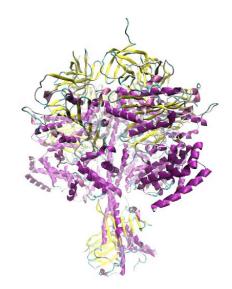
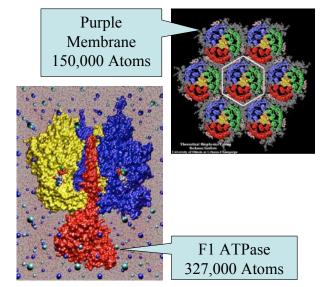

Molecular Graphics Perspective of Protein Structure and Function

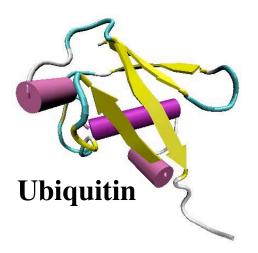

animation

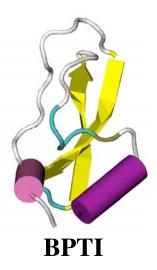
sequence

structure

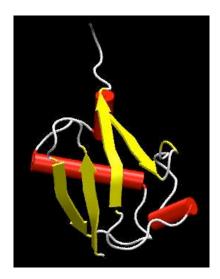
VMD Highlights


- >40,000 registered users
- Platforms:
 - Unix (16 builds)
 - Windows
 - MacOS X
- Display of large biomolecules and simulation trajectories
- Sequence browsing and structure highlighting
- Multiple sequence structure analysis
- User-extensible scripting interfaces for analysis and customization


The program is used today more for preparation and analysis of modeling than for graphics

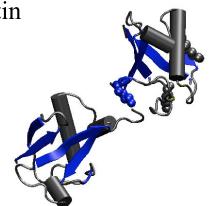

VMD Permits Large Scale Visualization

- Large structures: 300,000 atoms and up
- Complex representations
- Long trajectories: thousands of timesteps
- Volumetric data
- Multi-gigabyte data sets break 32-bit barriers
- Handles large data sets, e.g., GlpF: each 5 ns simulation of 100K atoms produces a 12GB trajectory


Focus on two proteins Ubiquitin Bovine Pancreatic Trypsin Inhibitor (BPTI)

Ubiquitin

- 76 amino acids
- highly conserved
- covalently attaches to proteins and tags them for degradation



• other cell traficking

• Glycine at C-terminal attaches to the Lysine on the protein by an isopeptide bond.

• it can attach to other ubiquitin molecules and make a polyubiquitin chain.

There are 7 conserved lysine residues in ubiquitin.

Two ubiquitins attached together through LYS 48. LYS 63 and LYS 29 are also shown there.

Ubiquitination Pathway

The Nobel Prize in Chemistry 2004

"for the discovery of ubiquitin-mediated protein degradation"

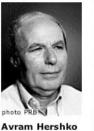
Israel

Technion - Israel

Institute of

Technology

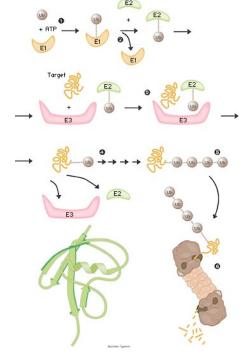
b. 1937


Haifa, Israel

Aaron Ciechanover

1/3 of the prize Israel

Technion - Israel Institute of Technology Haifa, Israel b. 1947

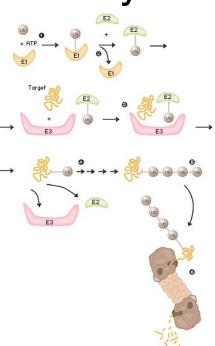


Irwin Rose

1/3 of the prize 1/3 of the prize USA

> University of California Irvine, CA, USA

b. 1926 (in Karcag, Hungary)


Ubiquitin-mediated protein degradation

Ubiquitination Pathway

Activation by E1 (ATP dependent process) •

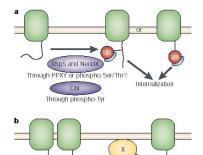
(thiol-ester linkage between a specific cysteine residue of E1 and Glycine on ubiquitin)


- Transfer to a cysteine residue on E2 ۲ (ubiquitin conjugation enzyme)
- Transfer of ubiquitin by E3 to the • substrate lysine residue.
- E3 recognizes the ubiquitination signal of the protein.

