Academia.eduAcademia.edu
CHAPTER 8 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Carlos Jaramillo,* Enrique Moreno, Valentina Ramírez, Silane da Silva, Atria de la Barrera, Adara de la Barrera, Carlos Sánchez, Sara Morón, Fabiany Herrera, Jaime Escobar, Rebecca Koll, Steven R. Manchester, and Natalia Hoyos ABSTRACT he Isthmus of Panama illustrates how the vegetation of a newly created landscape in a tropical setting evolves over time. It also allows us to investigate biological invasions, because the landscape was irst connected to temperate North America, and later connected to tropical South America. Using a large number of outcrops newly exposed during the recent expansion of the Panama Canal, we were able to complement the extensive palynological research that Alan Graham conducted in Panama over the past 25 years. We analyzed the palynological record of the interval 19.5–1.2 Ma, represented by 282 samples containing 27,910 grains (pollen/spores) with 496 morphotypes. Further, a revision of the plant macrofossil literature of Panama and analysis of the carbon isotope content of 14 samples were carried out. Our results indicate that since the Early Miocene, Panamanian forests have been dominated by Gondwana-Amazonian taxa, suggesting that plants were able to cross the Central American Seaway much earlier than mammals. he landscape was dominated by tropical rainforest and lower montane to montane forest, contrary to the dry and open habitats that some previous studies have proposed. Plant diversity seems to have increased over the past 10 My, but it is unclear if this increase is due to a taphonomic bias. Further studies are needed to understand the relationships of the Early Miocene Panamanian mammals derived from North American temperate forest lineages as they faced new habitats in Panama dominated by South American–derived tropical rainforest. Key words: biogeography, GABI, Neogene, paleobotany, palynology. A century ago, during the initial excavations for the Panama Canal, the Smithsonian Institution conducted intensive natural history and geological investigations, resulting in some of the irst major collections that documented the high *Author for correspondence: jaramilloc@si.edu biodiversity of the American Neotropics (e.g., Vaughan, 1919). Almost a century later, starting in 2007, after a public referendum, the government of Panama decided to widen the Panama Canal. he $5 billion project is scheduled for PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA completion in 2014. he Smithsonian Tropical Research Institute and the University of Florida have taken advantage of this extraordinary opportunity to collect fossils and geological information to better understand the uplift of the Isthmus of Panama, which had far-reaching biological, climatic, and tectonic implications. he recently exposed rocks have allowed us to compile large amounts of new geological and paleontological data that otherwise would have been impossible to collect, given that most of the Panamanian landscape is covered by tropical rainforest. Many highly fossiliferous sedimentary strata were exposed, giving us a glimpse of the evolution of the landscape, the formation of the isthmus, and the ecosystem, lora, and biota of Panama during the past 20 million years. he Panamanian fossil vertebrate collections provide a good record of Miocene North American mammal immigrants, including horses, beardogs, camels, rhinocerids, peccaries, and rodents (Whitmore & Stewart, 1965; Slaughter, 1981; MacFadden & Higgins, 2004; MacFadden, 2006a, 2006b, 2009, 2010; MacFadden et al., 2012; Rincon et al., 2012, 2013); South American immigrants include turtles, snakes, and crocodiles (Cadena et al., 2012; Head et al., 2012; Hastings