11.–13. May; Greg Stinson, Univ. Toronto, 12.–17. May;<br />

Vernesa Smolcic, Groningen Univ., 15.–19. May; Nikos<br />

Fanidakis, University Toledo, 16.–20. May; Fabio Fontanot,<br />

Eso, 16.–20. May; Marc Schartmann, Harvard Univ., 18.<br />

May; Maria Kapala, Univ. Zürich, 26.–27. May; Frank<br />

Bigiel, Univ. Mexico, 27.–28. May; Rolf Chini, PSU, 30.<br />

May; Alessandro Brunelli, Univ. Wyoming, 30. May – 10.<br />

June; Conchi Cardenas, Univ. Maryland, 30. May – 10.<br />

June; Dave Thompson, Inaf, 30. May – 10. June; Tim Shih,<br />

Inaf, 30. May – 10. June; Andrew Dolphin, UC Santa Cruz,<br />

5.–12. June; Markus Janson, Oss. Catania, 6.–9. June;<br />

Marten Breddels, LMU, 6.–17. June; J.D. Smith, Boulder,<br />

6. June – 4. Aug.; Andreas Glindemann, IPMU Tokyo, 8.–9.<br />

June; Rebekah Dawson, Univ. Washington, 9.–10. June;<br />

Ros Roskar, UC Santa Cruz, 9.–10. June; A. Segura Peralta,<br />

Univ. Victoria, 9. June – 22. July; Alexander Wolszczan, UC<br />

Santa Cruz, 10. June – 12. July; Adam Myers, MIT, 10. June<br />

– 10. Aug.; Alberto Bolatto, Univ. Kansas, 13.–16. June;<br />

Antonella Natta, Eso, 15. June – 15. July; Malcolm<br />

Walmsley, UCO/Lick Obs., 15. June – 15. July; Jason<br />

Prochaska, Univ. Cali<strong>for</strong>nia, 15. June – 31. Aug.; V<br />

Antonuccio-Delogu, Univ. Washington, 16. June – 25. July;<br />

Maria Lenius, Steward Obs., 20.–21. June; Glen Stewart,<br />

NYU, 21.–22. June; John D. Silverman, CAS, China, 22.–<br />

25. June; Julianne Dalcanton, JHU, 23. June – 21. July;<br />

Gabor Worseck, StSI, 24. June – 24. July; Aaron Dutton,<br />

NYU, 25. June – 9. July; Michele Fumagalli, NYU, 26.<br />

June – 2. July; Rob Simcoe, Univ. Cape Town, 27. June –<br />

22. July; Greg Rudnick, Univ. Budapest, 27. June – 28.<br />

July; Olja Panic, Imperial Coll. London, 27. June – 8. July;<br />

Connie Rockosi, Harvard Univ., 27. June – 9. July; Brad<br />

Holden, Univ. Utah, 27. June – 9. July; Dan Weisz, Keck<br />

Obs., 28. June – 26. July; Benjamin Weiner, Univ. Utah, 29.<br />

June – 1. Aug.; Jo Bovy, IAA, 29. June – 4. Aug.; Jifeng<br />

Liu, Univ. Amsterdam, 30. June – 1. July; Davide Fedele,<br />

CfA, 4.–30. July; Veronica Roccatagliata, Konkoly Univ.,<br />

4.–30. July; Lang Dustin, CfA, 2. July – 2. Aug.; David<br />

Hogg, New York University, 2. July – 1. Sep.; Erwin De<br />

Blok, Ox<strong>for</strong>d Univ., 1.–31. July; Victor L. Toth, IAA, 1.<br />

July – 31. Aug.; Sami Dib, OAN, 4.–15. July; Dimitar<br />

Sasselov, Univ. Milano, 1.–8. July; Adam Bolton, Arcetri,<br />

2.–15. July; Randy Campbell, Inaf, 4. July; Joel Brownstein,<br />

Iram, 5.–15. July; Rainer Schödel, UC Santa Cruz, 5.–7.<br />

July; Gijs Mulders, Nagoya Univ., 5.–8. July; Martin Elvis,<br />

UC Santa Cruz, 9.–16. July; Peter Abraham, Univ. Kyiv,<br />

4.–8. July; Giuseppina Fabbiano, 10.–16. July; Khee-Gan<br />

Lee, 10.–17. July; Sownak Bose, Harvard Univ., 11.–30.<br />

July; Cardenas Conceipcion, JPL, 12.–22. July; Santiago<br />

Garcia-Burillo, NYU, 17.–22. July; Massimo Dotti, Inaf,<br />

17.–24. July; Carmelo Arcidiacono, 18.–22. July; Alessandro<br />

Brunelli, Univ. Ukraine, 18.–22. July; Jerome Pety,<br />

Lawrence Nat. Lab., 18.–22. July; Jessica Werk, Haver<strong>for</strong>d<br />

College, 18.–27. July; Satoshi Okuzumi, Inst. Uzbekistan,<br />

18.–29. July; Robert Da Silva, Univ. Cali<strong>for</strong>nia, 18. July –<br />

1. Aug.; Mykola Malygin, Obs. Strasbourg, 24.–29. July;<br />

David Cann, Herzberg Inst., 25. July – 11. Aug.; Emma<br />

Wolpert, JPL, 25. July – 11. Aug.; Sarah Rugheimer, McGill<br />

Univ., 29. July – 26. Aug.; Pieter Deroo, Drexel Univ., 31.<br />

July – 14. Aug.; Dan Foremann-Mackey, Univ. Victoria,<br />

1.–26. Aug.; Carmelo Arcidiacono, UC Santa Cruz, 1.–5.<br />

Aug.; William Fischer, Chin. Acad. Sci., 1.–5. Aug.; Nao<br />

Suzuki, Inst. Astron. RAS, 14.–20. Aug.; Ross Fadely, Univ.<br />

HD, 15.–25. Aug.; Mansur Ibrahimov, Inaf, 15.–28. Aug.;<br />

Steven Beckwith, MPIfR Bonn, 21.–25. Aug.; Caroline Bot,<br />

Herzberg Inst., 23.–24. Aug.; Cassandra Fallcheer, Groves,<br />

29. Aug.–9. Sep.; Mark Swain, Univ. College London, 3.–<br />

12. Aug.; Gabriel-D. Marleau, Univ., 8.–12. Aug.; Gordon<br />

Richards, Univ. Pisa, 8.–31. Aug.; Trevor Mendel, Univ.<br />

Amsterdam, 9.–13. Aug.; Gabor Worseck, Univ. Toledo,<br />

9.–28. Aug.; Wang Wei, CSIC-IEEC, 1.–30. Sep.; Kevin<br />

Flaherty, IAC, 4.–7. Sep.; Vitaly Akimkin, Tata Inst. Pune,<br />

5.–18. Sep.; Maria Knodt, Univ. Victoria, 5.–30. Sep.;<br />

Riccardo Smareglia, Univ. Wisconsin, 5.–9. Sep.; Konrad<br />

Tristram, 8.–9. Sep.; James Di Francesco, Obs. Paris, 9.–17.<br />

Sep.; Patrik Jonsson, Inasan, 12.–16. Sep.; Steve Boudreault,<br />

15.–20. Sep.; P.G. Prada Moroni, ATC Edinburgh, 18.–24.<br />

Sep.; Emanuele Tognelli, Inst. TP, Zurich, 18.–24. Sep.;<br />

Gerrit van der Plas, Inst. TP, Zurich, 19.–23. Sep.; William<br />

Fischer, NRAO, 25.–28. Sep.; Marco Padovani, Inasan<br />

Moscow, 26. Sep.–31. Oct.; Agnieszka Rys, Ipag/CNRS,<br />

29. Sep.–12. Oct.; Sambit Roychowdhury, Ipag/CNRS, 1.–<br />

5. Oct.; Ryan Leaman, MPE, 1.–9. Oct.; Jay Gallagher, Lab.<br />

Marseille, 7. Oct.; Carol Grady, Yonsei Univ., 7. Oct.;<br />

Matthieu Brangier, yonsei Univ., 9.–12. Oct.; Vitaly<br />

Akimkin, CfA, 9.–30. Oct.; Sin-iti Sirono, Dark Cosm.<br />

Inst., 10.–11. Oct.; Adrian Glauser, Insugeo-Conicet, 10.–<br />

13. Oct.; Donnino Anderhalden, Eso, 10.–14. Oct.; Aurel<br />

Schneider, Univ. Como, 12.–14. Oct.; Jürgen Ott, KU<br />

Leuven, 21.–29. Oct.; Y. Pavlyuchenkov, Univ. Edinburgh,<br />

24. Oct.–6. Nov.; Xavier Bonfils, Univ. Ox<strong>for</strong>d, 26.–28.<br />

Oct.; David Ehrenreich, IAA, 26.–28. Oct.; Thomas Müller,<br />

MPA Garching, 2.–4. Nov.; Clement Surville, Inst. Astrophy.<br />

Paris, 7.–11. Nov.; Hyun-Jin Bae, IAA, 7.–8. Nov.; Hyun-<br />

Jin Bae, DAMTP Cambridge, 7.–8. Nov.; Dae-Won Kim,<br />

IAA, 7.–9. Nov.; Andrew Zirm, Univ. Leiden, 9.–13. Nov.;<br />

Olga Pintado, Univ. Madrid, 11.–19. Nov.; Andreas<br />

Glindemann, NRAO, 14. Nov.; Emanuele P. Farina,<br />

University of Insubria, 14.–18. Nov.; Jonathan Menu, Iram,<br />

Staff 99


100 Staff / Departments<br />

14.–18. Nov.; Adrian Glauser, AEI, 14.–18. Nov.; Yixiong<br />

Wang, Eso, 20.–22. Nov.; A. Segura, Harvard Cfa, 20.–25.<br />

Nov.; Ben Moster, 21.–23. Nov.; Camilla Pacifici, ETH,<br />

21.–25. Nov.; Jose M. Ibanez, Univ. Cali<strong>for</strong>nia, 21.–25.<br />

Nov.; Sijme-J. Paardekooper, Caltech, 21.–26. Nov.;<br />

Matilde Fernandez, Univ. Hert<strong>for</strong>dshire, 25. Nov.; Simone<br />

Weinmann, 25.–26. Nov.; Chris Brook, 27. Nov.–1. Dec.;<br />

John Tobin, 27. Nov.–3. Dec.; Michele Fumagalli, 6.–9.<br />

Dec.; Pierre Cox, 7.–8. Dec.; Felicitas Mokler, 8.–16. Dec.;<br />

Mark Westmoquette, 12.–13. Dec.; Sijacki Debora, 14.<br />

Dec.; Peter Hofner, 14.–16. Dec.; Adrian Glauser, 14.–16.<br />

Dec.; Steve Beckwith, 14.–18. Dec.; Dominik Richers,<br />

18.–21. Dec.; Elias Brinks, 18.–23. Dec.<br />

Short-term Scholarships: Antonuccio (14.6. until 27.7.),<br />

Burtscher (1.6. until 31.12.), Dalcanton (23.6. until 21.7.),<br />

El-Kork (27.6. until 06.8.), Fedele (3.7. until 30.7.), Jin<br />

(1.12.), Kostogryz, Main Astronomical Observatory of NAS<br />

of Ukraine (1.8. until 30.9.), Lang (2.7. until 02.8.), Natta<br />

Departments<br />

Department: Planet and Star Formation<br />

Director: Thomas Henning<br />

Infrared Space <strong>Astronomy</strong>: Oliver Krause, Zoltan Balog,<br />

Marc-André Besel, Thomas Blümchen, Jeroen Bouwman,<br />

Örs Hunor Detre, Ulrich Grözinger, Rory Holmes, Ulrich<br />

Klaas, Hendrik Linz, Friedrich Müller, Markus Nielbock,<br />

Jan Pitann, Silvia Scheithauer, Anika Schmiedeke, Jürgen<br />

Schreiber, Amy Stutz<br />

Star Formation: Henrik Beuther, Angela Adamo, Tobias<br />

Albertsson, Miriam Benisty, Adrianus Bik, Paul Boley,<br />

Miwa Egner (parental leave), Min Fang, Markus Feldt,<br />

Siyi Feng, Mario Gennaro, Thomas Gerner, Dimtrios<br />

Gouliermis, Katharine Johnston, Jouni Kainulainen,<br />

Ralf Launhardt, Roger Lee, Huabai Li, Rainer Lenzen,<br />

Nils Lippok, Maria Elena Manjavacas Martinez, Johan<br />

Olofsson, Sarah Ragan, Boyke Rochau, Markus Schmalzl,<br />

Dmitri Semenov, Aurora Sicilia Aguilar, Bernhard Sturm,<br />

Jochen Tackenberg, Roy van Boekel, Antonin Vasyunin,<br />

Tatiana Vasyunina, Wei Wang, Yuan Wang, Miaomiao<br />

Zhang, Svitlana Zhukovska<br />

Brown Dwarfs/Exoplanets: Reinhard Mundt, Carolina<br />

Berg<strong>for</strong>s, Beth Biller, Mickaël Bonnefoy, Wolfgang<br />

Brandner, Gael Chauvin, Guo Chen, Michaela Döllinger,<br />

Bertrand Goldmann, Felix Hormuth, Sarah Kendrew,<br />

Rainer Köhler, Natalia Kudryavtseva, Luigi Mancini,<br />

Maren Mohler, Victoria Rodriguez Ledesma, Tim Schulze-<br />

Hartung, Johny Setiawan, Zhao Sun, Christian Thalmann,<br />

Matthias Zechmeister, Neil Zimmerman<br />

(15.6. until 15.7.), Panic (15.5. until 30.6.), Pavlyuchenkov<br />

(15.4. until 14.5.), Richards (1.8. until 31.8.), Roccatagliata<br />

(3.7. until 30.7.), Segura (1.7. until 31.7.), Simcoe (27.6.<br />

until 29.7.), Smith (6.6. until 04.8.), Toth (1.7. until 31.8.),<br />

Walmsley (15.6. until 15.7.), Wang Wei (1.9. until 30.9.),<br />

Weaver (1.1. until 04.2.), Weisz (28.6. until 26.7.)<br />

Due our regular international meetings and workshops further<br />

guests visited the institute, not listed here individually.<br />

Calar Alto Observatory Almeria, Spain<br />

<strong>Astronomy</strong> Coordination: Thiele<br />

Telescope Technology and Data Processing: W. Müller<br />

Theory (SP): Hubertus Klahr, Hassnat Ahmad, Bennoit<br />

Commerçon, Karsten Dittrich, Natalia Dziourkevitch, Mario<br />

Flock, Mykola Malygin, Christoph Mordasini, Ludovic<br />

Petitdemange, Nathalie Raettig, Ana Uribe<br />

Laboratory Astrophysics: Friedrich Huisken, Abel Brieva,<br />

Yvain Carpentier, Cornelia Jäger, Sergey Krasnokutskiy,<br />

Karsten Potrick, Gael Rouillé, Toulou Sabri, Torsten<br />

Schmidt, Mathias Steglich<br />

Frontiers of Interferometry in Germany (FrInGe): Thomas<br />

Henning, Uwe Graser, Rainer Köhler, Ralf Launhardt, Roy<br />

van Boekel<br />

Adaptive Optics: Wolfgang Brandner, Guo Chen, Casey<br />

Dean, Markus Feldt, Dimitrios Gouliermis, Stefan Hippler,<br />

Felix Hormuth, Natalia Kudryavtseva, Christian Thalmann,<br />

Pengqian Yang<br />

MPG Junior Research Group: Cornelis Dullemond, Tilmann<br />

Birnstiel, Martin Ilgner, Christian Ormel, Paola Pinilla,<br />

Zsolt Sandor, Fredrik Windmark, Andras Zsom<br />

MPG Junior Research Group: Thomas Robitaille<br />

MPG Minerva Group: Cristina Afonso, Balasz Csak,<br />

<strong>Max</strong>imiliano Moyano, Nikolai Nikolov<br />

Emmy-Noether-Group: “Charakterisierung extrasolarer<br />

Planeten”: Lisa Kaltenegger, Yan Yves Betremieux, Yamila<br />

Miguel, Siddarth Hegde, Hiroyuki Kurokawa


Department: Galaxies and Cosmology<br />

Director: Hans-Walter Rix<br />

Milky Way and Local Group: Coryn Bailer-Jones (inclusive<br />

the Gaia project group), René Andrae, Fabo Feng, Richard<br />

Hanson, Chao Liu, Kester Smith, Paraskevi Tsalmantza,<br />

Thomas Herbst, Hans-Walter Rix, Christal Brasseur, Michel<br />

Collins, Nicolas Martin, David Martinez-Delgado, Christine<br />

Ruhland, Xiangxiang Xue<br />

Galaxies in the present Universe: Andrea Macciò, Eva<br />

Schinnerer, Sharon Meidt, Dario Colombo, Tessel van<br />

der Laan, Glen van de Ven, Greg Stinson, Rahul Kannan,<br />

Mariya Lyubenova, Vesselina Kalinova, Roland Laesker,<br />

Sladjana Nikolic, Robert Singh<br />

Galactic Center and Black Holes: Christian Fendt, Joseph<br />

Hennawi, Knud Jahnke, Katherine Inskip, Dading Hadi<br />

Nugrohu, Klaus Meisenheimer, Leonard Burtscher, Jörg-<br />

Uwe Pott, Iva Karovicova, Kirsten Schnuelle<br />

The interstellar and intergalactic Medium: Joseph<br />

Hennawi, Eva Schinnerer, Gael Dumas, Brent Groves,<br />

Jacqueline Hodge, Annie Hughes, Kathryn Kreckel,<br />

Fatemeh Tabatabaei, Fabian Walter, Anahi Caldu Primo,<br />

Elisabetha da Cunha, Maria Kapala, Eric Morganson, Karin<br />

Sandstrom, Andreas Schruba, Hsiang-Hsu Wang<br />

Teaching Activities<br />

Winter Term 2010/<strong>2011</strong><br />

Chr. Fendt, C. Dullemond, J. Hennawi: IMPRS (Seminar)<br />

Th. Henning, H. Beuther: Star Formation (Lecture)<br />

S. Hippler: Experiment F36 “Wave Front Analysis”,<br />

Advanced Practocal <strong>for</strong> Physicists (Practicals)<br />

V. Joergens, H. Klahr: Extrasolar Planets and Brown<br />

Dwarfs (Lecture)<br />

H. Klahr, R. Mundt: Einführung in die Astronomie und<br />

Astrophysik III (Seminar with J. Heidt and J. Krautter)<br />

K. Meisenheimer: <strong>Institute</strong> Colloquium of MPIA and LSW<br />

(Colloquium with S. Wagner)<br />

H.-W. Rix: Galaxies (Course Lecture, block course),<br />

Exercises on Galaxies (Exercise)<br />

Summer Term <strong>2011</strong>:<br />

H. Beuther, Chr. Fendt: Outflows and Jets: Theory and<br />

Observations (Lecture)<br />

R. van Boekel: Observational <strong>Astronomy</strong> (Lecture with A.<br />

Quirrenbach (LSW) und C. Dullemond (ITA))<br />

C. Dullemond: Observational <strong>Astronomy</strong> (Course Lecture)<br />

Chr. Fendt, C. Dullemond, J. Hennawi, V. Joergens: Seminar<br />

on current research topics (IMPRS 1) (Seminar)<br />

Chr. Fendt: <strong>Astronomy</strong> <strong>for</strong> Non-Physics (with A. Just (ARI))<br />

Departments / Teaching Activities 101<br />

Galaxy Evolution and the early Universe: Knud Jahnke,<br />

Mauricio Cisternas, Gregor Seidel, Klaus Meisenheimer,<br />

Michael Fiedler, Mathias Jäger, Christian Leipski, Hans-<br />

Walter Rix, Kasper Borello Schmidt, Yu-Yen Chang,<br />

Michael Maseda, Balasubramanian Ramkumar, Arjen van<br />

der Wel, Eva Schinnerer, Alexander Karim, Fabian Walter,<br />

Eduarodo Banados Torres, Roberto Decarli, Gisella de<br />

Rosa, Bram Venemans<br />

Galaxy Dynamic: Hans-Walter Rix, Lan Zhang, Glenn<br />

van de Ven, Remco van den Bosch, Laura Watkins, Alex<br />

Büdenbender<br />

Numerical and Cosmological Simulations: Christian Fendt,<br />

Oliver Porth, Somayyeh Sheiknezami, Deniss Stepanovs,<br />

Barghav Vaidya, Joe Hennawi, Neil Crighton, Girish<br />

Kukarni, Khee-Gan Lee, Elisabeta Lusso, Olivera Rakic,<br />

Kate Rubin, Yujin Yang, Fabrizio Arrigoni Battaia, Gabriele<br />

Maier, Alberto Rorai, Andrea Macciò, Jian Chang, Salvatore<br />

Cielo, Nikolaos Fanidakis, Camilla Penzo<br />

Instrumentation Development: Thomas Herbst, Michael<br />

Boehm, Matthieu Brangier, Jian Chang, Roman Follert,<br />

Qiang Fu, Eva Meyer, Joshua Schlieder, Zhaojun Yan,<br />

Xianyu Zhang, Josef Fried, Jörg-Uwe Pott<br />

Th. Henning: Physics of Star <strong>for</strong>mation (Master-<br />

Pflichtseminar)<br />

S. Hippler: Experiment F36 “Wave Front Analysis” of the<br />

Advanced Practocal <strong>for</strong> Physicists (Practicals)<br />

F. Huisken, C. Jäger: Cluster & Nanoteilchen II, Friedrich<br />

Schiller Universität, Institut für Festkörperphysik, Jena<br />

K. Jahnke: Gruppenunterricht zur Experimentalphysik II<br />

(Exercise)<br />

V. Kalinova: Experiment FP 30 “CCD photometry with 70cm<br />

telescope” of the Advanced Practocal <strong>for</strong> Physicists<br />

(Practicals)<br />

L. Kaltenegger: IMPRS summer school: Characterizing exoplanets<br />

– from <strong>for</strong>mation to atmospheres (with W. Benz<br />

(Univ. Bern), P. Hauschildt (Univ. Hamburg), A. Johansen<br />

(Lund Observatorium), S. Udry (Observatorium Genf))<br />

H. Klahr: Advanced seminar on Theory of Planet and Star<br />

Formation (Seminar)<br />

H. Klahr, Chr. Mordasini: Physics and Numerics of<br />

Accretion Disks and Planet Formation (Lecture)<br />

H. Klahr, V. Joergens: Extrasolar Planets and Brown Dwarfs<br />

(Lecture)<br />

R. Köhler, A. Müller: Introduction to IDL <strong>for</strong> Scientific<br />

Research (block course)<br />

K. Meisenheimer: Gruppenunterricht zur Experimental physik<br />

II (Exercise)


102 Teaching Activities / Service in Committees<br />

H.-W. Rix: Galaxy Coffee (Advanced Seminar), Galaxies<br />

(Lecture)<br />

H.-W. Rix, F. Walter, N. Martin: Galaxies (block course)<br />

Winter Term <strong>2011</strong>/2012:<br />

H. Beuther, H, Klahr, H.-W. Rix: Einführung in die<br />

Astronomie und Astrophysik III (Pflichtseminar)<br />

C. Dullemond: Numerische Gas- und Flüssigkeitsdynamik<br />

(Lecture / Exercise), Mathematische Methoden in der<br />

Physik I (Lehramt) (Lecture / Exercise)<br />

C. Dullemond, J. Hennawi: Cosmology (Lecture / Exercise<br />

/ Seminar)<br />

Chr. Fendt, K. Meisenheimer, G. Van de Ven: Seminar zu<br />

aktuellen Forschungsthemen (IMPRS 1) (mit R. Klessen<br />

(ITA), S. Glover (ITA), A. Koch (LSW))<br />

Th: Henning: Physik der Sternentstehung (Advanced<br />

Seminar)<br />

S. Hippler: Experiment F36 “Wave Front Analysis”,<br />

Advanced Practocal <strong>for</strong> Physicists (Practicals)<br />

V. Joergens: Extrasolare Planeten und Braune Zwerge<br />

(Lecture / Seminar)<br />

H. Klahr: Numerisches Praktikum (Practicals), Physik<br />

und numerische Methoden zu Akkretionsscheiben und<br />

Planetenentstehung (Lecture)<br />

H. Klahr, Chr. Mordasini: Uknum Numerical (Seminar)<br />

K. Meisenheimer: <strong>Institute</strong> Colloquium of MPIA and LSW<br />

(Colloquium with S. Wagner)<br />

Service in Committees<br />

Coryn A. L. Bailer-Jones: Member of the “PhD-Students<br />

Advisory Committee” at the MPIA; Manager of the<br />

Subconsortium “Astrophysical Parameters”, Gaia<br />

Data Processing and Analysis Consortium; Member<br />

of the Gaia Data Processing and Analysis Consortium<br />

Executive<br />

Henrik Beuther: Member of the iram program committee;<br />

Member of the apex MPG program committee; Member<br />

of the Patzer foundation board<br />

Karsten Dittrich: Student Representative; Head of the<br />

Event-Gruppe (PhDnet)<br />

Christian Fendt: External reviewer and auditor of the PhD<br />

student Noemie Globus, Laboratoire de L’Univers et ses<br />

theories, Paris, France<br />

Bertrand Goldman: Member of the panic Science Team;<br />

Member of the Science Policy Oversight Committee of<br />

the PanStarrS1 consortium<br />

Dimitrios A. Gouliermis: Member of the Calar Alto Time<br />

Allocating Committee (TAC); Member of the Lincnirvana<br />

Science Team<br />

Roland Gredel: Member of der ELT science and engineering<br />

group; Member of the CTA internal site assessment;<br />

Chair of the LBT internal operational readiness<br />

review; Chair of the LBT time domain observations<br />

working group; Chair of the Opticon board; Member<br />

of der Opticon committees “telescope directors <strong>for</strong>um”,<br />

“enhancement activities Eastern Europe” and “NEON<br />

summer schools”; Chair of the Stac; Chair of the Lincnirvana<br />

internal review committee.<br />

Thomas Henning: Member of the Eso Council; Chair of<br />

the LBT associated company; Member Representative<br />

of the LBT Board; Member of the caha Executive<br />

Committee; Member of the Board of IAU Division<br />

VI, Interstellar Matter; Member of the National<br />

Cospar Committee; Representative of the <strong>Astronomy</strong>/<br />

Astrophysics Subdivision of the Leopoldina; Member<br />

of the scientific committee of the Thüringer observatory<br />

Tautenburg; Member of der Appeal Committee of Dutch<br />

Academy Professorship Programme; Head of the ERC<br />

Panel <strong>for</strong> Advanced Grants PE9, “Universe Science”;<br />

Member of the Prize Committee of the Stern-Gerlach<br />

Award; Member of der Master Commission of the MPI<br />

für Chemie, Mainz; Member of der Appeal Committee<br />

<strong>for</strong> Professor of Astrophysics of the University of<br />

Innsbruck; Member of the Organizing Committee of the<br />

DFG Priority Programme “Physics of the Interstellar<br />

Medium”<br />

Cornelia Jäger: Member of the Program Committee of the<br />

DFG priority program “The Physics of the Interstellar<br />

Medium”; Member of the Plenary Members Group<br />

of the EU Initial Training Network (ITN) “Lassie –<br />

Laboratory Astrochemical Surface Science in Europe”<br />

Klaus Jäger: board member of the Astronomische<br />

Gesellschaft (Press Officer); Member of the scientific<br />

advisory committee of the International Summer<br />

Science School Heidelberg (ISH); Participation in the<br />

Rat Deutscher Sternwarten (RDS); Participation in the<br />

LBT-associated company (LBTB)<br />

Lisa Kaltenegger: Member of the Editorial boards of the<br />

series of books “Astrobiology”, at Springer Astrobiology<br />

and at the Encyclopedia of Astrobiology, Member in<br />

boards of naSa, NSF, Royal Society review panels,<br />

DFG, French Academie of Science, Exobiology, LBT,<br />

Kepler, Astrobiology; Member of the PAC; Member of<br />

the Executive Council, naSa Extrasolar Planet Analysis<br />

Group<br />

Oliver Krause: Member of the eSa-EChO Science Teams<br />

Martin Kürster: Member of the eSpreSSo PDR Review Board<br />

Ralf Launhardt: Member of the S-TAC at the MPIA;<br />

Member of the ERC starting grants evaluation panel<br />

Christoph Leinert: Member of the Eso OPC panels; Member<br />

of the International Advisory Board of the Konkoly<br />

Observatory<br />

Hua-Bai Li: Member of the Expert committee <strong>for</strong> the<br />

award of Discovery Grants of the Natural Sciences and<br />

Engineering Research Council of Canada<br />

Nicholas Martin: Member of the Next Generation Canada-<br />

France-Hawaii Telescope Science Working Group; Head<br />

of the Pan-StarrS1 Science Consortium Key Project 5<br />

(the Milky Way and the Local Group)


Klaus Meisenheimer: Member of der AGN/Galactic Center<br />

working group<br />

Reinhard Mundt: Member of the carmeneS Core<br />

Managment Team as Representative of the MPIA;<br />

Ombudsman of the MPIA<br />

Markus Nielbock: Member of the herScheL pacS<br />

Instrument Control Centre (ICC); Member of the<br />

herScheL Calibration Steering Group as a Representative<br />

of the pacS ICC; Member of der herScheL Pointing<br />

Working Group<br />

Hans-Walter Rix: Member of the PS1 Science Consortium;<br />

Member of the nirSpec Science Team; Member of<br />

the DFG boards; Member of the Emmy-Noether Panel;<br />

Member of the Visiting Committees STScI; Member of<br />

the eucLid Mission Board<br />

Eva Schinnerer: Member of the NRAO Users Committee<br />

Amelia Stutz: Member of the MPIA Stac; Member of the<br />

Eso TAC<br />

Roy van Boekel: Member of the belgium VLTI TAC<br />

Glenn van de Ven: Member of the Linc-nirvana Science<br />

Team<br />

Remco van den Bosch: Member of the MPIA computer<br />

committee<br />

Tessel van der Laan: Member of the WBK<br />

Fabian Walter: Member of the NRAO Panel to Advise on<br />

Science and EVLA Operations (Paseo)<br />

Further Activities<br />

The MPIA released 12 press releases. Several radio and<br />

television interviews have been given (Klaus Jäger,<br />

Markus Pössel, Axel M. Quetz, and others).<br />

The eight lectures of the lecture series “Astronomie<br />

am Sonntag Vormittag” in June and July have been<br />

organized by Markus Pössel, Klaus Jäger, and Axel<br />

M. Quetz.<br />

Markus Feldt organized the “Mini<strong>for</strong>schung” <strong>for</strong> undergraduates.<br />

For the Girls’ Day on April 14 th at the institute Vianak<br />

Naranjo was responsible, with participation of Klaus<br />

Jäger, Markus Pössel, Lisa Kaltenegger, Natalie<br />

Raettig, Aurora Sicilia, and others.<br />

The Board of Trustees hold a meeting on November<br />

29 th which was organized by Klaus Jäger, Thomas<br />

Henning, and Hans-Walter Rix.<br />

The pupil practical “Astronomie” on October 24. – 28.<br />

was organized and led by Klaus Meisenheimer and<br />

Michael Biermann (ZAH/ LSW) with participation of<br />

Silvia Scheithauer, and Klaus Jäger.<br />

During the year a total of 440 visitors in 19 groups have<br />

been given guided tours through the institute (Axel<br />

M. Quetz, Markus Pössel, Vesselina Kalinova, Silvia<br />

Scheithauer, and others).<br />

Service in Committees / Further Activities 103<br />

The new newsletter of the MPIA was elaborated by<br />

Klaus Jäger (conception and editing work), Mathias<br />

Voss, Thomas Henning, and Hans-Walter Rix.<br />

In honor of Jakob Staude on November 15 a scientific<br />

celebratory colloquium was held, organized by Klaus<br />

Jäger, Markus Pössel, Axel M. Quetz, and Hans-<br />

Walter Rix.<br />

Vianak Naranjo held the office of the equal opportunities<br />

officer at the MPIA.<br />

Tessel van der Laan (until Sept. 29), Karsten Dittrich<br />

(since Sept. 29) and Maren Mohler have been student<br />

representatives at the MPIA during <strong>2011</strong>.<br />

Axel M. Quetz was member of the editorial team which<br />

created the 50th volume of “Sterne und Weltraum”.<br />

Jakob Staude was member of the publisher team of<br />

the 50th volume of “Sterne und Weltraum”.<br />

Guided tours through the Astrophysical Laboratory<br />

in Jena during the “Long night of the Sciences” on<br />

November 25th under the motto “Laboratory experiments<br />

simulate conditions in interstellar dust clouds”<br />

were held by Cornelia Jäger, Gaël Rouillé, Karsten,<br />

Potrick, and Mathias Steglich.<br />

Roberto Decarli organized the weekly Galaxy Coffee.<br />

Brent Groves was science co-coordinator of the KinGfiSh<br />

group.<br />

Friedrich Huisken was member of the program commitee<br />

of the international conference: International<br />

Symposium on Rarefied Gas Dynamics (RGD) and<br />

Mitheraco-editor of the Romanianen conference series<br />

on laser and optics “romopto”.<br />

Klaus Jäger created contributions <strong>for</strong> TV broadcaster<br />

(ARD, SWR, RNF, N24, CampusTV) as well as<br />

counseled them; he created contributions für print<br />

magazines; he created an audio/video trailer <strong>for</strong> the<br />

opening of the Astronomischen Gesellschaft (AG)<br />

in Heidelberg; he composed and produced music<br />

on occasion of the inauguration of the “House of<br />

<strong>Astronomy</strong>” and <strong>for</strong> TV at astronomical topics; he<br />

wrote press releases <strong>for</strong> the AG, <strong>for</strong> the Rat Deutscher<br />

Sternwarten and the LBT-associated company<br />

(LBTB); he contributed in planning and on events of<br />

the “House of <strong>Astronomy</strong>”, the International Science<br />

School Heidelberg, der annual meeting of the AG in<br />

Heidelberg and he gave several special guided tours<br />

and lectures; he organized the “Visitor Colloquium”<br />

at the MPIA (with Meidt, Klahr).<br />

Lisa Kaltenegger: collaboration with the eSa proposal<br />

teams of neat and EChO; PI of the ISSI-Team “1D/3D<br />

Exoplanet Atmospheres and their Characterization”;<br />

Co-I of the naSa Explorer Mission teSS; Co-I of<br />

the naSa Astrobiology <strong>Institute</strong>: Advent of Complex<br />

Life.<br />

Alexander Karim took part at the science slam in Bonn with<br />

his contribution “Stars, Sterne und Galaxien” as well as<br />

at the science slam in the cinema “Capitol” in Mainz. He<br />

counseled the TV broadcaster 3Sat <strong>for</strong> the broadcasting<br />

“Für meine Forschung werben – auf der Bühne”.


104 Further Activities / Compatibility of Science, Work, and Famoöy<br />

Ralf Launhardt was project scientist at eSpri.<br />

Dietrich Lemke war associated editor of the “Journal of<br />

Astronomical Instrumentation” (World Scientific). He<br />

wrote the book “Im Himmel über Heidelberg” on the<br />

occasion of the 40 th anniversary of the MPIA. The<br />

book was presented with represantativs of the archive<br />

of the MPG (Berlin) to the public at a ceremonial act<br />

on May 23 rd .<br />

Hendrik Linz was guest scientist at the NRAO in<br />

Socorro, New Mexico, USA.<br />

Markus Nielbock contributed on the “Tag der Astronomie<br />

<strong>2011</strong>” at the Engadiner Astronomiefreunde in St. Moritz,<br />

Switzerland. He is member of the Astro no mieschule<br />

e.V., Heidelberg.<br />

Sarah Ragan was postdoc representative at the MPIA.<br />

Kasper Borello Schmidt organized the monthly<br />

Heidelberg discussion <strong>for</strong>um on gravitation lenses<br />

“LiHD – Lensing in Heidelberg”.<br />

Referees at Science Journals: Coryn A. L. Bailer-<br />

Jones (ApJ, A&A, MNRAS); Henrik Beuther<br />

(A&A, ApJ, MNRAS, Nature); Elisabete da Cunha<br />

(A&A); Friedrich Huisken (Advanced Materials,<br />

Nanotechnology, Science, NanoLetters, Applied<br />

Physics Letters, Journal of Applied Physics, Chemical<br />

Physics Letters, Chemical Reviews, Journal of<br />

Chemical Physics, Journal of Physical Chemistry,<br />

Journal of Nanoparticle Research, Computational<br />

Materials Science); Viki Joergens (Astrobiology,<br />

Icarus, ApJ, A&A, ApJL, PPS, Springer); Oliver<br />

Krause (ApJ, Nature); Hendrik Linz (ApJ).<br />

Referee <strong>for</strong> Research Grants: Henrik Beuther (DFG, ERC<br />

National French Agency of Research); Christian<br />

Fendt: Externer Gutachter für Forschungsmittel<br />

des “Natural Sciences and Engineering Research<br />

Council of Canada”, FWO, Foundation <strong>for</strong> Scientific<br />

Research Belgium; Friedrich Huisken (DFG, EU<br />

(Marie-Curie), Fonds zur Förderung der wissenschaftlichen<br />

Forschung in Österreich, der Grant<br />

Agency of the Czech Republic, der naSa, dem<br />

American Chemical Society Petroleum Research<br />

Fund, der German Israeli Foundation <strong>for</strong> Scientific<br />

Research and Development.<br />

Compatibility of Science, Work,<br />

and Family<br />

To present in<strong>for</strong>mations and solutions <strong>for</strong> better compatibility<br />

of job and family was in <strong>2011</strong> again an important<br />

matter to the MPIA. The institute supports men and<br />

women in all cases equaly. Main focus was set on the<br />

following domains:<br />

1. Flexibility on the working environment:<br />

Flexible configuration of the working hours is a fundamental<br />

premise <strong>for</strong> a better compatibility of job and<br />

family and an important aspect <strong>for</strong> scientists and other<br />

employees, who wants to bring their job in harmony with<br />

child care, care-dependent relatives or job related change<br />

of residence of the life partner. The MPIA supports different<br />

models or working. A flexible working environment<br />

is offered at the MPIA <strong>for</strong> both scientific as well as<br />

non-scientific employees. This includes family induced<br />

time-outs, temporary reduction of the working hours, or,<br />

if necessary, the flexible choice of the job location, <strong>for</strong><br />

example at the home office.<br />

2. Care services <strong>for</strong> employees with children and care <strong>for</strong><br />

needy families:<br />

The MPIA has together with the other Heidelberg MPIs<br />

access to a total of 21 nursery and kindergarten places.<br />

The MPIA cooperates with the MPI <strong>for</strong> Nuclear Physics<br />

<strong>for</strong> the rapid implementation of a kindergarten. The institute<br />

provides in-house support and a baby office <strong>for</strong><br />

employees with breastfeeding children. In exceptional<br />

cases or emergency situations, employees may come to<br />

work with children. The international office offers advice<br />

in finding suitable places in nurseries, kindergartens<br />

and schools and in holiday childcare. The MPIA also<br />

provides support <strong>for</strong> employees with care-dependent<br />

relatives through the family service “Besser betreut” and<br />

via the in<strong>for</strong>mation portal of the “Bündniss für Familie”.<br />

3. In<strong>for</strong>mation portal at MPIA:<br />

The in<strong>for</strong>mation portal of the MPIA includes an e-mail list<br />

<strong>for</strong> parents and <strong>for</strong> employees with caring responsibilities<br />

<strong>for</strong> relatives. Here you find assistance, tips, suggestions<br />

and answers. Additional in<strong>for</strong>mation on dual-career<br />

issues, including a dual-career job board can be found<br />

also on the related web pages of the institute at http://<br />

www.mpia.de/Public/menu_q2.php?MPIA/jobs/dualcareer.html.<br />

Related posts in the institute offers an in<strong>for</strong>mation<br />

board with current postings. In family-related downtime<br />

employees may – if desired – stay connected via<br />

a contact retention program and attend training events,<br />

staff meetings and other important meetings.<br />

4. In<strong>for</strong>mationen <strong>for</strong> leaders:<br />

When recruiting staff the service offerings of the <strong>Institute</strong><br />

on “combatibility of work and family” in employment<br />

negotiations are integrated. Executives at MPIA know<br />

the people to contact about work and family issues, as<br />

well as dual-career work-life balance and can refer as<br />

needed to the appropriate contact person. By the end of<br />

<strong>2011</strong> the subject “awareness and involvement of leaders”<br />

in the working group “work and family” was selected in<br />

the Heidelberg alliance as main topic. A cross-enterprise<br />

in<strong>for</strong>mation sharing has been started and will be continued<br />

and deepened in 2012.<br />

5. Cooperation of the MPIA in networks:<br />

The topic of networking is becoming increasingly important.<br />

The MPIA cooperates in the following networks <strong>for</strong><br />

the implementation of solutions • Dual career network


Heidelberg: The dual career services at MPIA supports<br />

to help launch dual-career couples in furthering the career<br />

of the partner. In cooperation with the Heidelberg<br />

University, the University Hospital, the German Cancer<br />

Research Center (DKFZ), the European Molecular<br />

Biology Laboratory (EMBL), the SRH-Holding, the<br />

College of Education, the city of Heidelberg and the<br />

other Heidelberg MPIs, the dual career service provides<br />

contacts with potential employers in the region<br />

of Heidelberg and her support in the search <strong>for</strong> suitable<br />

locations. The dual career network has established an<br />

active job board with current vacancies and job applications.<br />

• Child Care Working Group of the University<br />

of Heidelberg: From this working group has resulted a<br />

cooperation agreement and rights <strong>for</strong> several places in a<br />

kindergarten were ascertained. • The MPIA is a member<br />

of the Alliance <strong>for</strong> Family Heidelberg. This corporate<br />

network is to exchange in<strong>for</strong>mation and to ensure the<br />

various services in the field “work and family” and is a<br />

Awards<br />

The Ernst Patzer Prize winners of this year are:<br />

The postdoc Elisabetta Caffau, ZAH, <strong>for</strong> her publication<br />

“An extremely primitive star in the Galactic halo”, the<br />

IMPRS doctoral student Alexander Karim <strong>for</strong> his publication<br />

“The star <strong>for</strong>mation history of mass-selected<br />

galaxies in the coSmoS field” and an den postdoc<br />

Andreas Schruba <strong>for</strong> his publication “A molecular star<br />

<strong>for</strong>mation law in the atomic-gas-dominated regime in<br />

nearby galaxies”.<br />

Dimitrios A. Gouliermis received a fellowship “Com prehen<br />

sive Characterization with HST of Stellar Popu lations<br />

in Star-Forming Regions of the Large Magellanic<br />

Cloud” (DLR Program 50 OR 908) and “The Stellar<br />

Clus ters Population of the Andromeda Galaxy from the<br />

Pan chro ma tic HST Survey” (DFG Program GO 1659/3-<br />

1).<br />

Compatibility of Science, Work, and Famoöy / Awards 105<br />

major hub. • MPIA is also on the distribution list of the<br />

Rhine-Neckar region and cooperates with the nationwide<br />

active corporate network “Erfolgsfaktor Familie”.<br />

The cross-linking of the MPIA with other scientific institutions,<br />

public bodies and business enterprises guaranteed<br />

the improvement and extension of the offers, the efficiency<br />

of each network partner and thus combines the<br />

energies in the implementation of important measures in<br />

Heidelberg as an attractive location <strong>for</strong> science.<br />

Working Council<br />

The members of the working council met on 50 meetings<br />

in the MPIA and with the other workings councils<br />

of the Heidelberg MPIs on March 3 rd at the MPI <strong>for</strong><br />

Comparative Public Law and International Law, and<br />

on October 17 th at the MPIA.<br />

Jouni Kainulainen, Hua-Bai Li, Sarah Ragan, Amy Stutz<br />

und Svitlana Zhukovska received a research grant from<br />

the DFG Priority Program “Physics of the Interstellar<br />

Medium”.<br />

Maren Mohler was awarded with the first prize of the<br />

Wilhelm and Else Heraeus Seminar <strong>for</strong> her poster<br />

“Extrasolar Planets – Towards comparative planetology<br />

beyond the Solar System” in Bad Honnef.<br />

Karin Sandstrom received a Marie Curie International<br />

Incoming Fellowship.<br />

Dmitry A. Semenov received a research grant “The first 10<br />

million years of the Solar System – a Planetary Materials<br />

Approach” from the DFG (SPP 1385).


