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DETECTION OF HARMFUL INSECTS FOR ORCHARD 

USING CONVOLUTIONAL NEURAL NETWORKS  

Raluca TRUFELEA1, Mihai DIMOIU2, Loretta ICHIM3, Dan POPESCU4 

Monitoring the Pentatomidae family of pests in in the modern agriculture 

allows researchers to spot differences in infection levels and improve the 

development of integrated pest management strategies. The capacity of deep 

learning models to classify pest species with increased interspecies similarity and 

intraspecies variability was explored in this paper. For detection of four species of 

Phyllocephalidae insects, a modified SSD model having the IoU value of 70.2%  as 

performance indicator was proposed in this paper. As a consequence, this 

procedure might save costs, improve performances, and make the analysis more 

scalable.  

Keywords: convolutional neural networks, single shot detector, object detection, 

image segmentation, harmful insects 

1. Introduction 

The widespread of harmful insects in the world is favored by the 

movement of goods and people (for example, the appearance of Halyomorpha 

Halys in Europe). These insects cause great damage to agricultural producers and, 

as a result, there are intense concerns to monitor and stop their spread by 

ecological methods. Today, computer vision technology is frequently used to 

identify insects and the diseases they cause as well as to monitor their spread in 

crops or orchards [1]. For insect detection on large areas, a variety of new remote 

sensing technologies such as unmanned aerial vehicles (UAV), high resolution 

RGB cameras, thermal imaging sensors, and multispectral cameras, are available 

on the market. In modern approaches to image processing and analysis for the 

recognition of plant diseases and invasive insects, machine learning techniques 

and, especially, the artificial neural networks are increasingly used. To provide the 

best model accuracy, one of the most database used is the Maryland Biodiversity 
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and Global Biodiversity Information Facility which offers Halyomorpha Halys [2] 

and related species images. The Pentatomidae family of insects is part of the 

Hemiptera family and consists approximately 900 genera and 4700 species. 

Cotton, sorghum, soybeans, native and ornamental trees, shrubs, vines, 

wildflowers, and many cultivated crops are all threatened by this species [3]. The 

population of this invasive species has grown significantly, though, some species 

are considered beneficial. The authors of this paper proposed that a CNN be 

trained to recognize four different kinds of Pentatomidae insects, including 

Halyomorpha Halys. Since the damages with Halyomorpha Halys are becoming 

more and more significant, this paper demonstrates the possibilities of employing 

a computer vision system for recognition of pests from images. Thus, the 

objective of this paper is to identify and categorize insects belonging to the 

Pentatomidae family for economic purposes [4].  

PestNet [5] has been developed as a strategy for pest management. It has 

one of the highest detection accuracies of all the insects. The researchers used a 

wide variety of data with 80k images and 580k insects divided into 16 classes, one 

for each class. The proposed method achieved an average accuracy of 75.45%. 

PestNet is a network architecture that supplies crop information, including plant 

pest control.  

Object detection using neural networks is considered one of the advanced 

stages in the computer vision. Its purpose is to obtain accurate location of the 

object in the image. Notable architectures are Faster R-CNN [6], YOLO [7] and 

SSD [8]. Feature extraction and pattern recognition are the two most critical 

stages. Feature extraction is the process of extracting information from images as 

feature vectors or feature maps. Pattern recognition is used to train the model to 

classify input images across categories. CNN known as Convolutional Neural 

Networks, in deep learning has surpassed computer vision in the generic [9] 

object detection, as is widely known. 

By combining a sparse-coding strategy for encoding insect pictures with a 

multiple-kernel learning (MKL) technique, authors in [10] designed an insect 

identification system that achieved a mAP (mean average precision) of 85.5 % on 

24 common insects in crop fields. However, the approach in [10] requires multi-

image preprocessing, such as image denoising and segmentation, which involves a 

substantial amount of time and technical expertise, thus predictions based on 

images without preparation may be insufficient. In [11] an insect classification 

system is developed, which has been modified to improve performance. 

In this paper, we demonstrate the importance of being able to locate 

insects in images using Convolutional Neural Networks (CNN) and, especially, a 

modified Single Shot Detector (SSD). The goal of this study is to identify four 

different types of insects to decrease the damage they do and enhance production. 
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2. Materials and methods 

For detection of four species of Phyllocephalidae insects, a modified SSD 

model having avalue of 70.2% IoU was created (Fig. 1). The RGB images used 

have a resolution of 300 × 300 pixels. For image processing, several filters were 

applied to the original images, including random saturation, hue, contrast, scale, 

rotation, and flip. The spacing interval for filters was carrefuly chosen. In 

addition, Max Pooling layers are used. Max Pooling extracts the maximum value 

of pixels in a specified square. We get good results by combining all of these 

operations in the proposed Neural Network and feeding the final output into a 

SoftMax function, which uses a gradient optimizer to train the model weights. 