et al., 2013). he geological history of the Isthmus of Panama can be divided broadly into four segments (Coates et al., 1992, 2003, 2004; Coates & Obando, 1996; Farris et al., 2011; Montes et al., 2012a, 2012b; Sepulchre et al., 2014): (1) a pre-22 Ma interval during which most of Panama was underwater, except some Late Eocene and Oligocene volcanic islands; (2) an initial collision with South America around 22–21 Ma with an associated broad-scale land exhumation and a narrowing of the Central American Seaway (CAS) to ca. 200 km (CAS is deined here as the oceanic seaway along the tectonic boundary of the South American plate and the Panamanian microplate); (3) a inal and major exhumation at 12–10 Ma, when most of the Panamanian landscape was exhumed above sea level and the CAS 135 was fully closed, ending deep and intermediate water exchange between the Caribbean and Paciic; (4) an intermittent exchange between 10 and 3.5 Ma of shallow waters between the Paciic and the Caribbean (Coates et al., 1992; Coates & Obando, 1996; Haug & Tiedemann, 1998) along places other than the CAS. At 4.2–3.5 Ma a full closure of the isthmus occurred (Coates et al., 1992; Haug et al. 2001, 2004). he complete isthmus formation facilitated exchange of faunas and loras of South America with those of Central and North America, in a process that has been named GABI (the Great American Biotic Interchange; Stehli & Webb, 1985; Coates & Obando, 1996). Modern Neotropical biodiversity and biogeographic distributions are deeply afected by this interchange. Our study presents an overall view of the vegetation evolution of the isthmus for the past 20 My, using both palynological and macrofossil data. We attempt to answer four questions, namely: (1) what are the vegetation types that have dominated the Isthmus of Panama over the past 20 Ma?, (2) are there any lines of evidence for widespread savannas or dry forests?, (3) what is the biogeographic origin of the loras found in Panama?, and (4) how has plant diversity changed? In particular, we hypothesized that the earlier loras would have been dominated by North American (Laurasian) families, due to the relatively late physical connection with South America brought on by full closure of the isthmus at ca. 3.5 Ma. his investigation was based on the analysis of 282 palynological samples together with the extensive palynological research of Dr. Alan Graham on Panamanian sedimentary formations (Graham, 1977, 1988a, 1988b, 1989, 1991a, 1991b, 1991c, 1992, 1995, 1999, 2010, 2011). Our palynological work focused on the Cucaracha, Culebra, Gatun, and Chagres formations that outcrop along the canal in central Panama, together with samples from western Panama (Bocas del Toro) and eastern Panama (Darien). Macrobotanical in- 136 formation is derived from newly discovered fossil assemblages (leaves, fruits, and wood) from the Cucaracha and Gatun formations, together with a review of previous published work. GRAHAM CONTRIBUTIONS Graham has been a pioneer in the study of the loristic evolution of Central America and the Caribbean, publishing extensively across many regions and time periods. See Graham (2010, 2011) for an excellent synthesis of his impressive research over the past 40 years. In a series of papers, he described the palynoloras of central Panama, including La Boca, Culebra, Cucaracha, and Gatun formations. His study of La Boca Formation (Graham, 1989), was not included here because the precise stratigraphic position of this site in relation to our stratigraphic work could not be determined, and it could correspond to the Lower Culebra or Cascadas formations. he original site, which is in an area with high structural complexities, no longer exists, since it was depleted before