106 Cooperation with Industrial Firms<br />

Cooperation with Industrial Companies<br />

Adolf Pfeiffer GmbH, Mannheim<br />

Aerotech GmbH, Nürnberg<br />

Agilent Technologies Italia S., Leini<br />

Air Liquide GmbH, Pfungstadt<br />

Alcatel, Wertheim<br />

Alternate Computer Versand, Linden<br />

American Astronomical Society,<br />

Washington D.C.<br />

Aqua Technik Gudat, Neulußheim<br />

Arlt Computer GmbH & Co.KG,<br />

Heidelberg<br />

asknet AG, Karlsruhe<br />

Aufzug-Service M. Gramlich GmbH,<br />

Ketsch<br />

AVIS, Oberursel<br />

B+S Express Transport GmbH,<br />

Weinheim<br />

Baader Planetarium GmbH,<br />

Mammendorf<br />

Baier Digitaldruck, Heidelberg<br />

Bechtle ÖA Direkt, Neckarsulm<br />

Bürklin OHG, Oberhaching<br />

Büro-Mix GmbH, Mannheim<br />

CADFEM GmbH, Grafing<br />

Carl Zeiss Optronics GmbH,<br />

Oberkochen<br />

Computacenter AG & Co oHG,<br />

Stuttgart<br />

COMTRONIC GmbH, Wilhelmsfeld<br />

Conrad Electronic SE, Hirschau<br />

Contag GmbH, Berlin<br />

Cryophysics GmbH, Darmstadt<br />

Dekra Akademie GmbH, Mannheim<br />

DELL-Computer GmbH, Frankfurt<br />

DELTA-V GmbH, Wuppertal<br />

Deti GmbH, Meckesheim<br />

DHL Express Germany GmbH, Köln<br />

Digi-Key c/o US Bank Minneapol,<br />

Enschede<br />

DPS Vakuum, Großrinderfeld<br />

Drucker Druck, Bietigheim<br />

DVS Dekont Vakuum Service GmbH,<br />

Erfurt<br />

E. Strauss GmbH & Co.,<br />

Biebergemünd<br />

EDICO-Equipment GmbH,<br />

Nürnberg<br />

Edmund Optics GmbH, Karlsruhe<br />

Elektro-Steidl, Weinheim<br />

ELMA Electronic GmbH, P<strong>for</strong>zheim<br />

ERNI Electronics GmbH, Adelberg<br />

esd electronic system design g,<br />

Hannover<br />

eSo - European Southern, Garching<br />

EUROstor GmbH, Filderstadt<br />

Faber Industrietechnik GmbH,<br />

Mannheim<br />

Farnell GmbH, Oberhaching<br />

Federal Express Europe Inc.,<br />

Kelsterbach<br />

Fels Fritz GmbH Fachspedition,<br />

Heidelberg<br />

Fischer Elektronik GmbH & Co.,<br />

Lüdenscheid<br />

FlowCAD EDA-Software Vertrieb,<br />

Feldkirchen<br />

Friedrich Wolf GmbH, Heidelberg<br />

Fritz Zugck, Leimen<br />

Funk Gruppe GmbH, Munich<br />

Gabler Werbeagentur GmbH,<br />

Munich<br />

Garlock GmbH, Neuss<br />

Geier Metall-u.Stahlhandel GmbH,<br />

Mannheim<br />

Gleich Service-Center Nord GmbH,<br />

Kaltenkirchen<br />

Graeff Container-u.Hallenbau GmbH,<br />

Mannheim<br />

Gummispezialhaus Körner, Eppelheim<br />

Guttroff Friedrich GmbH, Wertheim<br />

Häfele GmbH, Schriesheim<br />

Hagemeyer Germany GmbH &Co,<br />

Heidelberg<br />

Hahn u. Kolb GmbH, Stuttgart<br />

Halle Bernhard Nachfl. GmbH, Berlin<br />

Hauck GmbH, Heidelberg<br />

Haufe Service Center GmbH,<br />

Freiburg i. Br.<br />

Haus der Technik e.V., Essen<br />

HELBIG Medizintechnik,<br />

Neuenstadt<br />

Heuser Friedrich GmbH, Heidelberg<br />

Hewlett Packard GMBH, Böblingen<br />

Hewlett-Packard Direkt GmbH,<br />

Böblingen<br />

HM Industrieservice GmbH, Kronau<br />

Hoffmann, Göppingen<br />

Hofmann Menü GmbH, Boxberg/<br />

Schweigern<br />

Hohmann Elektronik GmbH,<br />

Germering<br />

HSD Consult GmbH, Munich<br />

Hummer + Rieß GmbH, Nürnberg<br />

HWP Architekturbüro, Heidelberg<br />

infopaq Germany GmbH,<br />

Kornwestheim<br />

Ingenieurbüro Schlossmacher,<br />

Unterschleissheim<br />

INNEO Solutions GmbH, Ellwangen<br />

IOP Publishing Ltd., Bristol<br />

ITT Visual In<strong>for</strong>mations GmbH,<br />

Gilching<br />

Jacobi Eloxal GmbH, Altlussheim<br />

JUMO GmbH & Co. KG, Fulda<br />

Jungheinrich Vertrieb Germany,<br />

Hamburg<br />

KA-WE GmbH, Schwetzingen<br />

Kai Ortlieb Buchbinderei, Eppelheim<br />

KAISER + KRAFT, Stuttgart<br />

Kaufmann, Horst W., Crailsheim-<br />

Wittau<br />

Keithley Instruments GmbH,<br />

Germering<br />

Kniel GmbH, Karlsruhe<br />

Konica Minolta Businesss,<br />

Mannheim<br />

Körber TH. GmbH, Sensbachtal/Odw.<br />

Kroll Ontrack GmbH, Böblingen<br />

L.+H. Hochstein GmbH + Co.,<br />

Heidelberg<br />

Lapp Kabel GmbH, Stuttgart<br />

Laser Components, Olching<br />

Layertec GmbH, Mellingen<br />

LD Didactic AG & Co.KG, Hürth<br />

Lehmanns Fachbuchhandlung GmbH,<br />

Heidelberg<br />

LEIPERT Maschinenbau GmbH,<br />

Kraichtal-Landshausen<br />

Linde AG, Mainz-Kostheim<br />

Lufthansa AirPlus GmbH, Neu<br />

Isenburg 1<br />

Maas International GmbH, Bruchsal<br />

Mayer GmbH Omnibusbetrieb,<br />

Neckargemünd-Dilsberg<br />

Meilhaus Electronic GmbH,<br />

Puchheim<br />

Melitta Systemservice GmbH & Co.,<br />

Minden-Dützen<br />

Melles Griot, Bensheim<br />

Microstaxx GmbH, Munich<br />

MTS Systemtechnik GmbH,<br />

Mertingen<br />

Müller Otto GmbH, Bammental<br />

Mura, Metallbau, Viernheim<br />

Murrplastik-System-Technik,<br />

Oppenweiler<br />

National Instruments GmbH, Munich<br />

NET GmbH - DENNER HOTEL,<br />

Heidelberg<br />

Neumann Rupert Druckerei,<br />

Heidelberg<br />

Newport Spectra-Physics GmbH,<br />

Darmstadt<br />

Nibler W. GmbH, Walldorf<br />

Nies Elektronic GmbH, Frankfurt


Ocean Optics Germany GmbH,<br />

Ostfildern<br />

Oerlikon, Köln<br />

Omnilab GmbH, Berlin<br />

Optima Research Ltd., Stansted<br />

OWIS GmbH, Staufen<br />

PFEIFFER VACUUM GmbH, Asslar<br />

Pfister BÜRO, Leimen/St.Ilgen<br />

Philipp Lahres GmbH, Weinheim<br />

Physik Instrumente (PI), Karlsruhe<br />

Phytec Messtechnik, Mainz<br />

Polytec GmbH, Waldbronn<br />

Pro-Com Datensysteme GmbH,<br />

Eislingen<br />

REEG GmbH, Wiesloch<br />

Reha-Klinik, Heidelberg<br />

Reichelt Elektronik, Sande<br />

Rexroth B., Lohr am Main<br />

Rhein-Neckar-Zeitung, Heidelberg<br />

Rheintourist Reisebüro oHG,<br />

Heidelberg<br />

Rittal GmbH + Co.KG, Herborn<br />

RS Components GmbH, Mörfelden-<br />

Walldorf<br />

SAMTEC Germany, Germering<br />

Sanitär-Raess GmbH, Heidelberg<br />

Schäfer-Shop GmbH, Betzdorf<br />

Schroff GmbH, Straubenhardt<br />

Schulz H.u.G. Ingenieure, Heidelberg<br />

SCHUPA Schumacher GmbH,<br />

Walldorf<br />

servo Halbeck GmbH & Co.KG,<br />

Offenhausen<br />

Siemens AG, Mannheim<br />

Sky Blue Microsystems GmbH,<br />

Munich<br />

SMS System-Managment, Aachen<br />

SPHINX GmbH, Laudenbach<br />

Stadtwerke Heidelberg AG,<br />

Heidelberg<br />

Stäubli Tec Systems GmbH, Bayreuth<br />

Swets In<strong>for</strong>mation Services, Frankfurt<br />

a.M.<br />

synoTECH, Hückelhoven<br />

Tautz Druckluft+Sandstrahltechnik,<br />

Mannheim<br />

Technik Direkt, Würzburg<br />

The MathWorks GmbH, Ismaning<br />

Cooperation with Industrial Firms 107<br />

Theile Büro-Systeme, Speyer<br />

Thorlabs GmbH, Dachau<br />

ThyssenKrupp Plastics GmbH,<br />

Mannheim<br />

TLS Personenförderung GmbH,<br />

Heidelberg<br />

Topcart International GmbH,<br />

Erzhausen<br />

transtec AG, Tübingen<br />

Trinos Vakuum-Systeme GmbH,<br />

Göttingen<br />

TÜV Life Service GmbH, Munich<br />

TÜV Süd Industrie Service GmbH,<br />

Mannheim<br />

TWM Ottenstein GmbH, Mannheim<br />

Tydex J.S.Co, St. Petersburg<br />

United Parcel Service, Neuss<br />

VA-TEC GmbH & Co.KG,<br />

Wertheim<br />

VISION Engineering LTD,<br />

Emmering<br />

Walter Bautz GmbH, Griesheim<br />

Witzenmann GmbH, P<strong>for</strong>zheim<br />

Wolters Kluwer Germany, Neuwied


108 Conferences, Scientific, and Popular Talks<br />

Conferences, Scientific, and Popular Talks<br />

Conferences Organized<br />

Conferences Organized at the institute:<br />

Conference “<strong>Astronomy</strong> meets Business – 1 st MPIA<br />

Job In<strong>for</strong>mation Day”, MPIA, 27. Jan. (K. Jäger, L.<br />

Burtscher, R. Andrae u.a.)<br />

carmeneS Interface meeting, 10. Feb. (R. Lenzen)<br />

Awarding of the pupils pizes of the “Agenda-Büro” of the city<br />

of Heidelberg at the MPIA/HdA, together with the LSW<br />

on 19. Apr. (C. Scorza, M. Pössel, K. Jäger, H. Mandel<br />

(LSW), Th. Henning, M. Voss, A. Quirrenbach (LSW)<br />

and others)<br />

Book Presentation “Im Himmel über Heidelberg, 40 Jahre<br />

<strong>Max</strong>-<strong>Planck</strong>-Institut für Astronomie 1969 – 2009”, written<br />

by D. Lemke, 23. May (K. Jäger, M. Voss, D. Lemke,<br />

A. M. Quetz, M. Dueck, u.a.);<br />

MPIA Internal Symposium, 25. May (G. van de Ven, H.<br />

Klahr, K. Jäger, and others)<br />

Coordination Meeting with LBT representatives, 6. – 7.<br />

June (M. Kürster)<br />

Linc-nirvana AIV Review, 8. – 9. June (M. Kürster, R.<br />

Hofferbert)<br />

Gravity Progress Meeting, 4. – 5. July (R. Lenzen)<br />

Pan-StarrS 1 Science Consortium – Key Project 5 summer<br />

meeting, 4. – 5. July (N. Martin, H.-W. Rix)<br />

Gravity Consortium Meeting, MPIA, 4. – 6. July (S.<br />

Hippler, W. Brandner, S. Kendrew)<br />

LN Science Team Meeting, 20 Oct. (E. Schinnerer)<br />

Linc-nirvana Consortium Meeting, 20. – 21. Oct. (M.<br />

Kürster)<br />

Commemorative Colloquium <strong>for</strong> Jakob Staude, MPIA/<br />

HdA, 15. Nov. (K. Jäger, M. Pössel, A. M. Quetz, U.<br />

Reichert, u.a.)<br />

Visit to Germany – Japan Round Table am MPIA/HdA, 1.<br />

Dec. (Th. Henning, M. Pössel, K. Jäger u.a.);<br />

Inauguration of the “Haus der Astronomie”, 16. Dec. (M.<br />

Pössel, M. Voss, K. Jäger, and others)<br />

Other Conferences Organized:<br />

Ringberg Conference on “Transport Processes and Accretion<br />

in YSO”, Ringberg Castle, 7. – 11. Feb. (R. van Boekel,<br />

A. Sicilia, M. Fang, Th. Henning)<br />

Scientic Project Management, <strong>Max</strong>-<strong>Planck</strong>-Haus,<br />

Heidelberg, 14. Feb. (M. Kürster, M. Perryman)<br />

Linc-nirvana Consortium Meeting, Padua, 24.–25. March,<br />

(M. Kürster)<br />

Gaia DPAC CU8 plenary meeting, Liege, Belgium, 26.–27.<br />

May (C. A. L. Bailer-Jones)<br />

Ringberg Workshop on “Geophysical and Astrophysical<br />

Fluid flow: Baroclinic Instability and Protoplanetary<br />

Accretion Disks”, Ringberg Castle, 14. – 18. June<br />

(Hubert Klahr, Helen Morrison, Natalie Raettig, Karsten<br />

Dittrich)<br />

PAWS Team Meeting, Schloss Neuburg, 24. – 26. June (A.<br />

Hughes, S. Meidt, E. Schinnerer)<br />

IMPRS Summer School “Characterizing exoplanets –<br />

from <strong>for</strong>mation to atmospheres”, <strong>Max</strong>-<strong>Planck</strong>-Haus,<br />

Heidelberg, 1. – 5. Aug. (Chr. Fendt, K. Dullemond, L.<br />

Kaltenegger)<br />

<strong>Annual</strong> Meeting of the Astronomische Gesellschaft<br />

“Surveys and Simulations – the real and the virtual<br />

Universe”, Sep. 19-34, Heidelberg (SOC-members: Th.<br />

Henning, H.-W. Rix, LOC-Member: K. Jäger)<br />

Meeting “Public Outreach in der Astronomie” at the<br />

<strong>Annual</strong> Meeting of the Astronomische Gesellschaft in<br />

Heidelberg (K. Jäger, M. Pössel)<br />

Splinter-Session “Formation, atmospheres and evolution<br />

of brown dwarfs” at the <strong>Annual</strong> Meeting of the AG in<br />

Heidelberg, 20. – 21. Sept. (V. Joergens, B. Biller, W.<br />

Brandner)<br />

SeedS 2 nd General Workshop, Results, Techniques and<br />

New Developments, IWH, Heidelberg, 10. – 12. Oct. (B.<br />

Biller, M. Bonnefoy, M. Feld, Th. Henning)<br />

Galaxy and Cosmology Department Retreat, Schloss<br />

Engers, Neuwied, 17. – 19. Oct. (B. Conn, E. da Cunha,<br />

H.-W. Rix, T.-H. Witte-Nguy)<br />

Tagung “PSF workshop <strong>2011</strong>”, Boppard am Rhein, 17. –<br />

19. Oct. (R. van Boekel S. Zhukovska, Th. Henning)<br />

MPIA-External Retreat, Obrigheim, 17. – 18. Nov. (K.<br />

Jäger, Th. Henning, H.-W. Rix, T.-H. Witte-Nguy)<br />

Conferences and Meetings Attended,<br />

Scientific Talks and Poster Contributions<br />

Angela Adamo: “PSF retreat”, Boppard, Oct. (Lecture);<br />

Head of the PSF splinter session “Clustered star <strong>for</strong>mation”<br />

Coryn A. L. Bailer-Jones: EPSC-DPS Joint meeting,<br />

Nantes, Oct. (Poster); “Surveys & Simulation – The<br />

Real and the Virtual Universe”, <strong>Annual</strong> Meeting of the<br />

AG, Heidelberg, 19. – 23. Sep. (Poster)<br />

Zoltan Balog: pacS ICC meeting in Garching, 8. – 10. Feb.;<br />

OT1. DP Workshop als Tutor, eSaC in Madrid, Spain,<br />

14. – 16. March, HCSS documentation Editorial Board<br />

meeting, London, UK, 21. – 26. Aug.; pacS Photometer<br />

Pipeline meeting, Heidelberg, 6. Oct.; pacS ICC meeting<br />

in Frascati, Italy, 17. – 18. Nov.<br />

Myriam Benisty: Transport Processes and Accretion in<br />

YSOs, Ringberg Castle, 7. – 11. Feb. (Lecture); Ten<br />

years of the VLTI, eSo Garching, 24. – 27. Oct. (Lecture)<br />

Carolina Berg<strong>for</strong>s: Exoplanets: Past, Present and Future,<br />

Lund, Schweden, 13. May; “From interacting binaries<br />

to exoplanet. – Essential modeling tools”, IAU<br />

Symposium 282, Tatranská Lomnica, Slowakei, 18. –<br />

22. July (Poster); “Surveys & Simulation – The Real<br />

and the Virtual Universe”, <strong>Annual</strong> Meeting of the<br />

AG, Heidelberg, 19. – 23. Sep. (Poster); Formation and<br />

Evolution of Very Low Mass Stars and Brown Dwarfs,<br />

Garching, 11. – 14. Oct. (Poster)


Yan Betremieux: “Surveys & Simulation – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.; PSF retreat, MPIA, Oct.<br />

Henrik Beuther: Jenam, St. Petersburg, Russia, 4. – 8.<br />

July (Lecture); Sofia Community days, Stuttgart, Feb./<br />

March, iram large program consortium meeting, Paris,<br />

France, June (Lecture)<br />

Arjan Bik: Star Formation Across Space and Time: Frontier<br />

Science with the LBT and Other Large Telescopes”,<br />

Tucson, Arizona, USA, 31. Mar. – 2. Apr. (Lecture);<br />

“Stellar Clusters & Associations: A RIA Workshop on<br />

Gaia”, in Granada, Spain, 23. – 27. May (Lecture)<br />

Tilman Birnstiel: “Planet Formation and Evolution”,<br />

Göttingen, 14. – 16. Feb. (Lecture); eSo Headquaters,<br />

Garching, Jan. (Lecture); MPIK, Heidelberg, Feb.<br />

(Lecture); ILTS, Sapporo, Japan, Feb. (Lecture);<br />

University of Nagoya, Japan, Feb. (Lecture); University<br />

of Kyoto, Japan, Feb. (Lecture); USM, Munich, May<br />

(Lecture)<br />

Paul Boley: “Resolving the future of astronomy with longbaseline<br />

interferometry”, Socorro, NM, USA, 28. –<br />

31. March (Poster); “Physics of Space: 40 th Scientific<br />

Conference <strong>for</strong> Students” Kourovka, Russia, 31. Jan. – 4.<br />

Feb. (Lecture)<br />

Mickaël Bonnefoy: Conference Exploring Strange New<br />

Worlds, Flagstaff, USA, 1. – 6. May (Poster)<br />

Mauricio Cisternas: “<strong>2011</strong>. coSmoS Team meeting”, Zürich,<br />

Schweiz, 15. June (Lecture); “Galaxy Mergers in an<br />

Evolving Universe” Hualien, Taiwan, 23. Oct. (Lecture)<br />

Michelle Collins: The Third Subaru International<br />

Conference on Galactic Archaeology, Shuzenji, Japan,<br />

1. – 4. Nov. (Poster)<br />

Blair Conn: Assembling the puzzle of the Milky Way, Le<br />

Grand-Bornand France, 17. – 22. Apr. (Poster); “Surveys<br />

& Simulation – The Real and the Virtual Universe”,<br />

<strong>Annual</strong> Meeting of the AG, Heidelberg, 19. – 23. Sep.<br />

(Lecture); The 3 rd Subaru <strong>Annual</strong> Conference, Shuzenji,<br />

Japan, 1. – 4. Nov. (Poster)<br />

Albert Conrad: Adaptive Optics Real-time Control System<br />

Workshop, Durham, UK, 13. – 14. Apr. (Lecture);<br />

Adaptive Optics <strong>for</strong> Extremely Large Telescopes II<br />

(AO4ELT2), Victoria, BC, Canada, 25. – 30. Sep.<br />

(Poster); European Planetary Science Congress and<br />

the Division <strong>for</strong> Planetary Sciences of the American<br />

Astronomical Society (EPSC-DPS) Joint meeting,<br />

Nantes, France, 3. – 7. Oct. (Poster)<br />

Neil Crighton: “The Cosmic Odyssey of Baryons: accreting,<br />

outflowing and hiding” Conference, Marseille,<br />

France, 20. – 24. June (Poster)<br />

Elisabete da Cunha: 3D-HST meeting, Leiden, The<br />

Netherlands, 4. March (Lecture); 3D-HST meeting, Yale,<br />

US, 9. – 12. May (Lecture); “Multiwavelength Views of<br />

the ISM in High-Redshift Galaxies”, eSo Conference,<br />

Santiago, Chile, 27. – 30. June (Lecture); “The Spectral<br />

Energy Distribution of Galaxies”, IAU Symposium,<br />

Preston, UK, 5. – 9. Sep. (Lecture); 3D-HST meeting,<br />

Leiden, The Netherlands, 10. – 14. Oct. (Lecture); MPIA<br />

Conferences, Scientific, and Popular Talks 109<br />

Galaxies & Cosmology department retreat, Schloss<br />

Engers, 17. – 19. Oct. (Lecture); “Watching Galaxies<br />

Grow Up”, Ringberg Workshop, Ringberg Castle, 5. – 9.<br />

Dec.<br />

Roberto Decarli: Bridging electromagnetic astrophysics<br />

and cosmology with gravitational waves, Milano,<br />

Italy, 28. – 30. March (Lecture); Narrow line Seyfert 1.<br />

Galaxies and their place in the Universe, Milano, Italy,<br />

4. – 6. Apr. (Lecture); Pan-StarrS Consortium meeting,<br />

Cambridge, USA, 18. – 21. May; “Single and dual black<br />

holes in galaxies”, Ann Arbour, USA, 22. – 25. Aug.<br />

(Lecture)<br />

Karsten Dittrich: HGSFP Winter School, Obergurgl,<br />

Österreich, 16. – 20. Jan. (Poster); Plant Formation and<br />

Evolution, Göttingen, 14. – 16. Feb. (Poster); Saas Fee<br />

Advanced Course, Villars-sur-Ollon, Schweiz, 3. – 9.<br />

Apr.; Baroclinic Discs, Ringberg Castle, 14. – 18. June<br />

(Lecture); “Surveys & Simulation – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.; SPP Treffen, Mainz, 17. – 19.<br />

Oct. (Lecture)<br />

Markus Feldt: “Surveys & Simulation – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep. (Lecture)<br />

Wolfgang Gässler: arGoS consortium meeting, OAA,<br />

Florence, Italy, 22. – 23. March (Lecture); arGoS consortium<br />

meeting, LBTO, Tucson, USA, 11. – 12. Aug.<br />

(Lecture); arGoS meeting on Tip/Tilt sensor, MPIA,<br />

Heidelberg, 12. – 13. Sep.; arGoS software meeting,<br />

MPE, Garching, 14. – 16. Nov; arGoS software meeting,<br />

OAA, Florence, Italy, 12. – 14. Dec.<br />

Mario Gennaro: Stellar Clusters & Association – A RIA<br />

workshop on Gaia, Granada, Spain, May (Lecture)<br />

Bertrand Goldman: “Surveys & Simulation – The Real<br />

and the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep. (Poster, Lecture)<br />

Brent Groves: “DF-SPP: Physics of the Interstellar<br />

Medium”, Freising, 2. – 3. March (Poster); “herScheL<br />

and the Characteristics of Dust in Galaxies”, Lorentz<br />

Centre, Leiden, The Netherlands, 28. Feb. – 4. March<br />

(Lecture); “KinGfiSh Team meeting, IAP, Paris, France,<br />

3. – 5. July (Lecture); “IAU Symp. 284: The Spectral<br />

Energy Distribution of Galaxies”, UCLan, Preston, UK,<br />

5. – 9. Sep. (Lecture)<br />

Siddharth Hegde: “Extrasolar Planets: Towards<br />

Comparative Planetology beyond the Solar System”,<br />

483. Wilhelm and Else Heraeus Seminar, Bad Honnef,<br />

5. – 8. June; Characterizing Exoplanet – From Formation<br />

to Atmospheres”, 6 th Heidelberg Summer School “,<br />

Heidelberg, 1. – 5. Aug.; “Characterizing Extrasolar<br />

Planet – from Giant to Rocky Planets”, <strong>Annual</strong> Meeting<br />

of the AG, Heidelberg, 19. – 24. Sep. (Poster); “From<br />

the Early Universe to the Evolution of Life”, German-<br />

Japan Round Table Conference, Heidelberg, 1. – 3. Dec.<br />

(Poster); “Sao Paulo Advanced School of Astrobiology<br />

(SpaSa)”, Summer School, Sao Paulo, Brazil, 11. – 20.<br />

Dec. (Poster)


110 Conferences, Scientific, and Popular Talks<br />

Thomas Henning: “Surveys & Simulation – The Real<br />

and the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep. (Lecture); PS1. Consortium<br />

meeting, Harvard, USA, 16. – 20. May; hopS Consortium<br />

meeting, Rochester, USA, 18. May; diGit Consortium<br />

meeting, Pasadena, USA, 11. – 15. July<br />

Stefan Hippler: Gravity Consortium meeting, eSo<br />

Garching, 31. Mar. – 1. Apr.; metiS Team meeting: MPE<br />

Garching, 27. – 29. June; Ten years of VLTI: From First<br />

frinGes to Core Science, Conference, eSo Garching,<br />

24. – 27. Oct. (Poster)<br />

Jacqueline A. Hodge: German aLma Early Science<br />

Community Day, Bonn, 16. – 17. Feb.; Multiwavelength<br />

Views of the ISM in High-Redshift Galaxies, Santiago,<br />

Chile, 27. – 30. June (Lecture); Galaxy Mergers in an<br />

Evolving Universe, Hualien, Taiwan, 23. – 28. Oct.<br />

(Lecture)<br />

Rory Holmes: SPIE Optics + Photonics, San Diego, USA,<br />

12. – 14. Aug. (Poster)<br />

Annie Hughes: “MW<strong>2011</strong>. The Milky Way In The<br />

herScheL Era: Towards A Galaxy-Scale View Of The<br />

Star Formation Life-Cycle”, Rome, Italy, 19. – 23. Sep.<br />

(Lecture and Poster); “Formation and Development of<br />

Molecular Cloud – prospects <strong>for</strong> high resolution spectroscopy<br />

with CCAT”, Cologne, 5. – 7. Oct. (Poster)<br />

Cornelia Jäger: “Formation of GemS from interstellar silicate<br />

dust.” 2 nd <strong>Annual</strong> meeting of the SPP 1385, Mainz, 17. –<br />

19. Oct. (Lecture); “UV-VIS spectroscopy of astrophysically<br />

relevant PAHs”, 23 nd International Symposium on<br />

Polycyclic Aromatic Compounds (ISPAC23), Münster,<br />

September 4. – 8. Sep. (Poster)<br />

Klaus Jäger: Meeting of the Rat Deutscher Sternwarten<br />

(RDS), <strong>Max</strong>-<strong>Planck</strong>-Institut für Extraterrestrische Physik,<br />

Garching, 23. March, meeting of the LBT-associated company<br />

(LBTB), <strong>Max</strong>-<strong>Planck</strong>-Institut für Radioastronomie,<br />

Bonn, 12. Apr.; Naturejobs Career Expo, European<br />

Molecular Laboratory (EMBL), (Lecture), Advanced<br />

Training Centre, Heidelberg, 9. May; Meeting of the<br />

scientific council of the “International Summer Science<br />

School Heidelberg”, Palais Graimberg, Heidelberg, 26.<br />

May; Meeting of the Rat Deutscher Sternwarten (RDS),<br />

Heidelberg University, 19. Sep.; “Surveys & Simulation<br />

– The Real and the Virtual Universe”, <strong>Annual</strong> Meeting of<br />

the AG, Heidelberg, 19. – 24. Sep.; Meeting of the scientific<br />

council of the “International Summer Science School<br />

Heidelberg”, Palais Graimberg, Heidelberg, 13. Oct.; Visit<br />

of the German-Japan Round Table at the MPIA/HdA,<br />

Heidelberg, 1. Dec. (Lecture).<br />

Katharine G. Johnston: German aLma Early Science<br />

Community Day, Bonn, 16. – 17. Feb.; Formation and<br />

Development of Molecular Cloud – prospects <strong>for</strong> high<br />

resolution spectroscopy with CCAT, Cologne University,<br />

5. – 7. Oct.<br />

Jouni Kainulainen: The Milky Way in the herScheL Era,<br />

Rome, Italy, 19. – 23. Sep. (Lecture and Poster)<br />

Vesselina Kalinova: 1 st project meeting of caLifa survey,<br />

Almeria, Spain, Apr. (Lecture); Conference Galaxy evo-<br />

lution, Durham University, UK, July (Poster); Galaxy<br />

coffee, MPIA Heidelberg, Aug. (Lecture); Winter School<br />

of Astrophysics “Secular Evolution of Galaxies”, Puerto<br />

de La Cruz, Tenerife, Spain, 14. – 25. Nov. (Poster); 2 nd<br />

project meeting of caLifa survey, La Laguna, Tenerife,<br />

Spain, 29. Nov. – 2. Dec. (Lecture)<br />

Lisa Kaltenegger: Lecture Board of Trustees, 11. Oct.;<br />

EChO meeting, Paris, France, Apr.; metiS meeting, MPE,<br />

Garching, June; teSS meeting, MIT, Boston, USA, Oct.;<br />

GMT meeting, CfA, Boston, USA, Oct.<br />

Alexander Karim: annual coSmoS collaboration meeting,<br />

ETH Zürich, 17. June (Lecture); Public outreach splinter<br />

of the annual meeting of the AG, Heidelberg, 22. Sep.<br />

(Lecture); High redshift star <strong>for</strong>mation splinter of the annual<br />

meeting of the AG, Heidelberg, 21. Sep. (Lecture)<br />

Sarah Kendrew: Gravity science meeting, Paris, France,<br />

3. – 4. Jan; SciFoo conference, Googleplex, Mountain<br />

View, Cali<strong>for</strong>nia, USA, 12. – 14. Aug. (invitation-only);<br />

The multi-wavelength view of the Galactic Centre workshop,<br />

Heidelberg, 17. – 20. Oct.<br />

Ulrich Klaas: pacS ICC meeting #37, Garching, 8. – 10.<br />

Feb.<br />

Hubert Klahr: Transport Processes and Accretion in YSO’s,<br />

Ringberg Castle, 7. – 11. Feb. (Lecture)<br />

Rainer Köhler: “<strong>Astronomy</strong> with Long-Baseline Inter ferome<br />

try”, Socorro, New Mexico, USA, 28. – 31. March<br />

(Poster); “Surveys & Simulations – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep. (Poster); “Formation and<br />

Early Evolution of Very Low Mass Stars and Brown<br />

Dwarfs”, eSo Garching, 11. – 14. Oct. (Poster)<br />

Serge A. Krasnokutski: “Reactions of Si atoms and clusters<br />

in helium nanodroplets”, 482 nd Wilhelm and Else<br />

Heraeus Seminar: Helium Nanodroplet – Confinement<br />

<strong>for</strong> Cold Molecules and Cold Chemistry, Bad Honnef,<br />

30. May – 1. June (Poster)<br />

Oliver Krause: Sofia Community day, University Stuttgart,<br />

Feb.; Conference Exploring Strange New Worlds,<br />

Flagstaff, USA, May (Poster); Binary Pathways to type<br />

Ia Supernova explosions – IAU Symposium 281: Padua,<br />

Italy, June (Poster);<br />

The Third Subaru International Conference on Galactic<br />

Archaeology, Shuzenji, Japan, Nov. (Lecture)<br />

Natalia Kudryavtseva: Paris Gravity science team meeting,<br />

Paris, France, Feb. (Lecture); “Ten years of VLTI”,<br />

Garching Conference, Garchin, Oct. (Poster)<br />

Martin Kürster: Scientific Project Management, <strong>Max</strong> <strong>Planck</strong><br />

House Heidelberg, 14. Feb. (with M. Perryman)<br />

Ralf Launhardt: The Milky Way in the herScheL Era,<br />

Rome, Italy, 19. – 23. Sep. (Poster)<br />

Roger Lee: “Surveys & Simulation – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.<br />

Christian Leipski: New Horizons <strong>for</strong> High Redshift,<br />

Cambridge, UK, 25. – 29. July (Attendee); The Central<br />

Kiloparsec in Galactic Nuclei, Bad Honnef, 29. Aug. – 2.<br />

Sep. (Lecture)


Dietrich Lemke: “400 Jahre Sternwarten in Heidelberg<br />

und der Kurpfalz – Vom Universitätsgarten in der<br />

Plöck zum <strong>Max</strong>-<strong>Planck</strong>-Institut für Astronomie auf dem<br />

Königstuhl”, <strong>Annual</strong> Meeting of the Astronomische<br />

Gesellschaft, Workshop Astronomie-Geschichte,<br />

Mannheim, 19. Sep. (Lecture)<br />

Rainer Lenzen: metiS Calibration, Universität Leuven,<br />

Belgium, 21. Jan.; Gravity progress meeting, MPE<br />

Garching, 31. May – 1. Apr.; metiS progress meeting,<br />

MPE Garching, 28. – 29. June; Carmenes Preliminary<br />

Design Review, CSIC headquarters, Madrid, Spain,<br />

18. – 21. July; carmeneS FDR Preparation meeting, TH<br />

Zürich, Schweiz, 4. – 7. Oct.; Conference on Polarimetry<br />

with the E-ELT, Universität Utrecht, The Netherlands,<br />

29. – 30. Nov; carmeneS meeting, IAA Granada, Spain,<br />

12. – 14. Dec.<br />

Hendrik Linz: atLaSGaL Consortium meeting, MPIfR<br />

Bonn, 18. May; herScheL/pacS ICC meeting, MPE<br />

Garching, 1. May – 1. June; “Resolving the Future<br />

of <strong>Astronomy</strong> with Long-Baseline Interferometry”,<br />

Magdalena Ridge Observatory Interferometry Workshop<br />

New Mexico Tech, Fidel Center, Socorro, New Mexico,<br />

USA, 28. – 31. March (Poster); Conference MW<strong>2011</strong>:<br />

The Milky Way in the herScheL Era “Angelicum”<br />

Congress Centre, Rome, Italy, 19. – 23. Sep. (Lecture);<br />

Retreat of the PSF Department of MPIA, Boppard, 17. –<br />

19. Oct.; herScheL/pacS ICC meeting, IFSI Rome,<br />

Italy, 17. – 18. Nov.<br />

Nils Lippok: The Milky Way in the herScheL Era,<br />

Rome, Italy, 19. – 23. Sep. (Poster); Formation and Early<br />

Evolution of Very Low Mass Stars and Brown Dwarfs,<br />

eSo Garching, 11. – 14. Nov. (Poster)<br />

Mariya Lyubenova: caLifa Busy Week 2, IAC, La Laguna,<br />

Tenerife, Spain, 29. Nov. – 2. Dec. (Lecture)<br />

Andrea V. Macciò: Galaxy Formation, Durham, UK, 18. –<br />

22. July (Poster)<br />

Luigi Mancini: XV International Conference on Gravitational<br />

Microlensing, University of Salerno, Salerno, Italy,<br />

20. – 22. Jan. (Lecture); “Surveys & Simulation – The<br />

Real and the Virtual Universe”, <strong>Annual</strong> Meeting of the<br />

AG, Heidelberg, 19. – 23. Sep.; Exoplanetary Science<br />

with harpS-N, Padova, Italy, 28. – 29. Nov. (Lecture)<br />

Nicholas Martin: PAndAS Collaboration meeting, Toronto,<br />

Canada, 28. – 30. March (Lecture); “Assembling<br />

the Puzzle of the Milky Way”, Le Grand Bornand,<br />

France, 18. – 22. Apr. (Lecture); Pan-StarrS 1. Science<br />

Consortium meeting, Boston, USA, 18. – 20. May<br />

(Lecture); American Astronomical Society meeting,<br />

Boston, USA, 23. – 27. May 23.-27. (Lecture); Pan-<br />

StarrS 1. Science Consortium – Key Project 5. Summer<br />

meeting, Heidelberg, 4. – 5. July (Lecture); “Galaxy<br />

Formation”, Durham, UK, 18. – 22. July (Lecture);<br />

The Third Subaru International Conference, Shuzenji,<br />

Japan, 1. – 4. Nov.<br />

Klaus Meisenheimer: “Surveys & Simulation – The Real<br />

and the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.<br />

Conferences, Scientific, and Popular Talks 111<br />

Yamila Miguel: “Wilhelm and Else Heraeus Seminar<br />

Extrasolar Planets: Towards Comparative Planetology<br />

beyond the Solar System”, Bad Honnef, 5. – 8. June<br />

(Poster); “WG3. Nitrogen in planetary systems: The<br />

Early Evolution of the Atmospheres of Terrestrial<br />

Planets”, <strong>Institute</strong> of Space Sciences (CSIC-IEEC),<br />

Barcelona, Spain, 21. – 23. Sep. (Lecture); “German-<br />

Japan Round Table: From the Early Universe to the<br />

Evolution of Life”, Heidelberg University, 1. – 3.<br />

Dec. (Poster); “SpaSa: SaoPaulo Advanced School of<br />

Astrobiology”, Universidade de Sao Paulo. Instituto de<br />

Astronomia, Geofisica e Ciencias Atmosfericas:, Sao<br />

Paulo, Brasilien, 11. – 20. Dec. (Poster)<br />

Maren Mohler: Planet <strong>for</strong>mation and evolution, Göttingen,<br />

14. – 16. Feb. (Poster); 14 th eSpri science team meeting,<br />

Heidelberg, 26. – 27. May; “Extrasolar Planet –<br />

Towards comparative planetology beyond the Solar<br />

System”, Wilhelm and Else Heraeus Seminar, Bad<br />

Honnef, 6. – 8. June (Poster); “Characterizing extrasolar<br />

planet atmospheres”, Summerschool, Heidelberg, 1. – 5.<br />

Aug.; “Surveys & Simulation – The Real and the Virtual<br />

Universe”, <strong>Annual</strong> Meeting of the AG, Heidelberg, 19. –<br />

23. Sep.; PSF retreat, 17. – 19. Oct. (Boppard, Lecture);<br />

eSpri science team meeting, Garching, 7. Nov.<br />

Christoph Mordasini: EChO workshop, Paris, France, 24.<br />

March (Lecture); Extreme Solar Systems II conference,<br />

Jackson Hole, USA, 16. Sep. (Lecture); German-Japan<br />

Round Table meeting, Heidelberg, 5. Dec. (Lecture)<br />

Helen Morrison: “Planet Formation and Evolution”<br />

Göttingen, 14. – 16. Feb. (Poster)<br />

André Müller: MPIA PSF group retreat, Boppard am Rhein,<br />

17. – 19. Oct. (Lecture); MPIA PSF-Seminar, 27. July<br />

(Lecture)<br />

Reinhard Mundt: 217 th AAS Meetin Seattle, WA, 9. – 13.<br />

Jan. (Poster); “carmeneS technical meeting on NIR<br />

channel interfaces”, MPIA Heidelberg, 9. – 10. Feb.;<br />

carmeneS Preliminary Design Review, Madrid, Spain,<br />

18. – 21. July; 1 st carmeneS technical meeting <strong>for</strong><br />

FDR preparation, LSW, Heidelberg, 4. – 7. Oct.; First<br />

carmeneS Science meeting, Göttingen, 5. – 7. Oct.<br />

Markus Nielbock: herScheL pacS ICC meeting, MPE,<br />

Garching, 8. – 10. Feb. (Lecture); MPG Science<br />

Management Seminar, NH Hotel, Hamburg, 11. March,<br />

herScheL Calibration Steering Group meeting, eStec,<br />

Noordwijk, The Netherlands, 12. Apr. (Lecture);<br />

herScheL: In Orbit Per<strong>for</strong>mance Review, eSoc,<br />

Darmstadt, 24. May; herScheL pacS ICC meeting,<br />

MPE, Garching, 31. May – 1. June (Lecture); herScheL<br />

Calibration Steering Group meeting, MPE, Garching,<br />

9. Sep. (Lecture); “Surveys & Simulation – The Real<br />

and the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.; herScheL pacS Photometer<br />

Calibration Colocation, MPIA Heidelberg, 6. Oct.; MPIA<br />

PSF Group Retreat, Boppard, 17. – 19. Oct.; herScheL<br />

pacS ICC meeting, IFSI, Rome/Frascati, Italy, 17. – 18.<br />

Nov. (Lecture); herScheL Pointing Working Group<br />

meeting, eSoc, Darmstadt, 29. – 30. Nov.


112 Conferences, Scientific, and Popular Talks<br />

Sladjana Nikolic: Cosmic rays and their interstellar medium<br />

environment, Montpellier, France, 26. Jun. – 1.<br />

July (Poster); 16 th National conference of astronomers<br />

of Serbia, Belgrade, Serbia, 10. – 12. Oct. (Lecture);<br />

Summer school: High energy astrophysics, Dublin,<br />

Ireland, 3. – 15. July<br />

Johan Olofsson: “Planet Formation and Evolution”,<br />

Göttingen, Feb. (Lecture)<br />

Alexey Pavlov: Sphere Data Reduction and Handling<br />

meeting, IWH (Internationales Wissenschafts<strong>for</strong>um<br />

Heidelberg), Heidelberg, 19. – 21. Jan, (Organisator,<br />

Lecture); Sphere Science-DRH meeting, ipaG, Grenoble,<br />

France, 12. – 14. Oct. (Lecture)<br />

Diethard Peter: AO4ELT2, Victoria, Canada, 25. – 30. Sep.<br />

(Poster)<br />

Oliver Porth: Understanding Relativistic Jets, Krakow,<br />

Poland, 23. – 26. May (Poster); “The Central Kiloparsec<br />

in Galactic Nuclei (AHAR11)”, Bad Honnef, 29. Aug. –<br />

2. Sep. (Lecture)<br />

Axel M. Quetz: “Surveys & Simulation – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.<br />

Natalie Raettig: Planet Formation and Evolution, Göttingen,<br />

14. – 16. Feb. (Lecture); Ringberg Workshop on<br />

“Geophysical and Astrophysical Fluid Flow: Baraclinic<br />

Instability and Protoplanetary Accretion Disks”,<br />

Ringberg Castle, 14. – 18. June (Lecture)<br />

Sarah Ragan: Building on New Worlds, New Horizons,<br />

Santa Fe, New Mexico, USA, 7. – 10. March (Lecture);<br />

aLma community days, eSo Garching, 6. – 7. Apr.;<br />

MW<strong>2011</strong>: The Milky Way in the herScheL Era,<br />

Rome, Italy, 19. – 23. Sep. (Poster); “Formation and<br />

Development of Molecular Cloud – prospects <strong>for</strong> high<br />

resolution spectroscopy with CCAT”, Cologne, 5. – 7.<br />

Oct. (Poster)<br />

Hans-Walter Rix: eucLid Consortium meeting, eStec<br />

Amsterdam, The Netherlands, 27. May; Great meeting,<br />

IAP Paris, France, 10. June; Galaxy Formation<br />

Conference, Durham, UK, 18. – 20. July; “Surveys &<br />

Simulation – The Real and the Virtual Universe”, <strong>Annual</strong><br />

Meeting of the AG, Heidelberg, 19. – 23. Sep.; nirSpec<br />

Science meeting, Madrid, Spain, 4. – 5. Oct.; phat meeting,<br />

Seattle, USA, 9. – 12. Nov.<br />

Boyke Rochau: Stellar Clusters & Associations: A RIA<br />

Workshop on Gaia, Granada, Spain, 23. – 27. May<br />

(Lecture)<br />

Ralf-Rainer Rohloff: Annular meeting of the American<br />

Society <strong>for</strong> Precision Engineering, Denver, USA, 13. –<br />

18. Nov.<br />

Gaël Rouillé: “Spectroscopy of PAHs with carbon side<br />

chains”, IAU Symposium 280: The Molecular Universe,<br />

Toledo, Spain, 30. May – 3. June; “A search <strong>for</strong> PAHs<br />

in the ISM: High-resolution UV observations confronted<br />

with laboratory spectra”, IAU Symposium 280: The<br />

Molecular Universe, Toledo, Spain, 30. May – 3. June<br />

(Poster) (together with R. Gredel, Y. Carpentier, M.<br />

Steglich, F. Huisken, Th. Henning)<br />

Karin Sandstrom: “From Dust to Galaxies” Paris, France,<br />

27. Jun. – 2. July (Lecture); “herScheL and the<br />

Characteristics of Dust in Galaxies”, Leiden, The<br />

Netherlands, 28. Feb. – 4. March (Lecture); 217 th<br />

American Astronomical Society meeting, Seattle, USA,<br />

9. – 13. Jan. (Lecture)<br />

Silvia Scheithauer: JWST miri European Consortium<br />

meeting, Leiden, The Netherlands, 6. – 8. Sep.; “Surveys<br />

& Simulation – The Real and the Virtual Universe”,<br />

<strong>Annual</strong> Meeting of the AG, Heidelberg, 19. – 23. Sep.<br />

Eva Schinnerer: 217 th meeting of the American<br />

Astronomical Society, Seattle, USA, 9. – 13. Jan.<br />

(Poster); “Extending the Limits of Astrophysical<br />

Spectroscopy”, aLma Workshop, Victoria, Canada,<br />

15. – 18. Jan; coSmoS Team meeting, ETH/Zürich,<br />

Schweiz, 13. – 17. June (Lecture); KinGfiSh Team<br />

meeting, IAP, Paris, France, 4. – 5. July (Lecture); LN<br />

Consortium meeting, MPIA, Heidelberg, 20. – 21. Oct.<br />

(Lecture)<br />

Kasper Borello Schmidt: 3D-HST meeting, Leiden, The<br />

Netherlands, 3. – 7. March (Lecture); 3D-HST meeting,<br />

New Haven, USA, 9. – 12. May (Lecture); “How<br />

a Space Project Works”, eLixir School, Nordwijk,<br />

The Netherlands, 18. – 21. May; “Galaxy Formation”,<br />

Durham, UK, 18. – 22. July (Poster); eLixir annual<br />

meeting, Madrid, Spain, 5. – 6. Oct. (Lecture); 3D-HST<br />

meeting, Leiden, The Netherlands, 10. – 14. Oct.<br />

(Lecture)<br />

Kirsten Schnülle: ahar (<strong>Astronomy</strong> at high angular<br />

resolution) conference, Bad Honnef, 29. Aug. – 2. Sep.<br />

(Poster)<br />

Andreas Schruba: 217 th AAS meeting, Seattle, USA,<br />

9. – 13. Jan. (Dissertationsvortrag); SPP Workshop of<br />

DFG Priority Programme 1177, Bad Honnef, 7. – 9.<br />

July (Lecture); aLma Community Day, eSo, Garching,<br />

6. – 7. Apr.<br />

Tim Schulze-Hartung: eSpri Science Team meeting,<br />

Heidelberg, 26. – 27. May; eSpri Science Team meeting,<br />

Garching, 7. Nov.<br />

Dmitry A. Semenov: German-Japanese meeting,<br />

Uni Heidelberg, 1. – 3. Dec. (Poster); “Isotopes in<br />

Astrochemistry”, Lorentz workshop, Leiden, The<br />

Netherlands, Dec. 5. – 9. Dec. (Chair)<br />

Aurora Sicilia: “Ringberg Conference on Transport<br />

Processes and Accretion in YSO”, Ringberg Castle,<br />

Feb. (Lecture)<br />

Robert Singh: “Surveys & Simulation – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.; caLifa 2 nd Busy Week, IAC<br />

at La Laguna, Tenerife, 29. Nov. – 2. Dec. (Lecture)<br />

Kester Smith: “Astrostatistics and data mining in large<br />

astronomical surveys”, La Palma, Spain, 30. May – 3.<br />

June (Lecture)<br />

Mathias Steglich: “Electronic spectroscopy of neutral and<br />

ionized PAHs in inert gas matrices?”, International<br />

Conference on Interstellar Dust, Molecules and<br />

Chemistry, Pune, India, 22. – 25. Nov. (Lecture)