Ubiquitin Functions

• tagging misfolded proteins to be degraded in the proteasome (kiss of death).

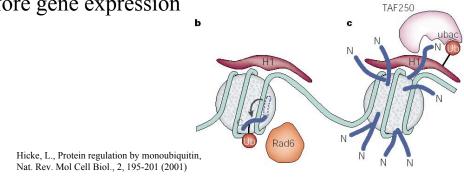
• regulates key cellular processes such as cell division, gene expression, ...



The cell's waste disposer, the proteasome. The black spots indicate active, protein-degrading surfaces.

A chain of at least four ubiquitins is needed to be recognized by the proteasome.

Ubiquitin acts independent of proteasome degradation

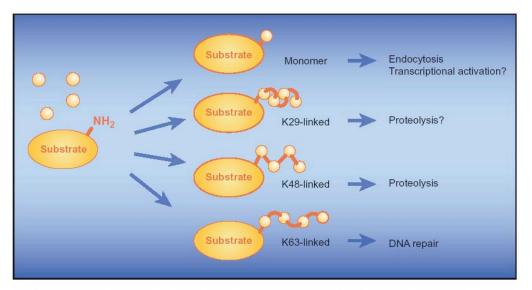

- Controlling the traffic in the cell
- Directing the traffic in the cell, i.e., determining where the newly synthesized proteins should go
- Tagging membrane proteins for internalization

Ubiquitine Regulates gene expression:

(indirectly, by destruction of some of the involved proteins)

- Recruiting Transcription Factors (proteins needed for gene expression)
- Conformational changes in Histone, necessary before gene expression

Different types of ubiquitin signals arise from

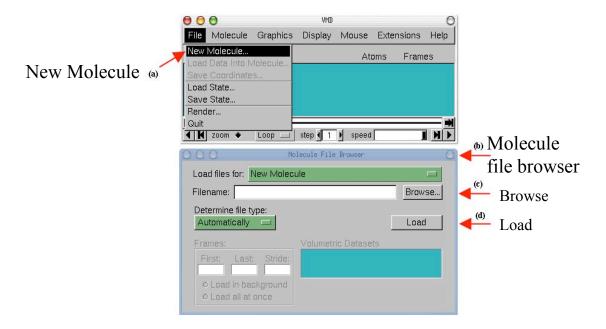

- Length of the ubiquitin chain
- How ubiquitins are attached together
- Where the signals are read

Examples:

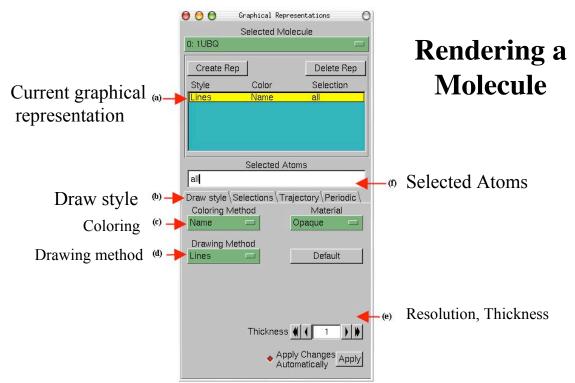
• multi-ubiquitin chains, linked through Lysine 48, target protein for proteasome degradation