our study in the Panama Canal started. From the La Boca Formation (Graham, 1989), Graham found 54 morphotypes, including 39 where natural ainities could be assessed. he sediments were mostly marine, and some samples were dominated by mangrove elements (Rhizophora L.) and some dinolagellates. he lora relects low-lying volcanic islands fringed by mangroves, with freshwater and palm swamp, marshes, and tropical wet/moist and premontane forest. here is no evidence of dry habitats, including savannas or high elevations (> 1500 m). he lora is similar to extant coastal Panamanian loras. Climate was humid-tropical, similar to that of modern southern Central America. Study of the Culebra Formation (upper Culebra) (Graham 1987, 1988b), where 41 palynomorphs were identiied, indicated an estuarine sequence. Ferns constitute 25% of the lora, palms 4%, and lowland vegetation 71%. Tropical PALEOBOTANY AND BIOGEOGRAPHY moist forest, represented by 30 genera, dominated the assemblages of premontane wet forest (25 genera), tropical wet forest (22 genera), and some forms of premontane moist forest (12 genera). Communities of higher elevations and dry to arid habitats (including savannas) are poorly represented to absent. Climate was similar to modern Panama, with 2.7–3.2 m rainfall annually, and tropical temperatures. All 41 taxa identiied are still represented in the modern lora of Panama. he study of the Cucaracha Formation (Graham, 1988a) identiied 19 palynomorphs accumulated in an estuarine sequence. Paleocommunities included fern/palm marshes, mangroves, tropical wet/moist forests, and premontane forests. here is no evidence for high-altitude (> 1500 m) vegetation or dry vegetation (savanna). he afinity of the palynolora showed connection to North American and Central American loras, and paleoclimatic conditions were interpreted as similar to modern Panama (tropical temperatures and high levels of rainfall). Graham (1988a) proposed that the volcanic activity might have produced disruptions in the vegetation, with resulting short-term open communities (savannas) that are suggested by the presence of browsers and grazers in the mammalian faunas of the Cucaracha Formation. Graham (1991a, 1991b, 1991c) dated the Gatun Formation as Middle Miocene, but more recent work has indicated a Late Miocene age (Hendy, 2013). Graham identiied 110 palynomorphs from several habitats, including shallow marine communities, mangroves, freshwater swamps/ marshes, tropical wet/moist forests, premontane rainforests/moist forests, lower montane moist forests, and tropical dry forest. here was an increase in diversity compared to earlier loras, an increase of grasses (but only up to 7.5%), more developed dry forest, better representation of lower montane forest, and possibly, the irst indication of diferentiation between a wetter Atlantic side and a drier Paciic side in Panama. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA VEGETATION TYPES IN THE ISTHMUS OF PANAMA Today there are several types of forests in Panama, relecting a variety of environmental diferences—mainly diferences in the mean annual precipitation (MAP) and the amount of precipitation during the dry season. Forests include lowland wet forest (> 300 mm of rain during the dry season), seasonal lowland moist forest (100– 300 mm during the dry season), and lowland dry forest (≤ 1600 mm MAP and ≤ 100 mm during the dry season) (Pyke et al., 2001; Condit et al., 2004). he Caribbean side is also much wetter than the Paciic side. Additional forest types include swamp forest, seasonally looded riparian forest, mangrove forest, and montane and premontane forests. An extensive review of each of those forest types has been provided by Graham in a number of seminal works in the