Greg Stinson: “Surveys & Simulation – The Real and<br />

the Virtual Universe”, <strong>Annual</strong> Meeting of the AG,<br />

Heidelberg, 19. – 23. Sep.; “Watching Galaxies Grow<br />

Up”, Ringberg Castle, 4. – 9. Dec.<br />

Amelia Stutz: AAS, Seattle, WA, 9. – 13. Jan. (Lecture);<br />

ISM-SPP, Freising, 2. – 3. May (Poster); hopS meeting,<br />

Rochester, USA, 16. – 20. May (Lecture); The Milky<br />

Way in the herScheL Era, Rome, Italy, 19. – 23. Sep.<br />

(Poster); PSF workshop, 17. – 19. Oct.<br />

Paraskevi Tsalmantza: “8 th Gaia CU8. meeting”, Liege,<br />

Belgium, 4. – 5. May (Lecture); “Joint Workshop &<br />

Summer School on Astrostatistics and Data Mining of<br />

Large Astronomical Databases”, La Palma, Canary islands,<br />

Spain, 30. May – 3. June (Lecture)<br />

Ana Uribe: Advances in Computational Astrophysics,<br />

Cefalu, Italy, June (Poster)<br />

Roy van Boekel: EChO community meeting, Meudon,<br />

France, 23. – 24. March (Lecture)<br />

Glenn van de Ven: “1 st caLifa Busy Week”, Almeria,<br />

Spain, 11. – 15. Apr. (Lecture); “Expanding the<br />

Universe”, Tartu, Estland, 27. – 29. Apr.; “Surveys<br />

& Simulation – The Real and the Virtual Universe”,<br />

<strong>Annual</strong> Meeting of the AG, Heidelberg, 19. – 23. Sep.;<br />

MPIA Galaxy & Cosmology Retreat, Neuwied, 17. –<br />

19. Oct. (Lecture)<br />

Tessel van der Laan: KinGfiSh team meeting, Paris, France,<br />

4. – 5. July, AHAR<strong>2011</strong>, Bad Honnef, 28. Aug. – 2. Sep.<br />

(Lecture); IMPRS retreat, Köllbachhaus Simmersfeld,<br />

23. – 26. March (Lecture)<br />

Arjen van der Wel: “Galaxy Formation”, Durham, UK,<br />

18. – 22. July (Lecture); “Watching Galaxies Grow Up”,<br />

Ringberg Castle, 4. – 9. Dec. (Lecture)<br />

Bram Venemans: VST atLaS Science Kick-off meeting,<br />

Durham, UK 5. Dec. (Lecture)<br />

Fabian Walter: aLma Regional Center meeting, Bonn<br />

University, Bonn, Feb.; Pan-StarrS 1. Collaboration<br />

meeting, CfA Cambridge, USA May; eSo aLma meeting,<br />

Santiago, Chile, June (Lecture)<br />

Laura Watkins: “Assembling the Puzzle of the Milky Way”,<br />

Le Grand-Bornand, France, 17. – 22. Apr. (Lecture);<br />

“Surveys & Simulation – The Real and the Virtual<br />

Universe”, <strong>Annual</strong> Meeting of the AG, Heidelberg,<br />

19. – 23. Sep.<br />

Yujin Yang: “The Cosmic Odyssey of Baryons: accreting,<br />

outflowing and hiding”, Conference, Marseille, France,<br />

20. – 24. June (Lecture); Conference “Young and Bright:<br />

Understanding High Redshift Structures”, Potsdam,<br />

12. – 16. Sep. (Lecture)<br />

Miaomiao Zhang: “Stellar Clusters and Associations-A RIA<br />

Workshop on Gaia”, The Congress Centre of Granada,<br />

Spain, 23. – 27. May (Poster)<br />

Xianyu Zhang: “Optimal Natural Guide Star Acquisition <strong>for</strong><br />

the Linc-nirvana MCAO system”, Victoria, Canada,<br />

25. – 30. Sep.;<br />

Svitlana Zhukovska: “From Dust to Galaxies”, Paris,<br />

France, 27. Jun. – 1. July (Poster); PSF workshop, MPIA<br />

Heidelberg, 17. – 19. Oct. (Lecture)<br />

Invited Talks, Colloquia<br />

Conferences, Scientific, and Popular Talks 113<br />

Coryn A. L. Bailer-Jones: “Unravelling the impact of<br />

astronomical phenomena on the Earth”, <strong>Institute</strong> <strong>for</strong><br />

Astrophysics, Universität Göttingen, Dec. (Colloquium)<br />

Myriam Benisty: Institut de Planetologie et d’Astrophysique<br />

de Grenoble, Grenoble, France, Feb. (Colloquium);<br />

Sterrenkundig Instituut “Anton Pannekoek”, Amsterdam,<br />

The Netherlands, Nov. (Colloquium)<br />

Henrik Beuther: University Calgary, Canada, Oct.<br />

(Colloquium); Hertzberg <strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong>,<br />

Victoria, Canada, Oct. (Colloquium)<br />

Arjan Bik: Seminar at the massive star group meeting,<br />

University of Amsterdam, Amsterdam, The Netherlands,<br />

11. March<br />

Tilman Birnstiel: “Baroclinic Disks”, Ringberg Castle,<br />

14. – 17. June (Lecture)<br />

Paul Boley: “Radiative transfer and spectra of objects from<br />

the interstellar medium,” Kourovka, Russia, 4. – 5. Feb.<br />

(Lecture)<br />

Mickaël Bonnefoy: “The Beta Pictoris system: a disk, a<br />

planet, and much more”, MPIA Heidelberg, 20. May<br />

(Colloquium); “NIR spectra of young low mass companions:<br />

from observations to theory”, MPIA Heidelberg,<br />

20. Dec. (Colloquium), “The Beta Pictoris system: a<br />

disk, a planet, and much more”, IFA, Honolulu, Hawaii,<br />

21. March (Colloquium)<br />

Mauricio Cisternas: MPIA & LSW Hauskolloquium, MPIA<br />

Heidelberg, 18. Feb. (Colloquium)<br />

Albert Conrad: The <strong>Astronomy</strong> Department of the University<br />

of Cali<strong>for</strong>nia at Berkeley, 20. Aug. (Colloquium)<br />

Elisabete da Cunha: “Star <strong>for</strong>mation in galaxy clusters”,<br />

Workshop, Nice, France, 6. – 8. June (Lecture)<br />

Niall Deacon: “A solar neighbourhood proper motion survey<br />

with PS1+2MASS”, eSo Seminar, Formation and<br />

Early Evolution of Very Low Mass Stars and Brown<br />

Dwarfs, Garching, 12. Oct. (Lecture)<br />

Roberto Decarli: “Single and dual black holes in galaxies”,<br />

Ann Arbour, USA, 22. – 25. Aug. (Lecture)<br />

Kees Dullemond: Ringberg meeting on accretion,<br />

Ringberg Castle, 7. – 9. Feb. (Lecture); Meeting on<br />

planet <strong>for</strong>mation, Goettingen, 14. – 16. Feb. (Lecture);<br />

Exoplanet Meeting, Bad Honnef, 5. – 8. June (Lecture);<br />

Joint Colloquium, Leiden Observatory, Leiden, The<br />

Netherlands, 27. Jan. (Colloquium); Colloquium, Lund<br />

Observatory, Lund, Sweden, 31. March (Colloquium);<br />

Colloquium, University of Kiel, 6. July (Colloquium)<br />

Christian Fendt: “MHD simulations of jet <strong>for</strong>mation – relativistic<br />

jets and radiative jets”, Conference: “The central<br />

kiloparsec in galactic nuclei”, Bad Honnef, 29. Aug. – 2.<br />

Sep. (Lecture)<br />

Wolfgang Gässler: 112. Jahrestagung Deutsche Gesellschaft<br />

für Angewandte Optik, TU Ilmenau, 14. – 18. June<br />

(Lecture)<br />

Dimitrios A. Gouliermis: Colloquium at the Stellar<br />

Population Journal Club, STScI, Baltimore MD, USA,<br />

22. July (Colloquium)


114 Conferences, Scientific, and Popular Talks<br />

Roland Gredel: KIS Freiburg, 8. Dec. (Colloquium)<br />

Brent Groves: “From Dust to Galaxies”, IAP, Paris France,<br />

27. June – 1. July<br />

Thomas Henning: Transport Processes and Accretion<br />

in YSOs, Ringberg Castle, 7. – 11. Feb. (Lecture);<br />

herScheL and the Characteristics of Dust in Galaxies,<br />

Workshop, Leiden, The Netherlands, 28. Feb. – 4. March<br />

(Lecture); Star Formation across Space and Time:<br />

Frontier Science with the LBT and other Large Facilities,<br />

Tucson, USA, 31. March – 2. Apr. (Lecture); Molecular<br />

Networks: Connecting the Universe, Amsterdam, The<br />

Netherlands, 18. – 20. Apr. (Lecture); Frontier Science<br />

Opportunities with the James Webb Space Telescope,<br />

Baltimore, USA, 6. – 8. June (Lecture); “From Dust<br />

to Galaxies”, IAP-SAP Colloquium, Paris, France,<br />

24. June – 1. July (Lecture); “Star Formation across<br />

the Universe”, Summer School, Alpbach, Österreich,<br />

19. – 23. Jul1 (Invited Talk and Discussions); European<br />

Conference on Laboratory Astrophysics, Paris, France,<br />

26. – 30. Sep. (Lecture); International Conference on<br />

Interstellar Dust, Molecules, and Chemistry, Pune, India,<br />

22. – 25. Nov. (Lecture); Formation of Massive Stars,<br />

University of Vienna, Austria, 27. June (Colloquium);<br />

From Protoplanetary Disks to Extrasolar Planets,<br />

Littrow Lecture, Austrian Academy of Sciences, Wien,<br />

Austria, 12. Oct. 2012. (Colloquium); Protoplanetary<br />

Disks: From Dust to Gas, Berkeley, USA, 27. Oct.<br />

(Colloquium)<br />

Friedrich Huisken: “Optical properties of silicon-based<br />

nanomaterials: Ensemble and single particle spectroscopy<br />

of silicon nanocrystals and silicon oxide nanoparticles”,<br />

Korean <strong>Institute</strong> of Energy Research,<br />

University of Daejeon, South Korea, 28. March<br />

(Seminar); “Photoluminescence studies on size-selected<br />

silicon nanocrystals”, School of Materials Science and<br />

Engineering, University of Ulsan, South Korea, 29.<br />

March (Seminar); “Laboratory Experiments <strong>for</strong> the<br />

Interpretation of Astrophysical Phenomena”, Seminar<br />

des Sonder<strong>for</strong>schungsbereichs 956, I. Physikalisches<br />

Institut der Universität zu Köln, 7. Nov. (Lecture)<br />

Klaus Jäger: “Astrophysik mit dem hubbLe-Welt raumteleskop”,<br />

Physikalisches Kolloquium der Universität<br />

Mannheim, 14. Apr.; “<strong>Astronomy</strong>/Physics meets<br />

Business – Job Careers <strong>for</strong> Astronomers and Physicists”,<br />

Naturejobs Career Expo, European Molecular Laboratory<br />

(EMBL), Advanced Training Centre, Heidelberg, 9. May<br />

Knud Jahnke: “Galaxy Mergers in an Evolving Universe”,<br />

Hualien, Taiwan, 23. – 28. Oct. (Lecture); “Watching<br />

Galaxies Grow Up”, Ringberg Castle, 4. – 9. Dec.<br />

(Lecture); „Scaling relations between galaxies and<br />

their central black holes: Facts and fiction”, Univ.<br />

Southampton, USA, 4. May (Colloquium)<br />

Lisa Kaltenegger: UMass Amherst, USA, Jan.; University<br />

of Bern, CH, March; “Spectral evolution of an Earthlike<br />

planet, Search <strong>for</strong> signs of life, Super-Earths and<br />

Life”, MPI für Radioastronomie, Bonn, Apr. (Lecture);<br />

Weltrauminstitute Graz, Österreich, Apr. (Lecture)<br />

Alexander Karim: iram visitors Colloquium, iram,<br />

Grenoble, 8. March (Lecture); Ringberg workshop<br />

“Watching galaxies grow up”, Ringberg Castle, 5. Dec.<br />

(Lecture)<br />

Hubert Klahr: “Role of turbulence in the <strong>for</strong>mation of<br />

planets”, Turbulent Mixing and Beyond, Trieste, Italy,<br />

21. – 28. Aug. (Review-Lecture); “The Nature and Role<br />

of Turbulence in Planet Formation: Magnetorotational<br />

and Baroclinic Instability”, KITP Workshop: “The<br />

Nature of Turbulence”, Santa Barbara, 7. Feb. – 3. June;<br />

“Rayleigh Benard Convection in Rotating Shear Flows”,<br />

KITP Workshop: “The Nature of Turbulence”, Santa<br />

Barbara, 7. Feb. – 3. June; “From thermal Convection<br />

in Protoplanetary Accretion Disks to Baroclinic<br />

Instability”, Ringberg Workshop on Geophysical and<br />

Astrophysical Fluid flow: Baroclinic Instability and<br />

Protoplanetary Accretion Disks, Ringberg Castle, 14. –<br />

18. June (Review-Lecture); “The Role of Turbulence in<br />

Planet Formation”, Colloquium, Univ. Braunschweig,<br />

10. Jan. (Colloquium); “The Role of Turbulence in<br />

Planet Formation”, Colloquium, Univ. Zürich, Schweiz,<br />

14. Apr. (Colloquium); “Gravoturbulent Planetesimal<br />

Formation”, Colloquium at the National Astronomical<br />

Observatories of China (NAOC), Bejing, China, 30.<br />

Nov. (Colloquium); “The Role of Turbulence in Planet<br />

Formation – From colliding boulders to migrating<br />

planets”, Colloquium, KIAA <strong>Institute</strong>, Bejing Univ.<br />

Bejing, China, 1. Dec. (Colloquium); “Planet Formation<br />

from Dust to Planetesimals” Colloquium, <strong>Institute</strong><br />

of Process Engineering (IPE), Chinese Academy of<br />

Sciences, Peking, China, 2. Dec. (Colloquium)<br />

Oliver Krause: “Exoplanet Characterization Observatory –<br />

Instrumental concept”, Observatoire de Paris-Meudon,<br />

March (Lecture); “Light echoes of Core Collapse<br />

Supernovae”, Stockholm University, August (Lecture);<br />

“The Exoplanet Characterization Observatory EChO”,<br />

Department of <strong>Astronomy</strong>, Universität Göttingen, April<br />

(Colloquium)<br />

Dietrich Lemke: “Infrarot-Weltraum-Teleskope – Ent deckun<br />

gen im kalten Kosmos”, Jahrestagung der Deutschen<br />

Ge sellschaft für Angewandte Optik, Ilmenau, 17. June<br />

(Lecture)<br />

Hua-Bai Li: Star Formation through Spectroimaging at<br />

High Angular Resolution, ASIAA, Taipei, Taiwan, 20. –<br />

24. June (Lecture)<br />

Hendrik Linz: “NRAO Socorro Colloquium”, NRAO<br />

Socorro, New Mexico, USA, 4. March (Colloquium)<br />

Andrea V. Macciò: “Dark matter distribution in galaxies”<br />

Tevpa conference (Lecture); “DE simulations with<br />

baryons” (Lecture); The dark Universe Conference;<br />

Physics Colloquium, Lancashire University, UK,<br />

3. Apr. (Colloquium); <strong>Astronomy</strong> Colloquium, Trieste<br />

Observatory, Trieste, Italy, 24. May (Colloquium);<br />

TeV particle astrophysics conference, Stockholm,<br />

Sweden, 1. – 5. Aug. (Review-Lecture); The Dark<br />

Universe Conference, Heidelberg, 4. – 7. Oct. (Review-<br />

Lecture)


Luigi Mancini: “The search <strong>for</strong> extrasolar planets: successes,<br />

limits and future prospects”, ASI Science Data<br />

Center, Frascati, Rome, Italy, 20. Dec. (Colloquium)<br />

Nicholas Martin: Department of <strong>Astronomy</strong>, Universidad<br />

de Chile, Santiago, Chile, 1. Sep. (Colloquium); ETH,<br />

<strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong>, Zürich, Schweiz, 11. Oct.<br />

(Colloquium)<br />

Klaus Meisenheimer: “The Impact of the VLTI on Galactic<br />

Nuclei and supermassive Black Hole studies”, Workshop<br />

of the AGN/Gal. Center working group of the European<br />

Interferometry Initiative. Lissabon, Portugal 28. – 30.<br />

Nov. (Lecture)<br />

Christoph Mordasini: Alexander von Humboldt Sino-<br />

German frontiers of science–symposium, Berlin, 21.<br />

Apr. (Lecture); Strange new worlds, naSa conference,<br />

Jackson Hole, USA, 16. Sep. (Lecture); Pas de deux<br />

Gaia workshop, Paris, 11. Oct. (Lecture)<br />

Johan Olofsson: “Planet Formation in Action”, ipaG institute,<br />

Grenoble, France, Apr. (Colloqium)<br />

Natalie Raettig: “How Can the Baroclnic Instability Help<br />

Planet Formation”, Weekly seminar of the <strong>Astronomy</strong><br />

Department at the American Museum of Natural History,<br />

New York, USA, 15. March (Lecture)<br />

Sarah Ragan: “herScheL and high-resolution sub-<br />

millimeter studies of the early phases of cluster <strong>for</strong>mation”,<br />

iram, Grenoble, France, 22. Feb. (Gäste-<br />

Colloquium)<br />

Hans-Walter Rix: Colloquium, Innsbruck, Austria, 1. Feb.;<br />

eSo Seminar, Munich, Sep.; Colloquium, IAP Paris,<br />

France, 9. Dec.<br />

Gaël Rouillé: “Laboratory astrophysics in Jena: From<br />

spectroscopic characterization of large molecules<br />

and grains to low temperature chemistry”, NWO<br />

Astrochemistry Workshop: Molecular Networks<br />

Connecting the Universe, Amsterdam, The Netherlands,<br />

18. – 20. Apr. (Lecture)<br />

Karin Sandstrom: eSo Santiago, 9. Sep. (Colloquium)<br />

Eva Schinnerer: Star Formation in Galaxies: The herScheL<br />

Era, Ringberg Castle, 19. – 24. June (Lecture); MW<br />

– The Milky Way in the herScheL Era: Towards a<br />

Galaxy-Scale View of the Star Formation Life-Cycle,<br />

Rome, Italy, 18. – 23. Sep (Lecture); CEA/Saclay,<br />

Saclay, France, 14. Apr. (Colloquium)<br />

Kasper Borello Schmidt: “Watching Galaxies Grow Up”,<br />

Ringberg Castle, 5. – 9. Dec. (Lecture)<br />

Dmitry A. Semenov: “Molecular Universe”, IAU Symposium<br />

280, Toledo, Spain, 29. May – 3. June (Lecture); Vienna<br />

Observatory, Vienna, Austria, 28. Nov. (Kolloqium);<br />

“The first 10 million years of the Solar System – a<br />

Planetary Materials Approach”, 2. Colloquium of the SPP<br />

1385, Mainz, 17. – 18. Oct. (Lecture)<br />

Jürgen Steinacker: “The 3D barrier in star <strong>for</strong>mation”,<br />

Colloqium <strong>for</strong> Physics and <strong>Astronomy</strong>, University of<br />

Ghent, Belgium, 26. Jan; “The Coreshine-Effect”, ipaG,<br />

Grenoble, France, 4. Nov. (Lecture)<br />

Jochen Tackenberg: NRC Herzberg <strong>Institute</strong> <strong>for</strong><br />

Astrophysics, Victoria, Canada, 20. Oct. (Colloquium)<br />

Conferences, Scientific, and Popular Talks 115<br />

Roy van Boekel: “Surveys & Simulations – The Real and the<br />

Virtual Universe” <strong>Annual</strong> Meeting of the Astronomische<br />

Gesellschaft, Heidelberg, 19. – 24. Sep.; (Lecture)<br />

Remco van den Bosch: “Single and double black holes<br />

in galaxies”, Conference, Ann Arbor, Michigan, USA,<br />

22. – 25. Aug<br />

Fabian Walter: Ringberg Workshop on Galaxy Formation,<br />

Ringberg Castle, April (Lecture); Colloquium Leiden,<br />

The Netherlands, June (Lecture); Ringberg Workshop<br />

on Star Formation in Galaxies: The herScheL Era,<br />

Ringberg Castle, June (Lecture); CCAT Meeting,<br />

Cologne University, Oct. (Lecture)<br />

Laura Watkins: Teneriffa, Spain, 22. July (Seminar)<br />

Yujin Yang: “Theoretical Astrophysics Center Seminars”,<br />

University of Cali<strong>for</strong>nia Berkeley, USA, 7. Nov.<br />

(Seminar)<br />

Xianyu Zhang: “First laboratory results with the Lincnirvana<br />

high layer wavefront Sensor”, Linc-nirvana<br />

MPIA Weekly Meetings, MPIA Heidelberg, 5. July<br />

(Lecture); “High order AO correction <strong>for</strong> Lincnirvana”,<br />

Galaxy and Cosmology Retreat, Neuwied,<br />

17. Oct. (Lecture)<br />

Svitlana Zhukovska: STSci, Baltimore, USA, 6. May<br />

(Lecture); Hauskolloqium, MPIA Heidelberg, 17. June<br />

(Lecture)<br />

Talk Series<br />

Friedrich Huisken: “Oxidative reactions of group IIA<br />

and IIIA elements in helium droplets”, 482 nd Wilhelm<br />

and Else Heraeus Seminar: “Helium Nanodroplets –<br />

Confinement <strong>for</strong> Cold Molecules and Cold Chemistry,”<br />

Bad Honnef, 30. May – 1. June (Lecture)<br />

Lisa Kaltenegger: SpaSa summer school, Sao Paolo,<br />

Brasilien, Dec. (Lecture)<br />

Dietrich Lemke: “Ballon-Astronomie”, Universität<br />

Stuttgart, 20. Jan. (Lecture)<br />

Andrea V. Macciò: “Structure <strong>for</strong>mation in the Universe”,<br />

Salerno University, Italy, March (Lecture)<br />

Dmitry A. Semenov: “Astrochemistry with aLma”, aLma<br />

Summer School, Bologne, Italy, 13. – 17. June (Lecture)<br />

Arjen van der Wel: “Galaxy Evolution”, eLixir meeting,<br />

CSIC, Madrid, Spain, 5. Oct. (Lecture)<br />

Popular Talk Series<br />

During the Lectures of “Uni(versum) für alle! Halbe<br />

Heidelberger Sternstunden” in the Universitätskirche/<br />

Peterskirche Heidelberg the following talks have been<br />

given:<br />

Henrik Beuther: “Die Geburt der Sonne”, 27. May<br />

Christian Fendt: “Astronomische Zeitskalen: Von<br />

Millisekunden zu Gigajahren”, 24. May<br />

Roland Gredel: “Warum brauchen die Astronomen ein<br />

Teleskop mit 42 m Durchmesser”, 17. May


116 Conferences, Scientific, and Popular Talks<br />

Thomas Henning: “Warum beobachten wir die kältesten<br />

Objekte im Universum mit Infrarot-Teleskopen?”, 14.<br />

Apr.<br />

Tom Herbst: “Von 3 cm zu 42 m Durchmesser: Teleskope<br />

von Galilei bis 2020”, 5. May<br />

Klaus Jäger: “Astronomen als Detektive – wie wurde die<br />

Natur der geheimnisvollen Quasare entlarvt?”, 29. June<br />

Lisa Kaltenegger: “Wie kann man bewohnbare Planeten finden?”,<br />

13. July; “Gibt es Leben anderswo im Weltall?”,<br />

19. July<br />

Martin Kürster: “Wie groß ist das Universum?”, 9. May;<br />

“Warum funkeln die Sterne?”, 17. June<br />

Ralf Launhardt: “Der Lebensweg der Sterne”, 24. June<br />

Christoph Leimert: “Ebbe & Flut: Was haben die Gezeiten<br />

mit dem Mond zu tun?”, 20. June<br />

Dietrich Lemke: “Das todsichere Ende der Erde – wieviel<br />

Zeit bleibt uns noch?”, 12. July; “Gefahren aus dem<br />

Welltall?”, 20. July<br />

Hans-Walter Rix: “Ist das Universum unendlich?”, 2. May<br />

Popular Talks<br />

Kees Dullemond: “Kann es Leben auf anderen Planeten<br />

geben?”, “Life Science Lab”, Heidelberg, 11. Nov.<br />

Christian Fendt: “Astronomische Perspektiven: Der Blick<br />

von der Erde – auf die Erde”, Lecture beim “Studientag<br />

Perspektiven” am Hoelderlin-Gymnasium, Heidelberg,<br />

12. July<br />

Thomas Henning: “Von Staubscheiben zu extrasolaren<br />

Planeten – Die Entstehung von Planetensystemen”,<br />

Wissenschaft im Rathaus, Dresden, 6. Apr.; “From<br />

Protoplanetary Disks to Planetary Systems”, IUCAA,<br />

Pune, Indien, 23. Nov.<br />

Friedrich Huisken: “Laborexperimente simulieren<br />

Bedingungen in interstellaren Staubwolken”, Lange<br />

Nacht der Wissenschaften, 25. Nov.<br />

Klaus Jäger: “Eine Legende hat Geburtstag – 21 Jahre<br />

Astronomie mit hubbLe”, Planetarium Mannheim 15.<br />

Feb.; “Geheimnisvolle Quasare – der Lösung eines<br />

Rätsels auf der Spur”, DIDACTA-Messe, Stuttgart, 25.<br />

Feb.; “Scharfblick und Weitsicht – 400 Jahre Astronomie<br />

mit dem Fernrohr”, Astronomietag, Planetarium<br />

Mannheim, 9. Apr.; “Eine Legende hat Geburtstag – 21<br />

Jahre Astronomie mit hubbLe”, Rotary-Club, Buchen,<br />

11. Apr.; “Geheimnisvolle Quasare – der Lösung eines<br />

Rätsels auf der Spur”, Arbeitskreis Astronomie,<br />

Landesmuseum für Naturkunde, Bad Dürkheim, 1. Sep.;<br />

“Scharfblick und Weitsicht – 400 Jahre Astronomie mit<br />

dem Fernrohr”, Lecture series “Faszinierendes Weltall”<br />

of the Förderkreis Planetarium Göttingen, Universität<br />

Göttingen, 18. Oct.<br />

Knud Jahnke: “Die gigantischen Schwarzen Löcher in den<br />

Zentren von Galaxien”, <strong>Astronomy</strong> of Sunday morning,<br />

MPIA Heidelberg, 24. July<br />

Viki Joergens: “Braune Zwerge: Gescheiterte Sterne oder<br />

Superplaneten?”, Bayrische Volkssternwarte Munich,<br />

25. March<br />

Lisa Kaltenegger: “Life in the universe?”, Haus der<br />

Astronomie, Heidelberg, July; Lecture <strong>for</strong> pupils, MPIA,<br />

Nov.<br />

Hubert Klahr: “Schöne neue Planetenwelten”, Stuttgarter<br />

Zeitung – Leseruni, Hohenheim, 18. March<br />

Oliver Krause: “herScheLs Blick ins Universum: Neues<br />

vom derzeit größten Weltraumteleskop”, “Astronomie<br />

am Sonntag Vormittag”, MPIA, June<br />

Dietrich Lemke: “herScheL – Entdeckungen im kalten<br />

Universum”, Olbers-Gesellschaft, Bremen, 6. Dec.<br />

Luigi Mancini: “The extrasolar planets”, Torre Civica,<br />

Bientina (PI), Italy, 27. May<br />

Markus Nielbock: “Finsternisse”, Engadiner Astro no miefreunde,<br />

Hotel Laudinella, St. Moritz, Schweiz, 4. Jan.;<br />

“Die Sonne und andere Sterne”, <strong>Max</strong>IQ (Fördergruppe<br />

für hochbegabte Kinder), Willich, 11. Feb.; “Supernova-<br />

Lichtechos – Zeitreise zu einer Sternexplosion des<br />

16. Jahrhunderts”, Engadiner Sternfreunde, Hotel<br />

Laudinella, St. Moritz, Schweiz, 4. June; “Die Geburt<br />

von Sternen”, Engadiner Sternfreunde, Hotel Laudinella,<br />

St. Moritz, Schweiz, 26. Nov.<br />

Hans-Walter Rix: Planetarium Mannheim, 20. Oct.;<br />

Sternwarte Karlsruhe, Astronomische Vereinigung<br />

Karlsruhe e.V., 28. Nov.<br />

Silvia Scheithauer: “Das James Webb Weltraumteleskop<br />

– Teil 2: Ein neuer Blick ins infrarote Universum”,<br />

Kinderuniversität Bretten, 30. Nov.<br />

Ana Uribe: “Planets and protoplanetary disks”, Student’s<br />

day at Heidelberg University, Heidelberg, March


Haus der Astronomie<br />

Managing Scientist: Markus Pössel:<br />

Scientists: Natalie Fischer (since 15. May), Olaf Fischer,<br />

Carolin Liefke, Alexander Ludwig (since 9. Sep.), Anita<br />

Mancino (since 1. Sep.), Tobias Schultz (since 9. Sep.),<br />

Cecilia Scorza, Jakob Staude<br />

Student Assistants: Stephan Fraß (since 1. Oct.), Sophia<br />

Haude (since 1. May)<br />

The House of <strong>Astronomy</strong> (HdA) is a center <strong>for</strong> astronomy<br />

education and public relations at Königstuhl. It was<br />

founded in late 2008 by the <strong>Max</strong> <strong>Planck</strong> Society and<br />

the Klaus Tschira Foundation. Other partners include<br />

the University of Heidelberg (in particular the Centre<br />

<strong>for</strong> <strong>Astronomy</strong> of Heidelberg University) and the city of<br />

Heidelberg. The Klaus Tschira Foundation is developer<br />

of the spiral galaxy-shaped building of the House of<br />

<strong>Astronomy</strong>, which opened in December <strong>2011</strong> ceremony.<br />

The <strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong> is responsible<br />

<strong>for</strong> the content management of the house.<br />

The HdA will carry the fascination of astronomy to the<br />

general public and in the schools, promote exchanges<br />

between scientists and the media and the general public<br />

make astronomical discoveries through simulations and<br />

research <strong>for</strong> Elementarization astronomical concepts<br />

understandable accessible as possible. In particular, the<br />

HdA is a <strong>for</strong>um <strong>for</strong> research and the promotion of scientific<br />

exchange, conducts educational work in the field of<br />

astronomical research (in particular through support of<br />

school projects, teacher training and the preparation of<br />

current astronomical research <strong>for</strong> the teaching of science<br />

and university education) as well as public relations and<br />

Media work in the field of astronomy and astrophysics.<br />

Awards<br />

Olaf Fischer was awarded the Hans-Ludwig Neumann<br />

Prize <strong>for</strong> Teaching and Learning <strong>2011</strong>, the Astronomical<br />

Society.<br />

Marcel Frommelt did research on youth with his work<br />

“Nutzungsmöglichkeiten einer Ballonsonde im Rahmen<br />

einer Mission zum Saturnmond Titan” the first Place in<br />

the regional competition in the division Nordbaden Earth<br />

and space sciences, 3 Won place in the state competition<br />

in Baden-Württemberg and the special prize mobile.<br />

The Minister <strong>for</strong> Science, Research and the Arts of Baden-<br />

Württemberg, Theresia Bauer, has become the patron of<br />

the EU UNAWE project in Baden-Wuerttemberg. The<br />

Astronomical Society has become the patron of the EU<br />

UNAWE project in Germany.<br />

Teaching Activities<br />

Haus der Astronomie 117<br />

Winter Term 2010/<strong>2011</strong>:<br />

O. Fischer, C. Liefke, M. Pössel, C. Scorza: “Von unserem<br />

Sonnensystem zu extrasolaren Planeten” (Seminar<br />

<strong>for</strong> medium term)<br />

Summer Term <strong>2011</strong>:<br />

N. Fischer: “Grundlagen der Astronomie für die Schule”<br />

(Lecture). Pädagogische Hochschule Heidelberg.<br />

O. Fischer, C. Liefke, M. Pössel & Cecilia Scorza:<br />

“Astronomisches in den Schlagzeilen” (Seminar <strong>for</strong> medium<br />

term), Heidelberg University<br />

Winter Term <strong>2011</strong>/2012:<br />

C. Liefke, O. Fischer: “Die Milchstraße” (Seminar <strong>for</strong><br />

high school teacher), Heidelberg University<br />

Service in Committees<br />

Olaf Fischer is a member (Chairman since September<br />

<strong>2011</strong>) of the Education Commission of the German<br />

Astronomical Society.<br />

Cecilia Scorza is German coordinator of the “European<br />

Association <strong>for</strong> <strong>Astronomy</strong> Education”, German<br />

Coordinator of EUNAWE program, a member of the<br />

IAU Education Commission and a member of the school<br />

committee of the Astronomical Society.<br />

Jakob Staude is the editor of “Sterne und Weltraum”.<br />

The Haus der Astronomie is the German node of the “Eso<br />

Science Outreach Network” (C. Liefke, M. Pössel).<br />

Further Activities<br />

Olaf Fischer has supervised the development of 24 WIS<br />

materials <strong>for</strong> the upper and middle level car within the<br />

project “Wissenschaft in die Schulen!” (Cooperation<br />

with publishing Spektrum der Wissenschaft).<br />

Carolin Liefke and Markus Pössel have served as part of a<br />

collaboration with the Hector Seminar Research Projects<br />

<strong>for</strong> gifted students, Markus Pössel plus two students of<br />

the “International Summer Science School Heidelberg”.<br />

Carolin Liefke has supervised the technical work of the<br />

student spectroscopy S. Oberholz Werner-Heisenberg-<br />

Gymnasium Bad Durkheim and the technical work<br />

Exoplanetentransits the student from S. Graf Nikolaus<br />

von Weis Gymnasium Speyer.<br />

Markus Pössel and Carolin Liefke have a supervised internship<br />

(4 – 15 April).<br />

Olaf Fischer, Cecilia Scorza, Marcel Frommelt, Tobias<br />

Schultz and Alexander Ludwig have a total of five


118 Haus der Astronomie<br />

interns supervised BOGy (14 – 18 March and 2 – 4<br />

November).<br />

Carolin Liefke has 2 search campaigns <strong>for</strong> the Pan-Starrs<br />

project-IASC (asteroid search with students) coordinated<br />

a total of 12 German students and supervised groups.<br />

Olaf Fischer manages a degree thesis “Zur unterrichtlichen<br />

Verwertung von technischen und wissenschaftlichen<br />

Heraus<strong>for</strong>derungen beim Sofia-Projekt” (until 20. June)<br />

and a thesis work on exoplanets. (since 7. Dec.)<br />

Cecilia Scorza has a (provided by N. Christlieb, LSW)<br />

degree thesis on “Zustandsgrößen von Sternen und<br />

die Suche nach metallarmen Sternen” co-supervised<br />

(September – November <strong>2011</strong>).<br />

Cecilia Scorza and Marcel Frommelt have <strong>for</strong> the “MINT<br />

boxes” of the Baden-Württemberg Foundation MINT 15<br />

boxes made on infrared astronomy <strong>for</strong> hire.<br />

Conferences, Scientific, and Popular Talks<br />

HdA-Events and cooperation events at the HdA:<br />

Teacher training <strong>for</strong> the meeting of the Astronomical<br />

Society in Heidelberg, 23 Sep. (O. Fischer, C. Liefke).<br />

Four Teacher Trainings on UNAWE MINT-Box “Abenteuer<br />

Astronomie – Eine Reise durch das Weltall für<br />

Grundschüler”, 19 Oct., 14 Nov., 16 Nov. and 9 Dec.<br />

(N. Fischer)<br />

Students meeting at the <strong>Max</strong>-<strong>Planck</strong>-Day, 11 Nov. (O.<br />

Fischer, C. Liefke, M. Pössel, C. Scorza [Organisation])<br />

Commemorative Colloquium <strong>for</strong> Jakob Staude, MPIA/<br />

HdA, 15. Nov. (K. Jäger, M. Pössel, A. M. Quetz, U.<br />

Reichert, u.a.)<br />

In<strong>for</strong>mation day <strong>for</strong> partners and cooperation partners of the<br />

Haus der Astronomie, 25 Nov.<br />

In<strong>for</strong>mation session <strong>for</strong> participants of <strong>2011</strong> German–<br />

Japanese Round Table, 1 Dec. (M. Pössel)<br />

Official Opening Ceremony of the Haus der Astronomie,<br />

16 Dec.<br />

Interdisciplinary Teacher Training “Aufbruch zum Mars”<br />

<strong>for</strong> teachers from Baden-Württemberg, 19 Dec. (O.<br />

Fischer, C. Scorza, M. Pössel, T. Schultz, A. Ludwig)<br />

Eight workshops <strong>for</strong> students in the lower, middle and upper<br />

school (C. Scorza, T. Schultz) with a total of 260 participants;<br />

four workshops <strong>for</strong> elementary school children<br />

(N. Fischer); Seven workshops <strong>for</strong> kindergartners (N.<br />

Fischer and A. Mancino) with a total of 270 participants.<br />

Guided tours across the HdA-site and through the HdA <strong>for</strong> a<br />

total of about 360 participants, all year round (N. Fischer,<br />

O. Fischer, C. Liefke, M. Pössel, C. Scorza, J. Staude)<br />

Natalie Fischer and Cecilia Scorza have developed and<br />

produced the EU UNAWE MINT Box “Adventure<br />

<strong>Astronomy</strong> – a journey through space <strong>for</strong> elementary<br />

students“ <strong>for</strong> the state of Baden-Württemberg, (in cooperation<br />

with Astronomieschule e.V.)<br />

Natalie Fischer and Markus Pössel have presented the<br />

MINT boxes infrared astronomy and elementary school<br />

astronomy at the event “Mach MINT! Experimente<br />

zum Anfassen” at the Baden-Württemberg Stiftung in<br />

Stuttgart (17 October).<br />

Cecilia Scorza and Alexander Ludwig have developed outreach<br />

materials <strong>for</strong> Mars Express, In cooperation with<br />

the EsoC, Darmstadt.<br />

Cecilia Scorza writes the monthly sky preview <strong>for</strong> the<br />

“Rhein-Neckar-Zeitung”.<br />

Reviews of / participation in external events:<br />

3. Conference of NWT-Teachers, Heilbronn, 18 Feb. (C.<br />

Scorza)<br />

Level of in<strong>for</strong>mation and monitoring station, “Lange Nacht<br />

der Museen”, Planetarium Mannheim, 9 Apr. (C. Liefke,<br />

M. Pössel)<br />

MPIA-Girls̓ Day, 14 Apr. (O. Fischer, C. Liefke, C. Scorza,<br />

M. Pössel)<br />

Student Program to reward the E-team by Mayor Dr. Eckart<br />

Würzner, 19 Apr. (O. Fischer, C. Liefke, C. Scorza, M.<br />

Pössel)<br />

Workshop “Den Nachthimmel entdecken” <strong>for</strong> Teacher of<br />

the Stuttgart Region, 11 May, and as a training course<br />

<strong>for</strong> NwT-teachers at the Friedrich Schiller Gymnasium<br />

Marbach, 16 May (C. Scorza and O. Fischer)<br />

Experiment stations and observation station to scientific<br />

experience days “Explore Science” of the Klaus<br />

Tschira Stiftung in Mannheim, 18 – 22 May (C.<br />

Liefke [Organisation], N. Fischer [Organisation], O.<br />

Fischer, M. Pössel, C. Scorza; in Cooperation with the<br />

Astronomieschule e.V.)<br />

Teacher training at the training academy Biberach, 19 – 20<br />

May (C. Scorza und O. Fischer)<br />

Higher rate “Wir entdecken den Sternenhimmel” <strong>for</strong> gifted<br />

elementary school children, Hector-Kinderakademie, 26<br />

May – 15 Dec. (N. Fischer)<br />

Training “Sonne, Mond und Sterne” <strong>for</strong> educators in cooperation<br />

with the research station Heidelberg, 7 June – 8<br />

Nov. (N. Fischer)<br />

Level of in<strong>for</strong>mation and monitoring station at the “Uni-<br />

Meile” (Anniversary celebration of the Heidelberg<br />

University), 25 June (N. Fischer, O. Fischer, C. Liefke,<br />

M. Pössel, C. Scorza)


Project Days spectroscopy at the Gymnasium Neckargemünd,<br />

19 – 21 July (C. Liefke)<br />

<strong>Astronomy</strong> Course “Sonne oder Treibhausgas. Wer ist verantwortlich<br />

für den Klimawandel?” of the Deutschen<br />

Schülerakademie in Rostock, 6 July – 24 Aug. (O.<br />

Fischer)<br />

Workshop and lecture in the statewide teacher training<br />

<strong>Astronomy</strong>, Jena, 12 July (C. Liefke)<br />

<strong>Astronomy</strong> Course “Aufbruch zum Mars – wir er<strong>for</strong>schen<br />

den roten Planeten” at the Science Academy Baden-<br />

Württemberg, Adelsheim, 26 Aug – 8 Sep. (O. Fischer,<br />

C. Scorza)<br />

Teacher training “Aufbruch zum Mars” at the Sternwarte<br />

Sonneberg, 25 – 26 Sep. (O. Fischer und C. Scorza)<br />

Teacher training <strong>for</strong> the HdA-DSI-Partner schools, 19 – 21<br />

Sep. (C. Scorza)<br />

Open Day of the European Southern Observatory (Eso), 15<br />

Nov. (C. Liefke)<br />

E-HOU-Teacher training at the Radio Observatory<br />

“Astropeiler”, Stockert, 18 – 19 Oct. (C. Scorza und O.<br />

Fischer)<br />

Teacher training “Blicke zum Sternenhimmel” at the <strong>Institute</strong><br />

of Space Systems, University of Stuttgart, 24 Nov. (C.<br />

Scorza und O. Fischer)<br />

Talks:<br />

Natalie Fischer: “UNAWE-MINT-Box Abenteuer Astronomie<br />

– Eine Reise durch das Weltall für Grundschüler”,Mach<br />

MINT!’ Stuttgart, 17 Oct.; “Teacher training in Germany”<br />

and “Evaluation: Impact on Children”, EU-UNAWE<br />

Project Manager Workshop, Leiden, 29 Nov.<br />

Olaf Fischer: “Wir reisen zum Mars”, Children’s<br />

Academy Gera, 9 Nov.; “Wissenschaft in die Schulen”,<br />

Commemorative Colloquium <strong>for</strong> Jakob Staude, MPIA/<br />

HdA, 15. Nov.<br />

Carolin Liefke: “Stellare Flares”, Starkenburg-Sternwarte,<br />

Heppenheim, 11 Jan.; “Aktivität von Sternen”, Planetarium<br />

Mannheim, 15 March; “Pan-Starrs-IASC: Asteroid Search<br />

with pupils”, 14. Kleinplanetentagung, Heppenheim,<br />

18 June; “Welche Farbe hat eigentlich die Sonne?”,<br />

Uni(versum) für alle, Heidelberg, 6 July and EsoC 23<br />

Aug.; Lecture “Zum Besuch beim Very Large Telescope”,<br />

Allgäuer Volkssternwarte Ottobeuren, 3 Sep.; “Das<br />

Haus der Astronomie”, Regional Meeting <strong>Astronomy</strong>,<br />

Sternwarte Bellheim 8 Oct.; Lecture “Amateurastronomie<br />

in Germany”, Sternwarte Neumünster, 5 Nov.<br />

Anita Mancino: “Evaluation: Impact on Children”, EU-<br />

UNAWE Project Manager Workshop, Leiden, 29 Nov.<br />

Markus Pössel: “Kosmologie, Stephen Hawking und der<br />

Anfang des Universums”, Diözesan-Akademie Stuttgart,<br />

14 Jan.; “Die häufigsten Missverständnisse über<br />

Schwarze Löcher”, Uni(versum) für alle, Heidelberg,<br />

26 Apr.; “Wenn der Weltraum zittert: Astronomie with<br />

Gravitationswellen”, Uni(versum) für alle, Heidelberg,<br />

“Gravitationswellen – oder wenn das All vibriert”, DLR-<br />

Astro Seminar, Cologne, 24 May and Karl-Rahner-<br />

Haus der Astronomie 119<br />

Academy, Cologne, 25 May; 9 June; “Das Universum<br />

expandiert – aber was heißt das?”, Uni(versum) für alle,<br />

27 June; “Woher kommen wir? Wohin gehen wir? Zwei<br />

Grundfragen aus astronomischer Sicht”, Occupational<br />

Health Symposium, Erfurt 22 July; Splinter Meeting<br />

“Public Outreach in der Astronomie”, <strong>Annual</strong> Meeting<br />

of the Astronomical Society, Heidelberg, 21 Sep.;<br />

“Schwarze Löcher für Anfänger und Fortgeschrittene”,<br />

Planetarium Mannheim, 4 Oct. and Student internship<br />

at the MPIA, Heidelberg, 25 Oct.; “Das Haus der<br />

Astronomie”, Commemorative Colloquium <strong>for</strong> Jakob<br />

Staude, MPIA/HdA, 15. Nov. .<br />

Cecilia Scorza: “Das EUNAWE-Netzwerk live:<br />

Videokonferenz mit südafrikanischen Kindern”,<br />

EUNAWE-Kick-off event, Brussels, 24 Apr.“Gibt es<br />

Leben auf dem Mars?”, Uni(versum) für alle, Heidelberg,<br />

13 May; “Was ist eigentlich ‘die Milchstraße?’”,<br />

Uni(versum) für alle, Heidelberg, 10 June; “Educational<br />

resources from EUNAWE-Germany”, EUNAWE-<br />

Workshop, Leiden, 28 – 30 Nov.<br />

Publications<br />

Fischer, O., C. Scorza: “Mars und Erde im Vergleich –<br />

Sinklöcher und Vulkane”, Wissenschaft in die Schulen!<br />

2/<strong>2011</strong><br />

Fischer, O.: “Radioteleskope – Konstruktionen mit dem<br />

“Parabel-Gen”,Wissenschaft in die Schulen! 3/<strong>2011</strong><br />

Fischer, O.: “Tatort Schule – Spektroskopie erleben”,Wissenschaft<br />

in die Schulen! 7/<strong>2011</strong><br />

Fischer, O.: “Das Sofia-Teleskop aus Sicht des Ingenieurs”,Wissenschaft<br />

in die Schulen! 7/<strong>2011</strong><br />

Fuhrmeister, B., S. Lalitha, K. Poppenhaeger, N. Rudolf,<br />

C. Liefke, A. Reiners, J.H.M.M. Schmitt & J.-U. Ness:<br />

“Multi-wavelength observations of Proxima Centauri” in<br />

A&A 534, A133 (<strong>2011</strong>)<br />

Liefke, C.: “In und über den Wolken – Das Internationale<br />

Teleskoptreffen ITT 2010” in Sterne und Weltraum<br />

2/<strong>2011</strong>, S. 100–102.<br />

Liefke, C.: “Fernerkundung und Kartografie im Sonnensystem”,Wissenschaft<br />

in die Schulen! MS 3/<strong>2011</strong><br />

Liefke, C.: “Von Supernovae und Gezeitenschweifen – die<br />

Strudelgalaxie M 51” in Sterne und Weltraum 8/<strong>2011</strong>, S.<br />

75–77.<br />

Liefke, C.: “Die Flammenhülle von Beteigeuze” in Sterne<br />

und Weltraum 10/<strong>2011</strong>, S. 28–29.<br />

Pössel, M.: “Ein Exoplanet aus einer anderen Galaxie” in<br />

Sterne und Weltraum 1/<strong>2011</strong>, S. 28–29.<br />

Pössel, M.: “Das Haus der Astronomie in Heidelberg” in<br />

Astronomie und Raumfahrt im Unterricht 48, Ausgabe<br />

3–4, S. 31–34.<br />

Pössel, M.: “Einschläge ohne Rhythmus” in Sterne und<br />

Weltraum 11/<strong>2011</strong>, S. 36–39.<br />

Scorza, C., N. Fischer:Abenteuer Astronomie. Eine Reise<br />

durch das Weltall für Grundschulkinder. 128 Seiten incl.<br />

Kopiervorlagen (<strong>2011</strong>)<br />

Scorza, C.: “Verborgene Sterne aufspüren” in Spektrum<br />

NEO Nr. 1, “Unser Universum”, S. 66–70 (<strong>2011</strong>)


