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The U.S. Department of Energy has identified exascale-class wind farm simulation as 
critical to wind energy scientific discovery. A primary objective of the ExaWind project is to 
build high-performance, predictive computational fluid dynamics (CFD) tools that satisfy 
these modeling needs. GPU accelerators will serve as the computational thoroughbreds of 
next-generation, exascale-class supercomputers. Here, we report on our efforts in 
preparing the ExaWind unstructured mesh solver, Nalu-Wind, for exascale-class machines. 
For computing at this scale, a simple port of the incompressible-flow algorithms to GPUs is 
insufficient. To achieve high performance, one needs novel algorithms that are application 
aware, memory efficient, and optimized for the latest-generation GPU devices. The result 
of our efforts are unstructured-mesh simulations of wind turbines that can effectively 
leverage thousands of GPUs. In particular, we demonstrate a first-of-its-kind, 
incompressible-flow simulation using Algebraic Multigrid solvers that strong scales to 
more than 4000 GPUs on the Summit supercomputer.

Abstract
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Talk Outline

• Motivation
• Modeling strategy
• Linear solver innovations for GPUs

• Assembly
• AMG setup
• Fast smoothers/preconditioners

• Computational results
• Single-turbine, low-resolution performance
• Single-turbine, high-resolution performance
• Role of processor, compiler, and MPI-implementation on performance

• Emerging systems
• Looking forward
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Motivation

• ExaWind project goal is to build simulation software 
capability of modeling entire wind farms [1]

• Algorithms must be able to resolve 

• micron-scale boundary layers around turbine blades

• kilometer-scale atmospheric boundary layers

• Software must handle blade-deformation and turbine motion 
in a complex environment including offshore

• Software must be high-performance in order to enable 
scientific exploration & engineering optimization

• ExaWind

• Nalu-Wind : unstructured blade-resolved solver

• AMR-Wind : structured background-solver

• TIOGA : overset coupler between Nalu- and AMR-Wind

Flowfield (isosurfaces of Q-criterion colored by 
vorticity magnitude and a plane with vorticity-
magnitude iso-contours) for the NREL 5-MW rotor 
with rigid blades operating in uniform inflow of 8 m/s.

https://www.nrel.gov/docs/fy21osti/80015.pdf
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Modeling Strategy

• Decoupled overset mesh methodology used to model 
moving turbine structures

• A Nalu-Wind mesh is a composition of multiple 
independent meshes that move with respect to one 
another

• Mesh motion (i.e. blade rotation around the rotor) requires 
continuous connectivity updates

• Benefit of decoupled overset approach:

• Simple mesh creation process for wind farm 
simulations

• Remove the need to reinitialize matrices at each time 
step

• Enables a path to exascale through AMR-Wind/Nalu-
Wind/TIOGA coupling for many turbines

Example of the overset-meshing approach used in 
ExaWind. Shown are three overlapping Nalu-Wind meshes 
used to simulate the NREL Phase VI turbine
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Nalu-Wind Software Stack

• STK (Sierra Toolkit) : handles the mesh data structures
• TIOGA : handles overset mesh capabilities
• Kokkos : Portable, parallel execution constructs
• Linear System Solvers :

• Hypre : Boomer AMG, CUDA/HIP backends
• Trilinos : Muelu, Tpetra, Kokkos

• Zoltan2 : Domain decomposition with ParMETIS, Scotch, RCB algorithms
• NetCDF/HDF5 : IO
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Nalu-Wind Assembly

Owned on rank 1
Owned on rank 2
Owned on rank 1, Shared on rank 2

• Decoupled overset enables computation  of the 
exact sparsity pattern for the global matrix for 
the entire simulation

• Each rank has an owned part, i.e. contributions 
to the matrix rows/rhs values on this rank

• Each rank might have a shared part, i.e.
contributions to the matrix/rhs values on other 
ranks

• matrix/rhs contributions from mesh elements 
of same type (i.e. tetrahedron) are computed 
via atomics in a single Kokkos kernel
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Hypre Assembly

New column entries on rank 
1 from thrust operations

Matrix values memory schematic. Similar data structures for 
row and column indices
• Top line: rank 1
• Bottom line: rank 2
• Dotted line: space is allocated but not used

Possibly modified entries

• Hypre Assembly API receives coordinate 
(coordinate) matrix with buffers of size

𝑛𝑛𝑛𝑛𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛𝑛𝑛𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + max(𝑛𝑛𝑛𝑛𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑛𝑛𝑛𝑛𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

Before assembly (MPI Messaging), data are                                      
. stacked with owned part followed by shared

• After MPI Messaging, shared elements are 
overwritten by the values received from other 
ranks

• thrust::stable_sort_by_key and 
thrust::reduce_by_key are used to complete 
the global matrix assembly
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BoomerAMG setup on GPUs
• Coarsening algorithm: PMIS

• massively parallel algorithm to find maximal independent set
• uses cuRAND to generate random numbers on GPUs

• Aggressive coarsening to reduce the grid and operator complexity
• corresponding two-stage interpolation

• Interpolation algorithms: direct interpolation and matrix-matrix based 
extended interp.