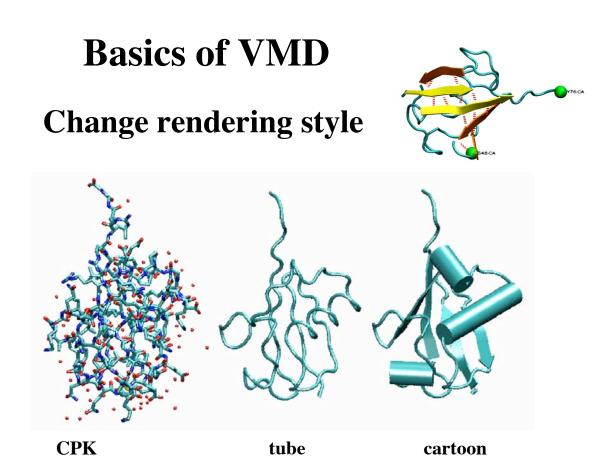
• K63 linkages direct DNA repair

Mono-ubiquitylation versus multi-ubiquitylation

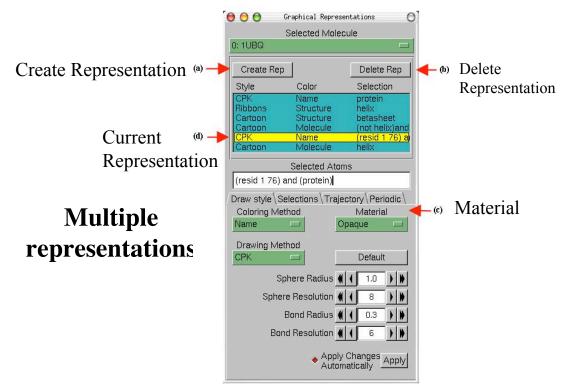

Multifaceted. Ubiquitin can attach to its various substrate proteins, either singly or in chains, and that in turn might determine what effect the ubiquitination has. (K29, K48, and K63 refer to the particular lysine amino acid used to link the ubiquitins to each other.)

Marx, J., Ubiquitin lives up its name, Science 297, 1792-1794 (2002)

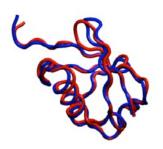

Inspect ubiquitin with VMD


Basics of VMD

Loading a Molecule

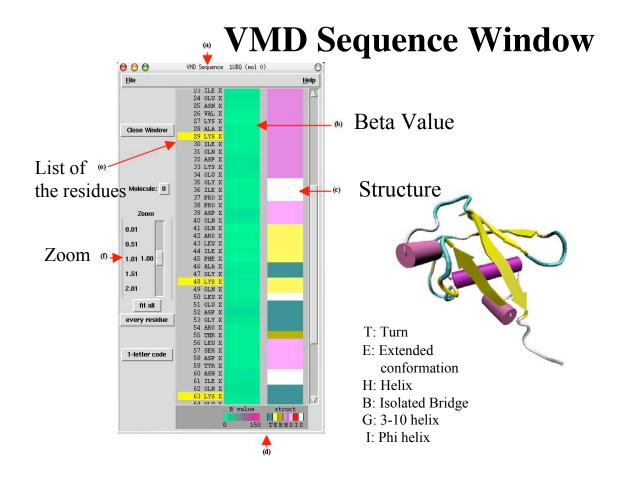


Basics of VMD

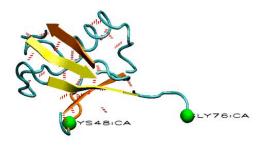

Basics of VMD

00	VMD TkCon	0	
<u>F</u> ile <u>C</u> onse	ole <u>E</u> dit Interp <u>P</u> refs <u>H</u> istory	<u>H</u> elp	
Welcome to >Main< (tut	torial) 57 % puts "Welcome to TkCon!" TkCon! torial) 58 % expr -3 * 10		
-30 >Main< (tut -30	torial) 59 % set x [expr -3 * 10]		
>Main< (tut -30	torial) 60 % puts \$x		
>Main< (tut	torial) 61 %	V	