120 Publications<br />

Publications<br />

In Journals with Referee System<br />

Absil, O., J. B. Le Bouquin, J. P. Berger, A. M. Lagrange,<br />

G. Chauvin, B. Lazareff, G. Zins, P. Haguenauer, L.<br />

Jocou, P. Kern, R. Millan-Gabet, S. Rochat and W.<br />

Traub: Searching <strong>for</strong> faint companions with VLTI/<br />

pionier. I. Method and first results. <strong>Astronomy</strong> and<br />

Astrophysics 535, id. A68 (<strong>2011</strong>)<br />

Adams, J. J., K. Gebhardt, G. A. Blanc, M. H. Fabricius,<br />

G. J. Hill, J. D. Murphy, R. C. E. van den Bosch and<br />

G. van de Ven: The central dark matter distribution of<br />

NGC 2976. The Astrophysical Journal 745, id. 92 (<strong>2011</strong>)<br />

Aihara, H., C. Allende Prieto, D. An, S. F. Anderson, É.<br />

Aubourg, E. Balbinot, T. C. Beers, A. A. Berlind, S. J.<br />

Bickerton, D. Bizyaev, M. R. Blanton, J. J. Bochanski,<br />

A. S. Bolton, J. Bovy, W. N. Brandt, J. Brinkmann, P. J.<br />

Brown, J. R. Brownstein, N. G. Busca, H. Campbell, M.<br />

A. Carr, Y. Chen, C. Chiappini, J. Comparat, N. Connolly,<br />

M. Cortes, R. A. C. Croft, A. J. Cuesta, L. N. da Costa,<br />

J. R. A. Davenport, K. Dawson, S. Dhital, A. Ealet,<br />

G. L. Ebelke, E. M. Edmondson, D. J. Eisenstein, S.<br />

Escoffier, M. Esposito, M. L. Evans, X. Fan, B. Femenía<br />

Castellá, A. Font-Ribera, P. M. Frinchaboy, J. Ge, B.<br />

A. Gillespie, G. Gilmore, J. I. González Hernández,<br />

J. R. Gott, A. Gould, E. K. Grebel, J. E. Gunn, J.-C.<br />

Hamilton, P. Harding, D. W. Harris, S. L. Hawley,<br />

F. R. Hearty, S. Ho, D. W. Hogg, J. A. Holtzman, K.<br />

Honscheid, N. Inada, I. I. Ivans, L. Jiang, J. A. Johnson,<br />

C. Jordan, W. P. Jordan, E. A. Kazin, D. Kirkby, M. A.<br />

Klaene, G. R. Knapp, J.-P. Kneib, C. S. Kochanek, L.<br />

Koesterke, J. A. Kollmeier, R. G. Kron, H. Lampeitl, D.<br />

Lang, J.-M. Le Goff, Y. S. Lee, Y.-T. Lin, D. C. Long,<br />

C. P. Loomis, S. Lucatello, B. Lundgren, R. H. Lupton,<br />

Z. Ma, N. MacDonald, S. Mahadevan, M. A. G. Maia,<br />

M. Makler, E. Malanushenko, V. Malanushenko, R.<br />

Mandelbaum, C. Maraston, D. Margala, K. L. Masters,<br />

C. K. McBride, P. M. McGehee, I. D. McGreer, B.<br />

Ménard, J. Miralda-Escudé, H. L. Morrison, F. Mullally,<br />

D. Muna, J. A. Munn, H. Murayama, A. D. Myers, T.<br />

Naugle, A. Fausti Neto, D. Cuong Nguyen, R. C. Nichol,<br />

R. W. O’Connell, R. L. C. Ogando, M. D. Olmstead, D.<br />

J. Oravetz, N. Padmanabhan, N. Palanque-Delabrouille,<br />

K. Pan, P. Pandey, I. Pâris, W. J. Percival, P. Petitjean,<br />

R. Pfaffenberger, J. P<strong>for</strong>r, S. Phleps, C. Pichon, M. M.<br />

Pieri, F. Prada, A. M. Price-Whelan, M. J. Raddick, B.<br />

H. F. Ramos, C. Reylé, J. Rich, G. T. Richards, H.-W.<br />

Rix, A. C. Robin, H. J. Rocha-Pinto, C. M. Rockosi,<br />

N. A. Roe, E. Rollinde, A. J. Ross, N. P. Ross, B. M.<br />

Rossetto, A. G. Sánchez, C. Sayres, D. J. Schlegel, K. J.<br />

Schlesinger, S. J. Schmidt, D. P. Schneider, E. Sheldon,<br />

Y. Shu, J. Simmerer, A. E. Simmons, T. Sivarani, S. A.<br />

Snedden, J. S. Sobeck, M. Steinmetz, M. A. Strauss, A.<br />

S. Szalay, M. Tanaka, A. R. Thakar, D. Thomas, J. L.<br />

Tinker, B. M. Tofflemire, R. Tojeiro, C. A. Tremonti, J.<br />

Vandenberg, M. Vargas Magaña, L. Verde, N. P. Vogt,<br />

D. A. Wake, J. Wang, B. A. Weaver, D. H. Weinberg, M.<br />

White, S. D. M. White, B. Yanny, N. Yasuda, C. Yeche<br />

and I. Zehavi: Erratum: “The Eighth Data Release of the<br />

Sloan Digital Sky Survey: First data from SDSS-III”.<br />

The Astrophysical Journal Supplement Series 195, id.<br />

26 (4pp), (<strong>2011</strong>)<br />

Aihara, H., C. Allende Prieto, D. An, S. F. Anderson, É.<br />

Aubourg, E. Balbinot, T. C. Beers, A. A. Berlind, S. J.<br />

Bickerton, D. Bizyaev, M. R. Blanton, J. J. Bochanski,<br />

A. S. Bolton, J. Bovy, W. N. Brandt, J. Brinkmann, P. J.<br />

Brown, J. R. Brownstein, N. G. Busca, H. Campbell, M.<br />

A. Carr, Y. Chen, C. Chiappini, J. Comparat, N. Connolly,<br />

M. Cortes, R. A. C. Croft, A. J. Cuesta, L. N. da Costa,<br />

J. R. A. Davenport, K. Dawson, S. Dhital, A. Ealet,<br />

G. L. Ebelke, E. M. Edmondson, D. J. Eisenstein, S.<br />

Escoffier, M. Esposito, M. L. Evans, X. Fan, B. Femenía<br />

Castellá, A. Font-Ribera, P. M. Frinchaboy, J. Ge, B. A.<br />

Gillespie, G. Gilmore, J. I. Gonzáez Hernández, J. R.<br />

Gott, A. Gould, E. K. Grebel, J. E. Gunn, J.-C. Hamilton,<br />

P. Harding, D. W. Harris, S. L. Hawley, F. R. Hearty,<br />

S. Ho, D. W. Hogg, J. A. Holtzman, K. Honscheid, N.<br />

Inada, I. I. Ivans, L. Jiang, J. A. Johnson, C. Jordan, W.<br />

P. Jordan, E. A. Kazin, D. Kirkby, M. A. Klaene, G. R.<br />

Knapp, J.-P. Kneib, C. S. Kochanek, L. Koesterke, J. A.<br />

Kollmeier, R. G. Kron, H. Lampeitl, D. Lang, J.-M. Le<br />

Goff, Y. S. Lee, Y.-T. Lin, D. C. Long, C. P. Loomis,<br />

S. Lucatello, B. Lundgren, R. H. Lupton, Z. Ma, N.<br />

MacDonald, S. Mahadevan, M. A. G. Maia, M. Makler,<br />

E. Malanushenko, V. Malanushenko, R. Mandelbaum,<br />

C. Maraston, D. Margala, K. L. Masters, C. K. McBride,<br />

P. M. McGehee, I. D. McGreer, B. Ménard, J. Miralda-<br />

Escudé, H. L. Morrison, F. Mullally, D. Muna, J. A.<br />

Munn, H. Murayama, A. D. Myers, T. Naugle, A.<br />

Fausti Neto, D. Cuong Nguyen, R. C. Nichol, R. W.<br />

O’Connell, R. L. C. Ogando, M. D. Olmstead, D. J.<br />

Oravetz, N. Padmanabhan, N. Palanque-Delabrouille,<br />

K. Pan, P. Pandey, I. Pâris, W. J. Percival, P. Petitjean,<br />

R. Pfaffenberger, J. P<strong>for</strong>r, S. Phleps, C. Pichon, M. M.<br />

Pieri, F. Prada, A. M. Price-Whelan, M. J. Raddick, B.<br />

H. F. Ramos, C. Reylé, J. Rich, G. T. Richards, H.-W.<br />

Rix, A. C. Robin, H. J. Rocha-Pinto, C. M. Rockosi,<br />

N. A. Roe, E. Rollinde, A. J. Ross, N. P. Ross, B. M.<br />

Rossetto, A. G. Sánchez, C. Sayres, D. J. Schlegel, K. J.<br />

Schlesinger, S. J. Schmidt, D. P. Schneider, E. Sheldon,<br />

Y. Shu, J. Simmerer, A. E. Simmons, T. Sivarani, S. A.<br />

Snedden, J. S. Sobeck, M. Steinmetz, M. A. Strauss, A.<br />

S. Szalay, M. Tanaka, A. R. Thakar, D. Thomas, J. L.<br />

Tinker, B. M. Tofflemire, R. Tojeiro, C. A. Tremonti, J.<br />

Vandenberg, M. Vargas Magaña, L. Verde, N. P. Vogt,<br />

D. A. Wake, J. Wang, B. A. Weaver, D. H. Weinberg,<br />

M. White, S. D. M. White, B. Yanny, N. Yasuda, C.<br />

Yeche and I. Zehavi: The Eighth Data Release of the<br />

Sloan Digital Sky Survey: First data from SDSS-III.<br />

The Astrophysical Journal Supplement Series 193, id.<br />

29 (<strong>2011</strong>)


Akimkin, V. V., Y. N. Pavlyuchenkov, A. I. Vasyunin, D. S.<br />

Wiebe, M. S. Kirsanova and T. Henning: UV-controlled<br />

physical and chemical structure of protoplanetary disks.<br />

Astrophysics and Space Science 335, 33, 33-38 (<strong>2011</strong>)<br />

Alibert, Y., C. Mordasini and W. Benz: Extrasolar planet<br />

population synthesis. III. Formation of planets around<br />

stars of different masses. <strong>Astronomy</strong> and Astrophysics<br />

526, id. A63, (<strong>2011</strong>)<br />

Altay, G., T. Theuns, J. Schaye, N. H. M. Crighton and C.<br />

Dalla Vecchia: Through thick and thin – H I absorption<br />

in cosmological simulations. The Astrophysical Journal<br />

Letters 737, id. L37, (<strong>2011</strong>)<br />

Andrae, R. and K. Jahnke: Only marginal alignment of disc<br />

galaxies. Monthly Notices of the Royal Astronomical<br />

Society 418, 2014-2031 (<strong>2011</strong>)<br />

Andrae, R., K. Jahnke and P. Melchior: Parametrizing<br />

arbitrary galaxy morphologies: potentials and pitfalls.<br />

Monthly Notices of the Royal Astronomical Society 411,<br />

385-401 (<strong>2011</strong>)<br />

Andrae, R., P. Melchior and K. Jahnke: Quantifying galaxy<br />

shapes: sérsiclets and beyond. Monthly Notices of the<br />

Royal Astronomical Society 417, 2465-2477 (<strong>2011</strong>)<br />

Andrei, A. H., R. L. Smart, J. L. Penna, V. A. d’Avila, B.<br />

Bucciarelli, J. I. B. Camargo, M. T. Crosta, M. Daprà, B.<br />

Goldman, H. R. A. Jones, M. G. Lattanzi, L. Nicastro, D.<br />

J. Pinfield, D. N. da Silva Neto and R. Teixeira: Parallaxes<br />

of Southern Extremely Cool Objects. I. Targets, proper<br />

motions, and first results. The Astronomical Journal 141,<br />

id. 54, (<strong>2011</strong>)<br />

Aniano, G., B. T. Draine, K. D. Gordon and K. Sandstrom:<br />

Common-resolution convolution kernels <strong>for</strong> space- and<br />

ground-based telescopes. Publications of the Astronomical<br />

Society of the Pacific 123, 1218-1236 (<strong>2011</strong>)<br />

Archinal, B. A., M. F. A’Hearn, A. Conrad, G. J.<br />

Consolmagno, R. Courtin, T. Fukushima, D. Hestroffer,<br />

J. L. Hilton, G. A. Krasinsky, G. Neumann, J. Oberst, P.<br />

K. Seidelmann, P. Stooke, D. J. Tholen, P. C. Thomas and<br />

I. P. Williams: Erratum to: <strong>Report</strong>s of the IAU Working<br />

Group on Cartographic Coordinates and Rotational<br />

Elements: 2006 & 2009. Celestial Mechanics and<br />

Dynamical <strong>Astronomy</strong> 110, 401-403 (<strong>2011</strong>)<br />

Assef, R. J., K. D. Denney, C. S. Kochanek, B. M.<br />

Peterson, S. Kozłowski, N. Ageorges, R. S. Barrows,<br />

P. Buschkamp, M. Dietrich, E. Falco, C. Feiz, H.<br />

Gemperlein, A. Germeroth, C. J. Grier, R. Hofmann,<br />

M. Juette, R. Khan, M. Kilic, V. Knierim, W. Laun, R.<br />

Lederer, M. Lehmitz, R. Lenzen, U. Mall, K. K. Madsen,<br />

H. Mandel, P. Martini, S. Mathur, K. Mogren, P. Mueller,<br />

V. Naranjo, A. Pasquali, K. Polsterer, R. W. Pogge, A.<br />

Quirrenbach, W. Seifert, D. Stern, B. Shappee, C. Storz,<br />

J. Van Saders, P. Weiser and D. Zhang: Black hole mass<br />

estimates based on C IV are consistent with those based<br />

on the Balmer lines. The Astrophysical Journal 742, id.<br />

93, (<strong>2011</strong>)<br />

Bagetakos, I., E. Brinks, F. Walter, W. J. G. de Blok, A.<br />

Usero, A. K. Leroy, J. W. Rich and R. C. Kennicutt: The<br />

fine-scale structure of the neutral interstellar medium in<br />

nearby galaxies. The Astronomical Journal 141, id. 23,<br />

(<strong>2011</strong>)<br />

Bailer-Jones, C. A. L.: Erratum: Bayesian time series analysis<br />

of terrestrial impact cratering. Monthly Notices of the<br />

Royal Astronomical Society 418, 2111-2112 (<strong>2011</strong>)<br />

Bailer-Jones, C. A. L.: Bayesian time series analysis of terrestrial<br />

impact cratering. Monthly Notices of the Royal<br />

Astronomical Society 416, 1163-1180 (<strong>2011</strong>)<br />

Bailer-Jones, C. A. L.: Bayesian inference of stellar parameters<br />

and interstellar extinction using parallaxes and<br />

multiband photometry. Monthly Notices of the Royal<br />

Astronomical Society 411, 435-452 (<strong>2011</strong>)<br />

Baldi, M., J. Lee and A. V. Macciò: The effect of coupled<br />

dark energy on the alignment between dark matter<br />

and galaxy distributions in clusters. The Astrophysical<br />

Journal 732, id. 112, (<strong>2011</strong>)<br />

Bastian, N., D. R. Weisz, E. D. Skillman, K. B. W.<br />

McQuinn, A. E. Dolphin, R. A. Gutermuth, J. M.<br />

Cannon, B. Ercolano, M. Gieles, R. C. Kennicutt and F.<br />

Walter: The evolution of stellar structures in dwarf galaxies.<br />

Monthly Notices of the Royal Astronomical Society<br />

412, 1539-1551 (<strong>2011</strong>)<br />

Bayliss, M. B., M. D. Gladders, M. Oguri, J. F. Hennawi, K.<br />

Sharon, B. P. Koester and H. Dahle: The redshift distribution<br />

of giant arcs in the Sloan Giant Arcs Survey. The<br />

Astrophysical Journal Letters 727, id. L26, (<strong>2011</strong>)<br />

Bayliss, M. B., J. F. Hennawi, M. D. Gladders, B. P. Koester,<br />

K. Sharon, H. Dahle and M. Oguri: Gemini/GMOS<br />

spectroscopy of 26 strong-lensing-selected galaxy cluster<br />

cores. The Astrophysical Journal Supplement Series 193,<br />

id. 8, (<strong>2011</strong>)<br />

Béjar, V. J. S., M. R. Zapatero Osorio, R. Rebolo, J. A.<br />

Caballero, D. Barrado, E. L. Martín, R. Mundt and C. A.<br />

L. Bailer-Jones: The substellar population of s Orionis:<br />

A deep wide survey. The Astrophysical Journal 743, id.<br />

64, (<strong>2011</strong>)<br />

Bell, E. F., C. T. Slater and N. F. Martin: Andromeda XXIX:<br />

A new dwarf spheroidal galaxy 200 kpc from Andromeda.<br />

The Astrophysical Journal Letters 742, id. L15, (<strong>2011</strong>)<br />

Beltrán, M. T., R. Cesaroni, Q. Zhang, R. Galván-Madrid, H.<br />

Beuther, C. Fallscheer, R. Neri and C. Codella: Molecular<br />

outflows and hot molecular cores in G24.78+0.08<br />

at sub-arcsecond angular resolution. <strong>Astronomy</strong> and<br />

Astrophysics 532, id. A91, (<strong>2011</strong>)<br />

Benisty, M., S. Renard, A. Natta, J. P. Berger, F. Massi, F.<br />

Malbet, P. J. V. Garcia, A. Isella, A. Mérand, J. L. Monin,<br />

L. Testi, E. Thiébaut, M. Vannier and G. Weigelt: A low<br />

optical depth region in the inner disk of the Herbig Ae<br />

star HR 5999. <strong>Astronomy</strong> and Astrophysics 531, id. A84,<br />

(<strong>2011</strong>)<br />

Berg<strong>for</strong>s, C., W. Brandner, M. Janson, R. Köhler and T.<br />

Henning: VLT/naco astrometry of the HR 8799 planetary<br />

system. L’-band observations of the three outer planets.<br />

<strong>Astronomy</strong> and Astrophysics 528, id. A134 (<strong>2011</strong>)<br />

Beuther, H., J. Kainulainen, T. Henning, R. Plume and F.<br />

Heitsch: The Coalsack near and far. <strong>Astronomy</strong> and<br />

Astrophysics 533, id. A17 (<strong>2011</strong>)<br />

Publications 121


122 Publications<br />

Beuther, H., H. Linz, T. Henning, A. Bik, F. Wyrowski,<br />

F. Schuller, P. Schilke, S. Thorwirth and K. T. Kim:<br />

High-mass star <strong>for</strong>mation at high luminosities: W31 at<br />

10 6 L 0 . <strong>Astronomy</strong> and Astrophysics 531, id. A26,<br />

(<strong>2011</strong>)<br />

Bezanson, R., P. G. van Dokkum, M. Franx, G. B. Brammer,<br />

J. Brinchmann, M. Kriek, I. Labbé, R. F. Quadri, H.-W.<br />

Rix, J. van de Sande, K. E. Whitaker and R. J. Williams:<br />

Redshift evolution of the galaxy velocity dispersion<br />

function. The Astrophysical Journal Letters 737, id. L31<br />

(<strong>2011</strong>)<br />

Biggs, A. D., R. J. Ivison, E. Ibar, J. L. Wardlow,<br />

H. Dannerbauer, I. Smail, F. Walter, A. Weiß, S.<br />

C. Chapman, K. E. K. Coppin, C. De Breuck, M.<br />

Dickinson, K. K. Knudsen, V. Mainieri, K. Menten<br />

and C. Papovich: The Laboca survey of the Extended<br />

chandra Deep Field-South – radio and mid-infrared<br />

counterparts to submillimetre galaxies. Monthly<br />

Notices of the Royal Astronomical Society 413, 2314-<br />

2338 (<strong>2011</strong>)<br />

Bigiel, F., A. K. Leroy, F. Walter, E. Brinks, W. J. G. de Blok,<br />

C. Kramer, H. W. Rix, A. Schruba, K. F. Schuster, A.<br />

Usero and H. W. Wiesemeyer: A constant molecular gas<br />

depletion time in nearby disk galaxies. The Astrophysical<br />

Journal Letters 730, id. L13, (<strong>2011</strong>)<br />

Biller, B., K. Allers, M. Liu, L. M. Close and T. Dupuy:<br />

A Keck LGS AO search <strong>for</strong> brown dwarf and planetary<br />

mass companions to Upper Scorpius brown dwarfs. The<br />

Astrophysical Journal 730, id. 39, (<strong>2011</strong>)<br />

Birnstiel, T., C. W. Ormel and C. P. Dullemond: Dust size<br />

distributions in coagulation/fragmentation equilibrium:<br />

numerical solutions and analytical fits. <strong>Astronomy</strong> and<br />

Astrophysics 525, id. A11 (<strong>2011</strong>)<br />

Bitsakis, T., V. Charmandaris, E. da Cunha, T. Díaz-<br />

Santos, E. Le Floc’h and G. Magdis: A mid-IR study of<br />

Hickson compact groups. II. Multiwavelength analysis<br />

of the complete GaLex-Spitzer sample. <strong>Astronomy</strong> and<br />

Astrophysics 533, id. A142 (<strong>2011</strong>)<br />

Böker, T., E. Schinnerer and U. Lisenfeld: Molecular<br />

gas around low-luminosity AGN in late-type spirals.<br />

<strong>Astronomy</strong> and Astrophysics 534, id. A12 (<strong>2011</strong>)<br />

Bolatto, A. D., A. K. Leroy, K. Jameson, E. Ostriker, K.<br />

Gordon, B. Lawton, S. Stanimirović, F. P. Israel, S. C.<br />

Madden, S. Hony, K. M. Sandstrom, C. Bot, M. Rubio,<br />

P. F. Winkler, J. Roman-Duval, J. T. van Loon, J. M.<br />

Oliveira and R. Indebetouw: The state of the gas and the<br />

relation between gas and star <strong>for</strong>mation at low metallicity:<br />

The Small Magellanic Cloud. The Astrophysical<br />

Journal 741, id. 12, (<strong>2011</strong>)<br />

Bonnefoy, M., A. M. Lagrange, A. Boccaletti, G. Chauvin,<br />

D. Apai, F. Allard, D. Ehrenreich, J. H. V. Girard, D.<br />

Mouillet, D. Rouan, D. Gratadour and M. Kasper: High<br />

angular resolution detection of b Pictoris b at 2.18 mm.<br />

<strong>Astronomy</strong> and Astrophysics 528, id. L15 (<strong>2011</strong>)<br />

Boone, F., S. García-Burillo, F. Combes, J. Lim, P. Ho,<br />

A. J. Baker, S. Matsushita, M. Krips, V. T. Dinh and<br />

E. Schinnerer: High-resolution mapping of the physi-<br />

cal conditions in two nearby active galaxies based<br />

on 12 CO(1-0), (2-1), and (3-2) lines. <strong>Astronomy</strong> and<br />

Astrophysics 525, id. A18, (<strong>2011</strong>)<br />

Bouwman, J., H. M. Cuppen, M. Steglich, L. J. Allamandola<br />

and H. Linnartz: Photochemistry of polycyclic aromatic<br />

hydrocarbons in cosmic water ice. II. Near UV/<br />

VIS spectroscopy and ionization rates. <strong>Astronomy</strong> and<br />

Astrophysics 529, id. A46, (<strong>2011</strong>)<br />

Bovy, J., J. F. Hennawi, D. W. Hogg, A. D. Myers, J. A.<br />

Kirkpatrick, D. J. Schlegel, N. P. Ross, E. S. Sheldon, I.<br />

D. McGreer, D. P. Schneider and B. A. Weaver: Think<br />

outside the color box: probabilistic target selection<br />

and the SDSS-XDQSO quasar targeting catalog. The<br />

Astrophysical Journal 729, id. 141 (<strong>2011</strong>)<br />

Brasseur, C. M., N. F. Martin, A. V. Macciò, H.-W. Rix and<br />

X. Kang: What sets the sizes of the faintest galaxies? The<br />

Astrophysical Journal 743, id. 179, (<strong>2011</strong>)<br />

Brasseur, C. M., N. F. Martin, H.-W. Rix, M. Irwin, A. M.<br />

N. Ferguson, A. W. McConnachie and J. de Jong: A deep<br />

photometric look at two of Andromeda’s dwarf spheroidals:<br />

X and XVII. The Astrophysical Journal 729, id. 23,<br />

(<strong>2011</strong>)<br />

Bureau, M., H. Jeong, S. K. Yi, K. Schawinski, R. C. W.<br />

Houghton, R. L. Davies, R. Bacon, M. Cappellari, P. T.<br />

de Zeeuw, E. Emsellem, J. Falcón-Barroso, D. Krajnović,<br />

H. Kuntschner, R. M. McDermid, R. F. Peletier, M. Sarzi,<br />

Y.-J. Sohn, D. Thomas, R. C. E. van den Bosch and G.<br />

van de Ven: The Sauron project – XVIII. The integrated<br />

UV-line-strength relations of early-type galaxies.<br />

Monthly Notices of the Royal Astronomical Society 414,<br />

1887-1902 (<strong>2011</strong>)<br />

Cady, E., M. McElwain, N. J. Kasdin and C. Thalmann: A<br />

dual-mask coronagraph <strong>for</strong> observing faint companions<br />

to binary stars. Publications of the Astronomical Society<br />

of the Pacific 123, 333-340 (<strong>2011</strong>)<br />

Cai, Z., X. Fan, L. Jiang, F. Bian, I. McGreer, R. Davé,<br />

E. Egami, A. Zabludoff, Y. Yang and S. P. Oh: Probing<br />

population III stars in galaxy IOK-1 at z 6.96 through<br />

He II emission. The Astrophysical Journal Letters 736,<br />

id. L28 (<strong>2011</strong>)<br />

Calderone, G., L. Foschini, G. Ghisellini, M. Colpi, L.<br />

Maraschi, F. Tavecchio, R. Decarli and G. Tagliaferri:<br />

g-ray variability of radio-loud narrow-line Seyfert 1<br />

galaxies. Monthly Notices of the Royal Astronomical<br />

Society 413, 2365-2370 (<strong>2011</strong>)<br />

Cannon, J. M., H. P. Most, E. D. Skillman, D. R. Weisz, D.<br />

Cook, A. E. Dolphin, R. C. Kennicutt, J. Lee, A. Seth, F.<br />

Walter and S. R. Warren: The M 81 group dwarf irregular<br />

galaxy DDO 165. II. Connecting recent star <strong>for</strong>mation<br />

with interstellar medium structures and kinematics. The<br />

Astrophysical Journal 735, id. 36 (<strong>2011</strong>)<br />

Cannon, J. M., H. P. Most, E. D. Skillman, D. R. Weisz, D.<br />

Cook, A. E. Dolphin, R. C. Kennicutt, J. Lee, A. Seth,<br />

F. Walter and S. R. Warren: The M 81 group dwarf irregular<br />

galaxy DDO 165. I. High-velocity neutral gas in<br />

a post-starburst system. The Astrophysical Journal 735,<br />

id. 35, (<strong>2011</strong>)


Capak, P., B. Mobasher, N. Z. Scoville, H. McCracken, O.<br />

Ilbert, M. Salvato, K. Menéndez-Delmestre, H. Aussel,<br />

C. Carilli, F. Civano, M. Elvis, M. Giavalisco, E. Jullo, J.<br />

Kartaltepe, A. Leauthaud, A. M. Koekemoer, J. P. Kneib,<br />

E. LeFloch, D. B. Sanders, E. Schinnerer, Y. Shioya, P.<br />

Shopbell, Y. Tanaguchi, D. Thompson and C. J. Willott:<br />

Spectroscopy of luminous z 7 galaxy candidates and<br />

sources of contamination in z 7 galaxy searches. The<br />

Astrophysical Journal 730, id. 68 (<strong>2011</strong>)<br />

Capak, P. L., D. Riechers, N. Z. Scoville, C. Carilli, P. Cox,<br />

R. Neri, B. Robertson, M. Salvato, E. Schinnerer, L. Yan,<br />

G. W. Wilson, M. Yun, F. Civano, M. Elvis, A. Karim,<br />

B. Mobasher and J. G. Staguhn: A massive protocluster<br />

of galaxies at a redshift of z 5.3. Nature 470, 233-235<br />

(<strong>2011</strong>)<br />

Carilli, C. L., J. Hodge, F. Walter, D. Riechers, E. Daddi,<br />

H. Dannerbauer and G. E. Morrison: Expanded Very<br />

Large Array observations of a proto-cluster of molecular<br />

gas-rich galaxies at z 4.05. The Astrophysical Journal<br />

Letters 739, id. L33, (<strong>2011</strong>)<br />

Carlson, L. R., M. Sewiło, M. Meixner, K. A. Romita, B.<br />

Whitney, J. L. Hora, M. Cignoni, E. Sabbi, A. Nota, M.<br />

Sirianni, L. J. Smith, K. Gordon, B. Babler, S. Bracker,<br />

J. S. Gallagher, M. Meade, K. Misselt, A. Pasquali and B.<br />

Shiao: A panchromatic view of NGC 602: Time-resolved<br />

star <strong>for</strong>mation with the Hubble and Spitzer space telescopes.<br />

The Astrophysical Journal 730, id. 78, (<strong>2011</strong>)<br />

Carson, J. C., M. Marengo, B. M. Patten, K. L. Luhman,<br />

S. M. Sonnett, J. L. Hora, M. T. Schuster, P. R. Allen,<br />

G. G. Fazio, J. R. Stauffer and C. Schnupp: A Spitzer<br />

irac imaging survey <strong>for</strong> T dwarf companions around M,<br />

L, and T dwarfs: observations, results, and Monte Carlo<br />

population analyses. The Astrophysical Journal 743, id.<br />

141, 141 (<strong>2011</strong>)<br />

Casarini, L., G. La Vacca, L. Amendola, S. A. Bonometto<br />

and A. V. Macciò: Non-linear weak lensing <strong>for</strong>ecasts.<br />

Journal of Cosmology and Astro-Particle Physics 03, 26,<br />

(<strong>2011</strong>, online only)<br />

Casarini, L., A. V. Macciò, S. A. Bonometto and G. S.<br />

Stinson: High-accuracy power spectra including baryonic<br />

physics in dynamical Dark Energy models. Monthly<br />

Notices of the Royal Astronomical Society 412, 911-920<br />

(<strong>2011</strong>)<br />

Cesaroni, R., M. T. Beltrán, Q. Zhang, H. Beuther and C.<br />

Fallscheer: Dissecting a hot molecular core: the case of<br />

G31.41+0.31. <strong>Astronomy</strong> and Astrophysics 533, id. A73<br />

(<strong>2011</strong>)<br />

Chandar, R., B. C. Whitmore, D. Calzetti, D. Di Nino, R. C.<br />

Kennicutt, M. Regan and E. Schinnerer: New constraints<br />

on mass-dependent disruption of star clusters in M 51.<br />

The Astrophysical Journal 727, id. 88 (<strong>2011</strong>)<br />

Chapin, E. L., S. C. Chapman, K. E. Coppin, M. J. Devlin,<br />

J. S. Dunlop, T. R. Greve, M. Halpern, M. F. Hasselfield,<br />

D. H. Hughes, R. J. Ivison, G. Marsden, L. Moncelsi, C.<br />

B. Netterfield, E. Pascale, D. Scott, I. Smail, M. Viero,<br />

F. Walter, A. Weiss and P. van der Werf: A joint analysis<br />

of bLaSt 250-500 mm and Laboca 870 mm observations<br />

in the Extended chandra Deep Field-South. Monthly<br />

Notices of the Royal Astronomical Society 411, 505-549<br />

(<strong>2011</strong>)<br />

Chesneau, O., A. Meilland, D. P. K. Banerjee, J. B. Le<br />

Bouquin, H. McAlister, F. Millour, S. T. Ridgway,<br />

A. Spang, T. Ten Brummelaar, M. Wittkowski, N.<br />

M. Ashok, M. Benisty, J. P. Berger, T. Boyajian, C.<br />

Farrington, P. J. Goldfinger, A. Merand, N. Nardetto,<br />

R. Petrov, T. Rivinius, G. Schaefer, Y. Touhami and G.<br />

Zins: The <strong>2011</strong> outburst of the recurrent nova T Pyxidis.<br />

Evidence <strong>for</strong> a face-on bipolar ejection. <strong>Astronomy</strong> and<br />

Astrophysics 534, id. L11 (<strong>2011</strong>)<br />

Chonis, T. S., D. Martínez-Delgado, R. J. Gabany, S. R.<br />

Majewski, G. J. Hill, R. Gralak and I. Trujillo: A petal of<br />

the sunflower: photometry of the stellar tidal stream in<br />

the halo of Messier 63 (NGC 5055). The Astronomical<br />

Journal 142, id. 166 (<strong>2011</strong>)<br />

Chou, M.-Y., S. R. Majewski, K. Cunha, V. V. Smith, R. J.<br />

Patterson and D. Martínez-Delgado: First chemical analysis<br />

of stars in the Triangulum – Andromeda Star Cloud.<br />

The Astrophysical Journal Letters 731, id. L30, (<strong>2011</strong>)<br />

Cieza, L. A., J. Olofsson, P. M. Harvey, C. Pinte, B. Merín,<br />

J.-C. Augereau, N. J. Evans, J. Najita, T. Henning and<br />

F. Ménard: herScheL observations of the T Cha transition<br />

disk: Constraining the outer disk properties. The<br />

Astrophysical Journal Letters 741, id. L25 (<strong>2011</strong>)<br />

Cisternas, M., K. Jahnke, A. Bongiorno, K. J. Inskip, C.<br />

D. Impey, A. M. Koekemoer, A. Merloni, M. Salvato<br />

and J. R. Trump: Secular evolution and a non-evolving<br />

black-hole-to-galaxy mass ratio in the last 7 Gyr. The<br />

Astrophysical Journal Letters 741, id. L11 (<strong>2011</strong>)<br />

Cisternas, M., K. Jahnke, K. J. Inskip, J. Kartaltepe, A. M.<br />

Koekemoer, T. Lisker, A. R. Robaina, M. Scodeggio, K.<br />

Sheth, J. R. Trump, R. Andrae, T. Miyaji, E. Lusso, M.<br />

Brusa, P. Capak, N. Cappelluti, F. Civano, O. Ilbert, C.<br />

D. Impey, A. Leauthaud, S. J. Lilly, M. Salvato, N. Z.<br />

Scoville and Y. Taniguchi: The bulk of the black hole<br />

growth since z 1 occurs in a secular Universe: No major<br />

Merger-AGN connection. The Astrophysical Journal<br />

726, id. 57 (<strong>2011</strong>)<br />

Clark, D. M., S. S. Eikenberry, B. R. Brandl, J. C. Wilson, J.<br />

C. Carson, C. P. Henderson, T. L. Hayward, D. J. Barry,<br />

A. F. Ptak and E. J. M. Colbert: Multiwavelength study<br />

of chandra X-ray sources in the Antennae. Monthly<br />

Notices of the Royal Astronomical Society 410, 890-898<br />

(<strong>2011</strong>)<br />

Clayton, G. C., B. E. K. Sugerman, S. A. Stan<strong>for</strong>d, B.<br />

A. Whitney, J. Honor, B. Babler, M. J. Barlow, K. D.<br />

Gordon, J. E. Andrews, T. R. Geballe, H. E. Bond, O.<br />

De Marco, W. A. Lawson, B. Sibthorpe, G. Olofsson, E.<br />

Polehampton, H. L. Gomez, M. Matsuura, P. C. Hargrave,<br />

R. J. Ivison, R. Wesson, S. J. Leeks, B. M. Swinyard and<br />

T. L. Lim: The circumstellar environment of R Coronae<br />

Borealis: white dwarf merger or final-helium-shell flash?<br />

The Astrophysical Journal 743, id. 44 (<strong>2011</strong>)<br />

Combes, F., S. García-Burillo, J. Braine, E. Schinnerer,<br />

F. Walter and L. Colina: Galaxy evolution and star<br />

Publications 123


124 Publications<br />

<strong>for</strong>mation efficiency at 0.2 z 0.6. <strong>Astronomy</strong> and<br />

Astrophysics 528, id. A124, (<strong>2011</strong>)<br />

Comerón, S., B. G. Elmegreen, J. H. Knapen, H. Salo,<br />

E. Laurikainen, J. Laine, E. Athanassoula, A. Bosma,<br />

K. Sheth, M. W. Regan, J. L. Hinz, A. Gil de Paz,<br />

K. Menéndez-Delmestre, T. Mizusawa, J.-C. Muñoz-<br />

Mateos, M. Seibert, T. Kim, D. M. Elmegreen, D. A.<br />

Gadotti, L. C. Ho, B. W. Holwerda, J. Lappalainen,<br />

E. Schinnerer and R. Skibba: Thick disks of edge-on<br />

galaxies seen through the Spitzer Survey of stellar<br />

structure in galaxies (S4G): lair of missing baryons? The<br />

Astrophysical Journal 741, id. 28, (<strong>2011</strong>)<br />

Comerón, S., B. G. Elmegreen, J. H. Knapen, K. Sheth,<br />

J. L. Hinz, M. W. Regan, A. Gil de Paz, J.-C. Muñoz-<br />

Mateos, K. Menéndez-Delmestre, M. Seibert, T. Kim,<br />

T. Mizusawa, E. Laurikainen, H. Salo, J. Laine, E.<br />

Athanassoula, A. Bosma, R. J. Buta, D. A. Gadotti, L.<br />

C. Ho, B. Holwerda, E. Schinnerer and D. Zaritsky:<br />

The unusual vertical mass distribution of NGC 4013<br />

seen through the Spitzer Survey of stellar structure in<br />

galaxies (S4G). The Astrophysical Journal Letters 738,<br />

id. L17, (<strong>2011</strong>)<br />

Comerón, S., J. H. Knapen, K. Sheth, M. W. Regan, J.<br />

L. Hinz, A. Gil de Paz, K. Menéndez-Delmestre, J.-C.<br />

Muñoz-Mateos, M. Seibert, T. Kim, E. Athanassoula,<br />

A. Bosma, R. J. Buta, B. G. Elmegreen, L. C. Ho, B. W.<br />

Holwerda, E. Laurikainen, H. Salo and E. Schinnerer:<br />

The thick disk in the galaxy NGC 4244 from S4G imaging.<br />

The Astrophysical Journal 729, id. 18, (<strong>2011</strong>)<br />

Commerçon, B., E. Audit, G. Chabrier and J. P. Chièze:<br />

Physical and radiative properties of the first-core accretion<br />

shock. <strong>Astronomy</strong> and Astrophysics 530, id. A13,<br />

(<strong>2011</strong>)<br />

Commerçon, B., P. Hennebelle and T. Henning: Collapse<br />

of massive magnetized dense cores using radiation magnetohydrodynamics:<br />

Early fragmentation inhibition. The<br />

Astrophysical Journal Letters 742, id. L9 (<strong>2011</strong>)<br />

Commerçon, B., R. Teyssier, E. Audit, P. Hennebelle and<br />

G. Chabrier: Radiation hydrodynamics with adaptive<br />

mesh refinement and application to prestellar core collapse.<br />

I. Methods. <strong>Astronomy</strong> and Astrophysics 529, id.<br />

A35 (<strong>2011</strong>)<br />

Conn, A. R., G. F. Lewis, R. A. Ibata, Q. A. Parker, D.<br />

B. Zucker, A. W. McConnachie, N. F. Martin, M. J.<br />

Irwin, N. Tanvir, M. A. Fardal and A. M. N. Ferguson:<br />

A Bayesian approach to locating the red giant branch<br />

tip magnitude. I. The Astrophysical Journal 740, id. 69,<br />

(<strong>2011</strong>)<br />

Conn, B. C., A. Pasquali, E. Pompei, R. R. Lane, A.-N.<br />

Chené, R. Smith and G. F. Lewis: A new collisional ring<br />

galaxy at z 0.111: Auriga’s Wheel. The Astrophysical<br />

Journal 741, id. 80, (<strong>2011</strong>)<br />

Cooper, A. P., D. Martínez-Delgado, J. Helly, C. Frenk, S.<br />

Cole, K. Craw<strong>for</strong>d, S. Zibetti, J. A. Carballo-Bello and<br />

R. J. GaBany: The <strong>for</strong>mation of shell galaxies similar<br />

to NGC 7600 in the cold dark matter cosmogony. The<br />

Astrophysical Journal Letters 743, id. L21 (<strong>2011</strong>)<br />

Costa, E., R. A. Méndez, M. H. Pedreros, M. Moyano, C.<br />

Gallart and N. Noël: The proper motion of the Magellanic<br />

Clouds. II. New results <strong>for</strong> five Small Magellanic Cloud<br />

Fields. The Astronomical Journal 141, id. 136, (<strong>2011</strong>)<br />

Currie, T., C. M. Lisse, A. Sicilia-Aguilar, G. H. Rieke and<br />

K. Y. L. Su: Spitzer Infrared Spectrograph spectroscopy<br />

of the 10 Myr Old EF Cha debris disk: Evidence<br />

<strong>for</strong> phyllosilicate-rich dust in the terrestrial zone. The<br />

Astrophysical Journal 734, id. 115, (<strong>2011</strong>)<br />

Currie, T. and A. Sicilia-Aguilar: The transitional protoplanetary<br />

disk frequency as a function of age: Disk evolution<br />

in the Coronet Cluster, Taurus, and other 1-8 Myr old<br />

regions. The Astrophysical Journal 732, id. 24, (<strong>2011</strong>)<br />

Damen, M., I. Labbé, P. G. van Dokkum, M. Franx, E. N.<br />

Taylor, W. N. Brandt, M. Dickinson, E. Gawiser, G.<br />

D. Illingworth, M. Kriek, D. Marchesini, A. Muzzin,<br />

C. Papovich and H. W. Rix: The SimpLe Survey:<br />

Observations, reduction, and catalog. The Astrophysical<br />

Journal 727, id. 1 (<strong>2011</strong>)<br />

de Pater, I., M. H. Wong, K. de Kleer, H. B. Hammel,<br />

M. Ádámkovics and A. Conrad: Keck adaptive optics images<br />

of Jupiter’s north polar cap and Northern Red Oval.<br />

Icarus 213, 559-563 (<strong>2011</strong>)<br />

De Rosa, G., R. Decarli, F. Walter, X. Fan, L. Jiang, J. Kurk,<br />

A. Pasquali and H. W. Rix: Evidence <strong>for</strong> non-evolving<br />

Fe II/Mg II ratios in rapidly accreting z 6 QSOs. The<br />

Astrophysical Journal 739, id. 56, (<strong>2011</strong>)<br />

de Zeeuw, P. T. and G. van de Ven: Grigori Kuzmin and<br />

stellar dynamics. Baltic <strong>Astronomy</strong> 20, 211-220 (<strong>2011</strong>)<br />

Deacon, N. R., M. C. Liu, E. A. Magnier, B. P. Bowler, B.<br />

Goldman, J. A. Redstone, W. S. Burgett, K. C. Chambers,<br />

H. Flewelling, N. Kaiser, R. H. Lupton, J. S. Morgan, P.<br />

A. Price, W. E. Sweeney, J. L. Tonry, R. J. Wainscoat and<br />

C. Waters: Four new T dwarfs identified in Pan-StarrS 1<br />

commissioning data. The Astronomical Journal 142, id.<br />

77, (<strong>2011</strong>)<br />

Decarli, R., M. Dotti and A. Treves: Geometry and inclination<br />

of the broad-line region in blazars. Monthly Notices<br />

of the Royal Astronomical Society 413, 39-46 (<strong>2011</strong>)<br />

Defrère, D., O. Absil, J. C. Augereau, E. di Folco, J. P.<br />

Berger, V. Coudé Du Foresto, P. Kervella, J. B. Le<br />

Bouquin, J. Lebreton, R. Millan-Gabet, J. D. Monnier,<br />

J. Olofsson and W. Traub: Hot exozodiacal dust resolved<br />

around Vega with iota/ionic. <strong>Astronomy</strong> and<br />

Astrophysics 534, id. A5, (<strong>2011</strong>)<br />

Desidera, S., E. Covino, S. Messina, V. D’Orazi D’Orazi,<br />

J. M. Alcalá, E. Brugaletta, J. Carson, A. C. Lanzafame<br />

and R. Launhardt: The debris disk host star HD 61005:<br />

a member of the Argus association? <strong>Astronomy</strong> and<br />

Astrophysics 529, id. A54 (<strong>2011</strong>)<br />

Dominik, C. and C. P. Dullemond: Accretion through the<br />

inner hole of transitional disks: what happens to the dust?<br />

<strong>Astronomy</strong> and Astrophysics 531, id. A101, (<strong>2011</strong>)<br />