During the learning phase, we also introduced random dropouts to the CNN to 

establish decision boundaries and classify images into one of the four classes 

established. As the data stream goes through the network, some parameters 

change, such as the filters and outputs, which become smaller as the process 

progresses. 

This is due to the network's need to learn comparable characteristics at 

different scales. Although applying convolution filters to the whole training image 

implies that the CNNs are invariant of rotation and translation features, this makes 

the CNNs more forgiving of feature distortions in the pooling layers.  For the 

application, we selected four species of insects, grouped in four classes, from the 

Phyllocephalidae family: Hayomorpha Halys adult, Halyomorpa Halys Nympha 

specie, Pyrrhocoris apterus, and Nezara viridula. A total of 760 images were used 

for training and validation: 600 for training and 160 for validation. Of these, 520 

images are from the Maryland Biodiversity database and 240 from our own 

dataset. The segmentation, annotation, and labeling methods reflect the selection 

of the region of interest, in this case the insects. The dataset was placed in such a 

manner that each class had about the same amount of representatives. 

As metioned previously, we modified a Single Shot Detector for insect 

classification. SSD needs only one shot to detect multiple objects within the 

image, while regional proposal networks like R-CNN uses two shots, one for 

generating regional proposals and one for detecting the object for each proposal. 

SSD is constructed from two parts, the backbone and detection. 

The feature map at the top of the CNN corresponds to the lines in the 

original image, whilst those towards the end correspond to more descriptive 

features. Each convolutional layer in a CNN generates a feature map with the 

same size. Each feature map item corresponds to a specific location on the input 

image. The feature map becomes much more descriptive as the depth of CNN 

grows. The initial few layers of a CNN produce feature map pieces that 

correspond to small regions in the original image that are edges, lines, or corners. 
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Fig. 1. SSD model used: C – convolution block, MP – MaxPooling, BN – batch normalization, R – 

Reshape, Con – Concatenation, A – Activation, S – SoftMax, and AB – Anchor Boxes 

 

Further down the CNN, the feature map pieces correspond to bigger 

regions on the input image. Those big patches might be parts of an object or 

whole items. A base network (also known as a backbone network) is a CNN 

network that extracts feature maps in Object Detection. They're mostly CNNs that 

are used to solve image classification challenges. The backbone is responsible for 

extracting feature maps from the images that we want to detect objects. The 

original SSD’s backbone is modified version of VGG-16 neural network extended 

by a few convolutional feature layers. This implementation has 7 convolutional 



Detection of harmful insects for orchard using Convolutional Neural Networks           89 

 

layers and 4 convolutional predictor layers that take their input from layers 4, 5, 6, 

and 7. 
Table 1 

Backbone network description   

Layer Input Size Output Kernel Size Filters 

Image 300x300x3   

Identity 300x300x3   

Mean Normalization 300x300x3   

Standard Deviation Norm  300x300x3   

Conv2D_1 300x300x32 5x5 32 

BN_1 300x300x32  32 

ELU_1 300x300x32  32 

Max Pooling 2D_1 150x150x32  32 

Conv2D_2 150x150x48 3x3 48 

BN_2 150x150x48  48 

ELU_2 150x150x48  48 

Max Pooling 2D_2 75x75x48  48 

Conv2D_3 75x75x64 3x3 64 

BN_3 75x75x64  64 

ELU_3 75x75x64  64 

Max Pooling 2D_3 37x37x64  64 

Conv2D_4 37x37x64 3x3 64 

BN_4 37x37x64  64 

ELU_4 37x37x64  64 

Max Pooling 2D_4 18x18x64  64 

Conv2D_5 18x18x48 3x3 48 

BN_5 18x18x48  48 

ELU_5 18x18x48  48 

Max Pooling 2D_5 9x9x48  48 

Conv2D_6 9x9x48 3x3 48 

BN_6 9x9x48  48 

ELU_6 9x9x48  48 

Max Pooling 2D_6 4x4x48  48 

Conv2D_7 4x4x48 3x3 48 

BNn_7 4x4x48  48 

ELU_7 4x4x48  48 

 