past few years (Graham, 1991c, 2010). We have used his vegetation classiication approach to assess the types of forest found in the fossil record (Table 1). METHODS SAMPLES A total of 282 palynological samples were analyzed. Samples came from three sources: (1) Fiftyive samples were from a measured and described stratigraphic section of the full span of Culebra and Cucaracha formations from the new excavations of the Panama Canal (Emperador section for the Lower Culebra, and Hodges Hill section for the Upper Culebra and Cucaracha) (Figs. 1, 2, Table 2). (2) Two hundred samples previously collected by the Panama Paleontology Project (PPP) (Collins & Coates, 1999) were processed for palynological analyses. hese were collected from central Panama (from Gatun and Chagres formations), eastern Panama (Darien region), and western Panama (Bocas del Toro) (Figs. 1, 2, Table 2). (3) Palynological information previously published by Graham (1987, 1988a, 1988b, 1991a, 137 1991b, 1991c) was added to our stratigraphic framework (Montes et al., 2012b; Hendy, 2013), including 11 samples from the Culebra Formation, seven samples from the Cucaracha Formation, and nine samples from the Gatun Formation (Figs. 1, 2, Table 2). he stratigraphic position as well as the label of each sample is given in the Supplementary Appendix (<http://dx.doi.org/10.5479/ data.stri.jaramillo-2014>). Palynological samples were prepared by digesting 30 g of sediment in HCl and HF, then oxidizing if necessary (Traverse, 2007), and all slides were added to the Alan Graham Palynological Collection, the extensive pollen collection donated by Alan Graham to the Smithsonian Institution a few years ago. AGE he age for the Culebra and Cucaracha has been estimated as 19.5–18.5 Ma using uraniumlead (U-Pb) geochronology and magnetostratigraphy (MacFadden et al., 2012; Montes et al., 2012a, 2012b): 19.5–19 Ma for Culebra Formation and 19–18.5 Ma for Cucaracha Formation. For the age of individual samples within these formations, a linear and constant accumulation rate was assumed, since there are no major lithological changes within each formation (Supplementary Appendix). Age for each PPP sample has been determined using planktonic foraminifera and calcareous nannoplankton (Collins & Coates, 1999). Ages of 12 to ca. 8.5 Ma (Middle to Late Miocene) for the Gatun Formation and 6.5–5.5 Ma (Late Miocene) for the Chagres Formation have been determined using foraminifera, nannoplankton, and molluskan biostratigraphy (Collins & Coates, 1999; Hendy, 2013). See Figures 1, 2, Table 2, and Supplementary Appendix. ECOLOGICAL PREFERENCES AND BIOGEOGRAPHIC ORIGINS Ecological preferences for fossil taxa follow mainly Graham (1991c), with additional input (Germeraad et al., 1968; Croat, 1978; Henderson et al., 1995; Correa & Valdespino, 1998; March- 138 PALEOBOTANY AND BIOGEOGRAPHY TABLE 1. Ecological preferences for fossil taxa, based primarily on Graham (1991c), with additional input from Germeraad et al. (1968), Croat (1978), Henderson et al. (1995), Correa and Valdespino (1998), Marchant et al. (2001), Correa et al. (2004), Carrasquilla (2006), and Henderson (2011). Taxa TRFO PMF Acacia Mill. 1 Acalypha diversifolia Jacq. 1 1 Aegiphila Jacq. 1 1 Alchornea Sw. 1 1 Alfaroa/Oreomunnea Standl./Oerst. 1 1 Allophylus L. 1 1 Alfaroa Standl. MF TDFO 1 1 1 1 1 1 Alsophila R. Br. 1 1 Amanoa Aubl. 1 1 Bernoullia Oliv. 1 1 Bombacopsis Pittier 1 Borreria G. Mey. 1 Bucida L. 1 1 1 1 1 Bucida L. 1 1 1 1 Cabomba Aubl. 1 Caesalpinia L. 1 Casearia Jacq. 1 Catopsis Griseb. 1 Cayaponia Silva Manso 1 Cedrela P. Browne 1 1 1 Ceiba Mill. 1 1 1 1 Ceratopteris Brongn. 1 cf. Aguiaria Ducke 1 cf. Cionosicys Griseb. 