Dong, X.-B., J.-G. Wang, L. C. Ho, T.-G. Wang, X. Fan,<br />

H. Wang, H. Zhou and W. Yuan: What controls the Fe<br />

II strength in active galactic nuclei? The Astrophysical<br />

Journal 736, id. 86, (<strong>2011</strong>)


Dumas, G., E. Schinnerer, F. S. Tabatabaei, R. Beck, T.<br />

Velusamy and E. Murphy: The local radio-IR relation in<br />

M 51. The Astronomical Journal 141, id. 41, (<strong>2011</strong>)<br />

Dumusque, X., C. Lovis, D. Ségransan, M. Mayor, S. Udry,<br />

W. Benz, F. Bouchy, G. Lo Curto, C. Mordasini, F. Pepe,<br />

D. Queloz, N. C. Santos and D. Naef: The Harps search<br />

<strong>for</strong> southern extra-solar planets. XXX. Planetary systems<br />

around stars with solar-like magnetic cycles and shortterm<br />

activity variation. <strong>Astronomy</strong> and Astrophysics 535,<br />

id. A55, (<strong>2011</strong>)<br />

Dunne, L., H. L. Gomez, E. da Cunha, S. Charlot, S.<br />

Dye, S. Eales, S. J. Maddox, K. Rowlands, D. J. B.<br />

Smith, R. Auld, M. Baes, D. G. Bonfield, N. Bourne, S.<br />

Buttiglione, A. Cava, D. L. Clements, K. E. K. Coppin,<br />

A. Cooray, A. Dariush, G. de Zotti, S. Driver, J. Fritz, J.<br />

Geach, R. Hopwood, E. Ibar, R. J. Ivison, M. J. Jarvis, L.<br />

Kelvin, E. Pascale, M. Pohlen, C. Popescu, E. E. Rigby,<br />

A. Robotham, G. Rodighiero, A. E. Sansom, S. Serjeant,<br />

P. Temi, M. Thompson, R. Tuffs, P. van der Werf and C.<br />

Vlahakis: herScheL-atLaS: rapid evolution of dust in<br />

galaxies over the last 5 billion years. Monthly Notices of<br />

the Royal Astronomical Society 417, 1510-1533 (<strong>2011</strong>)<br />

Dutrey, A., V. Wakelam, Y. Boehler, S. Guilloteau, F.<br />

Hersant, D. Semenov, E. Chapillon, T. Henning, V. Piétu,<br />

R. Launhardt, F. Gueth and K. Schreyer: Chemistry in<br />

disks. V. Sulfur-bearing molecules in the protoplanetary<br />

disks surrounding LkCa15, MWC480, DM Tauri, and<br />

GO Tauri. <strong>Astronomy</strong> and Astrophysics 535, id. A104,<br />

(<strong>2011</strong>)<br />

Dwek, E., J. G. Staguhn, R. G. Arendt, P. L. Capak, A.<br />

Kovacs, D. J. Ben<strong>for</strong>d, D. Fixsen, A. Karim, S. Leclercq,<br />

S. F. Maher, S. H. Moseley, E. Schinnerer and E. H.<br />

Sharp: Star and dust <strong>for</strong>mation activities in AzTEC-3,<br />

a starburst galaxy at z 5.3. The Astrophysical Journal<br />

738, id. 36, (<strong>2011</strong>)<br />

Eisenstein, D. J., D. H. Weinberg, E. Agol, H. Aihara, C.<br />

Allende Prieto, S. F. Anderson, J. A. Arns, É. Aubourg,<br />

S. Bailey, E. Balbinot, R. Barkhouser, T. C. Beers, A. A.<br />

Berlind, S. J. Bickerton, D. Bizyaev, M. R. Blanton, J. J.<br />

Bochanski, A. S. Bolton, C. T. Bosman, J. Bovy, W. N.<br />

Brandt, B. Breslauer, H. J. Brewington, J. Brinkmann,<br />

P. J. Brown, J. R. Brownstein, D. Burger, N. G. Busca,<br />

H. Campbell, P. A. Cargile, W. C. Carithers, J. K.<br />

Carlberg, M. A. Carr, L. Chang, Y. Chen, C. Chiappini,<br />

J. Comparat, N. Connolly, M. Cortes, R. A. C. Croft, K.<br />

Cunha, L. N. da Costa, J. R. A. Davenport, K. Dawson,<br />

N. De Lee, G. F. Porto de Mello, F. de Simoni, J. Dean, S.<br />

Dhital, A. Ealet, G. L. Ebelke, E. M. Edmondson, J. M.<br />

Eiting, S. Escoffier, M. Esposito, M. L. Evans, X. Fan, B.<br />

Femenía Castellá, L. Dutra Ferreira, G. Fitzgerald, S. W.<br />

Fleming, A. Font-Ribera, E. B. Ford, P. M. Frinchaboy,<br />

A. Elia García Pérez, B. S. Gaudi, J. Ge, L. Ghezzi, B. A.<br />

Gillespie, G. Gilmore, L. Girardi, J. R. Gott, A. Gould,<br />

E. K. Grebel, J. E. Gunn, J.-C. Hamilton, P. Harding, D.<br />

W. Harris, S. L. Hawley, F. R. Hearty, J. F. Hennawi, J. I.<br />

González Hernández, S. Ho, D. W. Hogg, J. A. Holtzman,<br />

K. Honscheid, N. Inada, I. I. Ivans, L. Jiang, P. Jiang, J.<br />

A. Johnson, C. Jordan, W. P. Jordan, G. Kauffmann,<br />

E. Kazin, D. Kirkby, M. A. Klaene, G. R. Knapp, J.-P.<br />

Kneib, C. S. Kochanek, L. Koesterke, J. A. Kollmeier,<br />

R. G. Kron, H. Lampeitl, D. Lang, J. E. Lawler, J.-M. Le<br />

Goff, B. L. Lee, Y. S. Lee, J. M. Leisenring, Y.-T. Lin, J.<br />

Liu, D. C. Long, C. P. Loomis, S. Lucatello, B. Lundgren,<br />

R. H. Lupton, B. Ma, Z. Ma, N. MacDonald, C. Mack, S.<br />

Mahadevan, M. A. G. Maia, S. R. Majewski, M. Makler,<br />

E. Malanushenko, V. Malanushenko, R. Mandelbaum, C.<br />

Maraston, D. Margala, P. Maseman, K. L. Masters, C. K.<br />

McBride, P. McDonald, I. D. McGreer, R. G. McMahon,<br />

O. Mena Requejo, B. Ménard, J. Miralda-Escudé, H.<br />

L. Morrison, F. Mullally, D. Muna, H. Murayama,<br />

A. D. Myers, T. Naugle, A. Fausti Neto, D. Cuong<br />

Nguyen, R. C. Nichol, D. L. Nidever, R. W. O’Connell,<br />

R. L. C. Ogando, M. D. Olmstead, D. J. Oravetz, N.<br />

Padmanabhan, M. Paegert, N. Palanque-Delabrouille,<br />

K. Pan, P. Pandey, J. K. Parejko, I. Pâris, P. Pellegrini, J.<br />

Pepper, W. J. Percival, P. Petitjean, R. Pfaffenberger, J.<br />

P<strong>for</strong>r, S. Phleps, C. Pichon, M. M. Pieri, F. Prada, A. M.<br />

Price-Whelan, M. J. Raddick, B. H. F. Ramos, I. N. Reid,<br />

C. Reyle, J. Rich, G. T. Richards, G. H. Rieke, M. J.<br />

Rieke, H.-W. Rix, A. C. Robin, H. J. Rocha-Pinto, C. M.<br />

Rockosi, N. A. Roe, E. Rollinde, A. J. Ross, N. P. Ross,<br />

B. Rossetto, A. G. Sánchez, B. Santiago, C. Sayres, R.<br />

Schiavon, D. J. Schlegel, K. J. Schlesinger, S. J. Schmidt,<br />

D. P. Schneider, K. Sellgren, A. Shelden, E. Sheldon,<br />

M. Shetrone, Y. Shu, J. D. Silverman, J. Simmerer, A.<br />

E. Simmons, T. Sivarani, M. F. Skrutskie, A. Slosar, S.<br />

Smee, V. V. Smith, S. A. Snedden, K. G. Stassun, O.<br />

Steele, M. Steinmetz, M. H. Stockett, T. Stollberg, M.<br />

A. Strauss, A. S. Szalay, M. Tanaka, A. R. Thakar, D.<br />

Thomas, J. L. Tinker, B. M. Tofflemire, R. Tojeiro, C. A.<br />

Tremonti, Vargas Magaña, Mariana, L. Verde, N. P. Vogt,<br />

D. A. Wake, X. Wan, J. Wang, B. A. Weaver, M. White,<br />

S. D. M. White, J. C. Wilson, J. P. Wisniewski, W. M.<br />

Wood-Vasey, B. Yanny, N. Yasuda, C. Yèche, D. G. York,<br />

E. Young, G. Zasowski, I. Zehavi and B. Zhao: SDSS-III:<br />

Massive spectroscopic surveys of the distant Universe,<br />

the Milky Way, and extra-solar planetary systems. The<br />

Astronomical Journal 142, id. 72, (<strong>2011</strong>)<br />

El-Kork, N., F. Huisken and C. von Borczyskowski:<br />

Dielectric effects on the optical properties of single<br />

silicon nanocrystals. Journal of Applied Physics 110,<br />

074312-074312-9 (<strong>2011</strong>)<br />

Ellerbroek, L. E., L. Kaper, A. Bik, A. de Koter, M. Horrobin,<br />

E. Puga, H. Sana and L. B. F. M. Waters: The intermediate-mass<br />

young stellar object 08576nr292: Discovery of<br />

a disk-jet system. The Astrophysical Journal Letters 732,<br />

id. L9 (<strong>2011</strong>)<br />

Elmegreen, D. M., B. G. Elmegreen, A. Yau, E. Athanassoula,<br />

A. Bosma, R. J. Buta, G. Helou, L. C. Ho, D. A. Gadotti,<br />

J. H. Knapen, E. Laurikainen, B. F. Madore, K. L.<br />

Masters, S. E. Meidt, K. Menéndez-Delmestre, M. W.<br />

Regan, H. Salo, K. Sheth, D. Zaritsky, M. Aravena,<br />

R. Skibba, J. L. Hinz, J. Laine, A. Gil de Paz, J.-C.<br />

Muñoz-Mateos, M. Seibert, T. Mizusawa, T. Kim and S.<br />

Publications 125


126 Publications<br />

Erroz Ferrer: Grand design and flocculent spirals in the<br />

Spitzer Survey of stellar structure in galaxies (S4G).<br />

The Astrophysical Journal 737, id. 32, (<strong>2011</strong>)<br />

Emsellem, E., M. Cappellari, D. Krajnović, K. Alatalo, L.<br />

Blitz, M. Bois, F. Bournaud, M. Bureau, R. L. Davies,<br />

T. A. Davis, P. T. de Zeeuw, S. Khochfar, H. Kuntschner,<br />

P.-Y. Lablanche, R. M. McDermid, R. Morganti, T.<br />

Naab, T. Oosterloo, M. Sarzi, N. Scott, P. Serra, G.<br />

van de Ven, A.-M. Weijmans and L. M. Young: The<br />

atLaS3D project – III. A census of the stellar angular<br />

momentum within the effective radius of early-type galaxies:<br />

unveiling the distribution of fast and slow rotators.<br />

Monthly Notices of the Royal Astronomical Society<br />

414, 888-912 (<strong>2011</strong>)<br />

Enke, H., M. Steinmetz, H.-M. Adorf, A. Beck-Ratzka, F.<br />

Breitling, T. Brüsemeister, A. Carlson, T. Ensslin, M.<br />

Högqvist, I. Nickelt, T. Radke, A. Reinefeld, A. Reiser,<br />

T. Scholl, R. Spurzem, J. Steinacker, W. Voges, J.<br />

Wambsganß and S. White: AstroGrid-D: Grid technology<br />

<strong>for</strong> astronomical science. New <strong>Astronomy</strong> 16, 79-93<br />

(<strong>2011</strong>)<br />

Ernst, A., A. Just, P. Berczik and C. Olczak: Simulations of<br />

the Hyades. <strong>Astronomy</strong> and Astrophysics 536, id. A64<br />

(<strong>2011</strong>)<br />

Falcón-Barroso, J., G. van de Ven, R. F. Peletier, M. Bureau,<br />

H. Jeong, R. Bacon, M. Cappellari, R. L. Davies, P. T.<br />

de Zeeuw, E. Emsellem, D. Krajnović, H. Kuntschner,<br />

R. M. McDermid, M. Sarzi, K. L. Shapiro, R. C. E. van<br />

den Bosch, G. van der Wolk, A. Weijmans and S. Yi: The<br />

Sauron project – XIX. Optical and near-infrared scaling<br />

relations of nearby elliptical, lenticular and Sa galaxies.<br />

Monthly Notices of the Royal Astronomical Society 417,<br />

1787-1816 (<strong>2011</strong>)<br />

Fallscheer, C., H. Beuther, J. Sauter, S. Wolf and Q. Zhang:<br />

A high-mass dusty disk cndidate: The case of iraS<br />

18151-1208. The Astrophysical Journal 729, id. 66,<br />

(<strong>2011</strong>)<br />

Faure, C., T. Anguita, D. Alloin, K. Bundy, A. Finoguenov,<br />

A. Leauthaud, C. Knobel, J. P. Kneib, E. Jullo, O. Ilbert,<br />

A. M. Koekemoer, P. Capak, N. Scoville and L. A. M.<br />

Tasca: On the evolution of environmental and mass properties<br />

of strong lens galaxies in coSmoS. <strong>Astronomy</strong> and<br />

Astrophysics 529, id. A72, (<strong>2011</strong>)<br />

Fendt, C.: Jet rotation driven by magnetohydrodynamic<br />

shocks in helical magnetic fields. The Astrophysical<br />

Journal 737, id. 43, (<strong>2011</strong>)<br />

Fendt, C.: Formation of magnetohydrodynamic jets: flares<br />

as triggers of internal shocks. Memorie della Societa<br />

Astronomica Italiana 82, 112-119 (<strong>2011</strong>)<br />

Feoli, A. and L. Mancini: A fundamental equation <strong>for</strong> supermassive<br />

black holes. International Journal of Modern<br />

Physics D 20, 2305-2315 (<strong>2011</strong> )<br />

Flaherty, K. M., J. Muzerolle, G. Rieke, R. Gutermuth, Z.<br />

Balog, W. Herbst, S. T. Megeath and M. Kun: The highly<br />

dynamic behavior of the innermost dust and gas in the<br />

transition disk variable LRLL 31. The Astrophysical<br />

Journal 732, id. 83, (<strong>2011</strong>)<br />

Flock, M., N. Dzyurkevich, H. Klahr, N. J. Turner and T.<br />

Henning: Turbulence and steady flows in three-dimensional<br />

global stratified magnetohydrodynamic simulations<br />

of accretion disks. The Astrophysical Journal 735,<br />

id. 122, (<strong>2011</strong>)<br />

Fogel, J. K. J., T. J. Bethell, E. A. Bergin, N. Calvet and D.<br />

Semenov: Chemistry of a protoplanetary disk with grain<br />

settling and Lya radiation. The Astrophysical Journal<br />

726, id. 29 (<strong>2011</strong>)<br />

Fontanot, F., A. Pasquali, G. De Lucia, F. C. van den Bosch,<br />

R. S. Somerville and X. Kang: The dependence of AGN<br />

activity on stellar and halo mass in semi-analytic models.<br />

Monthly Notices of the Royal Astronomical Society 413,<br />

957-970 (<strong>2011</strong>)<br />

Fontanot, F. and R. S. Somerville: Evaluating and improving<br />

semi-analytic modelling of dust in galaxies based on<br />

radiative transfer calculations – II. Dust emission in the<br />

infrared. Monthly Notices of the Royal Astronomical<br />

Society 416, 2962-2973 (<strong>2011</strong>)<br />

Foppiani, I., J. M. Hill, M. Lombini, G. Bregoli, G.<br />

Cosentino, E. Diolaiti, T. M. Herbst, G. Innocenti, D.<br />

Meschke, D. L. Miller, R.-R. Rohloff and L. Schreiber:<br />

An instrument <strong>for</strong> commissioning the active and adaptive<br />

optics of modern telescopes: the Infrared Test Camera <strong>for</strong><br />

the Large Binocular Telescope. Experimental <strong>Astronomy</strong><br />

31, 115-130 (<strong>2011</strong>)<br />

Foyle, K., H. W. Rix, C. L. Dobbs, A. K. Leroy and F.<br />

Walter: Observational evidence against long-lived spiral<br />

arms in galaxies. The Astrophysical Journal 735, id. 101,<br />

(<strong>2011</strong>)<br />

Froebrich, D., C. J. Davis, G. Ioannidis, T. M. Gledhill,<br />

M. Takami, A. Chrysostomou, J. Drew, J. Eislöffel, A.<br />

Gosling, R. Gredel, J. Hatchell, K. W. Hodapp, M. S. N.<br />

Kumar, P. W. Lucas, H. Matthews, M. G. Rawlings, M.<br />

D. Smith, B. Stecklum, W. P. Varricatt, H. T. Lee, P. S.<br />

Teixeira, C. Aspin, T. Khanzadyan, J. Karr, H. J. Kim,<br />

B. C. Koo, J. J. Lee, Y. H. Lee, T. Y. Magakian, T. A.<br />

Movsessian, E. H. Nikogossian, T. S. Pyo and T. Stanke:<br />

UWISH2 – the uKirt widefield infrared survey <strong>for</strong> H 2 .<br />

Monthly Notices of the Royal Astronomical Society 413,<br />

480-492 (<strong>2011</strong>)<br />

Fu, H., A. D. Myers, S. G. Djorgovski and L. Yan: Mergers<br />

in double-peaked [O III] active galactic nuclei. The<br />

Astrophysical Journal 733, id. 103, (<strong>2011</strong>)<br />

Fu, H., Z.-Y. Zhang, R. J. Assef, A. Stockton, A. D. Myers,<br />

L. Yan, S. G. Djorgovski, J. M. Wrobel and D. A.<br />

Riechers: A kiloparsec-scale binary active galactic nucleus<br />

confirmed by the Expanded Very Large Array. The<br />

Astrophysical Journal Letters 740, id. L44 (<strong>2011</strong>)<br />

Gadallah, K. A. K., H. Mutschke and C. Jäger: UV irradiated<br />

hydrogenated amorphous carbon (HAC) materials as<br />

a carrier candidate of the interstellar UV bump at 217.5<br />

nm. <strong>Astronomy</strong> and Astrophysics 528, id. A56 (<strong>2011</strong>)<br />

Gennaro, M., W. Brandner, A. Stolte and T. Henning:<br />

Mass segregation and elongation of the starburst cluster<br />

Westerlund 1. Monthly Notices of the Royal Astronomical<br />

Society 412, 2469-2488 (<strong>2011</strong>)


Gielen, C., J. Bouwman, H. van Winckel, T. Lloyd Evans,<br />

P. M. Woods, F. Kemper, M. Marengo, M. Meixner, G.<br />

C. Sloan and A. G. G. M. Tielens: Silicate features in<br />

galactic and extragalactic post-AGB discs. <strong>Astronomy</strong><br />

and Astrophysics 533, id. A99 (<strong>2011</strong>)<br />

Gielen, C., J. Cami, J. Bouwman, E. Peeters and M. Min:<br />

Carbonaceous molecules in the oxygen-rich circumstellar<br />

environment of binary post-AGB stars. C60 fullerenes<br />

and polycyclic aromatic hydrocarbons. <strong>Astronomy</strong><br />

and Astrophysics 536, id. A54, (<strong>2011</strong>)<br />

Gordon, K. D., M. Meixner, M. R. Meade, B. Whitney,<br />

C. Engelbracht, C. Bot, M. L. Boyer, B. Lawton, M.<br />

Sewiło, B. Babler, J. P. Bernard, S. Bracker, M. Block,<br />

R. Blum, A. Bolatto, A. Bonanos, J. Harris, J. L. Hora,<br />

R. Indebetouw, K. Misselt, W. Reach, B. Shiao, X.<br />

Tielens, L. Carlson, E. Churchwell, G. C. Clayton, C.<br />

H. R. Chen, M. Cohen, Y. Fukui, V. Gorjian, S. Hony,<br />

F. P. Israel, A. Kawamura, F. Kemper, A. Leroy, A. Li,<br />

S. Madden, A. R. Marble, I. McDonald, A. Mizuno, N.<br />

Mizuno, E. Muller, J. M. Oliveira, K. Olsen, T. Onishi,<br />

R. Paladini, D. Paradis, S. Points, T. Robitaille, D.<br />

Rubin, K. Sandstrom, S. Sato, H. Shibai, J. D. Simon,<br />

L. J. Smith, S. Srinivasan, U. Vijh, S. Van Dyk, J. T. van<br />

Loon and D. Zaritsky: Surveying the agents of galaxy<br />

evolution in the tidally stripped, low metallicity Small<br />

Magellanic Cloud (SAGE-SMC). I. Overview. The<br />

Astronomical Journal 142, id. 102 (<strong>2011</strong>)<br />

Goto, M., Z. Regály, C. P. Dullemond, M. van den Ancker,<br />

J. M. Brown, A. Carmona, K. Pontoppidan, P. Ábrahám,<br />

G. A. Blake, D. Fedele, T. Henning, A. Juhász, Á.<br />

Kóspál, L. Mosoni, A. Sicilia-Aguilar, H. Terada, R. van<br />

Boekel, E. F. van Dishoeck and T. Usuda: Fundamental<br />

vibrational transition of CO during the outburst of EX<br />

Lupi in 2008. The Astrophysical Journal 728, id. 5<br />

(<strong>2011</strong>)<br />

Goto, M., T. Usuda, T. R. Geballe, N. Indriolo, B. J. McCall,<br />

T. Henning and T. Oka: Absorption-line survey of H 3 +<br />

toward the Galactic center sources. III. Extent of warm<br />

and diffuse clouds. Publications of the Astronomical<br />

Society of Japan 63, L13-L17 (<strong>2011</strong>)<br />

Gouliermis, D. A.: Resolved young stellar populations in<br />

star-<strong>for</strong>ming regions of the Magellanic Clouds. Physica<br />

Scripta 84, 048401 (<strong>2011</strong>), (<strong>2011</strong>)<br />

Gouliermis, D. A.: Resolved young stellar populations in<br />

star-<strong>for</strong>ming regions of the Magellanic Clouds. Physica<br />

Scripta 84, 048401, (<strong>2011</strong> online)<br />

Gouliermis, D. A., A. E. Dolphin, M. Robberto, R. A.<br />

Gruendl, Y.-H. Chu, M. Gennaro, T. Henning, M.<br />

Rosa, N. Da Rio, W. Brandner, M. Romaniello, G.<br />

De Marchi, N. Panagia and H. Zinnecker: Pre-mainsequence<br />

stellar populations across shapley constellation<br />

III. I. Photometric analysis and identification. The<br />

Astrophysical Journal 738, id. 137 (<strong>2011</strong>)<br />

Gredel, R., Y. Carpentier, G. Rouillé, M. Steglich, F.<br />

Huisken and T. Henning: Abundances of PAHs in the<br />

ISM: confronting observations with experimental results.<br />

<strong>Astronomy</strong> and Astrophysics 530, id. A26, (<strong>2011</strong>)<br />

Green, J. D., N. J. Evans, II, Á. Kóspál, T. A. van Kempen,<br />

G. Herczeg, S. P. Quanz, T. Henning, J.-E. Lee, M. M.<br />

Dunham, G. Meeus, J. Bouwman, E. van Dishoeck, J.-H.<br />

Chen, M. Güdel, S. L. Skinner, M. Merello, D. Pooley, L.<br />

M. Rebull and S. Guieu: Disentangling the environment<br />

of the FU Orionis candidate HBC 722 with herScheL.<br />

The Astrophysical Journal Letters 731, id. L25 (<strong>2011</strong>)<br />

Grellmann, R., T. Ratzka, S. Kraus, H. Linz, T. Preibisch<br />

and G. Weigelt: Mid-infrared interferometry of the massive<br />

young stellar object NGC 2264 IRS 1. <strong>Astronomy</strong><br />

and Astrophysics 532, id. A109 (<strong>2011</strong>)<br />

Groenewegen, M. A. T., C. Waelkens, M. J. Barlow, F.<br />

Kerschbaum, P. Garcia-Lario, J. Cernicharo, J. A. D. L.<br />

Blommaert, J. Bouwman, M. Cohen, N. Cox, L. Decin,<br />

K. Exter, W. K. Gear, H. L. Gomez, P. C. Hargrave, T.<br />

Henning, D. Hutsemékers, R. J. Ivison, A. Jorissen, O.<br />

Krause, D. Ladjal, S. J. Leeks, T. L. Lim, M. Matsuura,<br />

Y. Nazé, G. Olofsson, R. Ottensamer, E. Polehampton, T.<br />

Posch, G. Rauw, P. Royer, B. Sibthorpe, B. M. Swinyard,<br />

T. Ueta, C. Vamvatira-Nakou, B. Vandenbussche, G. C.<br />

van de Steene, S. van Eck, P. A. M. van Hoof, H. van<br />

Winckel, E. Verdugo and R. Wesson: MESS (Mass-loss<br />

of Evolved StarS), a herScheL key program. <strong>Astronomy</strong><br />

and Astrophysics 526, id. A162 (<strong>2011</strong>)<br />

Grogin, N. A., D. D. Kocevski, S. M. Faber, H. C. Ferguson,<br />

A. M. Koekemoer, A. G. Riess, V. Acquaviva, D. M.<br />

Alexander, O. Almaini, M. L. N. Ashby, M. Barden,<br />

E. F. Bell, F. Bournaud, T. M. Brown, K. I. Caputi, S.<br />

Casertano, P. Cassata, M. Castellano, P. Challis, R.-R.<br />

Chary, E. Cheung, M. Cirasuolo, C. J. Conselice, A.<br />

Roshan Cooray, D. J. Croton, E. Daddi, T. Dahlen,<br />

R. Davé, D. F. de Mello, A. Dekel, M. Dickinson, T.<br />

Dolch, J. L. Donley, J. S. Dunlop, A. A. Dutton, D.<br />

Elbaz, G. G. Fazio, A. V. Filippenko, S. L. Finkelstein,<br />

A. Fontana, J. P. Gardner, P. M. Garnavich, E. Gawiser,<br />

M. Giavalisco, A. Grazian, Y. Guo, N. P. Hathi, B.<br />

Häussler, P. F. Hopkins, J.-S. Huang, K.-H. Huang, S.<br />

W. Jha, J. S. Kartaltepe, R. P. Kirshner, D. C. Koo, K.<br />

Lai, K.-S. Lee, W. Li, J. M. Lotz, R. A. Lucas, P. Madau,<br />

P. J. McCarthy, E. J. McGrath, D. H. McIntosh, R. J.<br />

McLure, B. Mobasher, L. A. Moustakas, M. Mozena,<br />

K. Nandra, J. A. Newman, S.-M. Niemi, K. G. Noeske,<br />

C. J. Papovich, L. Pentericci, A. Pope, J. R. Primack,<br />

A. Rajan, S. Ravindranath, N. A. Reddy, A. Renzini,<br />

H.-W. Rix, A. R. Robaina, S. A. Rodney, D. J. Rosario,<br />

P. Rosati, S. Salimbeni, C. Scarlata, B. Siana, L. Simard,<br />

J. Smidt, R. S. Somerville, H. Spinrad, A. N. Straughn,<br />

L.-G. Strolger, O. Tel<strong>for</strong>d, H. I. Teplitz, J. R. Trump, A.<br />

van der Wel, C. Vill<strong>for</strong>th, R. H. Wechsler, B. J. Weiner, T.<br />

Wiklind, V. Wild, G. Wilson, S. Wuyts, H.-J. Yan and M.<br />

S. Yun: candeLS: The Cosmic Assembly Near-infrared<br />

Deep Extragalactic Legacy Survey. The Astrophysical<br />

Journal Supplement Series 197, id. 35 (<strong>2011</strong>)<br />

Györy, Z., A. S. Szalay, T. Budavári, I. Csabai and S.<br />

Charlot: Correlations between nebular emission and<br />

the continuum spectral shape in SDSS galaxies. The<br />

Astronomical Journal 141, id. 133 (<strong>2011</strong>)<br />

Publications 127


128 Publications<br />

Hansen, S. H., A. V. Macciò, E. Romano-Diaz, Y. Hoffman,<br />

M. Brüggen, E. Scannapieco and G. S. Stinson: The<br />

temperature of hot gas in galaxies and clusters: Baryons<br />

dancing to the tune of dark matter. The Astrophysical<br />

Journal 734, id. 62 (<strong>2011</strong>)<br />

Hashimoto, J., M. Tamura, T. Muto, T. Kudo, M. Fukagawa,<br />

T. Fukue, M. Goto, C. A. Grady, T. Henning, K. Hodapp,<br />

M. Honda, S. Inutsuka, E. Kokubo, G. Knapp, M. W.<br />

McElwain, M. Momose, N. Ohashi, Y. K. Okamoto, M.<br />

Takami, E. L. Turner, J. Wisniewski, M. Janson, L. Abe,<br />

W. Brandner, J. Carson, S. Egner, M. Feldt, T. Golota,<br />

O. Guyon, Y. Hayano, M. Hayashi, S. Hayashi, M. Ishii,<br />

R. Kandori, N. Kusakabe, T. Matsuo, S. Mayama, S.<br />

Miyama, J. I. Morino, A. Moro-Martin, T. Nishimura,<br />

T. S. Pyo, H. Suto, R. Suzuki, N. Takato, H. Terada, C.<br />

Thalmann, D. Tomono, M. Watanabe, T. Yamada, H.<br />

Takami and T. Usuda: Direct imaging of fine structures<br />

in giant planet-<strong>for</strong>ming regions of the protoplanetary disk<br />

around Since Aurigae. The Astrophysical Journal Letters<br />

729, id. L17 (<strong>2011</strong>)<br />

Haslinger, S., R. Amsüss, C. Koller, C. Hufnagel, N. Lippok,<br />

J. Majer, J. Verdu, S. Schneider and J. Schmiedmayer:<br />

Electron beam driven alkali metal atom source <strong>for</strong> loading<br />

a magneto-optical trap in a cryogenic environment.<br />

Applied Physics B: Lasers and Optics 102, 819-823<br />

(<strong>2011</strong>)<br />

Hayfield, T., L. Mayer, J. Wadsley and A. C. Boley: The<br />

properties of pre-stellar discs in isolated and multiple<br />

pre-stellar systems. Monthly Notices of the Royal<br />

Astronomical Society 417, 1839-1852 (<strong>2011</strong>)<br />

Hennebelle, P., B. Commerçon, M. Joos, R. S. Klessen, M.<br />

Krumholz, J. C. Tan and R. Teyssier: Collapse, outflows<br />

and fragmentation of massive, turbulent and magnetized<br />

prestellar barotropic cores. <strong>Astronomy</strong> and Astrophysics<br />

528, id. A72 ( (<strong>2011</strong>)<br />

Hodge, J. A., R. H. Becker, R. L. White, G. T. Richards<br />

and G. R. Zeimann: High-resolution Very Large Array<br />

Imaging of Sloan Digital Sky Survey Stripe 82 at 1.4<br />

GHz. The Astronomical Journal 142, id. 3 (<strong>2011</strong>)<br />

Hönig, S. F., C. Leipski, R. Antonucci and M. Haas:<br />

Quantifying the anisotropy in the infrared emission<br />

of powerful active galactic nuclei. The Astrophysical<br />

Journal 736, id. 26, (<strong>2011</strong>)<br />

Houde, M., T. Hezareh, H.-B. Li and T. G. Phillips:<br />

Ambipolar diffusion and turbulent magnetic fields in<br />

molecular clouds. Modern Physics Letters A 26, 235-249<br />

(<strong>2011</strong>)<br />

Husemann, B., L. Wisotzki, K. Jahnke and S. F. Sánchez:<br />

The low-metallicity QSO HE 2158 – 0107: a massive<br />

galaxy growing by accretion of nearly pristine gas from<br />

its environment? <strong>Astronomy</strong> and Astrophysics 535, id.<br />

A72 (<strong>2011</strong>)<br />

Ikeda, H., T. Nagao, K. Matsuoka, Y. Taniguchi, Y. Shioya,<br />

J. R. Trump, P. Capak, A. Comastri, M. Enoki, Y.<br />

Ideue, Y. Kakazu, A. M. Koekemoer, T. Morokuma, T.<br />

Murayama, T. Saito, M. Salvato, E. Schinnerer, N. Z.<br />

Scoville and J. D. Silverman: Probing the faint end of the<br />

quasar luminosity function at z 4 in the coSmoS field.<br />

The Astrophysical Journal Letters 728, id. L25, (<strong>2011</strong>)<br />

Inoue, A. K., K. Kousai, I. Iwata, Y. Matsuda, E. Nakamura,<br />

M. Horie, T. Hayashino, C. Tapken, M. Akiyama, S.<br />

Noll, T. Yamada, D. Burgarella and Y. Nakamura: Lyman<br />

“bump” galaxies – II. A possible signature of massive<br />

extremely metal-poor or metal-free stars in z 3.1 Lya<br />

emitters. Monthly Notices of the Royal Astronomical<br />

Society 411, 2336-2352 (<strong>2011</strong>)<br />

Inskip, K. J., K. Jahnke, H. W. Rix and G. van de Ven:<br />

Resolving the dynamical mass of a z 1.3 quasi-stellar<br />

object host galaxy using Sinfoni and laser guide star<br />

assisted adaptive optics. The Astrophysical Journal 739,<br />

id. 90 (<strong>2011</strong>)<br />

Jahnke, K. and A. V. Macciò: The non-causal origin of the<br />

black-hole-galaxy scaling relations. The Astrophysical<br />

Journal 734, id. 92, (<strong>2011</strong>)<br />

Janson, M., M. Bonavita, H. Klahr, D. Lafrenière, R.<br />

Jayawardhana and H. Zinnecker: High-contrast imaging<br />

search <strong>for</strong> planets and brown dwarfs around the<br />

most massive stars in the solar neighborhood. The<br />

Astrophysical Journal 736, id. 89 (<strong>2011</strong>)<br />

Janson, M., J. Carson, C. Thalmann, M. W. McElwain, M.<br />

Goto, J. Crepp, J. Wisniewski, L. Abe, W. Brandner, A.<br />

Burrows, S. Egner, M. Feldt, C. A. Grady, T. Golota,<br />

O. Guyon, J. Hashimoto, Y. Hayano, M. Hayashi, S.<br />

Hayashi, T. Henning, K. W. Hodapp, M. Ishii, M. Iye,<br />

R. Kandori, G. R. Knapp, T. Kudo, N. Kusakabe, M.<br />

Kuzuhara, T. Matsuo, S. Mayama, S. Miyama, J. I.<br />

Morino, A. Moro-Martín, T. Nishimura, T. S. Pyo, E.<br />

Serabyn, H. Suto, R. Suzuki, M. Takami, N. Takato,<br />

H. Terada, B. Tofflemire, D. Tomono, E. L. Turner, M.<br />

Watanabe, T. Yamada, H. Takami, T. Usuda and M.<br />

Tamura: Near-infrared multi-band photometry of the substellar<br />

companion GJ 758 B. The Astrophysical Journal<br />

728, id. 85 (<strong>2011</strong>)<br />

Johansen, A. and H. Klahr: Planetesimal <strong>for</strong>mation through<br />

streaming and gravitational instabilities. Earth Moon and<br />

Planets 108, 39-43 (<strong>2011</strong>)<br />

Johansen, A., H. Klahr and T. Henning: High-resolution<br />

simulations of planetesimal <strong>for</strong>mation in turbulent protoplanetary<br />

discs. <strong>Astronomy</strong> and Astrophysics 529, id.<br />

A62 (<strong>2011</strong>)<br />

Johnston, K. G., E. Keto, T. P. Robitaille and K. Wood:<br />

The standard model of low-mass star <strong>for</strong>mation applied<br />

to massive stars: multiwavelength modelling of iraS<br />

20126+4104. Monthly Notices of the Royal Astronomical<br />

Society 415, 2953-2968 (<strong>2011</strong>)<br />

Kaczmarek, T., C. Olczak and S. Pfalzner: Evolution of<br />

the binary population in young dense star clusters.<br />

<strong>Astronomy</strong> and Astrophysics 528, id. A144, (<strong>2011</strong>)<br />

Kainulainen, J., J. Alves, H. Beuther, T. Henning and F.<br />

Schuller: Mass reservoirs surrounding massive infrared<br />

dark clouds. A view by near-infrared dust extinction.<br />

<strong>Astronomy</strong> and Astrophysics 536, id. A48, (<strong>2011</strong>)<br />

Kainulainen, J., H. Beuther, R. Banerjee, C. Federrath and<br />

T. Henning: Probing the evolution of molecular cloud


structure. II. From chaos to confinement. <strong>Astronomy</strong> and<br />

Astrophysics 530, id. A64 (<strong>2011</strong>)<br />

Kaltenegger, L. and D. Sasselov: Exploring the habitable<br />

zone <strong>for</strong> Kepler planetary candidates. The Astrophysical<br />

Journal Letters 736, id. L25, (<strong>2011</strong>)<br />

Kaltenegger, L., A. Segura and S. Mohanty: Model spectra<br />

of the first potentially habitable Super-Earth – Gl581d.<br />

The Astrophysical Journal 733, id. 35, (<strong>2011</strong>)<br />

Karim, A., E. Schinnerer, A. Martínez-Sansigre, M. T.<br />

Sargent, A. van der Wel, H. W. Rix, O. Ilbert, V. Smolčić,<br />

C. Carilli, M. Pannella, A. M. Koekemoer, E. F. Bell and<br />

M. Salvato: The star <strong>for</strong>mation history of mass-selected<br />

galaxies in the coSmoS field. The Astrophysical Journal<br />

730, id. 61, (<strong>2011</strong>)<br />

Kennicutt, R. C., D. Calzetti, G. Aniano, P. Appleton, L.<br />

Armus, P. Beirão, A. D. Bolatto, B. Brandl, A. Crocker,<br />

K. Croxall, D. A. Dale, J. D. Meyer, B. T. Draine, C. W.<br />

Engelbracht, M. Galametz, K. D. Gordon, B. Groves,<br />

C. N. Hao, G. Helou, J. Hinz, L. K. Hunt, B. Johnson,<br />

J. Koda, O. Krause, A. K. Leroy, Y. Li, S. Meidt, E.<br />

Montiel, E. J. Murphy, N. Rahman, H. W. Rix, H.<br />

Roussel, K. Sandstrom, M. Sauvage, E. Schinnerer,<br />

R. Skibba, J. D. T. Smith, S. Srinivasan, L. Vigroux,<br />

F. Walter, C. D. Wilson, M. Wolfire and S. Zibetti:<br />

KinGfiSh – Key insights on nearby galaxies: A farinfrared<br />

survey with herScheL: Survey description and<br />

image atlas. Publications of the Astronomical Society of<br />

the Pacific 123, 1347-1369 (<strong>2011</strong>)<br />

Kirkpatrick, J. A., D. J. Schlegel, N. P. Ross, A. D. Myers,<br />

J. F. Hennawi, E. S. Sheldon, D. P. Schneider and B. A.<br />

Weaver: A simple likelihood method <strong>for</strong> quasar target<br />

selection. The Astrophysical Journal 743, id. 125, (<strong>2011</strong>)<br />

Klement, R. J., C. A. L. Bailer-Jones, B. Fuchs, H. W. Rix<br />

and K. W. Smith: Classification of field dwarfs and giants<br />

in RAVE and its use in stellar stream detection. The<br />

Astrophysical Journal 726, id. 103, (<strong>2011</strong>)<br />

Koekemoer, A. M., S. M. Faber, H. C. Ferguson, N. A.<br />

Grogin, D. D. Kocevski, D. C. Koo, K. Lai, J. M. Lotz, R.<br />

A. Lucas, E. J. McGrath, S. Ogaz, A. Rajan, A. G. Riess,<br />

S. A. Rodney, L. Strolger, S. Casertano, M. Castellano,<br />

T. Dahlen, M. Dickinson, T. Dolch, A. Fontana, M.<br />

Giavalisco, A. Grazian, Y. Guo, N. P. Hathi, K.-H.<br />

Huang, A. van der Wel, H.-J. Yan, V. Acquaviva, D. M.<br />

Alexander, O. Almaini, M. L. N. Ashby, M. Barden, E. F.<br />

Bell, F. Bournaud, T. M. Brown, K. I. Caputi, P. Cassata,<br />

P. J. Challis, R.-R. Chary, E. Cheung, M. Cirasuolo, C.<br />

J. Conselice, A. Roshan Cooray, D. J. Croton, E. Daddi,<br />

R. Davé, D. F. de Mello, L. de Ravel, A. Dekel, J. L.<br />

Donley, J. S. Dunlop, A. A. Dutton, D. Elbaz, G. G.<br />

Fazio, A. V. Filippenko, S. L. Finkelstein, C. Frazer, J. P.<br />

Gardner, P. M. Garnavich, E. Gawiser, R. Gruetzbauch,<br />

W. G. Hartley, B. Häussler, J. Herrington, P. F. Hopkins,<br />

J.-S. Huang, S. W. Jha, A. Johnson, J. S. Kartaltepe, A.<br />

A. Khostovan, R. P. Kirshner, C. Lani, K.-S. Lee, W. Li,<br />

P. Madau, P. J. McCarthy, D. H. McIntosh, R. J. McLure,<br />

C. McPartland, B. Mobasher, H. Moreira, A. Mortlock,<br />

L. A. Moustakas, M. Mozena, K. Nandra, J. A. Newman,<br />

J. L. Nielsen, S. Niemi, K. G. Noeske, C. J. Papovich, L.<br />

Pentericci, A. Pope, J. R. Primack, S. Ravindranath, N.<br />

A. Reddy, A. Renzini, H.-W. Rix, A. R. Robaina, D. J.<br />

Rosario, P. Rosati, S. Salimbeni, C. Scarlata, B. Siana,<br />

L. Simard, J. Smidt, D. Snyder, R. S. Somerville, H.<br />

Spinrad, A. N. Straughn, O. Tel<strong>for</strong>d, H. I. Teplitz, J. R.<br />

Trump, C. Vargas, C. Vill<strong>for</strong>th, C. R. Wagner, P. Wandro,<br />

R. H. Wechsler, B. J. Weiner, T. Wiklind, V. Wild, G.<br />

Wilson, S. Wuyts and M. S. Yun: candeLS: The Cosmic<br />

Assembly Near-infrared Deep Extragalactic Legacy<br />

Survey – the hubbLe Space Telescope observations,<br />

imaging data products, and mosaics. The Astrophysical<br />

Journal Supplement Series 197, id. 36 (<strong>2011</strong>)<br />

Köhler, R.: The orbit of GG Tauri A. <strong>Astronomy</strong> and<br />

Astrophysics 530, id. A126, (<strong>2011</strong>)<br />

Kóspál, Á., P. Ábrahám, M. Goto, Z. Regály, C. P.<br />

Dullemond, T. Henning, A. Juhász, A. Sicilia-Aguilar<br />

and M. van den Ancker: Near-infrared spectroscopy of<br />

EX Lupi in outburst. The Astrophysical Journal 736, id.<br />

72 (<strong>2011</strong>)<br />

Krasnokutski, S. A. and F. Huisken: Low-temperature<br />

chemistry in helium droplets: Reactions of Al atoms with<br />

O 2 and H 2 O. The Journal of Physical Chemistry A 115,<br />

7120-7126 (<strong>2011</strong>)<br />

Krips, M., S. Martín, A. Eckart, R. Neri, S. García-Burillo,<br />

S. Matsushita, A. Peck, I. Stoklasová, G. Petitpas,<br />

A. Usero, F. Combes, E. Schinnerer, E. Humphreys<br />

and A. J. Baker: Submillimeter Array/Plateau de Bure<br />

Interferometer multiple line observations of the nearby<br />

Seyfert 2 galaxy NGC 1068: shock-related gaskinematics<br />

and heating in the central 100 pc? The Astrophysical<br />

Journal 736, id. 37, (<strong>2011</strong>)<br />

Kritsuk, A. G., Å. Nordlund, D. Collins, P. Padoan, M. L.<br />

Norman, T. Abel, R. Banerjee, C. Federrath, M. Flock, D.<br />

Lee, P. S. Li, W.-C. Müller, R. Teyssier, S. D. Ustyugov,<br />

C. Vogel and H. Xu: Comparing numerical methods<br />

<strong>for</strong> isothermal magnetized supersonic turbulence. The<br />

Astrophysical Journal 737, id. 13 (<strong>2011</strong>)<br />

Kuiper, R., H. Klahr, H. Beuther and T. Henning: Threedimensional<br />

simulation of massive star <strong>for</strong>mation in the<br />

disk accretion scenario. The Astrophysical Journal 732,<br />

id. 20 (<strong>2011</strong>)<br />

Kuntschner, H., E. Emsellem, R. Bacon, M. Cappellari,<br />

R. L. Davies, P. T. de Zeeuw, J. Falcón-Barroso, D.<br />

Krajnović, R. M. McDermid, R. F. Peletier, M. Sarzi, K.<br />

L. Shapiro, R. C. E. van den Bosch and G. van de Ven:<br />

The Sauron project – XVII. Stellar population analysis<br />

of the absorption line strength maps of 48 early-type<br />

galaxies. Monthly Notices of the Royal Astronomical<br />

Society 408, 97-132 (<strong>2011</strong>)<br />

Le Bouquin, J. B., J. P. Berger, B. Lazareff, G. Zins, P.<br />

Haguenauer, L. Jocou, P. Kern, R. Millan-Gabet, W.<br />

Traub, O. Absil, J. C. Augereau, M. Benisty, N. Blind,<br />

X. Bonfils, P. Bourget, A. Delboulbe, P. Feautrier, M.<br />

Germain, P. Gitton, D. Gillier, M. Kiekebusch, J. Kluska,<br />

J. Knudstrup, P. Labeye, J. L. Lizon, J. L. Monin, Y.<br />

Magnard, F. Malbet, D. Maurel, F. Ménard, M. Micallef,<br />

Publications 129


130 Publications<br />

L. Michaud, G. Montagnier, S. Morel, T. Moulin, K.<br />

Perraut, D. Popovic, P. Rabou, S. Rochat, C. Rojas, F.<br />

Roussel, A. Roux, E. Stadler, S. Stefl, E. Tatulli and N.<br />

Ventura: pionier: a 4-telescope visitor instrument at<br />

VLTI. <strong>Astronomy</strong> and Astrophysics 535, id. A67, (<strong>2011</strong>)<br />