After using the inputs from those 4 layers, we continued to stack two more 

predictor layers on the top of each of those layers: one for class prediction and one 

for box localization. The final prediction consists into batch_size, class, xmin, 

ymix, xmax, ymax. After each of 7 convolutional layers in the backbone network 

we used 2 additional layers: Batch Normalization and Exponential Linear Unit 

(ELU). We chose ELU instead of ReLU because it does not have the dying 

problem of ReLU and function tends to converge to zero the cost faster and 

produces more accurate results. One of the best practices for training a neural 

network is to normalize the input data to obtain a mean close to 0. By normalizing 
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the data, the model generally speeds up the learning phase and leads to faster 

convergence. By this method we avoid the numerical problem with very large and 

very small numbers. Also, by normalize the standard deviation helps the gradient 

descent solver. The Hessian matrix becomes much more stable and easier to 

traverse if all the inputs are scaled. 
 

Table 2 

Predictor network description   

Layer  Layer Input Size Output Filters Kernel Size 

Classes_4 ELU_4 37x37x20 20 3x3 

Classes_5 ELU_5 18x18x20 20 3x3 

Classes_6 ELU_6 9x9x20 20 3x3 

Classes_7 ELU_7 4x4x20 20 3x3 

Boxes_4 ELU_4 37x37x16 16 3x3 

Boxes_5 ELU_5 18x18x16 16 3x3 

Boxes_6 ELU_6 9x9x16 16 3x3 

Boxes_7 ELU_7 4x4x16 16 3x3 

Classes_Reshape_4 Classes_4 5476x5   

Classes_Reshape_5 Classes_5 1296x5   

Classes_Reshape_6 Classes_6 324x5   

Classes_Reshape_7 Classes_7 64x5   

Anchors_4 Boxes_4 37x37x4x8   

Anchors_5 Boxes_5 18x18x4x8   

Anchors_6 Boxes_6 9x9x4x8   

Anchors_7 Boxes_7 4x4x4x8   

Classes_concat Classes_Reshape_4, 5, 6, 7 7160x5   

Boxes_Reshape_4 Boxes_4 5476x4   

Boxes_Reshape_5 Boxes_5 1296x4   

Boxes_Reshape_6 Boxes_6 324x4   

Boxes_Reshape_7 Boxes_7 64x4   

Anchors_Reshape_4 Anchors_4 5476x8   

Anchors_Reshape_5 Anchors_5 1296x8   

Anchors_Reshape_6 Anchors_6 324x8   

Anchors_Reshape_7 Anchors_7 64x8   

Classes_Softmax Classes_concat 7160x4   

Boxes_Concat Boxes_Reshape_4, 5, 6, 7 7160x5   

Anchors_Concat Anchors_Reshape_4, 5, 6, 7 7160x8   

Predictions Boxes_Concat 

Classes_Softmax 

Anchors_Concat 

7160x17   

 

By collecting the output from layers 4 to 7, we applied two predictors to 

each layer. Those predictors are convolutional layers. From box localization we 

attached anchor boxes. For class prediction we have used a SoftMax activation 
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function. We have reshaped those 3 tracks into a one hot vector encoding (class 

predictions, boxes localization, and anchors) and concatenated them into a single 

big layer for our final output. One component of a typical object detection 

pipeline is for producing classification proposals. Candidate regions for the object 

of interest are referred to as proposals. 

The predictions are subsequently filtered out using a variety of filtering 

techniques. Authors of [12] used a four-step technique to decode the predictions 

generated by the SSD network: Bounding Boxes Decoding, Confidence 

Thresholding, Non-Max Suppression, and Top-K Filtering. SSD predictions are 

centroid encoded with a standard deviation. As a result, the first step is to decode 

the encoded predictions and convert them back to the cx and cy (width and height 

format). We need to eliminate bounding boxes with confidence scores lower than 

a specific threshold after decoding the bounding box predictions. This filtering 

procedure is carried out for each class. 

Since the SSD network produces the class predictions through the 

SoftMax function, we can obtain the confidence score of a particular class by its 

position in the SoftMax output. This confidence score tells us how sure the model 

is that an object of that exists inside the bounding box. Because the SSD network 

generates class predictions using the SoftMax function, we may calculate the 

confidence score of a certain class based on its position in the SoftMax output. 

This confidence score indicates how certain the model is that an object of that 

kind exists within the bounding box. We need to combine overlapping boxes 

together after we have filtered out the bounding boxes whose class has a low 

confidence score. This is known as Non-Max Suppression (NMS). It contributes 

to further reduce the number of predictions by combining overlapping forecasts 

into a single prediction. Even after applying Confidence Score Thresholding and 

NMS to each class, the number of residual predictions might be enormous. 