• Bootstrap AMG (BAMG) direct interpolation by solving a local 
optimization problem

• Distance-2 interp. in the form of mat-mat for better portability
− 𝐷𝐷𝐹𝐹𝐹𝐹 + 𝐷𝐷𝛾𝛾

−1 𝐴𝐴𝐹𝐹𝐹𝐹𝑠𝑠 + 𝐷𝐷𝛽𝛽 𝐷𝐷𝛽𝛽
−1𝐴𝐴𝐹𝐹𝐹𝐹𝑠𝑠

• More variants M-M ext+i/ ext+e

• Galerkin product RAP: use hypre’s SpGEMM kernel
• Better performance than cuSPARSE
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Boomer AMG Smoothers optimized for GPUs

• GMRES Krylov solver for momentum and pressure continuity
• Neumann Gauss-Seidel preconditioner and AMG smoother for pressure 
• Based on the iteration for 𝐴𝐴𝐴𝐴 = 𝑏𝑏, 𝐴𝐴 = 𝐷𝐷 + 𝐿𝐿 + 𝑈𝑈, 𝑟𝑟𝑘𝑘 = 𝑏𝑏 − 𝐴𝐴𝑥𝑥𝑘𝑘

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + �
𝑗𝑗=0

𝑛𝑛

(−𝐷𝐷𝐷𝐷)𝑗𝑗 𝐷𝐷−1 𝑟𝑟𝑘𝑘

• Exploits sparse matrix-vector products (SpMV)
• SpMV are 25 to 50 times faster than direct triangular solver 𝐿𝐿𝐿𝐿 = 𝑏𝑏 on GPU
• Iterate for 𝑘𝑘 = 1, 2
• New smoother option in Hypre-BoomerAMG from LLNL
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Computational Studies

• Results for 2 Turbines: unstructured, unbalanced
• Low-Resolution, Single-Turbine: 23 million mesh nodes
• High-Resolution, Single-Turbine: 635 million mesh nodes

• Simulation parameters
• 50 times steps
• 4 Picard iterations per time step. Each Picard iteration has

• 1 pressure-Poisson solve, 3 momentum solves (decoupled), 2 scalar transport solves 
(TKE and SDR)

• Solver residual tolerances set to 1.e-5
• All systems solved with Hypre
• Key Measurements

• Per equation performance : average time spent solving each equation system
• pressure-Poisson : Boomer AMG with 2 stage GS preconditioner
• momentum and scalar transport : 2 stage GS preconditioner

• Application-level performance : average time per time step
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Pressure-Poisson/Hypre Boomer AMG

GPU implementation of Boomer AMG is substantially faster when there is significant
work per device
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Momentum

GPU-accelerated Krylov solves with simple, but effective preconditioners are 
competitive with CPU implementations down to O(105) unknowns per device
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Low- vs High-Resolution Strong Scaling

Application performance is good compared to CPUs when there is significant
work per device though the scaling is degraded
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System Dependence

• NREL Eagle node configuration
• 36 cores/Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz 
• GCC 8.4.0
• 2 NVIDIA V100 PCIE per node
• MPI : HPE MPT

• ORNL Summit node configuration
• 42 cores/POWER 9 @ 3.8 GHz
• GCC 7.4.0
• 6 NVIDIA V100 SXM2
• MPI : Spectrum 10.3

• All GPU resources per node utilized
• Eagle is 15% faster with half the number of GPUs. Most 

of the gain is achieved in pressure-Poisson 
preconditioner setup and solve
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Emerging Architectures, Krylov Solve performance, Summit vs Spock

M100 GPUs show substantial gains in performance over V100s.
This bodes well for the ExaWind software stack on Frontier!
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• In order to simulate entire Wind 
Farms, the ExaWind team is 
adopting a hybrid solver technique

• Nalu-Wind around turbines
• AMR-Wind everywhere else
• TIOGA couples ALL the meshes

• Initial GPU version of the hybrid-
solver nearly working

• Loose coupling via TIOGA allows 
us to easily partition ALL 
compute resources (CPU/GPU)

Flowfield (isosurfaces and planes of Q-criterion colored by velocity 
magnitude) for two turbines operating in an ABL (atmospheric boundary 
layer). Turbines reside in the x-plane and are subject to inflow from the x 
and y directions.

Looking Forward
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Conclusions

• Substantial effort is required to enable Physics applications on unstructured meshes, 
such as CFD, to run well on Petascale-Level resources

• Weak scaling is hard to do well on unstructured models
• 2x performance drop between low and high-resolution models (27.5x bigger)

• Performance can vary significantly between HPC systems, even when the underlying 
GPU accelerators are equivalent

• ExaWind software stack has a path to exascale that does not require global solves on 
unstructured meshes

• ExaWind hybrid-solver will have global solves on AMR meshes
• For comparable applications that don’t have this path, the statements above are 

worth considering in the context of those applications
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