Lee, J. S., S. A. Krasnokutski and D.-S. Yang: Highresolution<br />

electron spectroscopy, preferential metal-binding<br />

sites, and thermochemistry of lithium complexes of<br />

polycyclic aromatic hydrocarbons. Journal of Chemical<br />

Physics 134, 024301-024301-9 (<strong>2011</strong> online)<br />

Lee, J. S., S. A. Krasnokutski and D.-S. Yang: Highresolution<br />

electron spectroscopy, preferential metal-binding<br />

sites, and thermochemistry of lithium complexes of<br />

polycyclic aromatic hydrocarbons. Journal of Chemical<br />

Physics 134, 024301-024301-9 (<strong>2011</strong> online)<br />

Leroy, A. K., A. Bolatto, K. Gordon, K. Sandstrom, P.<br />

Gratier, E. Rosolowsky, C. W. Engelbracht, N. Mizuno,<br />

E. Corbelli, Y. Fukui and A. Kawamura: The CO-to-H 2<br />

conversion factor from infrared dust emission across<br />

the Local Group. The Astrophysical Journal 737, id. 12<br />

(<strong>2011</strong>)<br />

Leroy, A. K., A. S. Evans, E. Momjian, E. Murphy, J. Ott,<br />

L. Armus, J. Condon, S. Haan, J. M. Mazzarella, D.<br />

S. Meier, G. C. Privon, E. Schinnerer, J. Surace and<br />

F. Walter: Complex radio spectral energy distributions<br />

in luminous and ultraluminous infrared galaxies. The<br />

Astrophysical Journal Letters 739, id. L25 (<strong>2011</strong>)<br />

Lestrade, J.-F., C. L. Carilli, K. Thanjavur, J.-P. Kneib, D. A.<br />

Riechers, F. Bertoldi, F. Walter and A. Omont: A molecular<br />

Einstein ring toward the z 3.93 submillimeter galaxy<br />

MM18423+5938. The Astrophysical Journal Letters<br />

739, id. L30, (<strong>2011</strong>)<br />

Li, H.-B., R. Blundell, A. Hedden, J. Kawamura, S. Paine<br />

and E. Tong: Evidence <strong>for</strong> dynamically important magnetic<br />

fields in molecular clouds. Monthly Notices of the<br />

Royal Astronomical Society 411, 2067-2075 (<strong>2011</strong>)<br />

Li, H.-B. and T. Henning: The alignment of molecular cloud<br />

magnetic fields with the spiral arms in M 33. Nature 479,<br />

499, 499-501 (<strong>2011</strong>)<br />

Liu, M. C., N. R. Deacon, E. A. Magnier, T. J. Dupuy, K.<br />

M. Aller, B. P. Bowler, J. Redstone, B. Goldman, W. S.<br />

Burgett, K. C. Chambers, K. W. Hodapp, N. Kaiser, R. P.<br />

Kudritzki, J. S. Morgan, P. A. Price, J. L. Tonry and R.<br />

J. Wainscoat: A search <strong>for</strong> high proper motion T dwarfs<br />

with Pan-StarrS1 + 2MASS + WISE. The Astrophysical<br />

Journal Letters 740, L32 (<strong>2011</strong>)<br />

Liu, Y., L. Wu, C.-H. Zhang, S. A. Krasnokutski and D.-S.<br />

Yang: Electronic states and spin-orbit splitting of lanthanum<br />

dimer Journal of Chemical Physics 135, 034309-<br />

034309-7 (<strong>2011</strong> online)<br />

Lovis, C., D. Ségransan, M. Mayor, S. Udry, W. Benz, J.<br />

L. Bertaux, F. Bouchy, A. C. M. Correia, J. Laskar, G.<br />

Lo Curto, C. Mordasini, F. Pepe, D. Queloz and N. C.<br />

Santos: The harpS search <strong>for</strong> southern extra-solar planets.<br />

XXVIII. Up to seven planets orbiting HD 10180:<br />

probing the architecture of low-mass planetary systems.<br />

<strong>Astronomy</strong> and Astrophysics 528, id. A112, (<strong>2011</strong>)<br />

Lyra, W. and H. Klahr: The baroclinic instability in the<br />

context of layered accretion. Self-sustained vortices<br />

and their magnetic stability in local compressible unstratified<br />

models of protoplanetary disks. <strong>Astronomy</strong> and<br />

Astrophysics 527, id. A138, (<strong>2011</strong>)<br />

Maaskant, K. M., A. Bik, L. B. F. M. Waters, L. Kaper,<br />

T. Henning, E. Puga, M. Horrobin and J. Kainulainen:<br />

Sequential star <strong>for</strong>mation in iraS 06084-0611 (GGD<br />

12-15). From intermediate-mass to high-mass stars.<br />

<strong>Astronomy</strong> and Astrophysics 531, id. A27 (<strong>2011</strong>)<br />

Magdis, G. E., E. Daddi, D. Elbaz, M. Sargent, M.<br />

Dickinson, H. Dannerbauer, H. Aussel, F. Walter, H.<br />

S. Hwang, V. Charmandaris, J. Hodge, D. Riechers, D.<br />

Rigopoulou, C. Carilli, M. Pannella, J. Mullaney, R.<br />

Leiton and D. Scott: GoodS-herScheL: gas-to-dust<br />

mass ratios and CO-to-H 2 conversion factors in normal<br />

and starbursting galaxies at high-z. The Astrophysical<br />

Journal Letters 740, id. L15, (<strong>2011</strong>)<br />

Malbet, F., A. Léger, M. Shao, R. Goullioud, P.-O. Lagage,<br />

A. G. A. Brown, C. Cara, G. Durand, C. Eiroa, P.<br />

Feautrier, B. Jakobsson, E. Hinglais, L. Kaltenegger, L.<br />

Labadie, A.-M. Lagrange, J. Laskar, R. Liseau, J. Lunine,<br />

J. Maldonado, M. Mercier, C. Mordasini, D. Queloz, A.<br />

Quirrenbach, A. Sozzetti, W. Traub, O. Absil, Y. Alibert,<br />

A. H. Andrei, F. Arenou, C. Beichman, A. Chelli, C.<br />

S. Cockell, G. Duvert, T. Forveille, P. J. V. Garcia, D.<br />

Hobbs, A. Krone-Martins, H. Lammer, N. Meunier,<br />

S. Minardi, A. Moitinho de Almeida, N. Rambaux,<br />

S. Raymond, H. J. A. Röttgering, J. Sahlmann, P. A.<br />

Schuller, D. Ségransan, F. Selsis, J. Surdej, E. Villaver,<br />

G. J. White and H. Zinnecker: High precision astrometry<br />

mission <strong>for</strong> the detection and characterization of nearby<br />

habitable planetary systems with the Nearby Earth<br />

Astrometric Telescope (neat). Experimental <strong>Astronomy</strong><br />

109 (<strong>2011</strong> online)<br />

Marinova, I., S. Jogee, A. Heiderman, F. D. Barazza, M.<br />

E. Gray, M. Barden, C. Wolf, C. Y. Peng, D. Bacon,<br />

M. Balogh, E. F. Bell, A. Böhm, J. A. R. Caldwell, B.<br />

Häußler, C. Heymans, K. Jahnke, E. van Kampen, K.<br />

Lane, D. H. McIntosh, K. Meisenheimer, S. F. Sánchez,<br />

R. Somerville, A. Taylor, L. Wisotzki and X. Zheng:<br />

Barred disks in dense environments. Memorie della<br />

Societa Astronomica Italiana Supplementi 18, 61-67<br />

(<strong>2011</strong>)<br />

Marshall, J. P., T. Löhne, B. Montesinos, A. V. Krivov, C.<br />

Eiroa, O. Absil, G. Bryden, J. Maldonado, A. Mora, J.<br />

Sanz-Forcada, D. Ardila, J. C. Augereau, A. Bayo, C. Del<br />

Burgo, W. Danchi, S. Ertel, D. Fedele, M. Fridlund, J.<br />

Lebreton, B. M. González-García, R. Liseau, G. Meeus,<br />

S. Müler, G. L. Pilbratt, A. Roberge, K. Stapelfeldt, P.<br />

Thébault, G. J. White and S. Wolf: A herScheL resolved<br />

far-infrared dust ring around HD 207129. <strong>Astronomy</strong> and<br />

Astrophysics 529, id. A117, (<strong>2011</strong>)<br />

Martínez-Galarza, J. R., B. Groves, B. Brandl, G. E. de<br />

Messieres, R. Indebetouw and M. A. Dopita: The physical<br />

conditions in starbursts derived from Bayesian fitting<br />

of mid-infrared spectral energy distribution models: 30


Doradus as a template. The Astrophysical Journal 738,<br />

id. 176, (<strong>2011</strong>)<br />

Matsuura, M., E. Dwek, M. Meixner, M. Otsuka, B. Babler,<br />

M. J. Barlow, J. Roman-Duval, C. Engelbracht, K.<br />

Sandstrom, M. Lakićević, J. T. van Loon, G. Sonneborn,<br />

G. C. Clayton, K. S. Long, P. Lundqvist, T. Nozawa, K.<br />

D. Gordon, S. Hony, P. Panuzzo, K. Okumura, K. A.<br />

Misselt, E. Montiel and M. Sauvage: herScheL detects a<br />

massive dust reservoir in supernova 1987A. Science 333,<br />

1258-1261 (<strong>2011</strong>)<br />

McLinden, E. M., S. L. Finkelstein, J. E. Rhoads, S.<br />

Malhotra, P. Hibon, M. L. A. Richardson, G. Cresci,<br />

A. Quirrenbach, A. Pasquali, F. Bian, X. Fan and C. E.<br />

Woodward: First spectroscopic measurements of [O III]<br />

emission from Lya selected field galaxies at z 3.1. The<br />

Astrophysical Journal 730, id. 136, (<strong>2011</strong>)<br />

Meier, D. S., J. L. Turner and E. Schinnerer: Cyanoacetylene<br />

in IC 342: an evolving densegas component with starburst<br />

age. The Astronomical Journal 142, id. 32, (<strong>2011</strong>)<br />

Méndez, R. A., E. Costa, C. Gallart, M. H. Pedreros, M.<br />

Moyano and M. Altmann: First ground-based chargecoupled<br />

device proper motions <strong>for</strong> Fornax. II. Final results.<br />

The Astronomical Journal 142, id. 93, (<strong>2011</strong>)<br />

Mérand, A., P. Kervella, T. Pribulla, M. G. Petr-Gotzens,<br />

M. Benisty, A. Natta, G. Duvert, D. Schertl and M.<br />

Vannier: The nearby eclipsing stellar system d Velorum.<br />

III. Self-consistent fundamental parameters and distance.<br />

<strong>Astronomy</strong> and Astrophysics 532, 50 (<strong>2011</strong>)<br />

Mesa, D., R. Gratton, A. Berton, J. Antichi, C. Verinaud,<br />

A. Boccaletti, M. Kasper, R. U. Claudi, S. Desidera, E.<br />

Giro, J. L. Beuzit, K. Dohlen, M. Feldt, D. Mouillet, G.<br />

Chauvin and A. Vigan: Simulation of planet detection<br />

with the Sphere integral field spectrograph. <strong>Astronomy</strong><br />

and Astrophysics 529, 131 (<strong>2011</strong>)<br />

Meyer, E., M. Kürster, C. Arcidiacono, R. Ragazzoni and<br />

H. W. Rix: Astrometry with the MCAO instrument<br />

MAD. An analysis of single-epoch data obtained in the<br />

layer-oriented mode. <strong>Astronomy</strong> and Astrophysics 532,<br />

16 (<strong>2011</strong>)<br />

Miettinen, O., M. Hennemann and H. Linz: Deuterium fractionation<br />

and the degree of ionisation in massive clumps<br />

within infrared dark clouds. <strong>Astronomy</strong> and Astrophysics<br />

534, id. A134 (<strong>2011</strong>)<br />

Miguel, Y., L. Kaltenegger, B. Fegley and L. Schaefer:<br />

Compositions of hot super-earth atmospheres: exploring<br />

Kepler candidates. The Astrophysical Journal Letters<br />

742, id. L19, (<strong>2011</strong>)<br />

Min, M., C. P. Dullemond, M. Kama and C. Dominik: The<br />

thermal structure and the location of the snow line in the<br />

protosolar nebula: Axisymmetric models with full 3-D<br />

radiative transfer. Icarus 212, 416-426 (<strong>2011</strong>)<br />

Mirsaleh-Kohan, N., W. D. Robertson, J. Lambert, R. N.<br />

Compton, S. A. Krasnokutski and D.-S. Yang: Ionic<br />

and vibrational properties of an ultra-low ionization<br />

potential molecule: Tetrakis(dimethylamino)ethylene.<br />

International Journal of Mass Spectrometry 304, 57-65<br />

(<strong>2011</strong>)<br />

Montuori, C., M. Dotti, M. Colpi, R. Decarli and F.<br />

Haardt: Search <strong>for</strong> sub-parsec massive binary black holes<br />

through line diagnosis. Monthly Notices of the Royal<br />

Astronomical Society 412, 26-32 (<strong>2011</strong>)<br />

Moór, A., P. Ábrahám, A. Juhász, C. Kiss, I. Pascucci, Á.<br />

Kóspál, D. Apai, T. Henning, T. Csengeri and C. Grady:<br />

Molecular gas in young debris disks. The Astrophysical<br />

Journal Letters 740, L7 (<strong>2011</strong>)<br />

Moór, A., I. Pascucci, Á. Kóspál, P. Ábrahám, T. Csengeri,<br />

L. L. Kiss, D. Apai, C. Grady, T. Henning, C. Kiss, D.<br />

Bayliss, A. Juhász, J. Kovács and T. Szalai: Structure<br />

and evolution of debris disks around F-type stars. I.<br />

Observations, database, and basic evolutionary aspects.<br />

The Astrophysical Journal Supplement Series 193, id.<br />

4 (<strong>2011</strong>)<br />

Mordasini, C., M. Mayor, S. Udry, C. Lovis, D. Ségransan,<br />

W. Benz, J. L. Bertaux, F. Bouchy, G. Lo Curto, C.<br />

Moutou, D. Naef, F. Pepe, D. Queloz and N. C. Santos:<br />

The harpS search <strong>for</strong> southern extra-solar planets. XXIV.<br />

Companions to HD 85390, HD 90156, and HD 103197:<br />

a Neptune analog and two intermediate-mass planets.<br />

<strong>Astronomy</strong> and Astrophysics 526, 111 (<strong>2011</strong>)<br />

More, A., K. Jahnke, S. More, A. Gallazzi, E. F. Bell, M.<br />

Barden and B. Häußler: Gravitational Lens Candidates<br />

in the E-CDFS. The Astrophysical Journal 734, 69 (<strong>2011</strong>)<br />

More, S., F. C. van den Bosch, M. Cacciato, R. Skibba, H. J.<br />

Mo and X. Yang: Satellite kinematics – III. Halo masses<br />

of central galaxies in SDSS. Monthly Notices of the<br />

Royal Astronomical Society 410, 210-226 (<strong>2011</strong>)<br />

Morganti, R., J. Holt, C. Tadhunter, C. Ramos Almeida, D.<br />

Dicken, K. Inskip, T. Oosterloo and T. Tzioumis: PKS<br />

1814-637: a powerful radio-loud AGN in a disk galaxy.<br />

<strong>Astronomy</strong> and Astrophysics 535, 97 (<strong>2011</strong>)<br />

Moster, B. P., A. V. Macciò, R. S. Somerville, T. Nasince<br />

and T. J. Cox: The effects of a hot gaseous halo in<br />

galaxy major mergers. Monthly Notices of the Royal<br />

Astronomical Society 415, 3750-3770 (<strong>2011</strong>)<br />

Moster, B. P., R. S. Somerville, J. A. Newman and H.-W.<br />

Rix: A cosmic variance cookbook. The Astrophysical<br />

Journal 731, id. 113, (<strong>2011</strong>)<br />

Mulders, G. D., L. B. F. M. Waters, C. Dominik, B.<br />

Sturm, J. Bouwman, M. Min, A. P. Verhoeff, B. Acke,<br />

J. C. Augereau, N. J. Evans, T. Henning, G. Meeus<br />

and J. Olofsson: Low abundance, strong features: window-dressing<br />

crystalline <strong>for</strong>sterite in the disk wall of<br />

HD 100546. <strong>Astronomy</strong> and Astrophysics 531, 93 (<strong>2011</strong>)<br />

Müller, A., A. Carmona, M. E. van den Ancker, R. van<br />

Boekel, T. Henning and R. Launhardt: HD 144432: A<br />

young triple system. <strong>Astronomy</strong> and Astrophysics 535,<br />

L3 (<strong>2011</strong>)<br />

Müller, A., M. E. van den Ancker, R. Launhardt, J. U. Pott,<br />

D. Fedele and T. Henning: HD 135344B: a young star has<br />

reached its rotational limit. <strong>Astronomy</strong> and Astrophysics<br />

530, id. A85 (<strong>2011</strong>)<br />

Muñoz-Cuartas, J. C., A. V. Macciò, S. Gottlöber and A.<br />

A. Dutton: The redshift evolution of L cold dark matter<br />

halo parameters: concentration, spin and shape. Monthly<br />

Publications 131


132 Publications<br />

Notices of the Royal Astronomical Society 411, 584-594<br />

(<strong>2011</strong>)<br />

Muraki, Y., C. Han, D. P. Bennett, D. Suzuki, L. A. G.<br />

Monard, R. Street, U. G. Jorgensen, P. Kundurthy, J.<br />

Skowron, A. C. Becker, M. D. Albrow, P. Fouqué, D.<br />

Heyrovský, R. K. Barry, J. P. Beaulieu, D. D. Wellnitz, I.<br />

A. Bond, T. Sumi, S. Dong, B. S. Gaudi, D. M. Bramich,<br />

M. Dominik, F. Abe, C. S. Botzler, M. Freeman, A. Fukui,<br />

K. Furusawa, F. Hayashi, J. B. Hearnshaw, S. Hosaka, Y.<br />

Itow, K. Kamiya, A. V. Korpela, P. M. Kilmartin, W.<br />

Lin, C. H. Ling, S. Makita, K. Masuda, Y. Matsubara,<br />

N. Miyake, K. Nishimoto, K. Ohnishi, Y. C. Perrott, N.<br />

J. Rattenbury, T. Saito, L. Skuljan, D. J. Sullivan, W.<br />

L. Sweatman, P. J. Tristram, K. Wada, P. C. M. Yock,<br />

G. W. Christie, D. L. DePoy, E. Gorbikov, A. Gould, S.<br />

Kaspi, C. U. Lee, F. Mallia, D. Maoz, J. McCormick,<br />

D. Moorhouse, T. Natusch, B. G. Park, R. W. Pogge,<br />

D. Polishook, A. Shporer, G. Thornley, J. C. Yee, A.<br />

Allan, P. Browne, K. Horne, N. Kains, C. Snodgrass, I.<br />

Steele, Y. Tsapras, V. Batista, C. S. Bennett, S. Brillant,<br />

J. A. R. Caldwell, A. Cassan, A. Cole, R. Corrales, C.<br />

Coutures, S. Dieters, D. Dominis Prester, J. Donatowicz,<br />

J. Greenhill, D. Kubas, J. B. Marquette, R. Martin, J.<br />

Menzies, K. C. Sahu, I. Waldman, A. Williams, M. Zub,<br />

H. Bourhrous, Y. Matsuoka, T. Nagayama, N. Oi, Z.<br />

Randriamanakoto, Observers, V. Bozza, M. J. Burgdorf,<br />

S. Calchi Novati, S. Dreizler, F. Finet, M. Glitrup, K.<br />

Harpsøe, T. C. Hinse, M. Hundertmark, C. Liebig, G.<br />

Maier, L. Mancini, M. Mathiasen, S. Rahvar, D. Ricci,<br />

G. Scarpetta, J. Skottfelt, J. Surdej, J. Southworth,<br />

J. Wambsganss, F. Zimmer, M. N. Consortium, A.<br />

Udalski, R. Poleski, Ł. Wyrzykowski, K. Ulaczyk, M. K.<br />

Szymański, M. Kubiak, G. Pietrzyński and I. Soszyński:<br />

Discovery and Mass Measurements of a Cold, 10 Earth<br />

Mass Planet and Its Host Star. The Astrophysical Journal<br />

741, id. 22 (<strong>2011</strong>)<br />

Murphy, E. J., J. J. Condon, E. Schinnerer, R. C. Kennicutt,<br />

D. Calzetti, L. Armus, G. Helou, J. L. Turner, G. Aniano,<br />

P. Beirão, A. D. Bolatto, B. R. Brandl, K. V. Croxall,<br />

D. A. Dale, J. L. Donovan Meyer, B. T. Draine, C.<br />

Engelbracht, L. K. Hunt, C. N. Hao, J. Koda, H. Roussel,<br />

R. Skibba and J. D. T. Smith: Calibrating extinction-free<br />

star <strong>for</strong>mation rate diagnostics with 33 GHz free-free<br />

emission in NGC 6946. The Astrophysical Journal 737,<br />

id. 67, (<strong>2011</strong>)<br />

Neumayer, N., C. J. Walcher, D. Andersen, S. F. Sánchez, T.<br />

Böker and H.-W. Rix: Two-dimensional Ha kinematics<br />

of bulgeless disc galaxies. Monthly Notices of the Royal<br />

Astronomical Society 413, 1875-1888 (<strong>2011</strong>)<br />

Nguyen Luong, Q., F. Motte, F. Schuller, N. Schneider,<br />

S. Bontemps, P. Schilke, K. M. Menten, F. Heitsch, F.<br />

Wyrowski, P. Carlhoff, L. Bronfman and T. Henning:<br />

W43: the closest molecular complex of the Galactic bar?<br />

<strong>Astronomy</strong> and Astrophysics 529, id. A41 (<strong>2011</strong>)<br />

Nicol, M.-H., K. Meisenheimer, C. Wolf and C. Tapken: Redsequence<br />

Galaxies at High Redshift by the combo-17+4<br />

Survey. The Astrophysical Journal 727, 51 (<strong>2011</strong>)<br />

Nilsson, K. K., O. Möller-Nilsson, P. Rosati, M. Lombardi,<br />

M. Kümmel, H. Kuntschner, J. R. Walsh and R. A. E.<br />

Fosbury: Stellar properties of z 1 Lyman-break galaxies<br />

from ACS slitless grism spectra. <strong>Astronomy</strong> and<br />

Astrophysics 526, id. A10, (<strong>2011</strong>)<br />

Nilsson, K. K., G. Östlin, P. Müller, O. Möller-Nilsson, C.<br />

Tapken, W. Freudling and J. P. U. Fynbo: The nature of<br />

z 2.3 Lyman-a emitters. <strong>Astronomy</strong> and Astrophysics<br />

529, id. A9, (<strong>2011</strong>)<br />

Oh, S.-H., C. Brook, F. Governato, E. Brinks, L. Mayer, W.<br />

J. G. de Blok, A. Brooks and F. Walter: The central slope<br />

of dark matter cores in dwarf galaxies: simulations versus<br />

thinGS. The Astronomical Journal 142, id. 24, (<strong>2011</strong>)<br />

Oh, S.-H., W. J. G. de Blok, E. Brinks, F. Walter and R. C.<br />

Kennicutt: Dark and luminous matter in thinGS dwarf<br />

galaxies. The Astronomical Journal 141, id. 193, (<strong>2011</strong>)<br />

Olczak, C., R. Spurzem and T. Henning: A highly efficient<br />

measure of mass segregation in star clusters. <strong>Astronomy</strong><br />

and Astrophysics 532, 119 (<strong>2011</strong>)<br />

Oliveira, I., J. Olofsson, K. M. Pontoppidan, E. F. van<br />

Dishoeck, J.-C. Augereau and B. Merín: On the evolution<br />

of dust mineralogy, from protoplanetary disks to<br />

planetary systems. The Astrophysical Journal 734, id.<br />

51, (<strong>2011</strong>)<br />

Olofsson, J., M. Benisty, J. C. Augereau, C. Pinte, F. Ménard,<br />

E. Tatulli, J. P. Berger, F. Malbet, B. Merín, E. F. van<br />

Dishoeck, S. Lacour, K. M. Pontoppidan, J. L. Monin, J.<br />

M. Brown and G. A. Blake: Warm dust resolved in the<br />

cold disk around T Chamaeleontis with VLTI/amber.<br />

<strong>Astronomy</strong> and Astrophysics 528, L6 (<strong>2011</strong>)<br />

Ormel, C. W., M. Min, A. G. G. M. Tielens, C. Dominik and<br />

D. Paszun: Dust coagulation and fragmentation in molecular<br />

clouds. II. The opacity of the dust aggregate size<br />

distribution. <strong>Astronomy</strong> and Astrophysics 532, 43 (<strong>2011</strong>)<br />

Ossenkopf, V., C. W. Ormel, R. Simon, K. Sun and J.<br />

Stutzki: Spectroscopic [C I] mapping of the infrared dark<br />

cloud G48.65-0.29. <strong>Astronomy</strong> and Astrophysics 525, 9<br />

(<strong>2011</strong>)<br />

Palanque-Delabrouille, N., C. Yeche, A. D. Myers, P.<br />

Petitjean, N. P. Ross, E. Sheldon, E. Aubourg, T.<br />

Delubac, J. M. Le Goff, I. Pâris, J. Rich, K. S. Dawson,<br />

D. P. Schneider and B. A. Weaver: Variability selected<br />

high-redshift quasars on SDSS Stripe 82. <strong>Astronomy</strong> and<br />

Astrophysics 530, 122 (<strong>2011</strong>)<br />

Pasetto, S., E. K. Grebel, P. Berczik, C. Chiosi and R.<br />

Spurzem: Orbital evolution of the Carina dwarf galaxy<br />

and self-consistent determination of star <strong>for</strong>mation history.<br />

<strong>Astronomy</strong> and Astrophysics 525, id. A99, (<strong>2011</strong>)<br />

Pasquali, A., A. Bik, S. Zibetti, N. Ageorges, W. Seifert,<br />

W. Brandner, H. W. Rix, M. Jütte, V. Knierim, P.<br />

Buschkamp, C. Feiz, H. Gemperlein, A. Germeroth, R.<br />

Hofmann, W. Laun, R. Lederer, M. Lehmitz, R. Lenzen,<br />

U. Mall, H. Mandel, P. Müller, V. Naranjo, K. Polsterer,<br />

A. Quirrenbach, L. Schäffner, C. Storz and P. Weiser:<br />

Infrared narrowband tomography of the local starburst<br />

NGC 1569 with the Large Binocular Telescope/Lucifer.<br />

The Astronomical Journal 141, id. 132 (<strong>2011</strong>)


Pavlyuchenkov, Y. N., D. S. Wiebe, A. M. Fateeva and<br />

T. S. Vasyunina: Determining the parameters of massive<br />

protostellar clouds via radiative transfer modeling.<br />

<strong>Astronomy</strong> <strong>Report</strong>s 55, 1-12 (<strong>2011</strong>)<br />

Peletier, R. F., E. Kutdemir, G. van der Wolk, J. Falcón-<br />

Barroso, R. Bacon, M. Bureau, M. Cappellari, R. L.<br />

Davies, P. T. de Zeeuw, E. Emsellem, D. Krajnović, H.<br />

Kuntschner, R. M. McDermid, M. Sarzi, N. Scott, K. L.<br />

Shapiro, R. C. E. van den Bosch and G. van de Ven: The<br />

Sauron project – XX. The Spitzer [3.6] – [4.5] colour<br />

in early-type galaxies: colours, colour gradients and<br />

inverted scaling relations. Monthly Notices of the Royal<br />

Astronomical Society 419, 2031-2053 (<strong>2011</strong>)<br />

Penner, K., A. Pope, E. L. Chapin, T. R. Greve, F. Bertoldi,<br />

M. Brodwin, R.-R. Chary, C. J. Conselice, K. Coppin,<br />

M. Giavalisco, D. H. Hughes, R. J. Ivison, T. Perera,<br />

D. Scott, K. Scott and G. Wilson: Origins of the extragalactic<br />

background at 1 mm from a combined analysis<br />

of the AzTEC and mambo data in GoodS-N. Monthly<br />

Notices of the Royal Astronomical Society 410, 2749-<br />

2759 (<strong>2011</strong>)<br />

Perryman, M. A. C. and T. Schulze-Hartung: The barycentric<br />

motion of exoplanet host stars. Tests of solar<br />

spin-orbit coupling. <strong>Astronomy</strong> and Astrophysics 525,<br />

65 (<strong>2011</strong>)<br />

Piñol-Ferrer, N., K. Fathi, A. Lundgren and G. van de Ven:<br />

Physical condition of the molecular gas at the centre of<br />

NGC 1097. Monthly Notices of the Royal Astronomical<br />

Society 414, 529-537 (<strong>2011</strong>)<br />

Pitann, J., M. Hennemann, S. Birkmann, J. Bouwman, O.<br />

Krause and T. Henning: Infrared spectroscopy of intermediate-mass<br />

young stellar objects. The Astrophysical<br />

Journal 743, id. 93 (<strong>2011</strong>)<br />

Porth, O.: Simulations and synchrotron radiation from the<br />

relativistic jet base. Memorie della Societa Astronomica<br />

Italiana 82, 125-128 (<strong>2011</strong>)<br />

Porth, O., C. Fendt, Z. Meliani and B. Vaidya: Synchrotron<br />

radiation of self-collimating relativistic magnetohydrodynamic<br />

jets. The Astrophysical Journal 737, id. 42<br />

(<strong>2011</strong>)<br />

Potrick, K., T. Schmidt, S. Bublitz, C. Mühlig, W. Paa and F.<br />

Huisken: Determination of the photoluminescence quantum<br />

efficiency of silicon nanocrystals by laser-induced<br />

deflection. Applied Physics Letters 98, id. 083111, (<strong>2011</strong>)<br />

Quanz, S. P., H. M. Schmid, K. Geissler, M. R. Meyer,<br />

T. Henning, W. Brandner and S. Wolf: Very Large<br />

Telescope/naco polarimetric differential imaging of<br />

HD 100546-disk structure and dust grain properties between<br />

10 and 140 AU. The Astrophysical Journal 738,<br />

id. 23 (<strong>2011</strong>)<br />

Ragan, S. E., E. A. Bergin and D. Wilner: Very Large<br />

Array observations of ammonia in infrared-dark clouds.<br />

I. Column density and temperature structure. The<br />

Astrophysical Journal 736, id. 163 (<strong>2011</strong>)<br />

Rahman, N., A. D. Bolatto, T. Wong, A. K. Leroy, F. Walter,<br />

E. Rosolowsky, A. A. West, F. Bigiel, J. Ott, R. Xue, R.<br />

Herrera-Camus, K. Jameson, L. Blitz and S. N. Vogel:<br />

carma survey toward infrared-bright nearby galaxies<br />

(StinG): molecular gas star <strong>for</strong>mation law in NGC 4254.<br />

The Astrophysical Journal 730, id. 72 (<strong>2011</strong>)<br />

Ramos Almeida, C., D. Dicken, C. Tadhunter, A. Asensio<br />

Ramos, K. J. Inskip, M. J. Hardcastle and B. Mingo:<br />

Clear detection of dusty torus signatures in a weak-line<br />

radio galaxy: the case of PKS 0043-42. Monthly Notices<br />

of the Royal Astronomical Society 413, 2358-2364<br />

(<strong>2011</strong>)<br />

Ramos Almeida, C., C. N. Tadhunter, K. J. Inskip, R.<br />

Morganti, J. Holt and D. Dicken: The optical morphologies<br />

of the 2 Jy sample of radio galaxies: evidence<br />

<strong>for</strong> galaxy interactions. Monthly Notices of the Royal<br />

Astronomical Society 410, 1550-1576 (<strong>2011</strong>)<br />

Rand, R. J., K. Wood, R. A. Benjamin and S. E. Meidt:<br />

Infrared spectroscopy of the diffuse ionized halos of<br />

edge-on galaxies. The Astrophysical Journal 728, id. 163<br />

(<strong>2011</strong>)<br />

Regály, Z., Z. Sándor, C. P. Dullemond and L. L. Kiss:<br />

Spectral signatures of disk eccentricity in young binary<br />

systems. I. Circumprimary case. <strong>Astronomy</strong> and<br />

Astrophysics 528, 93 (<strong>2011</strong>)<br />

Ricci, D., J. Poels, A. Elyiv, F. Finet, P. G. Sprimont,<br />

T. Anguita, V. Bozza, P. Browne, M. Burgdorf, S.<br />

Calchi Novati, M. Dominik, S. Dreizler, M. Glitrup,<br />

F. Grundahl, K. Harpsøe, F. Hessman, T. C. Hinse, A.<br />

Hornstrup, M. Hundertmark, U. G. Jørgensen, C. Liebig,<br />

G. Maier, L. Mancini, G. Masi, M. Mathiasen, S. Rahvar,<br />

G. Scarpetta, J. Skottfelt, C. Snodgrass, J. Southworth,<br />

J. Teuber, C. C. Thöne, J. Wambsganß, F. Zimmer, M.<br />

Zub and J. Surdej: Flux and color variations of the quadruply<br />

imaged quasar HE 0435-1223. <strong>Astronomy</strong> and<br />

Astrophysics 528, 42 (<strong>2011</strong>)<br />

Ricci, L., L. Testi, J. P. Williams, R. K. Mann and T.<br />

Birnstiel: The mm-colors of a Young Binary Disk System<br />

in the Orion Nebula Cluster. The Astrophysical Journal<br />

Letters 739, L8 (<strong>2011</strong>)<br />

Richardson, J. C., M. J. Irwin, A. W. McConnachie, N. F.<br />

Martin, A. L. Dotter, A. M. N. Ferguson, R. A. Ibata, S.<br />

C. Chapman, G. F. Lewis, N. R. Tanvir and R. M. Rich:<br />

PAndAS’ progeny: Extending the M 31 dwarf galaxy cabal.<br />

The Astrophysical Journal 732, id. 76 (<strong>2011</strong>)<br />

Riechers, D. A., C. L. Carilli, R. J. Maddalena, J. Hodge, A.<br />

I. Harris, A. J. Baker, F. Walter, J. Wagg, P. A. Vanden<br />

Bout, A. Weiß and C. E. Sharon: CO(J 1 → 0) in z 2<br />

quasar host galaxies: no evidence <strong>for</strong> extended molecular<br />

gas reservoirs. The Astrophysical Journal Letters 739, id.<br />

L32 (<strong>2011</strong>)<br />

Riechers, D. A., L. C. Carilli, F. Walter, A. Weiss, J. Wagg,<br />

F. Bertoldi, D. Downes, C. Henkel and J. Hodge:<br />

Imaging the molecular gas properties of a major merger<br />

driving the evolution of a z 2.5 submillimeter galaxy.<br />

The Astrophysical Journal Letters 733, id. L11, (<strong>2011</strong>)<br />

Riechers, D. A., J. Hodge, F. Walter, C. L. Carilli and<br />

F. Bertoldi: Extended cold molecular gas reservoirs<br />

in z 3.4 submillimeter galaxies. The Astrophysical<br />

Journal Letters 739, id. L31, (<strong>2011</strong>)<br />

Publications 133


134 Publications<br />

Riechers, D. A., F. Walter, C. L. Carilli, P. Cox, A. Weiss,<br />

F. Bertoldi and K. M. Menten: Dense molecular gas excitation<br />

at high redshift: detection of HCO (J 4 → 3)<br />

emission in the Cloverleaf Quasar. The Astrophysical<br />

Journal 726, id. 50, (<strong>2011</strong>)<br />

Roccatagliata, V., J. Bouwman, T. Henning, M. Gennaro,<br />

E. Feigelson, J. S. Kim, A. Sicilia-Aguilar and W.<br />

A. Lawson: Disk evolution in OB associations: deep<br />

Spitzer/irac observations of IC 1795. The Astrophysical<br />

Journal 733, id. 113 (<strong>2011</strong>)<br />

Roccatagliata, V., T. Ratzka, T. Henning, S. Wolf, C. Leinert<br />

and J. Bouwman: Multi-wavelength observations of the<br />

young binary system Haro 6-10: The case of misaligned<br />

discs. <strong>Astronomy</strong> and Astrophysics 534, 33 (<strong>2011</strong>)<br />

Rochau, B., W. Brandner, A. Stolte, T. Henning, N. Da<br />

Rio, M. Gennaro, F. Hormuth, E. Marchetti and P.<br />

Amico: A benchmark <strong>for</strong> multiconjugated adaptive optics:<br />

VLT-MAD observations of the young massive<br />

cluster Trumpler 14. Monthly Notices of the Royal<br />

Astronomical Society 418, 949-959 (<strong>2011</strong>)<br />

Rolffs, R., P. Schilke, F. Wyrowski, C. Dullemond, K. M.<br />

Menten, S. Thorwirth and A. Belloche: Hot HCN around<br />

young massive stars at 0.1 resolution. <strong>Astronomy</strong> and<br />

Astrophysics 529, id. A76, (<strong>2011</strong>)<br />

Rouillé, G., M. Steglich, C. Jäger, F. Huisken, T. Henning,<br />

G. Theumer, I. Bauer and H.-J. Knölker: Spectroscopy<br />

of dibenzorubicene: experimental data <strong>for</strong> a search in<br />

interstellar spectra. Chem.Phys.Chem 12, 2131-2137<br />

(<strong>2011</strong> online)<br />

Ruhland, C., E. F. Bell, H.-W. Rix and X.-X. Xue: The<br />

structure of the Sagittarius Stellar Stream as traced by<br />

blue horizontal branch stars. The Astrophysical Journal<br />

731, id. 119, (<strong>2011</strong>)<br />

Sánchez, S. F., F. F. Rosales-Ortega, R. C. Kennicutt, B. D.<br />

Johnson, A. I. Diaz, A. Pasquali and C. N. Hao: PPAK<br />

Wide-field Integral Field Spectroscopy of NGC 628 – I.<br />

The largest spectroscopic mosaic on a single galaxy.<br />

Monthly Notices of the Royal Astronomical Society 410,<br />

313-340 (<strong>2011</strong>)<br />

Sándor, Z., W. Lyra and C. P. Dullemond: Formation of planetary<br />

cores at type I migration traps. The Astrophysical<br />

Journal Letters 728, id. L9, (<strong>2011</strong>)<br />

Schewtschenko, J. A. and A. V. Macciò: Comparing galactic<br />

satellite properties in hydrodynamical and N-body<br />

simulations. Monthly Notices of the Royal Astronomical<br />

Society 413, 878-886 (<strong>2011</strong>)<br />

Schmidt, W. and C. Federrath: A fluid-dynamical subgrid<br />

scale model <strong>for</strong> highly compressible astrophysical turbulence.<br />

<strong>Astronomy</strong> and Astrophysics 528, id. A106, (<strong>2011</strong>)<br />

Schneider, N., S. Bontemps, R. Simon, V. Ossenkopf, C.<br />

Federrath, R. S. Klessen, F. Motte, P. André, J. Stutzki<br />

and C. Brunt: The link between molecular cloud structure<br />

and turbulence. <strong>Astronomy</strong> and Astrophysics 529, id. A1<br />

(<strong>2011</strong>)<br />

Schrinner, M., L. Petitdemange and E. Dormy: Oscillatory<br />

dynamos and their induction mechanisms. <strong>Astronomy</strong><br />

and Astrophysics 530, 140 (<strong>2011</strong>)<br />

Schruba, A., A. K. Leroy, F. Walter, F. Bigiel, E. Brinks,<br />

W. J. G. de Blok, G. Dumas, C. Kramer, E. Rosolowsky,<br />

K. Sandstrom, K. Schuster, A. Usero, A. Weiss and H.<br />

Wiesemeyer: A molecular star <strong>for</strong>mation law in the<br />

atomic-gas-dominated regime in nearby galaxies. The<br />

Astronomical Journal 142, id. 37, (<strong>2011</strong>)<br />

Ségransan, D., M. Mayor, S. Udry, C. Lovis, W. Benz, F.<br />

Bouchy, G. Lo Curto, C. Mordasini, C. Moutou, D. Naef,<br />

F. Pepe, D. Queloz and N. Santos: The harpS search <strong>for</strong><br />

southern extra-solar planets. XXIX. Four new planets<br />

in orbit around the moderatly active dwarfs HD 63765,<br />

HD 104067, HD 125595, and HIP 70849. <strong>Astronomy</strong> and<br />

Astrophysics 535, id. A54, (<strong>2011</strong>)<br />

Selier, R., M. Heydari-Malayeri and D. A. Gouliermis: An<br />

interesting candidate <strong>for</strong> isolated massive-star <strong>for</strong>mation<br />