However, because the number of items (of our interest) that might appear in a 

picture is restricted, the bulk of those predictions are unnecessary. As a result, we 

may rank those forecasts according to their confidence level and choose the k 

greatest confidence score. Top K selection yields k predictions. Each of the k 

forecasts has a different level of confidence. To create the final, we further narrow 

down the k forecasts by selecting only those with confidence scores over a 

specific threshold. Normally, this threshold is determined by selecting the one 

with the highest mAP during the model's assessment. We may combine them into 

one Keras layer. The benefit of establishing a Keras layer for the decoding process 

is that we can generate a model file with the decoding process built in. The 

localization loss between the predicted box l and the ground-truth box g is 

outlined as a smooth loss with corrections to the default bounding box. We used 

SSD’s loss function to assess the behavior of the network. The loss that the model 

produces for each sample or batch of samples is used to measure its performance 
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during training. Original SSD loss function [8] is presented in Eq. (1). The 

equation combines regression loss (Lloc) and classification loss (Lconf) with a scale 

factor α for localization, where N represents number of positive matches, c is the 

class, x is a coefficient equal of 1 only if IoU score is over 0.5, l represents the 

predicted box, and g is ground truth box. 
 

 
(1) 

 

The model has been trained using a local machine powered by a GPU 

NVIDIA GTX 1070. Model was trained with batches of 1 and 8. While training, 

we have defined callbacks for our model: checkpoint for saving only best weights, 

early stopping, and reduce learning rate. Model was trained for 20 epochs with 

training steps per epoch of train dataset divided by batch size. Furthermore, we 

have implemented a visualization technique to view each layer’s output after each 

step. 

 

3. Experimental results 

Table III presents the species that we used in this paper, also the number 

of images per species used in training phase and the class name for each species. 

In Fig. 2 are presented images for training the model: a) Halyomorpha Halys 

aduls, b) Pyrrhocoris Apterus, c) Halyomorpha Halys nympha, and d) Nezara 

Virdula. The SSD model obtained an IoU (intersection over union) value of 

70.2% and a value of 89% for ACC (accuracy), considering the average of the 

mentioned four classes. In the Fig. 3 there are some examples in the testing phase 

from the same species (a, b, c, and d) for batch size of 1 (a-1, b-1, c-1, d-1) and for 

batch size of 8 (a-8, b-8, c-8, d-8). The insects are framed with a rectangle with 

the color associated with the class and the probability of decision. 

Table 3 

Species used in training phase   

Species No. Images Class Name 

Halyomorpha Halys adult 400 HH_A 

Halyomorpha Halys nympha 150 HH_C 

Pyrrhocoris apterus 95 RB 

Nezara viridula 115 BB 
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a) b) c) d) 

 

Fig. 1. Examples of images from the training set – from each considered class. 

 

 

    
a-1 b-1 c-1 d-1 

    

a-8 b-8 c-8 d-8 
 

Fig. 2. Experimental results for batch size of 1 (a-1, b-1, c-1, d-1) and for batch size of 8 (a-8, b-8, 

c-8, d-8). 

As we mentioned above, we have implemented a method to visualize the 

output from the layers. In the Fig. 4, is described each filter from some backbone 

layers. As it can be noticed, going deeper into the neural network architecture, the 

convolutional layers learn to extract meaningful features from each layer. From 

the first and second layers it can be seen the network learned the position of the 

insect and the texture. We start with feature map with size of 300×300 (image 

size) and 32 filters. In last convolutional layer, we have 48 filters of feature map 

of 9×9. The input image for the SSD network in Fig. 4 is those in Fig. 2 a.  
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Output from first convolutional layer + 

activation 

Output from second convolutional layer + 

 activation 

  

Output from third convolutional layer +  

activation 

Output from fourth convolutional layer + 

 activation 

  
Output from fifth convolutional layer + 

 activation 
Output from sixth convolutional layer + 

 activation 
 

Fig.  4. Output from three layers to visualize what neural network "sees". 
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4. Conclusions 

The modified SSD model proposed in the paper involved developing a 

technique to identify insects and pests using RGB images. Each network layer 

was detalied. It is obtained good performances considering IoT and ACC. Also, it 

is developed a method to visualize what the model has learned. As further work 

we intend to combine this neural networks with other performing neural networks 

to obtain a more performant system. 
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