VMD Scripting



Left: Initial and final states of ubiquitin after spatial alignment Right (top): Color coding of deviation between initial and final


00	Color Controls		
Assign colors to c	ategories:		
Categories	Names	Colors	
Display 🔺		0 blue	
Axes Name		1 red 2 gray	
Туре		3 orange	
Resname Restype		4 yellow 5 tan	
Sector States and States			
Color Definitions ¹ C	olor Scale \		
Method O	fiset 0.10		
RGB	aint 0.50		
Mildp	anti 0.50 T		

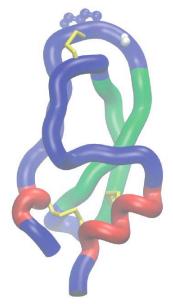
The Color Controls window showing the Color Scale tab.

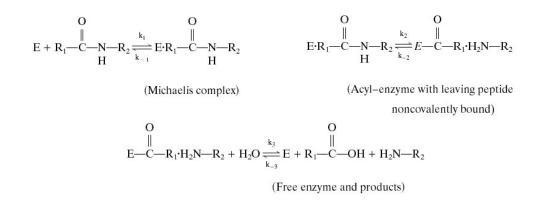
VMD Macros to Color Beta Strands

Use VMD scripting features to color beta strands separately; show hydrogen bonds to monitor the mechanical stability of ubiquitin

Ubiquitin stretched between the C terminus and K48 does not fully extend!

Discovering the Mechanical Properties of Ubiquitin




Ubiquitin stretched between the C and the N termini extends fully!

Discover BPTI on your own!

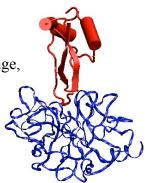
bovine pancreatic trypsin inhibitor

- small (58 amino acids)
- rigid
- binds as an inhibitor to Trypsin (a serine proteolytic enzyme, that appea system of mammalians.)
- blocks its active site.

Mechanism of cleavage of peptides with serine proteases. Radisky E. and Koshland D. Jr., Proc. Natl. Acad. Sci., USA, 99, 10316-10321

Trypsin: A proteolytic enzyme that hydrolyzes peptide bonds on the carboxyl side of Arg or Lys.

BPTI: A "standard mechanism" inhibitor


• Binds to Trypsin as a substrate.

forms an acyl-enzyme intermediate rapidly.

- Very little structural changes in trypsin or BPTI.
 several H-bonds between backbone of the two proteins change,
 little reduction in conformational entropy → binds tightly
- Remains uncleaved.

hydrolysis is 10¹¹ times slower than for other substrates

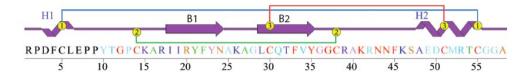
Structures of the protease binding region, in the proteins of all 18 families of standard mechanism inhibitors are similar.

Why does Trypsin cleave BPTI so slowly?

• Disruption of the non-covalent bonds in the tightly bonded enzyme-inhibitor complex increases the energy of transition states for bond cleavage.

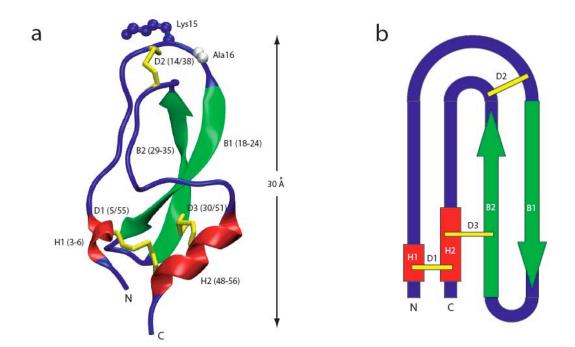
• Water molecules do not have access to the active site, because of the tight binding of Trypsin and BPTI.