in the Small Magellanic Cloud. <strong>Astronomy</strong> and<br />

Astrophysics 529, id. A40 (<strong>2011</strong>)<br />

Semenov, D. and D. Wiebe: Chemical evolution of turbulent<br />

protoplanetary disks and the solar nebula. The<br />

Astrophysical Journal Supplement Series 196, id. 25,<br />

(<strong>2011</strong>)<br />

Shetty, R., S. C. Glover, C. P. Dullemond and R. S. Klessen:<br />

Modelling CO emission – I. CO as a column density<br />

tracer and the X factor in molecular clouds. Monthly<br />

Notices of the Royal Astronomical Society 412, 1686-<br />

1700 (<strong>2011</strong>)<br />

Shetty, R., S. C. Glover, C. P. Dullemond, E. C. Ostriker, A.<br />

I. Harris and R. S. Klessen: Modelling CO emission – II.<br />

The physical characteristics that determine the X factor<br />

in Galactic molecular clouds. Monthly Notices of the<br />

Royal Astronomical Society 415, 3253-3274 (<strong>2011</strong>)<br />

Shirley, Y. L., T. L. Huard, K. M. Pontoppidan, D. J.<br />

Wilner, A. M. Stutz, J. H. Bieging and N. J. Evans:<br />

Observational constraints on submillimeter dust opacity.<br />

The Astrophysical Journal 728, id. 143 (<strong>2011</strong>)<br />

Sicilia-Aguilar, A., T. Henning, C. P. Dullemond, N. Patel,<br />

A. Juhász, J. Bouwman and B. Sturm: Dust properties<br />

and disk structure of evolved protoplanetary disks in<br />

Cep OB2: grain growth, settling, gas and dust mass, and<br />

inside-out evolution. The Astrophysical Journal 742, id.<br />

39 (<strong>2011</strong>)<br />

Sicilia-Aguilar, A., T. Henning, J. Kainulainen and V.<br />

Roccatagliata: Protostars and stars in the Coronet cluster:<br />

age, evolution, and cluster structure. The Astrophysical<br />

Journal 736, id. 137, (<strong>2011</strong>)<br />

Silverman, J. D., P. Kampczyk, K. Jahnke, R. Andrae, S.<br />

J. Lilly, M. Elvis, F. Civano, V. Mainieri, C. Vignali, G.<br />

Zamorani, P. Nair, O. Le Fèvre, L. de Ravel, S. Bardelli,<br />

A. Bongiorno, M. Bolzonella, A. Cappi, K. Caputi, C.<br />

M. Carollo, T. Contini, G. Coppa, O. Cucciati, S. de la<br />

Torre, P. Franzetti, B. Garilli, C. Halliday, G. Hasinger,<br />

A. Iovino, C. Knobel, A. M. Koekemoer, K. Kovač, F.<br />

Lamareille, J. F. Le Borgne, V. Le Brun, C. Maier, M.<br />

Mignoli, R. Pello, E. Pérez-Montero, E. Ricciardelli, Y.<br />

Peng, M. Scodeggio, M. Tanaka, L. Tasca, L. Tresse, D.<br />

Vergani, E. Zucca, M. Brusa, N. Cappelluti, A. Comastri,<br />

A. Finoguenov, H. Fu, R. Gilli, H. Hao, L. C. Ho and


M. Salvato: The impact of galaxy interactions on active<br />

galactic nucleus activity in zcoSmoS. The Astrophysical<br />

Journal 743, id. 2 (<strong>2011</strong>)<br />

Skemer, A. J., L. M. Close, L. Szűcs, D. Apai, I. Pascucci<br />

and B. A. Biller: Evidence against an edge-on disk<br />

around the extrasolar planet, 2MASS 1207 b and a new<br />

thick-cloud explanation <strong>for</strong> its underluminosity. The<br />

Astrophysical Journal 732, id. 107 (<strong>2011</strong>)<br />

Skibba, R. A., C. W. Engelbracht, D. Dale, J. Hinz, S.<br />

Zibetti, A. Crocker, B. Groves, L. Hunt, B. D. Johnson,<br />

S. Meidt, E. Murphy, P. Appleton, L. Armus, A. Bolatto,<br />

B. Brandl, D. Calzetti, K. Croxall, M. Galametz, K. D.<br />

Gordon, R. C. Kennicutt, J. Koda, O. Krause, E. Montiel,<br />

H.-W. Rix, H. Roussel, K. Sandstrom, M. Sauvage, E.<br />

Schinnerer, J. D. Smith, F. Walter, C. D. Wilson and M.<br />

Wolfire: The emission by dust and stars of nearby galaxies<br />

in the herScheL KinGfiSh survey. The Astrophysical<br />

Journal 738, id. 89 (<strong>2011</strong>)<br />

Skibba, R. A. and A. V. Macciò: Properties of dark matter<br />

haloes and their correlations: the lesson from principal<br />

component analysis. Monthly Notices of the Royal<br />

Astronomical Society 416, 2388-2400 (<strong>2011</strong>)<br />

Skibba, R. A., F. C. van den Bosch, X. Yang, S. More, H.<br />

Mo and F. Fontanot: Are brightest halo galaxies central<br />

galaxies? Monthly Notices of the Royal Astronomical<br />

Society 410, 417-431 (<strong>2011</strong>)<br />

Slater, C. T., E. F. Bell and N. F. Martin: Andromeda<br />

XXVIII: a dwarf galaxy more than 350 kpc from<br />

Andromeda. The Astrophysical Journal Letters 742, id.<br />

L14 (<strong>2011</strong>)<br />

Sluse, D., R. Schmidt, F. Courbin, D. Hutsemékers, G.<br />

Meylan, A. Eigenbrod, T. Anguita, E. Agol and J.<br />

Wambsganss: Zooming into the broad line region of<br />

the gravitationally lensed quasar QSO 2237 + 0305≡<br />

the Einstein Cross. III. Determination of the size and<br />

structure of the Civ and Ciii] emitting regions using microlensing.<br />

<strong>Astronomy</strong> and Astrophysics 528, id. A100<br />

(<strong>2011</strong>)<br />

Smolčić, V., P. Capak, O. Ilbert, A. W. Blain, M. Salvato,<br />

I. Aretxaga, E. Schinnerer, D. Masters, I. Morić, D. A.<br />

Riechers, K. Sheth, M. Aravena, H. Aussel, J. Aguirre,<br />

S. Berta, C. L. Carilli, F. Civano, G. Fazio, J. Huang, D.<br />

Hughes, J. Kartaltepe, A. M. Koekemoer, J. P. Kneib,<br />

E. LeFloc’h, D. Lutz, H. McCracken, B. Mobasher,<br />

E. Murphy, F. Pozzi, L. Riguccini, D. B. Sanders, M.<br />

Sargent, K. S. Scott, N. Z. Scoville, Y. Taniguchi, D.<br />

Thompson, C. Willott, G. Wilson and M. Yun: The redshift<br />

and nature of AzTEC/coSmoS 1: a starburst galaxy<br />

at z 4.6. The Astrophysical Journal Letters 731, id.<br />

L27, (<strong>2011</strong>)<br />

Smolčić, V., A. Finoguenov, G. Zamorani, E. Schinnerer, M.<br />

Tanaka, S. Giodini and N. Scoville: On the occupation<br />

of X-ray-selected galaxy groups by radio active galactic<br />

nuclei since z 1.3. Monthly Notices of the Royal<br />

Astronomical Society 416, L31-L35 (<strong>2011</strong>)<br />

Sollima, A., D. Martínez-Delgado, D. Valls-Gabaud and J.<br />

Peñarrubia: Discovery of tidal tails around the distant<br />

globular cluster Palomar 14. The Astrophysical Journal<br />

726, id. 47 (<strong>2011</strong>)<br />

Sollima, A., D. Valls-Gabaud, D. Martinez-Delgado, J.<br />

Fliri, J. Penarrubia and H. Hoekstra: A deep view of the<br />

Monoceros ring in the anticenter direction: clues of its<br />

extra-galactic origin. The Astrophysical Journal Letters<br />

730, id. L6 (<strong>2011</strong>)<br />

Steglich, M., J. Bouwman, F. Huisken and T. Henning: Can<br />

neutral and ionized polycyclic aromatic hydrocarbons be<br />

carriers of the ultraviolet extinction bump and the diffuse<br />

interstellar bands? The Astrophysical Journal 742, id. 2<br />

(<strong>2011</strong>)<br />

Steglich, M., F. Huisken, J. E. Dahl, R. M. K. Carlson and<br />

T. Henning: Electronic spectroscopy of FUV-irradiated<br />

damondoids: a combined experimental and theoretical<br />

study. The Astrophysical Journal 729, id. 91 (<strong>2011</strong>)<br />

Stumpf, M. B., K. Geißler, H. Bouy, W. Brandner, B.<br />

Goldman and T. Henning: Resolving the L/T transition<br />

binary SDSS J2052-1609 AB. <strong>Astronomy</strong> and<br />

Astrophysics 525, id. A123 (<strong>2011</strong>)<br />

Szalai, T., J. Vinkó, Z. Balog, A. Gáspár, M. Block and L.<br />

L. Kiss: Dust <strong>for</strong>mation in the ejecta of the type II-P<br />

supernova 2004dj. <strong>Astronomy</strong> and Astrophysics 527, id.<br />

A61, (<strong>2011</strong>)<br />

Tadhunter, C., J. Holt, R. González Delgado, J. Rodríguez<br />

Zaurín, M. Villar-Martín, R. Morganti, B. Emonts, C.<br />

Ramos Almeida and K. Inskip: Starburst radio galaxies:<br />

general properties, evolutionary histories and triggering.<br />

Monthly Notices of the Royal Astronomical Society 412,<br />

960-978 (<strong>2011</strong>)<br />

Tatulli, E., M. Benisty, F. Ménard, P. Varnière, C. Martin-<br />

Zaïdi, W. F. Thi, C. Pinte, F. Massi, G. Weigelt, K. H.<br />

Hofmann and R. G. Petrov: Constraining the structure<br />

of the planet-<strong>for</strong>ming region in the disk of the Herbig<br />

Be star HD 100546. <strong>Astronomy</strong> and Astrophysics 531,<br />

id. A1, (<strong>2011</strong>)<br />

Teske, J. K., J. R. Najita, J. S. Carr, I. Pascucci, D. Apai<br />

and T. Henning: Measuring organic molecular emission<br />

in disks with low-resolution Spitzer spectroscopy. The<br />

Astrophysical Journal 734, id. 27 (<strong>2011</strong>)<br />

Thalmann, C., M. Janson, E. Buenzli, T. D. Brandt, J. P.<br />

Wisniewski, A. Moro-Martín, T. Usuda, G. Schneider,<br />

J. Carson, M. W. McElwain, C. A. Grady, M. Goto, L.<br />

Abe, W. Brandner, C. Dominik, S. Egner, M. Feldt, T.<br />

Fukue, T. Golota, O. Guyon, J. Hashimoto, Y. Hayano,<br />

M. Hayashi, S. Hayashi, T. Henning, K. W. Hodapp,<br />

M. Ishii, M. Iye, R. Kandori, G. R. Knapp, T. Kudo, N.<br />

Kusakabe, M. Kuzuhara, T. Matsuo, S. Miyama, J. I.<br />

Morino, T. Nishimura, T. S. Pyo, E. Serabyn, H. Suto,<br />

R. Suzuki, Y. H. Takahashi, M. Takami, N. Takato,<br />

H. Terada, D. Tomono, E. L. Turner, M. Watanabe,<br />

T. Yamada, H. Takami and M. Tamura: Images of<br />

the extended outer regions of the debris ring around<br />

HR 4796 A. The Astrophysical Journal Letters 743, id.<br />

L6, (<strong>2011</strong>)<br />

Thalmann, C., T. Usuda, M. Kenworthy, M. Janson, E.<br />

E. Mamajek, W. Brandner, C. Dominik, M. Goto, Y.<br />

Publications 135


136 Publications<br />

Hayano, T. Henning, P. M. Hinz, Y. Minowa and M.<br />

Tamura: Piercing the glare: a direct imaging search <strong>for</strong><br />

planets in the Sirius system. The Astrophysical Journal<br />

Letters 732, id. L34 (<strong>2011</strong>)<br />

Thi, W. F., F. Ménard, G. Meeus, C. Martin-Zaïdi, P. Woitke,<br />

E. Tatulli, M. Benisty, I. Kamp, I. Pascucci, C. Pinte,<br />

C. A. Grady, S. Brittain, G. J. White, C. D. Howard, G.<br />

Sandell and C. Eiroa: Detection of CH emission from<br />

the disc around HD 100546. <strong>Astronomy</strong> and Astrophysics<br />

530, id. L2, (<strong>2011</strong>)<br />

Trump, J. R., C. D. Impey, B. C. Kelly, F. Civano, J. M.<br />

Gabor, A. M. Diamond-Stanic, A. Merloni, C. M. Urry,<br />

H. Hao, K. Jahnke, T. Nagao, Y. Taniguchi, A. M.<br />

Koekemoer, G. Lanzuisi, C. Liu, V. Mainieri, M. Salvato<br />

and N. Z. Scoville: Accretion rate and the physical nature<br />

of unobscured active galaxies. The Astrophysical Journal<br />

733, id. 60 (<strong>2011</strong>)<br />

Trump, J. R., T. Nagao, H. Ikeda, T. Murayama, C. D. Impey,<br />

J. T. Stocke, F. Civano, M. Elvis, K. Jahnke, B. C. Kelly,<br />

A. M. Koekemoer and Y. Taniguchi: Spectropolarimetric<br />

evidence <strong>for</strong> radiatively inefficient accretion in an optically<br />

dull active galaxy. The Astrophysical Journal 732,<br />

id. 23 (<strong>2011</strong>)<br />

Tsalmantza, P., R. Decarli, M. Dotti and D. W. Hogg: A<br />

systematic search <strong>for</strong> massive black hole binaries in the<br />

Sloan Digital Sky Survey spectroscopic sample. The<br />

Astrophysical Journal 738, id. 20 (<strong>2011</strong>)<br />

Umbreit, S., R. Spurzem, T. Henning, H. Klahr and S.<br />

Mikkola: Disks around brown dwarfs in the ejection<br />

scenario. I. Disk collisions in triple systems. The<br />

Astrophysical Journal 743, id. 106 (<strong>2011</strong>)<br />

Uribe, A. L., H. Klahr, M. Flock and T. Henning: Threedimensional<br />

magnetohydrodynamic simulations of planet<br />

migration in turbulent stratified disks. The Astrophysical<br />

Journal 736, id. 85 (<strong>2011</strong>)<br />

Vaidya, B., C. Fendt, H. Beuther and O. Porth: Jet <strong>for</strong>mation<br />

from massive young stars: magnetohydrodynamics<br />

versus radiation pressure. The Astrophysical Journal 742,<br />

id. 56, (<strong>2011</strong>)<br />

Valtchanov, I., J. Virdee, R. J. Ivison, B. Swinyard, P. van<br />

der Werf, D. Rigopoulou, E. da Cunha, R. Lupu, D. J.<br />

Ben<strong>for</strong>d, D. Riechers, I. Smail, M. Jarvis, C. Pearson,<br />

H. Gomez, R. Hopwood, B. Altieri, M. Birkinshaw, D.<br />

Coia, L. Conversi, A. Cooray, G. de Zotti, L. Dunne,<br />

D. Frayer, L. Leeuw, A. Marston, M. Negrello, M. S.<br />

Portal, D. Scott, M. A. Thompson, M. Vaccari, M. Baes,<br />

D. Clements, M. J. Michałowski, H. Dannerbauer, S.<br />

Serjeant, R. Auld, S. Buttiglione, A. Cava, A. Dariush, S.<br />

Dye, S. Eales, J. Fritz, E. Ibar, S. Maddox, E. Pascale, M.<br />

Pohlen, E. Rigby, G. Rodighiero, D. J. B. Smith, P. Temi,<br />

J. Carpenter, A. Bolatto, M. Gurwell and J. D. Vieira:<br />

Physical conditions of the interstellar medium of highredshift,<br />

strongly lensed submillimetre galaxies from<br />

the herScheL-atLaS. Monthly Notices of the Royal<br />

Astronomical Society 415, 3473-3484 (<strong>2011</strong>)<br />

van der Laan, T. P. R., E. Schinnerer, F. Boone, S. García-<br />

Burillo, F. Combes, S. Haan, S. Leon, L. Hunt and A. J.<br />

Baker: Molecular gas in NUclei of GAlaxies (nuGa).<br />

XV. Molecular gas kinematics in the inner 3 kpc of<br />

NGC 6951. <strong>Astronomy</strong> and Astrophysics 529, id. A45,<br />

(<strong>2011</strong>)<br />

van der Wel, A., H.-W. Rix, S. Wuyts, E. J. McGrath, A.<br />

M. Koekemoer, E. F. Bell, B. P. Holden, A. R. Robaina<br />

and D. H. McIntosh: The majority of compact massive<br />

galaxies at z 2 are disk dominated. The Astrophysical<br />

Journal 730, id. 38 (<strong>2011</strong>)<br />

van der Wel, A., A. N. Straughn, H. W. Rix, S. L. Finkelstein,<br />

A. M. Koekemoer, B. J. Weiner, S. Wuyts, E. F. Bell, S.<br />

M. Faber, J. R. Trump, D. C. Koo, H. C. Ferguson, C.<br />

Scarlata, N. P. Hathi, J. S. Dunlop, J. A. Newman, M.<br />

Dickinson, K. Jahnke, B. W. Salmon, D. F. de Mello,<br />

D. D. Kocevski, K. Lai, N. A. Grogin, S. A. Rodney, Y.<br />

Guo, E. J. McGrath, K. S. Lee, G. Barro, K. H. Huang,<br />

A. G. Riess, M. L. N. Ashby and S. P. Willner: Extreme<br />

emission-line galaxies in candeLS: broadband-selected,<br />

starbursting dwarf galaxies at z 1. The Astrophysical<br />

Journal 742, id. 111 (<strong>2011</strong>)<br />

van der Werf, P. P., A. Berciano Alba, M. Spaans, A. F.<br />

Loenen, R. Meijerink, D. A. Riechers, P. Cox, A. Weiß<br />

and F. Walter: Water vapor emission reveals a highly<br />

obscured, star-<strong>for</strong>ming nuclear region in the QSO host<br />

galaxy APM 08279+5255 at z 3.9. The Astrophysical<br />

Journal Letters 741, id. L38, (<strong>2011</strong>)<br />

van Dokkum, P. G., G. Brammer, M. Fumagalli, E. Nelson,<br />

M. Franx, H.-W. Rix, M. Kriek, R. E. Skelton, S. Patel,<br />

K. B. Schmidt, R. Bezanson, F. Bian, E. da Cunha, D.<br />

K. Erb, X. Fan, N. Förster Schreiber, G. D. Illingworth,<br />

I. Labbé, B. Lundgren, D. Magee, D. Marchesini, P.<br />

McCarthy, A. Muzzin, R. Quadri, C. C. Steidel, T. Tal,<br />

D. Wake, K. E. Whitaker and A. Williams: First results<br />

from the 3D-HST Survey: The striking diversity of massive<br />

galaxies at z 1. The Astrophysical Journal Letters<br />

743, id. L15 (<strong>2011</strong>)<br />

Vasyunin, A. I., D. S. Wiebe, T. Birnstiel, S. Zhukovska, T.<br />

Henning and C. P. Dullemond: Impact of grain evolution<br />

on the chemical structure of protoplanetary disks. The<br />

Astrophysical Journal 727, id. 76 (<strong>2011</strong>)<br />

Vasyunina, T., H. Linz, T. Henning, I. Zinchenko, H.<br />

Beuther and M. Voronkov: Chemistry in infrared dark<br />

clouds. <strong>Astronomy</strong> and Astrophysics 527, id. A88 (<strong>2011</strong>)<br />

Verhoeff, A. P., M. Min, E. Pantin, L. B. F. M. Waters, A. G.<br />

G. M. Tielens, M. Honda, H. Fujiwara, J. Bouwman, R.<br />

van Boekel, S. M. Dougherty, A. de Koter, C. Dominik<br />

and G. D. Mulders: The complex circumstellar environment<br />

of HD 142527. <strong>Astronomy</strong> and Astrophysics 528,<br />

id. A91, (<strong>2011</strong>)<br />

Vicente, S., B. Merín, M. Hartung, H. Bouy, N. Huélamo, E.<br />

Artigau, J. C. Augereau, E. van Dishoeck, J. Olofsson, I.<br />

Oliveira and T. Prusti: Ruling out unresolved binaries in<br />

five transitional disks. VLT/naco deep 2.12 and 1.75 mm<br />

narrow-band imaging. <strong>Astronomy</strong> and Astrophysics 533,<br />

id. A135 (<strong>2011</strong>)<br />

Vollmer, B. and A. K. Leroy: Sustaining star <strong>for</strong>mation rates<br />

in spiral galaxies supernova-driven turbulent accretion


disk models applied to things galaxies. The Astronomical<br />

Journal 141, id. 24 (<strong>2011</strong>)<br />

Walter, F., K. Sandstrom, G. Aniano, D. Calzetti, K. Croxall,<br />

D. A. Dale, B. T. Draine, C. Engelbracht, J. Hinz, R.<br />

C. Kennicutt, M. Wolfire, L. Armus, P. Beirão, A. D.<br />

Bolatto, B. Brandl, A. Crocker, M. Galametz, B. Groves,<br />

C. N. Hao, G. Helou, L. Hunt, J. Koda, O. Krause, A.<br />

Leroy, S. Meidt, E. J. Murphy, N. Rahman, H. W. Rix,<br />

H. Roussel, M. Sauvage, E. Schinnerer, R. Skibba, J. D.<br />

Smith, C. D. Wilson and S. Zibetti: The displaced dusty<br />

interstellar medium of NGC 3077: tidal stripping in the<br />

M 81 triplet. The Astrophysical Journal Letters 726, id.<br />

L11, (<strong>2011</strong>)<br />

Walter, F., A. Weiß, D. Downes, R. Decarli and C. Henkel:<br />

A survey of atomic carbon at high redshift. The<br />

Astrophysical Journal 730, id. 18 (<strong>2011</strong>)<br />

Wang, J., G. Fabbiano, M. Elvis, G. Risaliti, M. Karovska,<br />

A. Zezas, C. G. Mundell, G. Dumas and E. Schinnerer:<br />

A deep chandra ACIS study of NGC 4151. III. The line<br />

emission and spectral analysis of the ionization cone. The<br />

Astrophysical Journal 742, id. 23, (<strong>2011</strong>)<br />

Wang, J., G. Fabbiano, G. Risaliti, M. Elvis, M. Karovska,<br />

A. Zezas, C. G. Mundell, G. Dumas and E. Schinnerer:<br />

A deep chandra ACIS study of NGC 4151. I. The<br />

X-ray morphology of the 3 kpc diameter circum-nuclear<br />

region and relation to the cold interstellar medium. The<br />

Astrophysical Journal 729, id. 75, (<strong>2011</strong>)<br />

Wang, R., J. Wagg, C. L. Carilli, R. Neri, F. Walter, A.<br />

Omont, D. A. Riechers, F. Bertoldi, K. M. Menten, P.<br />

Cox, M. A. Strauss, X. Fan and L. Jiang: Far-infrared<br />

and molecular CO emission from the host galaxies of<br />

faint quasars at z 6. The Astronomical Journal 142, id.<br />

101, (<strong>2011</strong>)<br />

Wang, R., J. Wagg, C. L. Carilli, F. Walter, D. A. Riechers,<br />

C. Willott, F. Bertoldi, A. Omont, A. Beelen, P. Cox, M.<br />

A. Strauss, J. Bergeron, T. Forveille, K. M. Menten and<br />

X. Fan: CO (2-1) line emission in redshift 6 quasar host<br />

galaxies. The Astrophysical Journal Letters 739, id. L34<br />

(<strong>2011</strong>)<br />

Wang, W., S. Boudreault, B. Goldman, T. Henning, J. A.<br />

Caballero and C. A. L. Bailer-Jones: The substellar<br />

mass function in the central region of the open cluster<br />

Praesepe from deep LBT observations. <strong>Astronomy</strong> and<br />

Astrophysics 531, id. A164 (<strong>2011</strong>)<br />

Wang, Y., H. Beuther, A. Bik, T. Vasyunina, Z. Jiang, E.<br />

Puga, H. Linz, J. A. Rodón, T. Henning and M. Tamura:<br />

Different evolutionary stages in the massive star-<strong>for</strong>ming<br />

region S255 complex. <strong>Astronomy</strong> and Astrophysics 527,<br />

id. A32 (<strong>2011</strong>)<br />

Wardlow, J. L., I. Smail, K. E. K. Coppin, D. M. Alexander,<br />

W. N. Brandt, A. L. R. Danielson, B. Luo, A. M.<br />

Swinbank, F. Walter, A. Weiß, Y. Q. Xue, S. Zibetti, F.<br />

Bertoldi, A. D. Biggs, S. C. Chapman, H. Dannerbauer,<br />

J. S. Dunlop, E. Gawiser, R. J. Ivison, K. K. Knudsen,<br />

A. Kovács, C. G. Lacey, K. M. Menten, N. Padilla, H.<br />

W. Rix and P. P. van der Werf: The Laboca survey of<br />

the Extended chandra Deep Field-South: a photomet-<br />

ric redshift survey of submillimetre galaxies. Monthly<br />

Notices of the Royal Astronomical Society 415, 1479-<br />

1508 (<strong>2011</strong>)<br />

Warren, S. R., D. R. Weisz, E. D. Skillman, J. M. Cannon,<br />

J. J. Dalcanton, A. E. Dolphin, R. C. Kennicutt, Jr., B.<br />

Koribalski, J. Ott, A. M. Stilp, S. D. Van Dyk, F. Walter<br />

and A. A. West: The <strong>for</strong>mation of kiloparsec-scale H I<br />

holes in dwarf galaxies. The Astrophysical Journal 738,<br />

id. 10 (<strong>2011</strong>)<br />

Watson, L. C., E. Schinnerer, P. Martini, T. Böker and<br />

U. Lisenfeld: Properties of bulgeless disk galaxies. I.<br />

Atomic gas. The Astrophysical Journal Supplement<br />

Series 194, id. 36 (<strong>2011</strong>)<br />

Wijesinghe, D. B., E. da Cunha, A. M. Hopkins, L. Dunne,<br />

R. Sharp, M. Gunawardhana, S. Brough, E. M. Sadler,<br />

S. Driver, I. Baldry, S. Bam<strong>for</strong>d, J. Liske, J. Loveday, P.<br />

Norberg, J. Peacock, C. C. Popescu, R. Tuffs, E. Andrae,<br />

R. Auld, M. Baes, J. Bland-Hawthorn, S. Buttiglione, A.<br />

Cava, E. Cameron, C. J. Conselice, A. Cooray, S. Croom,<br />

A. Dariush, G. Dezotti, S. Dye, S. Eales, C. Frenk, J.<br />

Fritz, D. Hill, R. Hopwood, E. Ibar, R. Ivison, M. Jarvis,<br />

D. H. Jones, E. van Kampen, L. Kelvin, K. Kuijken, S.<br />

J. Maddox, B. Madore, M. J. Michałowski, B. Nichol,<br />

H. Parkinson, E. Pascale, K. A. Pimbblet, M. Pohlen,<br />

M. Prescott, G. Rhodighiero, A. S. G. Robotham, E. E.<br />

Rigby, M. Seibert, S. Sergeant, D. J. B. Smith, P. Temi,<br />

W. Sutherland, E. Taylor, D. Thomas and P. van der<br />

Werf: Gama/H-atLaS: the ultraviolet spectral slope and<br />

obscuration in galaxies. Monthly Notices of the Royal<br />

Astronomical Society 415, 1002-1012 (<strong>2011</strong>)<br />

Windmark, F., L. Lindegren and D. Hobbs: Using Galactic<br />

Cepheids to verify Gaia parallaxes. <strong>Astronomy</strong> and<br />

Astrophysics 530, id. A76, (<strong>2011</strong>)<br />

Witzel, G., A. Eckart, R. M. Buchholz, M. Zamaninasab,<br />

R. Lenzen, R. Schödel, C. Araujo, N. Sabha, M. Bremer,<br />

V. Karas, C. Straubmeier and K. Muzic: The instrumental<br />

polarization of the Nasmyth focus polarimetric<br />

differential imager NAOS/conica (naco) at the VLT.<br />

Implications <strong>for</strong> time-resolved polarimetric measurements<br />

of Sagittarius A*. <strong>Astronomy</strong> and Astrophysics<br />

525, id. A130 (<strong>2011</strong>)<br />

Wong, T., A. Hughes, J. Ott, E. Muller, J. L. Pineda, J.-P.<br />

Bernard, Y.-H. Chu, Y. Fukui, R. A. Gruendl, C. Henkel,<br />

A. Kawamura, U. Klein, L. W. Looney, S. Maddison,<br />

Y. Mizuno, D. Paradis, J. Seale and D. E. Welty: The<br />

Magellanic Mopra Assessment (maGma). I. The molecular<br />

cloud population of the Large Magellanic Cloud.<br />

The Astrophysical Journal Supplement Series 197, id.<br />

16, (<strong>2011</strong>)<br />

Woods, P. M., J. M. Oliveira, F. Kemper, J. T. van Loon,<br />

B. A. Sargent, M. Matsuura, R. Szczerba, K. Volk, A. A.<br />

Zijlstra, G. C. Sloan, E. Lagadec, I. McDonald, O. Jones,<br />

V. Gorjian, K. E. Kraemer, C. Gielen, M. Meixner, R. D.<br />

Blum, M. Sewiło, D. Riebel, B. Shiao, C. H. R. Chen,<br />

M. L. Boyer, R. Indebetouw, V. Antoniou, J. P. Bernard,<br />

M. Cohen, C. Dijkstra, M. Galametz, F. Galliano, K. D.<br />

Gordon, J. Harris, S. Hony, J. L. Hora, A. Kawamura,<br />

Publications 137


138 Publications<br />

B. Lawton, J. M. Leisenring, S. Madden, M. Marengo,<br />

C. McGuire, A. J. Mulia, B. O’Halloran, K. Olsen,<br />

R. Paladini, D. Paradis, W. T. Reach, D. Rubin, K.<br />

Sandstrom, I. Soszyński, A. K. Speck, S. Srinivasan, A.<br />

G. G. M. Tielens, E. van Aarle, S. D. van Dyk, H. van<br />

Winckel, U. P. Vijh, B. Whitney and A. N. Wilkins: The<br />

SAGE-Spec Spitzer Legacy programme: the life-cycle<br />

of dust and gas in the Large Magellanic Cloud – Point<br />

source classification I. Monthly Notices of the Royal<br />

Astronomical Society 411, 1597-1627 (<strong>2011</strong>)<br />

Worseck, G., J. X. Prochaska, M. McQuinn, A. Dall’Aglio,<br />

C. Fechner, J. F. Hennawi, D. Reimers, P. Richter and<br />

L. Wisotzki: The end of Helium reionization at z 2.7<br />

inferred from cosmic variance in HST/COS He II Lya<br />

absorption spectra. The Astrophysical Journal Letters<br />

733, id. L24, (<strong>2011</strong>)<br />

Wu, R., D. W. Hogg and J. Moustakas: The aromatic features<br />

in very faint dwarf galaxies. The Astrophysical<br />

Journal 730, id. 111, (<strong>2011</strong>)<br />

Wu, X.-B., R. Wang, K. B. Schmidt, F. Bian, L. Jiang and<br />

X. Fan: Discovering the missing 2.2 z 3 quasars by<br />

combining optical variability and optical/near-infrared<br />

colors. The Astronomical Journal 142, id. 78 (<strong>2011</strong>)<br />

Wuyts, S., N. M. Förster Schreiber, A. van der Wel, B.<br />

Magnelli, Y. Guo, R. Genzel, D. Lutz, H. Aussel, G.<br />

Barro, S. Berta, A. Cava, J. Graciá-Carpio, N. P. Hathi,<br />

K.-H. Huang, D. D. Kocevski, A. M. Koekemoer, K.-S.<br />

Lee, E. Le Floc’h, E. J. McGrath, R. Nordon, P. Popesso,<br />

F. Pozzi, L. Riguccini, G. Rodighiero, A. Saintonge and<br />

L. Tacconi: Galaxy structure and mode of star <strong>for</strong>mation<br />

in the SFR-mass plane from z 2.5 to z 0.1. The<br />

Astrophysical Journal 742, id. 96, (<strong>2011</strong>)<br />

Xue, X.-X., H.-W. Rix, B. Yanny, T. C. Beers, E. F. Bell,<br />

G. Zhao, J. S. Bullock, K. V. Johnston, H. Morrison, C.<br />

Rockosi, S. E. Koposov, X. Kang, C. Liu, A. Luo, Y. S.<br />

Lee and B. A. Weaver: Quantifying kinematic substructure<br />

in the Milky Way’s stellar halo. The Astrophysical<br />

Journal 738, id. 79, (<strong>2011</strong>)<br />

Yang, Y., A. Zabludoff, K. Jahnke, D. Eisenstein, R. Davé,<br />

S. A. Shectman and D. D. Kelson: Gas kinematics in Lya<br />

nebulae. The Astrophysical Journal 735, id. 87 (<strong>2011</strong>)<br />

Zapatero Osorio, M. R., V. J. S. Béjar, B. Goldman, J. A.<br />

Caballero, R. Rebolo, J. A. Acosta-Pulido, A. Manchado<br />

and K. Peña Ramírez: Near-infrared linear polarization<br />

of ultracool dwarfs. The Astrophysical Journal 740, id.<br />

4 (<strong>2011</strong>)<br />

Zeimann, G. R., R. L. White, R. H. Becker, J. A. Hodge, S.<br />

A. Stan<strong>for</strong>d and G. T. Richards: Discovery of a radioselected<br />

z 6 quasar. The Astrophysical Journal 736, id.<br />

57, (<strong>2011</strong>)<br />

Zhang, X., W. Gaessler, A. R. Conrad, T. Bertram, C.<br />

Arcidiacono, T. M. Herbst, M. Kuerster, P. Bizenberger,<br />

D. Meschke, H.-W. Rix, C. Rao, L. Mohr, F. Briegel, F.<br />

Kittmann, J. Berwein, J. Trowitzsch, L. Schreiber, R.<br />

Ragazzoni and E. Diolaiti: First laboratory results with<br />

the Linc-nirvana high layer wavefront sensor. Optics<br />

Express 19, 16087-16095 (<strong>2011</strong>)<br />

Zhao-Geisler, R., A. Quirrenbach, R. Köhler, B. Lopez and<br />

C. Leinert: The mid-infrared diameter of W Hydrae.<br />

<strong>Astronomy</strong> and Astrophysics 530, id. A120, (<strong>2011</strong>)<br />

Zibetti, S. and B. Groves: Resolved optical-infrared spectral<br />

energy distributions of galaxies: universal relations and<br />

their break-down on local scales. Monthly Notices of the<br />

Royal Astronomical Society 417, 812-834 (<strong>2011</strong>)<br />

Zsom, A., C. W. Ormel, C. P. Dullemond and T. Henning:<br />

The outcome of protoplanetary dust growth: pebbles,<br />

boulders, or planetesimals? III. Sedimentation driven<br />

coagulation inside the snowline. <strong>Astronomy</strong> and<br />

Astrophysics 534, id. A73, (<strong>2011</strong>)<br />

Zsom, A., Z. Sándor and C. P. Dullemond: The first stages<br />

of planet <strong>for</strong>mation in binary systems: how far can dust<br />

coagulation proceed? <strong>Astronomy</strong> and Astrophysics 527,<br />

id. A10 (<strong>2011</strong>)<br />

Conference Proceedings and Books:<br />

Lemke, D.: Im Himmel über Heidelberg. Archiv zur<br />

Geschichte der <strong>Max</strong>-<strong>Planck</strong>-Gesellschaft, Berlin <strong>2011</strong>,<br />

360 p<br />

Perryman, M.: The exoplanet handbook. Cambridge<br />

University Press, Cambridge <strong>2011</strong>, X, 410p<br />

Invited Papers und Reviews:<br />

Fendt, C., B. Vaidya, O. Porth and S. S. Nezami: MHD<br />

simulations of jet <strong>for</strong>mation – protostellar jets & applications<br />

to AGN jets. In: Jets at all Scales, (Eds.) Romero,<br />

G. E., R. A. Sunyaev, T. M. Belloni. IAU Symp. 275,<br />

Cambridge Univ. Press, 383-391 (<strong>2011</strong>)<br />

Henning, T. and G. Meeus: Dust processing and mineralogy<br />

in protoplanetary accretion disks. In: Physical Processes<br />

in Circumstellar Disks around Young Stars, (Ed.) Garcia,<br />

P. J. V. Univ. of Chicago Press, Chicago <strong>2011</strong>, 114-148<br />

Jäger, C., H. Mutschke, T. Henning, F. Huisken and A. G.<br />

G. M. Tielens: From PAHs to solid carbon. In: PAHs and<br />

the Universe, (Ed.) Joblin, C. EAS Publications Series<br />

46, EDP Sciences, 293-304 (<strong>2011</strong>)<br />

Jäger, C., H. Mutschke, T. Henning, R. Simon, V. Ossenkopf<br />

and J. Stutzki: Laboratory astrophysics of dust. In: The<br />

5 th Zermatt ISM-Symposium: Conditions and Impact of<br />

Star Formation: New results with herScheL and beyond,<br />

(Eds.) Röllig, M., R. Simon, V. Ossenkopf, J. Stutzki.<br />

EAS Publications Series 52, EDP Sciences, 245-250<br />

(<strong>2011</strong>)<br />

Kaltenegger, L.: Biomarkers of habitable worlds – superearths<br />

and earths. In: The Molecular Universe, (Eds.)<br />

Cernicharo, J., R. Bachiller. IAU Symp. 280, Cambridge<br />

Univ. Press, 302-312 (<strong>2011</strong>)<br />

Kaltenegger, L., A. Segura, S. Mohanty, M. G. Lattanzi<br />

and A. P. Boss: Super-Earths and life – a fascinating<br />

puzzle: example GJ 581d. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 376-384 (<strong>2011</strong>)<br />

Pagani, L., A. Bacmann, J. Steinacker, A. Stutz, T. Henning,<br />

R. Simon, V. Ossenkopf and J. Stutzki: Coreshine: the


ubiquity of micron-size grains in star-<strong>for</strong>ming regions.<br />

In: The 5 th Zermatt ISM-Symposium: Conditions and<br />

Impact of Star Formation: New results with herScheL<br />

and beyond, (Eds.) Röllig, M., R. Simon, V. Ossenkopf,<br />

J. Stutzki. EAS Publications Series 52, EDP Sciences,<br />

225-228 (<strong>2011</strong>)<br />

Schartmann, M., K. Meisenheimer, H. Klahr, M. Camenzind,<br />

S. Wolf, T. Henning, A. Burkert and M. Krause:<br />

Hydrodynamic studies of turbulent AGN tori. In: Jenam<br />

2008: Grand Challenges in Computational Astrophysics,<br />

(Eds.) Wozniak, H., G. Hensler. EAS Publications Series<br />

44, EDP Sciences, 69-72 (<strong>2011</strong>)<br />

Semenov, D. A.: Chemical evolution of a protoplanetary<br />

disk. In: The Molecular Universe, (Eds.) Cernicharo, J.,<br />

R. Bachiller. IAU Symp. 280, Cambridge Univ. Press,<br />

114-126 (<strong>2011</strong>)<br />

Wyrowski, F., F. Schuller, K. M. Menten, L. Bronfman, T.<br />

Henning, C. M. Walmsley, H. Beuther, S. Bontemps,<br />

R. Cesaroni, Y. Contreras, L. Deharveng, G. Garay, F.<br />

Herpin, B. Lefloch, H. Linz, D. Mardones, V. Minier, S.<br />

Molinari, F. Motte, Q. Nguyen Luong, L. Å. Nyman, V.<br />

Reveret, C. Risacher, D. Russeil, P. Schilke, N. Schneider,<br />

J. Tackenberg, L. Testi, T. Troost, T. Vasyunina, M.<br />

Wienen, A. Zavagno, R. Simon, V. Ossenkopf and<br />

J. Stutzki: atLaSGaL: the apex Telescope Large<br />

Area Survey of the Galaxy. In: The 5 th Zermatt ISM-<br />

Symposium: Conditions and Impact of Star Formation :<br />

New results with herScheL and beyond, (Eds.) Röllig,<br />

M., R. Simon, V. Ossenkopf, J. Stutzki. EAS Publications<br />

Series, 52, EDP Sciences, 129-134 (<strong>2011</strong>)<br />

Congtributed Papers:<br />

Bagetakos, I., E. Brinks, F. Walter, W. J. G. de Blok, A.<br />

Usero, A. K. Leroy, J. W. Rich, R. C. Kennicutt, R.<br />

Simon, V. Ossenkopf and J. Stutzki: The porosity of<br />

the neutral ISM in 20 thinGS galaxies. In: The 5 th<br />

Zermatt ISM-Symposium: Conditions and Impact of Star<br />

Formation : New results with herScheL and beyond,<br />

(Eds.) Röllig, M., R. Simon, V. Ossenkopf, J. Stutzki.<br />

EAS Publications Series 52, EDP Sciences, 103-106<br />

(<strong>2011</strong>)<br />

Bailer-Jones, C. A. L., A. Accomazzi, D. J. Mink and<br />

A. H. Rots: Bayesian inference of stellar parameters<br />

and interstellar extinction with heterogeneous data. In:<br />

Astronomical Data Analysis Software and Systems XX,<br />

(Eds.) Evans, I. N., A. Accomazzi, D. J. Mink, A. H.<br />

Rots. ASP Conf. Ser. 442, ASP, 475-478 (<strong>2011</strong>)<br />

Berg<strong>for</strong>s, C., W. Brandner, T. Henning, S. Daemgen, M.<br />

G. Lattanzi and A. P. Boss: Stellar companions to exoplanet<br />

host stars with Astralux. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 397-398 (<strong>2011</strong>)<br />

Beuther, H.: Formation and early evolution of massive stars.<br />

In: The multi-wavelength view of hot, massive stars,<br />

(Eds.) Rauw, G., M. De Becker, Y. Nazé, J.-M. Vreux, P.<br />

Williams. Bulletin de la Societe Royale des Sciences de<br />

Liege 80, Soc. Royale des Sciences de Liège, 200-210<br />

(<strong>2011</strong>)<br />

Bigiel, F., A. Leroy, F. Walter, B. G. Elmegreen, J. M. Girart<br />

and V. Trimble: Scaling relations between gas and star<br />

<strong>for</strong>mation in nearby galaxies. In: Computational star <strong>for</strong>mation,<br />

(Eds.) Alves, J., B. G. Elmegreen, J. M. Girart,<br />

V. Trimble. IAU Symp. 270, Cambridge Univ. Press,<br />

327-334 (<strong>2011</strong>)<br />

Bik, A., T. Henning, A. Stolte, W. Brandner, D. Gouliermis,<br />

M. Gennaro, A. Pasquali, B. Rochau, H. Beuther and<br />

Y. Wang: Dissecting high-mass star-<strong>for</strong>ming regions;<br />

tracing back their complex <strong>for</strong>mation history. In: Stellar<br />

Clusters & Associations: A RIA Workshop on Gaia,<br />

(Eds.) Alfaro Navarro, E. J., A. T. Gallego Calvente, M.<br />

R. Zapatero Osorio. 210-214 (<strong>2011</strong> online)<br />

Brasseur, C., H. W. Rix, N. Martin, P. Prugniel and I.<br />

Vauglin: Andromeda and the Seven Dwarfs. In: CRAL –<br />

2010: A Universe of Dwarf Galaxies, (Eds.) Koleva, M.,<br />

P. Prugniel, I. Vauglin. EAS Publications Series 48, EDP<br />

Sciences, 353-354 (<strong>2011</strong>)<br />

Casasola, V., S. García-Burillo, F. Combes, L. K. Hunt, M.<br />

Krips, E. Schinnerer, A. J. Baker, F. Boone, A. Eckart,<br />

S. Léon, R. Neri and L. J. Tacconi: New views on bar<br />

pattern speeds from the nuGa survey. Memorie della<br />

Societa Astronomica Italiana Supplementi 18, 43-46<br />

(<strong>2011</strong>)<br />

Ceyhan, U., T. Henning, F. Fleischmann, D. Hilbig and<br />

D. Knipp: Measurements of aberrations of aspherical<br />

lenses using experimental ray tracing. In: Optical<br />

Measurement Systems <strong>for</strong> Industrial Inspection VII,<br />

(Eds.) Lehmann, P. H., W. Osten, K. Gastinger. SPIE<br />

8082, SPIE, 80821K-80821K-8, (<strong>2011</strong>)<br />

Chizhik, A. I., T. Schmidt, A. M. Chizhika, F. Huisken<br />

and A. J. Meixner: Dynamical effects of defect photoluminescence<br />

from single SiO 2 and SiO 2 nanoparticles.<br />

Physics Procedia 13, 28-32 (<strong>2011</strong>)<br />

Commerçon, B., P. Hennebelle, E. Audit, G. Chabrier, R.<br />

Teyssier, B. G. Elmegreen, J. M. Girart and V. Trimble:<br />

Radiative, magnetic and numerical feedbacks on smallscale<br />

fragmentation. In: Computational Star Formation,<br />

(Eds.) Alves, J., B. G. Elmegreen, J. M. Girart, V.<br />

Trimble. IAU Symp. 270, Cambridge Univ. Press, 227-<br />

230 (<strong>2011</strong>)<br />

Conrad, A., I. de Pater, M. Kürster, T. Herbst, L. Kaltenegger,<br />

M. Skrutskie, P. Hinz: Observing Io at high resolution<br />

from the ground with LBT. In: EPSC Abstracts 6, EPSC-<br />

DPS<strong>2011</strong>-795 (<strong>2011</strong>)<br />

Decarli, R., M. Dotti, F. Haardt and S. Zibetti: BH masses<br />

in NLS1: the role of the broad-line region geometry. In:<br />

Narrow-Line Seyfert 1 Galaxies and their place in the<br />

Universe, (Ed.) Foschini, L., id.41, (<strong>2011</strong> online)<br />

Döllinger, M. P., A. P. Hatzes, L. Pasquini, E. W. Guenther,<br />

M. Hartmann, J. Setiawan, L. Girardi, J. R. de Medeiros,<br />

L. da Silva, H. Drechsel and U. Heber: Exoplanets around<br />

G – K giants. In: Planetary Systems Beyond the Main<br />

Sequence, (Eds.) Schuh, S., H. Drechsel, U. Heber. AIP<br />

Conference Proceedings 1331, Springer, 79-87 (<strong>2011</strong>)<br />

Publications 139


140 Publications<br />

Dzyurkevich, N., N. J. Turner, W. Kley, H. Klahr, T.<br />

Henning, M. G. Lattanzi and A. P. Boss: 3D global simulations<br />

of proto-planetary disk with dynamically evolving<br />

outer edge of dead zone. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 407-408 (<strong>2011</strong>)<br />

Falcón-Barroso, J., G. van de Ven, R. Bacon, M. Bureau, M.<br />

Cappellari, R. L. Davies, P. T. de Zeeuw, E. Emsellem,<br />

D. Krajnovic, H. Kuntschner, R. M. McDermid, R. F.<br />

Peletier, M. Sarzi, R. C. E. van den Bosch, P. Prugniel<br />

and I. Vauglin: The fundamental plane of early-type<br />

galaxies. In: CRAL – 2010 : A Universe of Dwarf<br />

Galaxies (Eds.) Koleva, M., P. Prugniel, I. Vauglin. EAS<br />

Publications Series 48, EDP Sciences, 411-412 (<strong>2011</strong>)<br />

Flock, M., N. Turner, N. Dzyurkevich, H. Klahr, M. G.<br />

Lattanzi and A. P. Boss: Long-term stability of the deadzone<br />

in proto-planetary disks. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 418-419 (<strong>2011</strong>)<br />

Fuhrmann, L., E. Angelakis, I. Nestoras, T. P. Krichbaum,<br />

N. Marchili, R. Schmidt, J. A. Zensus, H. Unberechts,<br />

A. Sievers, D. Riquelme, L. Foschini, G. Ghisellini, G.<br />

Ghirlanda, G. Tagliaferri, F. Tavecchio, L. Maraxchi,<br />

M. Giroletti, G. Calderone, M. Colpi and R. Decarli:<br />

Gamma-ray NLSy1s and “classical” blazars: are they different<br />

at radio cm/mm bands? In: Narrow-Line Seyfert 1<br />

Galaxies and their Place in the Universe, (Ed.) Foschini,<br />

L., id.26, (<strong>2011</strong> online)<br />

Gabany, R. J. and D. Martinez-Delgado: Good science<br />

with modest instruments. In: 30 th <strong>Annual</strong> Symposium<br />

on Telescope Science, (Eds.) Warner, B. D., J. Foote,<br />

R. Buchheim. Society <strong>for</strong> Astronomical Sciences, 1-12<br />

(<strong>2011</strong>)<br />

Galametz, M., M. Albrecht, R. Kennicutt, F. Bertoldi, F.<br />

Walter, A. Weiss, D. Dale, B. Draine, G. Aniano, C.<br />

Engelbracht, J. Hinz, H. Roussel, K. Belkacem, R.<br />

Samadi and D. Valls-Gabaud: Mapping the dust properties<br />

of nearby galaxies with herScheL and Laboca. In:<br />

SF2A-<strong>2011</strong>: Proceedings of the <strong>Annual</strong> meeting of the<br />