1 cf. Glycydendron Ducke 1 1 cf. Jatropha L. cf. Stillingia Garden ex L. FW 1 Alnus Mill. Bursera Jacq. ex L. SV 1 1 cf. Jatropha L. 1 Chelonanthus (Griseb.) Gilg 1 Chomelia Jacq. 1 1 1 Chrysophyllum L. 1 Cnemidaria C. Presl 1 1 1 Combretum Loel./Terminalia L. 1 1 1 Combretum Loel. 2 Cordia L. 1 1 Cosmibuena Ruiz & Pav. 1 1 Crudia Schreb. 1 1 Cryosophila Blume 1 1 Ctenitis (C. Chr.) C. Chr. 1 1 Cupania L. 1 1 1 MG MR 139 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 1. (continued) Taxa Cyathea Kaulf. TRFO PMF MF 1 1 1 Cymbopetalum Benth. 1 1 Danaea Sm. 1 1 Desmoncus-type Mart. 1 TDFO SV FW MG Dinolagellates 1 Dioclea relexa Hook. f. 1 Dioscorea L./Rajania L. 1 Doliocarpus Rol. 1 1 Erythrina L. 1 1 1 1 1 Eugenia L. Eugenia L./Myrcia DC. 1 Euterpe Mart. 1 Faramea Aubl. 1 1 1 1 Foram lining Genipa americana L. 1 Glycydendron Ducke 1 Gomphrena L. 1 1 1 Hampea Schltdl. Hampea Schltdl./Hibiscus L. 1 1 Grammitis Sw. Guarea F. Allam. ex L. 1 1 Hauya DC. 1 Hedyosmum Sw. 1 Hemitelia R. Br./Cnemidaria C. Presl 1 1 1 Hibiscus L. Humiria Aubl. 1 1 Ilex L. Iriartea deltoidea Ruiz & Pav. 1 1 1 Jamesonia Hook. & Grev. 1 Jatropha L. 1 Ludwigia L. 1 Lycopodium L. 1 Lygodium Sw. 1 1 1 1 1 Lygodium microphyllum (Cav.) R. Br. 1 Machaerium Pers. 1 Manicaria-type Gaertn. 1 Matayba Aubl. 1 Mauritia L. f. 1 Mauritia lexuosa L. f. 1 Miconia Ruiz & Pav. 1 1 Monolete fern spore types 1-2 (Blechnaceae) Mortoniodendron Standl. & Steyerm. Mutisieae type Cass. MR 1 1 1 (continued) 140 PALEOBOTANY AND BIOGEOGRAPHY TABLE 1. (continued) Taxa TRFO PMF Myrcia DC. 1 Oenocarpus Mart. 1 Ophioglossum L. 1 1 Oryctanthus (Griseb.) Eichler 1 1 Pachira aquatica Aubl. 1 MF TDFO SV MG MR 1 1 1 Palmae type 1 Paullinia L. FW 1 1 1 Petrea L. 1 1 Phytelephas Ruiz & Pav. 1 Pelliciera Planch. & Triana 1 Poaceae 1 Podocarpus L’Hér. ex Pers. 1 1 Polypodiaceae/Pteridaceae 1 Posoqueria Aubl. 1 Pouteria Aubl. 1 1 1 Protium Burm. f. 1 1 Pseudobombax Dugand 1 1 Psidium L. 1 Pteris L. 1 1 1 Quercus L. 1 1 1 Rourea Aubl. 1 1 Sabicea Aubl. 1 1 Sapium Jacq. 1 1 1 Rhizophora L. 1 1 Sapium caudatum Pittier 1 1 Scheelea zonensis L. H. Bailey 1 1 1 Selaginella P. Beauv. 1 1 1 Serjania Mill. Serjania cf. Mill. 1 Spondias L. 1 1 1 1 1 Stenochlaena palustris (Burm. f.) Bedd. 1 Stillingia Garden ex L. 1 Symphonia globulifera L. f. 1 1 Symplocos Jacq. 1 1 Tetrorchidium macrophyllum Müll. Arg. 1 Trichilia P. Browne 1 Utricularia L. 1 Vernonia Schreb. 1 Vochysia Aubl. 1 1 1 Abbreviations: TRFO = tropical wet/moist forest; PMF = premontane wet/moist/rainforest; MF = lower montane to montane moist/wet forest; TDFO = tropical to premontane dry forest; SV = savanna; FW = freshwater marsh community; MG = mangrove swamps; MR = shallow water marine community. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 141 FIGURE 1. Sampling localities displayed on Panama’s regional geology. “North Coast” and “South Coast” localities are on Escudo de Veraguas Island. Geology is from the National Environmental Authority (ANAM). Elevation data are from the Shuttle Radar Topography Mission (U.S.G.S., 2004) and bathymetry is from the ETOPO1 dataset (Amante & Eakins, 2009). ant et al., 2001; Correa et al., 2004; Carrasquilla, 2006; Henderson, 2011) (Table 1). For biogeographic origins, we followed the approach of Gentry (1982). Plant families were given a biogeographic origin provided by Gentry, including Gondwana-Amazonian families, Gondwana-northern Andean, Gondwana-southern Andean, Laurasian, or unassigned (Table 3). Modern vegetational abundance data and species composition were derived from the 50-ha plot of Barro Colorado Island in Panama (Condit et al., 2004) (Appendix 1). he data from this plot include approximately 240,000 stems of 303 species of trees and shrubs more than 1 cm in diameter at breast height, representing ca. 96% of the biomass in