• After the cleavage of the active-site peptide bond, the newly formed termini are held in close proximity, favoring reformation of the peptide bond.

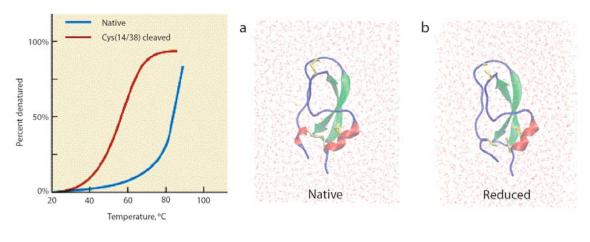

• The rigidity of BPTI may also contribute by not allowing necessary atomic motions.

Amino acid sequence alignment of BPTI-like proteins

	T I				+1
Bos taurus (BPTI)		RIIRYFYNAKAGI			
	10	20	30	40	50
Bos taurus	-ERPDFCLEPPYTGPC	RMIRYFYNAKAG	COPEVYGG	RAKSNNFKSA	EDCMRTCGGA
Bos taurus	TERPDFCLEPPYTGPC	MIRYFYNAKAG	CETEVYGG	RAKSNNFKSA	EDCMRTCGGA
Bovine hybrid (Bos indicus*Bos taurus)	-QRPDFCLEPPYTGPC	RMIRYFYNAKAG	COPEVYGG	RAKSNNFKSA	EDCMRT CGGA
Bovine hybrid (Bos indicus*Bos taurus)	RPDFCLEPPYTGPC	RMIRYFYNAKAG	COPEVYGG	RAKRNNFKS	EDCMRTCGGA
Homo sapiens	KPDFCFLEEDPGIC	TITRYFYNNQTK	CERFKYGG	LGNMNNFETI	EECKNICEDG
Homo sapiens	VCSQEAMTGPC	VMPRWYFDLSKG	KCVRFI YGG	GGNRNNFESE	DYCMAVCK
Homo sapiens	CSEQAETGPC	MISRWYFDVTEG	CAPFFYGG	GGNRNNFDTE	EYCMAVC
Saimiri sciureus	VREVCSEQAETGPC	MISRWYFDVTEG	CAPFFYGG	GGNRNNFDTE	EYCMAVCGSVI
Mus musculus	VREVCSEQAETGPC	MISRWYFDVTEG	CVPFFYGG	GGNRNNFDTE	EYCMAVCGSVS
Rattus norvegicus	VKAVCSQEAMTGPC	VMPRWYFDLSKG	KCVRFIYGG	GGNRNNFESE	DYCMAVCKTMI
Rattus norvegicus	VREVCSEQAETGPC	MISRWYFDVTEG	CAPFFYGG	GGNRNNFDTE	EYCMAVCGSVS
Naja nivea	R PRFCELPAETGLC				
Caretta caretta	CRLPPEQGPC	RIPRYFYNPASR	CESFIYGO	KGNKNNEKTH	AECVRAC
Drosophila melanogaster	DICVOAPDPGPCR				
Helix pomatia	OGRESECNLEAETGECKE				
Anemonia sulcata	INGDCELPKVVGPC				


Reactive conserved P and P' residues are highlighted in black and indicated by the arrow. Six conserved cysteine residues are highlighted in yellow. Three disulfide bonds formed by the cysteines are indicated by black lines. Other residues that are conserved in all proteins are labeled in blue.

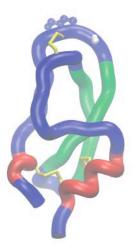
BPTI secondary structure



BPTI secondary structure: Consevation is indicated by color using rainbow scale coloring (Blue to red= low to high)

BPTI Tertiary Structure

Stability of native and reduced BPTI


Experiment

Can be tested through simulation

BPTI case study

Chalermpol Kanchanawarin Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA

Date: Tuesday 11^{th} January 2005

Inspect BPTI with VMD