French Society of <strong>Astronomy</strong> and Astrophysics, (Eds.)<br />

Alecian, G., K. Belkacem, R. Samadi, D. Valls-Gabaud.<br />

French Society of <strong>Astronomy</strong> and Astrophysics, 119-123<br />

(<strong>2011</strong>)<br />

Groenewegen, M. A. T., C. Waelkens, M. J. Barlow, F.<br />

Kerschbaum, P. Garcia-Lario, J. Cernicharo, J. A. D. L.<br />

Blommaert, J. Bouwman, M. Cohen, N. Cox, L. Decin,<br />

K. Exter, W. K. Gear, H. L. Gomez, P. C. Hargrave, T.<br />

Henning, D. Hutsemékers, R. J. Ivison, A. Jorissen, O.<br />

Krause, D. Ladjal, S. J. Leeks, T. L. Lim, M. Matsuura,<br />

Y. Nazé, G. Olofsson, R. Ottensamer, E. Polehampton, T.<br />

Posch, G. Rauw, P. Royer, B. Sibthorpe, B. M. Swinyard,<br />

T. Ueta, C. Vamvatira-Nakou, B. Vandenbussche, G. C.<br />

van de Steene, S. van Eck, P. A. M. van Hoof, H. van<br />

Winckel, E. Verdugo, R. Wesson, T. Lebzelter and R. F.<br />

Wing: Results from the herScheL Key Program MESS.<br />

In: Why Galaxies Care about AGB Stars II: Shining<br />

Examples and Common Inhabitants, (Ed.) Kerschbaum,<br />

F. ASP Conf. Ser. 445, ASP 567-575 (<strong>2011</strong>)<br />

Hart, M., S. Rabien, L. Busoni, L. Barl, U. Bechmann,<br />

M. Bonaglia, Y. Boose, J. Borelli, T. Bluemchen, L.<br />

Carbonaro, C. Connot, M. Deysenroth, R. Davies, O.<br />

Durney, M. Elberich, T. Ertl, S. Esposito, W. Gaessler,<br />

V. Gasho, H. Gemperlein, P. Hubbard, S. Kanneganti,<br />

M. Kulas, K. Newman, J. Noenickx, G. de Xivry, A.<br />

Qirrenback, M. Rademacher, C. Schwab, J. Storm, V.<br />

Vaitheeswaran, G. Weigelt and J. Ziegleder: The Large<br />

Binocular Telescope’s arGoS ground-layer AO system.<br />

In: The Large Binocular Telescope’s arGoS groundlayer<br />

AO system, (Ed.) Ryan, S., The Maui Economic<br />

Development Board, E23, (<strong>2011</strong> online)<br />

Hart, M., S. Rabien, L. Busoni, L. Barl, U. Beckmann,<br />

M. Bonaglia, Y. Boose, J. L. Borelli, T. Bluemchen, L.<br />

Carbonaro, C. Connot, M. Deysenroth, R. Davies, O.<br />

Durney, M. Elberich, T. Ertl, S. Esposito, W. Gaessler,<br />

V. Gasho, H. Gemperlein, P. Hubbard, S. Kanneganti,<br />

M. Kulas, K. Newman, J. Noenickx, G. Orban de Xivry,<br />

D. Peter, A. Quirrenbach, M. Rademacher, C. Schwab,<br />

J. Storm, V. Vaitheeswaran, G. Weigelt and J. Ziegleder:<br />

Status report on the Large Binocular Telescope’s arGoS<br />

ground-layer AO system. In: Astronomical Adaptive<br />

Optics Systems and Applications IV, (Eds.) Tyson, R. K.,<br />

M. Hart. SPIE 8149, SPIE, 81490J-81490J-11, (<strong>2011</strong>)<br />

Hogg, D. W. and D. Lang: Telescopes don’t make catalogues!<br />

In: Gaia: At the Frontiers of Astrometry, (Eds.)<br />

Turon, C., F. Meynadier, F. Arenou. EAS Publications<br />

Series 45, EDP Sciences, 351-358 (<strong>2011</strong>)<br />

Holmes, R., U. Grözinger, P. Bizenberger and O. Krause:<br />

A filter mount <strong>for</strong> the eucLid mission. In: UV/Optical/<br />

IR Space Telescopes and Instruments: Innovative<br />

Technologies and Concepts V, (Ed.) Tsakalakos, L. SPIE<br />

8146, SPIE, 814611-814611-8 (<strong>2011</strong>)<br />

Huisken, F., G. Rouillé, Y. Carpentier, M. Steglich and T.<br />

Henning: Absorption spectroscopy of astrophysically relevant<br />

molecules in supersonic jets. In: 27 th International<br />

Symposium on Rarefied Gas Dynamics, (Eds.) Levin,<br />

D. A., I. J. Wysong, A. L. Garcia, H. Abarbanel. AIP<br />

Conference Proceedings 1333, AIP, 819-824 (2012)<br />

Jäger, C., T. Posch, H. Mutschke, S. Zeidler, A. Tamanai and<br />

B. L. de Vries: Recent results of solid-state spectroscopy.<br />

In: The Molecular Universe, (Eds.) Cernicharo, J., R.<br />

Bachiller. IAU Symp. 280, Cambridge Univ. Press, 416-<br />

430 (<strong>2011</strong>)<br />

Jin, S., N. F. Martin, P. Prugniel and I. Vauglin: The<br />

Hercules satellite: a stellar stream in the Milky Way halo?<br />

In: CRAL-2010: A Universe of Dwarf Galaxies, (Ed.)<br />

Koleva, M. EAS Publications Series 48, EDP Sciences,<br />

361-362 (<strong>2011</strong>)<br />

Johansen, A., H. Klahr, T. Henning, M. G. Lattanzi and<br />

A. P. Boss: High-resolution simulations of planetesimal<br />

<strong>for</strong>mation in turbulent protoplanetary discs. In:<br />

The Astrophysics of Planetary Systems: Formation,<br />

Structure, and Dynamical Evolution, (Eds.) Sozzetti, A.,


M. G. Lattanzi, A. P. Boss. IAU Symp. 276, Cambridge<br />

Univ. Press, 89-94 (<strong>2011</strong>)<br />

Johnson, L. C., A. C. Seth, J. J. Dalcanton, N. Caldwell,<br />

D. A. Gouliermis, P. W. Hodge, S. S. Larsen, K. A. G.<br />

Olsen, I. San Roman, A. Sarajedini, D. R. Weisz and C.<br />

Phat: Stellar clusters in M 31 from phat: survey overview<br />

and first results. In: Stellar Clusters & Associations:<br />

A RIA Workshop on Gaia, (Eds.) Alfaro Navarro, E. J.,<br />

A. T. Gallego Calvente, M. R. Zapatero Osorio. 129-132<br />

(<strong>2011</strong> online)<br />

Julio Carballo-Bello, A., D. Martínez-Delgado, A. Sollima,<br />

P. Prugniel and I. Vauglin: Searching <strong>for</strong> tidal remnants in<br />

the Milky Way: Photometric survey of galactic globular<br />

clusters. In: CRAL-2010: A Universe of Dwarf Galaxies<br />

(Ed.) Koleva, M. EAS Publications Series 48, EDP<br />

Sciences 351-352 (<strong>2011</strong>)<br />

Karim, A., E. Schinnerer, J. Lu, Z. Luo, Z. Yang, H.<br />

Hua and Z. Chen: A Constant Characteristic Mass <strong>for</strong><br />

Star Forming Galaxies since z–3 Revealed by Radio<br />

Emission in the coSmoS Field. In: Galaxy Evolution:<br />

Infrared to Millimeter Wavelength Perspective, (Eds.)<br />

Wang, W., Z. Yang, J. Lu, H. Hua, L. Zhijian, Z. Chen.<br />

ASP Conf. Ser. 446, ASP, 269-274 (<strong>2011</strong>)<br />

Karim, A., E. Schinnerer, J. Lu, Z. Luo, Z. Yang, H. Hua<br />

and Z. Chen: A constant characteristic mass <strong>for</strong> star<br />

<strong>for</strong>ming galaxies since z 3 revealed by radio emission<br />

in the coSmoS field. In: Galaxy Evolution: Infrared to<br />

Millimeter Wavelength Perspective, (Eds.) Wang, W., Z.<br />

Yang, J. Lu, H. Hua, Z. Luo, Z. Chen. ASP Conf. Ser.<br />

446, ASP, 269-274 (<strong>2011</strong>)<br />

Klement, R. J., J. Setiawan, T. Henning, H.-W. Rix,<br />

B. Rochau, J. Rodmann, T. Schulze-Hartung, M. G.<br />

Lattanzi and A. P. Boss: The visitor from an ancient<br />

galaxy: A planetary companion around an old, metalpoor<br />

red horizontal branch star. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 121-125 (<strong>2011</strong>)<br />

Kontizas, M., I. Bellas-Velidis, B. Rocca-Volmerange, E.<br />

Kontizas, P. Tsalmantza, E. Livanou, A. Dapergolas and<br />

A. Karampelas: The unresolved galaxies with Gaia. In:<br />

Gaia: At the Frontiers of Astrometry (Eds.) Turon, C., F.<br />

Meynadier, F. Arenou. EAS Publications Series 45, EDP<br />

Sciences 337-342 (<strong>2011</strong>)<br />

Kuiper, R., H. Klahr, H. Beuther and T. Henning: Radiation<br />

pressure feedback in the <strong>for</strong>mation of massive stars.<br />

Bulletin de la Societe Royale des Sciences de Liege 80,<br />

211-216 (<strong>2011</strong>)<br />

Kuiper, R., H. Klahr, H. Beuther, T. Henning, B. G.<br />

Elmegreen, J. M. Girart and V. Trimble: The role of<br />

accretion disks in the <strong>for</strong>mation of massive stars. In:<br />

Computational Star Formation, (Eds.) Alves, J., B. G.<br />

Elmegreen, J. M. Girart, V. Trimble. IAU Symp. 270,<br />

Cambridge University Press, 215-218 (<strong>2011</strong>)<br />

Laureijs, R., J. Amiaux, S. Arduini, J. L. Auguères, J.<br />

Brinchmann, R. Cole, M. Cropper, C. Dabin, L. Duvet,<br />

A. Ealet, B. Garilli, P. Gondoin, L. Guzzo, J. Hoar, H.<br />

Hoekstra, R. Holmes, T. Kitching, T. Maciaszek, Y.<br />

Mellier, F. Pasian, W. Percival, J. Rhodes, G. Saavedra<br />

Criado, M. Sauvage, R. Scaramella, L. Valenziano,<br />

S. Warren, R. Bender, F. Castander, A. Cimatti, O. Le<br />

Fèvre, H. Kurki-Suonio, M. Levi, P. Lilje, G. Meylan, R.<br />

Nichol, K. Pedersen, V. Popa, R. Rebolo Lopez, H. W.<br />

Rix, H. Rottgering, W. Zeilinger, F. Grupp, P. Hudelot, R.<br />

Massey, M. Meneghetti, L. Miller, S. Paltani, S. Paulin-<br />

Henriksson, S. Pires, C. Saxton, T. Schrabback, G.<br />

Seidel, J. Walsh, N. Aghanim, L. Amendola, J. Bartlett,<br />

C. Baccigalupi, J. P. Beaulieu, K. Benabed, J. G. Cuby,<br />

D. Elbaz, P. Fosalba, G. Gavazzi, A. Helmi, I. Hook, M.<br />

Irwin, J. P. Kneib, M. Kunz, F. Mannucci, L. Moscardini,<br />

C. Tao, R. Teyssier, J. Weller, G. Zamorani, M. R. Zapatero<br />

Osorio, O. Boulade, J. J. Foumond, A. Di Giorgio, P.<br />

Guttridge, A. James, M. Kemp, J. Martignac, A. Spencer,<br />

D. Walton, T. Blümchen, C. Bonoli, F. Bortoletto, C.<br />

Cerna, L. Corcione, C. Fabron, K. Jahnke, S. Ligori, F.<br />

Madrid, L. Martin, G. Morgante, T. Pamplona, E. Prieto,<br />

M. Riva, R. Toledo, M. Trifoglio, F. Zerbi, F. Abdalla, M.<br />

Douspis, C. Grenet, S. Borgani, R. Bouwens, F. Courbin,<br />

J. M. Delouis, P. Dubath, A. Fontana, M. Frailis, A.<br />

Grazian, J. Koppenhöfer, O. Mansutti, M. Melchior, M.<br />

Mignoli, J. Mohr, C. Neissner, K. Noddle, M. Poncet, M.<br />

Scodeggio, S. Serrano, N. Shane, J. L. Starck, C. Surace,<br />

A. Taylor, G. Verdoes-Kleijn, C. Vuerli, O. R. Williams,<br />

A. Zacchei, B. Altieri, I. Escudero Sanz, R. Kohley, T.<br />

Oosterbroek, P. Astier, D. Bacon, S. Bardelli, C. Baugh,<br />

F. Bellagamba, C. Benoist, D. Bianchi, A. Biviano, E.<br />

Branchini, C. Carbone, V. Cardone, D. Clements, S.<br />

Colombi, C. Conselice, G. Cresci, N. Deacon, J. Dunlop,<br />

C. Fedeli, F. Fontanot, P. Franzetti, C. Giocoli, J. Garcia-<br />

Bellido, J. Gow, A. Heavens, P. Hewett, C. Heymans, A.<br />

Holland, Z. Huang, O. Ilbert, B. Joachimi, E. Jennins, E.<br />

Kerins, A. Kiessling, D. Kirk, R. Kotak, O. Krause, O.<br />

Lahav, F. van Leeuwen, J. Lesgourgues, M. Lombardi,<br />

M. Magliocchetti, K. Maguire, E. Majerotto, R. Maoli,<br />

F. Marulli, S. Maurogordato, H. McCracken, R. McLure,<br />

A. Melchiorri, A. Merson, M. Moresco, M. Nonino, P.<br />

Norberg, J. Peacock, R. Pello, M. Penny, V. Pettorino,<br />

C. Di Porto, L. Pozzetti, C. Quercellini, M. Radovich, A.<br />

Rassat, N. Roche, S. Ronayette, E. Rossetti, B. Sartoris,<br />

P. Schneider, E. Semboloni, S. Serjeant, F. Simpson, C.<br />

Skordis, G. Smadja, S. Smartt, P. Spano, S. Spiro, M.<br />

Sullivan, A. Tilquin, R. Trotta, L. Verde, Y. Wang, G.<br />

Williger, G. Zhao, J. Zoubian and E. Zucca: eucLid<br />

Definition Study <strong>Report</strong>. ArXiv e-prints 1110, 116 (<strong>2011</strong>)<br />

Lenz, L. F., A. Reiners, M. Kürster: A Search <strong>for</strong> Star-<br />

Planet Interactions in Chromospheric Lines. In: ASP<br />

Conference Series 448, S. 1173-1177 (<strong>2011</strong>)<br />

Meyer, E. and M. Kürster: Deriving the true mass of an<br />

unresolved Brown Dwarf companion to an M-Dwarf<br />

with AO aided astrometry. In: Deriving the true mass of<br />

an unresolved Brown Dwarf companion to an M-Dwarf<br />

with AO aided astrometry, (Eds.) Martin, E. L., J. Ge,<br />

W. Lin. EPJ Web of Conferences 16, EDP Sciences, id.<br />

04005, (<strong>2011</strong> online)<br />

Publications 141


142 Publications<br />

Mordasini, C., Y. Alibert, H. Klahr and W. Benz: Theory<br />

of planet <strong>for</strong>mation and comparison with observation.<br />

In: Theory of planet <strong>for</strong>mation and comparison with<br />

observation, (Eds.) Bouchy, F., R. Díaz, C. Moutou EPJ<br />

Web of Conferences 11, EDP Sciences, id. 04001, (<strong>2011</strong><br />

online)<br />

Mordasini, C., K.-M. Dittkrist, Y. Alibert, H. Klahr, W. Benz,<br />

T. Henning, M. G. Lattanzi and A. P. Boss: Application<br />

of recent results on the orbital migration of low mass<br />

planets: convergence zones. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 72-75 (<strong>2011</strong>)<br />

Müller, A., G. Wuchterl and M. Sarazin: Measuring the night<br />

sky brightness with the lightmeter. Revista Mexicana de<br />

Astronomía y Astrofísica. Serie de Conferencias 41, 46-<br />

49 (<strong>2011</strong>)<br />

Nikolov, N., M. Moyano, T. Henning, S. Dreizler and<br />

R. Mundt: Giant transiting planets observations with<br />

Laiwo. In: Giant transiting planets observations with<br />

Laiwo, (Eds.) Bouchy, F., R. Díaz, C. Moutou EPJ Web<br />

of Conferences 11, EDP Sciences, id. 06004, (<strong>2011</strong> online)<br />

Oklopčić, A., V. Smolčić, S. Giodini, G. Zamorani, L.<br />

Bhatirzan, E. Schinnerer, C. L. Carilli, A. Finoguenov,<br />

S. Lilly, A. Koekemoer and N. Z. Scoville: A wide-angle<br />

tail galaxy at z 0.53 in the coSmoS field. Memorie<br />

della Societa Astronomica Italiana 82, 161-164 (<strong>2011</strong>)<br />

Olczak, C., R. Spurzem, T. Henning, A. S. Brun, M. S.<br />

Miesch and Y. Ponty: Rapid mass segregation in young<br />

star clusters without substructure? In: Astrophysical<br />

Dynamics: From Stars to Galaxies, (Eds.) Brummell, N.<br />

H., S. A. Brun, M. S. Miesch, Y. Ponty. IAU Symp. 271,<br />

Cambridge Univ. Press, 389-390 (<strong>2011</strong>)<br />

Olczak, C., R. Spurzem, T. Henning, T. Kaczmarek, S.<br />

Pfalzner, S. Harfst and S. Portegies Zwart: Dynamics<br />

in young star clusters: from planets to massive stars.<br />

In: Stellar Clusters & Associations: A RIA Workshop<br />

on Gaia, (Eds.) Alfaro Navarro, E. J., A. T. Gallego<br />

Calvente, M. R. Zapatero Osorio. 142-147 (<strong>2011</strong> online)<br />

Panić, O., T. Birnstiel, R. Visser, E. van Kampen, M. G.<br />

Lattanzi and A. P. Boss: Observable signatures of dust<br />

evolution mechanisms which shape the planet <strong>for</strong>ming<br />

regions. In: The Astrophysics of Planetary Systems:<br />

Formation, Structure, and Dynamical Evolution, (Eds.)<br />

Sozzetti, A., M. G. Lattanzi, A. P. Boss. IAU Symp. 276,<br />

Cambridge Univ. Press, 450-452 (<strong>2011</strong>)<br />

Pasetto, S., E. K. Grebel, P. Berczik, C. Chiosi, R. Spurzem,<br />

W. Dehnen, P. Prugniel and I. Vauglin: Chemodynamics<br />

of the galaxies: from cuspy to dark matter density<br />

profiles and metallicity gradients. In: CRAL – 2010:<br />

A Universe of Dwarf Galaxies, (Eds.) Koleva, M., P.<br />

Prugniel, I. Vauglin. EAS Publications Series 48, EDP<br />

Sciences, 461-462 (<strong>2011</strong>)<br />

Paumard, T., S. Gillessen, W. Brander, A. Eckart, J. Berger, P.<br />

Garcia, A. Amorim, S. Anton, H. Bartko, H. Baumeister,<br />

P. Carvas, F. Cassaing, E. Choquet, Y. Clénet, C. Collin,<br />

K. Dodds-Eden, F. Eisenhauer, P. Fédou, É. Gendron, R.<br />

Genzel, A. Gräter, C. Guériau, X. Haubois, M. Haug, S.<br />

Hippler, R. Hofmann, F. Hormuth, K. Houairi, S. Ihle,<br />

L. Jocou, S. Kellner, P. Kervella, R. Klein, J. Kolmeder,<br />

N. Kudryavtseva, S. Lacour, V. Lapeyrene, W. Laun, R.<br />

Lenzen, B. Le Ruyet, J. M. A. Lima, M. Marteaud, T.<br />

Moulin, V. Naranjo, U. Neumann, F. Patru, K. Perraut,<br />

G. Perrin, O. Pfuhl, J. Réess, S. Rabien, J. R. Ramos, R.<br />

Rohloff, G. Rousset, A. Sevin, M. Thiel, F. Vincent, J.<br />

Ziegleder, D. Ziegler, Q. D. Wang and F. Yuan: Science<br />

with Gravity, the NIR Interferometric Imager. In: The<br />

Galactic Center: a Window to the Nuclear Environment<br />

of Disk Galaxies, (Eds.) Morris, R., Q. D. Wang, F. Yuan.<br />

ASP Conf. Ser. 439, ASP, 267-270 (<strong>2011</strong>)<br />

Pavlyuchenkov, Y., D. Wiebe, A. Fateeva, T. Vasyunina, B.<br />

G. Elmegreen, J. M. Girart and V. Trimble: Radiative<br />

transfer simulations of infrared dark clouds. In:<br />

Computational Star Formation, (Eds.) Alves, J., B. G.<br />

Elmegreen, J. M. Girart, V. Trimble. IAU Symp. 270,<br />

Cambridge Univ. Press, 455-458 (<strong>2011</strong>)<br />

Porth, O., E. de Gouveia Dal Pino and A. G. Kosovichev:<br />

Two component relativistic acceleration and polarized<br />

radiation of the parsec-scale AGN jet. In: Advances in<br />

Plasma Astrophysics, (Eds.) Bonanno, A., E. De Gouveia<br />

dal Pino, A. G. Kosovichev. IAU Symp. 274, Cambridge<br />

Univ. Press, 258-262 (<strong>2011</strong>)<br />

Quirrenbach, A., P. J. Amado, J. A. Caballero, H. Mandel, R.<br />

Mundt, A. Reiners, I. Ribas, M. A. Sánchez Carrasco, W.<br />

Seifert, M. G. Lattanzi and A. P. Boss: carmeneS: Calar<br />

Alto high-Resolution search <strong>for</strong> M dwarfs with Exo-earths<br />

with Near-infrared and optical Echelle Spectrographs.<br />

In: The Astrophysics of Planetary Systems: Formation,<br />

Structure, and Dynamical Evolution, (Eds.) Sozzetti, A.,<br />

M. G. Lattanzi, A. P. Boss. IAU Symp. 276, Cambridge<br />

Univ. Press, 545-546 (<strong>2011</strong>)<br />

Quirrenbach, A., R. Geisler, T. Henning, R. Launhardt, N.<br />

Elias, F. Pepe, D. Queloz, S. Reffert, D. Ségransan and J.<br />

Setiawan: eSpri: Astrometric planet search with prima<br />

at the VLTI. In: eSpri: Astrometric planet search with<br />

prima at the VLTI, (Eds.) Martin, E. L., J. Ge, W. Lin.<br />

EPJ Web of Conferences 16, EDP Sciences, id. 07005,<br />

(<strong>2011</strong> online)<br />

Re Fiorentin, P., M. G. Lattanzi, R. L. Smart, A. Spagna, C.<br />

A. L. Bailer-Jones, T. C. Beers and T. Zwitter: Hunting<br />

<strong>for</strong> stellar streams in the solar neighbourhood with the<br />

SDSS and GSC-II kinematic survey. In: Gaia: At the<br />

Frontiers of Astrometry, (Eds.) Turon, C., F. Meynadier,<br />

F. Arenou. EAS Publications Series 45, EDP Sciences,<br />

203-208 (<strong>2011</strong>)<br />

Regály, Z., L. Kiss, Z. Sándor, C. P. Dullemond, M. G.<br />

Lattanzi and A. P. Boss: High-resolution spectroscopic<br />

view of planet <strong>for</strong>mation sites. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 50-53 (<strong>2011</strong>)<br />

Rochau, B., W. Brandner, A. Stolte, T. Henning, N. da Rio,<br />

M. Gennaro, F. Hormuth, E. Marchetti and P. Amico:


VLT-MAD observations of Trumpler 14. In: Stellar<br />

Clusters & Associations: A RIA Workshop on Gaia,<br />

(Eds.) Alfaro Navarro, E. J., A. T. Gallego Calvente, M.<br />

R. Zapatero Osorio. 239-243 (<strong>2011</strong> online)<br />

Roelfsema, R., D. Gisler, J. Pragt, H. M. Schmid, A. Bazzon,<br />

C. Dominik, A. Baruffolo, J.-L. Beuzit, J. Charton, K.<br />

Dohlen, M. Downing, E. Elswijk, M. Feldt, M. de Haan,<br />

N. Hubin, M. Kasper, C. Keller, J.-L. Lizon, D. Mouillet,<br />

A. Pavlov, P. Puget, S. Rochat, B. Salasnich, P. Steiner,<br />

C. Thalmann, R. Waters and F. o. Wildi: The zimpoL<br />

high contrast imaging polarimeter <strong>for</strong> Sphere: sub-system<br />

test results. In: Techniques and Instrumentation <strong>for</strong><br />

Detection of Exoplanets V, (Ed.) Shaklan, S. SPIE 8151,<br />

SPIE, 81510N-81510N-13 (<strong>2011</strong>)<br />

Röll, T., A. Seifahrt, R. Neuhäuser, R. Köhler and J. Bean:<br />

Ground based astrometric search <strong>for</strong> extrasolar planets<br />

in stellar multiple systems. In: Gaia: At the Frontiers of<br />

Astrometry, (Eds.) Turon, C., F. Meynadier, F. Arenou.<br />

EAS Publications Series 45, EDP Sciences, 429-432<br />

(<strong>2011</strong>)<br />

Sandstrom, K. M., A. D. Bolatto, B. T. Draine, C. Bot,<br />

S. Stanimirovic and A. G. G. M. Tielens: The Spitzer<br />

Surveys of the Small Magellanic Cloud: Insights into<br />

the Life-Cycle of Polycyclic Aromatic Hydrocarbons.<br />

In: PAHs and the universe, (Eds.) Joblin, C., A. G. G.<br />

M. Tielens. EAS Publications Series 46, EDP Sciences,<br />

215-221 (<strong>2011</strong>)<br />

Schneider, N., F. Motte, S. Bontemps, M. Hennemann, P.<br />

Tremblin, V. Minier, E. Audit, J. di Francesco, P. André,<br />

T. Hill, T. Csengeri, Q. Ngyuen-Luong, R. Simon, V.<br />

Ossenkopf and J. Stutzki: Star <strong>for</strong>mation in the Rosette<br />

molecular cloud under the influence of NGC 2244. In:<br />

The 5 th Zermatt ISM-Symposium, (Eds.) Röllig, M., R.<br />

Simon, V. Ossenkopf, J. Stutzki. EAS Publications Series<br />

52, EDP Sciences, 305-306 (<strong>2011</strong>)<br />

Seemann, U., A. Reiners, A. Seifahrt, M. Kürster: The<br />

Activity and Rotation Limit in the Hyades. In: ASP<br />

Conference Series 448, 313-319 (<strong>2011</strong>)<br />

Setiawan, J., R. Klement, T. Henning, H.-W. Rix, B.<br />

Rochau, T. Schulze-Hartung, J. Rodmann, H. Drechsel<br />

and U. Heber: A planetary companion around a metal-poor<br />

star with extragalactic origin. In: Planetary<br />

Sytems Beyond the Main Sequence, (Eds.) Schuh, S., H.<br />

Drechsel, U. Heber. AIP Conference Proceedings 1331,<br />

AIP, 182-189 (<strong>2011</strong>)<br />

Sordo, R., A. Vallenari, R. Tantalo, C. Liu, K. Smith, F.<br />

Allard, R. Blomme, J. C. Bouret, I. Brott, P. de Laverny,<br />

B. Edvardsson, Y. Frémat, U. Heber, E. Josselin, O.<br />

Kochukhov, A. Korn, A. Lanzafame, C. Martayan, F.<br />

Martins, B. Plez, A. Schweitzer, F. Thévenin and J.<br />

Zorec: Stellar libraries <strong>for</strong> Gaia. Journal of Physics<br />

Conference Series 328, 012006, (<strong>2011</strong>)<br />

Staguhn, J. G., D. Ben<strong>for</strong>d, R. G. Arendt, D. J. Fixsen,<br />

A. Karim, A. Kovacs, S. Leclercq, S. F. Maher, T. M.<br />

Miller, S. H. Moseley, E. J. Wollack, R. Simon, V.<br />

Ossenkopf and J. Stutzki: Latest results from GiSmo: a<br />

2-mm bolometer camera <strong>for</strong> the iram 30-m Telescope.<br />

In: The 5 th Zermatt ISM-Symposium: Conditions and<br />

Impact of Star Formation : New results with herScheL<br />

and beyond, (Eds.) Röllig, M., R. Simon, V. Ossenkopf,<br />

J. Stutzki. EAS Publications Series 52, EDP Sciences,<br />

267-271 (<strong>2011</strong>)<br />

Steinacker, J., T. Henning and A. Bacmann: Radiative<br />

transfer modeling of simulation and observational data.<br />

In: Computational Star Formation, (Eds.) Alves, J., B.<br />

G. Elmegreen, J. M. Girart, V. Trimble. IAU Symp. 270,<br />

Cambridge Univ. Press, 433-441 (<strong>2011</strong>)<br />

Sturm, E., A. Poglitsch, A. Contursi, J. Graciá-Carpio, J.<br />

Fischer, E. González-Alfonso, R. Genzel, S. Hailey-<br />

Dunsheath, D. Lutz, L. Tacconi, J. Dejong, A. Sternberg,<br />

A. Verma, S. Madden, L. Vigroux, D. Cormier, U. Klaas,<br />

M. Nielbock, O. Krause, J. Schreiber, M. Haas, R.<br />

Simon, V. Ossenkopf and J. Stutzki: Star <strong>for</strong>mation and<br />

the ISM in infrared bright galaxies – ShininG. In: The 5 th<br />

Zermatt ISM-Symposium: Conditions and Impact of Star<br />

Formation : New results with herScheL and beyond,<br />

(Eds.) Röllig, M., R. Simon, V. Ossenkopf, J. Stutzki.<br />

EAS Publications Series 52, EDP Sciences, 55-61 (<strong>2011</strong>)<br />

Theis, C., G. Jungwirth, H. Petsch and F. Walter: Modeling<br />

Interacting Galaxies: NGC 4449 revisited. In: Jenam<br />

2008: Grand Challenges in Computational Astrophysics,<br />

(Eds.) Wozniak, H., G. Hensler. EAS Publications Series<br />

44, EDP Sciences, 29-32 (<strong>2011</strong>)<br />

Tinetti, G., J. Y. K. Cho, C. A. Griffith, O. Grasset, L. Grenfell,<br />

T. Guillot, T. T. Koskinen, J. I. Moses, D. Pinfield, J.<br />

Tennyson, M. Tessenyi, R. Wordsworth, A. Aylward,<br />

R. van Boekel, A. Coradini, T. Encrenaz, I. Snellen, M.<br />

R. Zapatero-Osorio, J. Bouwman, V. C. du Foresto, M.<br />

Lopez-Morales, I. Mueller-Wodarg, E. Pallé, F. Selsis, A.<br />

Sozzetti, J.-P. Beaulieu, T. Henning, M. Meyer, G. Micela,<br />

I. Ribas, D. Stam, M. Swain, O. Krause, M. Ollivier, E.<br />

Pace, B. Swinyard, P. A. R. Ade, N. Achilleos, A. Adriani,<br />

C. B. Agnor, C. Afonso, C. A. Prieto, G. Bakos, R. J.<br />

Barber, M. Barlow, P. Bernath, B. Bézard, P. Bordé, L. R.<br />

Brown, A. Cassan, C. Cavarroc, A. Ciaravella, C. Cockell,<br />

A. Coustenis, C. Danielski, L. Decin, R. De Kok, O.<br />

Demangeon, P. Deroo, P. Doel, P. Drossart, L. N. Fletcher,<br />

M. Focardi, F. Forget, S. Fossey, F. Pascal, J. Frith, M.<br />

Galand, P. Gaulme, J. I. G. Hernández, D. Grassi, M. J.<br />

Griffin, U. Grözinger, M. Guedel, P. Guio, O. Hainaut, R.<br />

Hargreaves, P. H. Hauschildt, K. Heng, D. Heyrovsky, R.<br />

Hueso, P. Irwin, L. Kaltenegger, P. Kervella, D. Kipping,<br />

G. Kovacs, A. L. Barbera, H. Lammer, E. Lellouch,<br />

G. Leto, M. L. Morales, M. A. L. Valverde, M. Lopez-<br />

Puertas, C. Lovi, A. Maggio, J.-P. Maillard, J. M. Prado,<br />

J.-B. Marquette, F. J. Martin-Torres, P. <strong>Max</strong>ted, S. Miller,<br />

S. Molinari, D. Montes, A. Moro-Martin, O. Mousis, N.<br />

N. Tuong, R. Nelson, G. S. Orton, E. Pantin, E. Pascale, S.<br />

Pezzuto, E. Poretti, R. Prinja, L. Prisinzano, J.-M. Réess,<br />

A. Reiners, B. Samuel, J. S. Forcada, D. Sasselov, G.<br />

Savini, B. Sicardy, A. Smith, L. Stixrude, G. Strazzulla,<br />

G. Vasisht, S. Vinatier, S. Viti, I. Waldmann, G. J. White,<br />

T. Widemann, R. Yelle, Y. Yung, S. Yurchenko, M. G.<br />

Lattanzi and A. P. Boss: The science of EChO. In: The<br />

Publications 143


144 Publications<br />

Astrophysics of Planetary Systems: Formation, Structure,<br />

and Dynamical Evolution, (Eds.) Sozzetti, A., M. G.<br />

Lattanzi, A. P. Boss. IAU Symp. 276, Cambridge Univ.<br />

Press, 359-370 (<strong>2011</strong>)<br />

Uribe, A., H. Klahr, M. Flock, T. Henning, M. G. Lattanzi<br />

and A. P. Boss: 3D MHD simulations of planet migration<br />

in turbulent stratified disks. In: The Astrophysics of<br />

Planetary Systems: Formation, Structure, and Dynamical<br />

Evolution, (Eds.) Sozzetti, A., M. G. Lattanzi, A. P. Boss.<br />

IAU Symp. 276, Cambridge Univ. Press, 515-516 (<strong>2011</strong>)<br />

van den Bosch, R.: A Survey of Nearby Massive Galaxies.<br />

In: Fornax, Virgo, Coma et al., Stellar Systems in High<br />

Density Environments, eSo, id. 32, (<strong>2011</strong> online)<br />

Wang, W., S. Boudreault, J. Caballero, C. A. L. Bailer-<br />

Jones, B. Goldman and T. Henning: The stellar and<br />

substellar mass function in central region of the old open<br />

cluster Praesepe from deep LBT observations. In: The<br />

stellar and substellar mass function in central region of<br />

the old open cluster Praesepe from deep LBT observations,<br />

(Eds.) Martin, E. L., J. Ge, W. Lin. EPJ Web of<br />

Conferences 16, EDP Sciences, 06011, (<strong>2011</strong> online)<br />

Watson, L., P. Martini, T. Böker, U. Lisenfeld, E. Schinnerer,<br />

M. H. Wong, T. Wyder, J. Neill, M. Seibert and J. Lee:<br />

Testing the star <strong>for</strong>mation law in bulgeless disk galaxies.<br />

In: UP2010: Have Observations Revealed a Variable<br />

Upper End of the Initial Mass Function?, (Eds.) Treyer,<br />

M., T. K. Wyder, J. D. Neill, M. Seibert, J. C. Lee. ASP<br />

Conf. Ser. 440, ASP, 393-396 (<strong>2011</strong>)<br />

Watson, L., P. Martini, T. Böker, U. Lisenfeld, E. Schinnerer,<br />

M. H. Wong, T. Wyder, J. Neill, M. Seibert and J. Lee:<br />

Testing the star <strong>for</strong>mation law in bulgeless disk galaxies.<br />

In: UP2010: Have Observations Revealed a Variable<br />

Upper End of the Initial Mass Function?, (Eds.) Treyer,<br />

M., T. K. Wyder, J. D. Neill, M. Seibert. ASP Conf. Ser.<br />

440, ASP, 393-396 (<strong>2011</strong>)<br />

Wildi, F., J. L. Beuzit, M. Feldt, D. Mouillet, K. Dohlen, P.<br />

Puget, A. Baruffolo, J. Charton, A. Bocaletti, R. Claudi,<br />

A. Costille, P. Feautrier, T. Fusco, R. Gratton, M. Kasper,<br />

M. Langlois, P. Martinez, D. Mesa, D. Le Mignant,<br />

A. Pavlov, C. Petit, J. Pragt, P. Rabou, S. Rochat, R.<br />

Roelfsema, J.-F. Sauvage, H. M. Schmid, E. Stadler and<br />

C. Moutou: The per<strong>for</strong>mance of the Sphere sub-systems<br />

in the integration lab. In: Techniques and Instrumentation<br />

<strong>for</strong> Detection of Exoplanets V, (Ed.) Shaklan, S. SPIE<br />

8151, SPIE, 81510M-81510M-12 (<strong>2011</strong>)<br />

Yang, P., J. Xu, J. Zhu and S. Hippler: Transmission<br />

sphere calibration and its current limits. In: Optical<br />

Measurement Systems <strong>for</strong> Industrial Inspection VII,<br />

(Eds.) Lehmann, P. H., W. Osten, K. Gastinger. SPIE<br />

8082, SPIE, 80822L-80822L-8, (<strong>2011</strong>)<br />

PhD Thesis:<br />

Burtscher, L.: Mid-infrared interferometry of AGN cores,<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Cisternas, M.: Galaxies and supermassive black holes evolving<br />

in a secular universe, Ruprecht-Karls-Heidelberg<br />

University, <strong>2011</strong><br />

Fang, M.: The disks and accretion behavior of young stellar<br />

objects, Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Flock, M.: MHD turbulence in proto-planetary disks,<br />

Friedrich Schiller Universität Jena, <strong>2011</strong><br />

Follert, R.: The atmospheric piston simulator <strong>for</strong> Lincnirvana<br />

and interferometric observations of massive<br />

young stellar objects, Ruprecht-Karls-Heidelberg<br />

University, <strong>2011</strong><br />

Gennaro, M.: Massive clusters revealed in the near infrared,<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Holmes, R.: The near-infrared imaging channel <strong>for</strong> the<br />

eucLid Dark Energy Mission, Ruprecht-Karls-<br />

Heidelberg University, <strong>2011</strong><br />

Karim, A.: Star <strong>for</strong>mation in the coSmoS field: a radio view<br />

on the build-up of stellar mass over 12 billion years,<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Moyano, M.: A search <strong>for</strong> transiting extrasolar planets<br />

with the Laiwo instrument, Ruprecht-Karls-Heidelberg<br />

University, <strong>2011</strong><br />

Nikolov, N. K.: A photometric study of transiting extrasolar<br />

planets, Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Porth, O.: Formation of relativistic jets, Ruprecht-Karls-<br />

Heidelberg University, <strong>2011</strong><br />

Rochau, B.: Young massive star clusters as probes <strong>for</strong> stellar<br />

evolution, cluster dynamics and long term survival,<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Ruhland, C.: Signposts of hierarchial merging, Ruprecht-<br />

Karls-Heidelberg University, <strong>2011</strong><br />

Schmalzl, M.: The earliest stages of isolated low-mass star<br />

<strong>for</strong>mation, Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Schruba, A.: The molecular interstellar medium of nearby<br />

star-<strong>for</strong>ming galaxies, Ruprecht-Karls-Heidelberg<br />

University, <strong>2011</strong><br />

Vaidya, B.: Theory of disks and outflows around massive young<br />

stellar objects, Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Wang, H.-H.: Gas evolution in disk galaxies, Ruprecht-<br />

Karls-Heidelberg University, <strong>2011</strong><br />

Zechmeister, M.: Precision radial velocity surveys <strong>for</strong> exoplanets,<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Diploma Thesis:<br />

Dittkrist, K.-M.: The influence of new migration models <strong>for</strong><br />

low mass planets in planet population synthesis calculations<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Fiedler, P. M.: Untersuchung des Potenzgesetzes des<br />

Synchrotron-Spektrums des Jets von M 87, Ruprecht-<br />

Karls-Heidelberg University, <strong>2011</strong><br />

Schneider, N.: Charakterisierung von Targetsternen für<br />

die Exoplanetensuche, Ruprecht-Karls-Heidelberg<br />

University, <strong>2011</strong><br />

Bachelor Thesis:<br />

Chira, R.-A.: Charactersation of infrared dark clouds,<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong><br />

Mollière, P.: The evolution of deuterium burning in giant<br />

gaseous planets <strong>for</strong>ming via the core accretion scenario,<br />

Ruprecht-Karls-Heidelberg University, <strong>2011</strong>


Pohl, A.: Outflows of brown dwarfs, Ruprecht-Karls-<br />

Heidelberg University, <strong>2011</strong><br />

Voggel, K.: The effect of AGN in size measurements of massive,<br />

high-redshift galaxies, Ruprecht-Karls-Heidelberg<br />

University, <strong>2011</strong><br />

Popular Articles:<br />

Beuther, H.: Riesenschmiede – Die Entstehung der massereichsten<br />

Sterne. Sterne und Weltraum 49, 1, 32-40<br />

(2010)<br />

Brandner, W.: Kepler 11 – ein Planetensystem an der<br />

Grenze zum Chaos. Sterne und Weltraum 50, 4, 27-29<br />

(<strong>2011</strong>)<br />

Eisenhauer, F., G. Perrin, W. Brandner, C. Straubmeier,<br />

K. Perraut, A. Amorim, M. Schöller, S. Gillessen, P.<br />

Kervella, M. Benisty, C. Araujo-Hauck, L. Jocou, J.<br />

Lima, G. Jakob, M. Haug, Y. Clénet, T. Henning, A.<br />

Eckart, J. P. Berger, P. Garcia, R. Abuter, S. Kellner, T.<br />

Paumard, S. Hippler, S. Fischer, T. Moulin, J. Villate,<br />

G. Avila, A. Gräter, S. Lacour, A. Huber, M. Wiest,<br />

A. Nolot, P. Carvas, R. Dorn, O. Pfuhl, E. Gendron,<br />

S. Kendrew, S. Yazici, S. Anton, Y. Jung, M. Thiel, É.<br />

Choquet, R. Klein, P. Teixeira, P. Gitton, D. Moch, F.<br />

Vincent, N. Kudryavtseva, S. Ströbele, S. Sturm, P.<br />

Fédou, R. Lenzen, P. Jolley, C. Kister, V. Lapeyrère,<br />

V. Naranjo, C. Lucuix, R. Hofmann, F. Chapron,<br />

U. Neumann, L. Mehrgan, O. Hans, G. Rousset, J.<br />

Ramos, M. Suarez, R. Lederer, J. M. Reess, R. R.<br />

Rohloff, P. Haguenauer, H. Bartko, A. Sevin, K.<br />

Wagner, J. L. Lizon, S. Rabien, C. Collin, G. Finger,<br />

R. Davies, D. Rouan, M. Wittkowski, K. Dodds-Eden,<br />

D. Ziegler, F. Cassaing, H. Bonnet, M. Casali, R.<br />

Genzel and P. Lena: Gravity: observing the universe<br />

in motion. The Messenger 143, 16-24 (<strong>2011</strong>)<br />

Lemke, D.: anitas Zufallsentdeckung. Sterne und<br />

Weltraum 50, 5, 22-23 (<strong>2011</strong>)<br />

Lemke, D.: Die Vermessung der Erde. Sterne und<br />

Weltraum 50, 6, 42-50 (<strong>2011</strong>)<br />

Quanz, S. P., H. M. Schmid, S. M. Birkmann, D. Apai,<br />

S. Wolf, W. Brandner, M. R. Meyer and T. Henning:<br />

Resolving the inner regions of circumstellar discs with<br />

VLT/naco polarimetric differential imaging. The<br />

Messenger 146, 25-27 (<strong>2011</strong>)<br />

Steinacker, J.: Leuchtende Dunkelwolken. Sterne und<br />

Weltraum 50, 9, 44-51 (<strong>2011</strong>)<br />

Publications 145


A656<br />

B 37<br />

K 9702<br />

Eppelheim<br />

L 543<br />

Patrick-<br />

Henry-<br />

Siedlung E 35<br />

A5<br />

B 535<br />

L 600<br />

Neckar<br />

K 9702<br />

E 35<br />

A5<br />

E 35<br />

A5<br />

Mannheimer Straße<br />

K 9700<br />

E 35<br />

A5<br />

K 4149<br />

Wieblingen<br />

K 9701<br />

E 35<br />

A5<br />

E 35<br />

A5<br />

L 543<br />

Pfaffengrund<br />

E 35<br />

A5<br />

K 4243<br />

K 9700<br />

K 9701<br />

A656<br />

B 37<br />

L 600a<br />

Henkel-Teroson-Straße<br />

Kurpfalzring<br />

L 600<br />

Bruchhausen<br />

Neckar<br />

K 9706<br />

Pleikartsförsterhof<br />

K 4149<br />

K 4242<br />

L 600a<br />

Kirchheimer Hof<br />

Sandhausen<br />

Dossenheim<br />

Kirchheim<br />

L 598<br />

L 531<br />

Handschuhsheim<br />

Ruprecht-Karls-<br />

Universität<br />

Heidelberg<br />

Mannheimer Straße Vangerowstraße<br />

B 535<br />

L 598<br />

B 37<br />

L 600<br />

B 3<br />

Central Station<br />

Eppelheimer Straße Czernyring<br />

L 600a<br />

Speyerer Straße Ringstraße<br />

St. Ilgen<br />

Dossenheimer Landstraße Berta-Benz-Straße Steubenstraße<br />

L 598<br />

B 3<br />

Berliner Straße<br />

B 3<br />

Neckar<br />

Heidelberg<br />

B 3<br />

L 600<br />

Uferstraße<br />

Südstadt<br />

Neuenheim<br />

B 3<br />

L 534<br />

Burgenstraße Schumannstraße Burgenstraße Am Hackteufel<br />

Kurfürsten-Anlage<br />

L 598<br />

B 3<br />

Römerstraße<br />

Bertha-Benz-Straße<br />

B 3<br />

B 3<br />

Rohrbacher Straße<br />

Bertha-Benz-Straße<br />

Rohrbach<br />

L 594<br />

L 594<br />

Leimen<br />

L 594<br />

K 9710<br />

Speyrerhof<br />

MPI für<br />

MPI für<br />

Astronomie<br />

Kernphysik<br />

K 9708<br />

Bierhelderhof<br />

Boxberg<br />

Emmertsgrund<br />

L 600<br />

K 9710<br />

<strong>Max</strong>-<strong>Planck</strong>-Institut für Astronomie Heidelberg<br />

B 37<br />

<strong>Max</strong> <strong>Planck</strong> <strong>Institute</strong> <strong>for</strong> <strong>Astronomy</strong> Heidelberg<br />

Lingental<br />

Neckar<br />

Schlierbacher Landstraße<br />

Neuenheimer Landstraße Ziegelhäuser Landstraße In der Neckarhelle<br />

Kohlhöfer weg<br />

Chaisenweg<br />

Drei - Eichen-Weg<br />

K 9708<br />

K 4161<br />

Königstuhl<br />

Ziegelhausen<br />

Schlierbach<br />

-Ziegelhausen<br />

Kohlhof<br />

Gaiberger Weg<br />

L 600<br />

L 534<br />

K 9710<br />

Gaiberg<br />

Ochsenbach


The <strong>Max</strong> <strong>Planck</strong> Society<br />

The <strong>Max</strong> <strong>Planck</strong> Society <strong>for</strong> the Promotion of Sciences was founded in 1948. It<br />

operates at present 93 <strong>Institute</strong>s and other facilities dedicated to basic and applied<br />

research. With an annual budget of around 1.46 billion € in the year 2012 and thirdparty<br />

funds in addition, the <strong>Max</strong> <strong>Planck</strong> Society has about 17 000 employees, of<br />

which 5400 are scientists. In addition, annually about 4800 junior and visiting scientists<br />

are working at the <strong>Institute</strong>s of the <strong>Max</strong> <strong>Planck</strong> Society.<br />

The goal of the <strong>Max</strong> <strong>Planck</strong> Society is to promote centers of excellence at the <strong>for</strong>efront<br />

of the international scientific research. To this end, the <strong>Institute</strong>s of the Society<br />

are equipped with adequate tools and put into the hands of outstanding scientists, who<br />

have a high degree of autonomy in their scientific work.<br />

<strong>Max</strong>-<strong>Planck</strong>-Gesellschaft zur Förderung der Wissenschaften e.V.<br />

Public Relations Office<br />

Hofgartenstr. 8<br />

80539 München<br />

Tel.: 089/2108-1275 or -1277<br />

Fax: 089/2108-1207<br />

Internet: www.mpg.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!