the plot (Chave et al., 2003, 2005). Pollen traps in the soil within the plot also have shown than pollen spectra produce a representative sample of the vegetation within the plot (Bush & Rivera, 1998; Haselhorst et al., 2013), consequently making the pollen record a good proxy to understand the forest. STABLE CARBON ISOTOPES We used stable carbon isotopes to identify C3 versus C4 photosynthetic pathways, as a means to identify the presence of C4 savannas (rich in C4 grasses) versus trees (C3). Sediment samples were freeze-dried and crushed with a mortar and pestle. Total carbon and total nitrogen were measured using a Carlo Erba (Milan, Italy) NA1500 CNS elemental analyzer with a zero blank autosampler. Carbonate carbon was determined by coulometric titration using an automated acidiication prep device coupled with a UIC CO2 coulometer. Percentage of organic carbon was calculated by subtraction of carbonate carbon from total carbon. Samples for isotopic analyses were treated with 2 N HCl to remove carbonate and then washed with distilled water to remove chloride. Approximately 50 mg of carbonate-free bulk sediment was loaded into tin sample capsules and placed in a 50-position automated sample zero blank carousel on the elemental analyzer. Combustion gases were carried in a helium stream through 142 PALEOBOTANY AND BIOGEOGRAPHY Graham 1991a,b,c Gatún Toro Margarita, Gatun Lower Gatun Formation Late Miocene 9 Shallow marine Age (Ma) 8 Sabanita, Cativa, Isla Payardi Middle Upper 7 10 Piña Toro Point Chagres Fm Late Miocene marine Shallow PPP sections 6 11 Volcanism Subaerial Cucaracha Fm. Organic-rich, black mudstone Purple, green claystone Lithic sandstone 480 m 400 m Limestone, patchy corals Conglomerate, fluvial channels Graham 1988b Culebra Culebra Formation Patchy reef Shallow marine 20.5 Thickness undetermined 540 m Early Miocene 19.5 Deltaic Paleosols, fluvial channels Age (Ma) 18.5 Las Cascadas Formation Subaerial Volcanics. Pedro Miguel Formation subaerial volcanic units Graham 1988a Cucaracha 12 Purple and cream layered ash tuff Layered lapilli tuff Black, vitreous lava Welded, massive agglomerate Vertebrate remains Plant remains Invertebrate remains FIGURE 2. Stratigraphic proile of the main formations and sections studied in central Panama. Stratigraphy and age of Cucaracha and Culebra formations after Montes et al. (2012b) and MacFadden et al. (2012); Gatun Formation after Hendy (2013). PPP = Panama Paleontology Project. 143 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 2. Geographical location of the studied samples. Region Section name Formation name Latitude 9.0827 Longitude –79.6789 Source Central Panama Empire section La Boca Culebra this study Central Panama Hodges Hill section Culebra/Cucaracha 9.05 –79.6534 this study Central Panama 01-Sabanita to Payardi Gatun 9.351083333 –79.808 PPP samples Central Panama 02-Margarita to Gatun Gatun 9.32575 –79.89133333 PPP samples Central Panama 03-Toro point Gatun 9.296083333 –79.92466667 PPP samples Central Panama 05- Rio Indio Chagres 9.192138889 –80.19133333 PPP samples Central Panama 06-Miguel de la Borda Gatun 9.154833333 –80.29133333 PPP samples Central Panama 07-Boca de Concepcion Gatun 8.847583333 –80.97466667 PPP samples Central Panama 08-Boca de Concepcion West Gatun 8.841416667 –80.99133333 PPP samples Central Panama 09 -Calzones River Gatun 9.045083333 –80.64133333 PPP samples Western Panama 10-North Coast Escudo Veraguas 9.101444444 –81.57466667 PPP samples Western Panama 11-South Coast Escudo Veraguas 9.089944444 –81.54133333 PPP samples Western Panama 12-North Valiente Shark Hole Point 9.042777778 –81.74133333 PPP samples Western Panama 15-South Valiente Shark Hole Point 9.106666667 –81.908 PPP samples Western Panama 16-North Point West Cayo Agua 9.18 –82.058 PPP samples Western Panama 17-Piedra Roja Point West Cayo Agua 9.141083333 –82.008 PPP samples Western Panama 18-Piedra Roja Point East Cayo Agua 9.143138889 –82.008 PPP samples Western Panama 19- North Point-Tiburon Point Cayo Agua 9.174888889 –82.04133333 PPP samples Western Panama 20-Nispero Point South Cayo Agua 9.167527778 –82.02466667 PPP samples Western Panama 22-Bastimentos Island unnamed 9.317777778 –82.108 PPP samples Western Panama 23-Bastimentos Island unnamed 9.317277778 –82.108 PPP samples Western Panama 24- Solarte Cay unnamed 9.142194444 –82.008 PPP samples Eastern Panama Rio Chico Tuira? 8.17075 –77.708 PPP samples Eastern Panama Rio Chucunaque Chucunaque 8.331138889 –77.758 PPP samples Eastern Panama Rio Icuanati Lara 8.410416667 –77.64133333 PPP samples Eastern Panama Rio Tuira Tuira 8.097 –77.59133333 PPP samples Eastern Panama Rio Tupisa Tuira 8.308611111 –77.608 PPP samples Eastern Panama Rio Turquesa Tuira 8.465722222 –77.69133333 PPP samples Central Panama Core SL103 Gatun 9.266666667 –79.86666667 Graham, 1991c Central Panama Core SL49 Gatun 9.266666667 –79.86666667 Graham, 1991c Central Panama GH9 Culebra 9.05 –79.6534 Graham, 1988a Central Panama Roadside K2 Cucaracha 9.05 –79.6 Graham, 1988b Abbreviation: PPP = Panama Paleontology Project. a Conlo II interface to a Finnigan-MAT 252 isotope ratio mass spectrometer (PRISM). All carbon isotopic results are expressed in standard delta notation relative to Vienna Pee Dee Belemnite (VPDB). PALYNOLOGICAL NOMENCLATURE Morphological characteristics of the palynomorphs were compared with illustrations and descriptions from literature and summarized in Jaramillo and Rueda (2013). Major nomenclatural usages follow those in Jaramillo and Dilcher (2001). Informal species are those between quotation marks. In the taxonomic section (Appendix 2), 414 morphotypes are briely described and/or illustrated. he taxa encountered and their counts are listed in the Supplementary Appendix, 144 PALEOBOTANY AND BIOGEOGRAPHY TABLE 3. Biogeographic affinities after Gentry (1982) for the families present in either the Barro Colorado Island 50-ha plot or the fossil record presented in this report. Biogeographic Province Family Dry area Gondwanan group Erythroxylaceae Gondwana-Amazonian Anacardiaceae, Annonaceae, Apocynaceae, Arecaceae, Bombacoideae, Burseraceae, Byttneroideae, Caesalpinioideae, Chrysobalanaceae, Combretaceae, Connaraceae, Dilleniaceae, Ebenaceae, Elaeocarpaceae, Euphorbiaceae, Fabaceae, Faboideae, Grewioideae, Humiriaceae, Lacistemataceae, Lauraceae, Lecythidaceae, Malpighiaceae, Meliaceae, Mimosoideae, Moraceae, Myristicaceae, Ochnaceae, Olacaceae, Phyllanthaceae, Polygalaceae, Rhizophoraceae, Sapindaceae, Sapotaceae, Simaroubaceae, Sterculiaceae, Tetrameristaceae, Tiliaceae, Violaceae, Vochysiaceae Gondwana-northern Andean Acanthaceae, Araceae, Araliaceae, Asteraceae, Bromeliaceae, Clusiaceae, Ericaceae, Loranthaceae, Monimiaceae, Nyctaginaceae, Piperaceae, Rubiaceae, Urticaceae Gondwana-southern Andean Bignoniaceae, Myrtaceae, Onagraceae, Podocarpaceae, Solanaceae Laurasian Achariaceae, Aquifoliaceae, Betulaceae, Boraginaceae, Celastraceae, Chloranthaceae, Fagaceae, Gentianaceae, Juglandaceae, Labiatae, Lythraceae, Melastomataceae, Rhamnaceae, Salicaceae, Staphyleaceae, Symplocaceae, Ulmaceae Unassigned Amaranthaceae, Cabombaceae, Cucurbitaceae, Cyperaceae, Dioscoreaceae, Dryopteridaceae, Lamiaceae, Lentibulariaceae, Malvaceae, Malvoideae, Nymphaeaceae, Picramniaceae, Poaceae, Polygonaceae, Rutaceae, Verbenaceae as well as in Table 4, where possible natural ainities are provided. We employ a nomenclature using fossil names for each taxon, even when the natural ainities are known. his approach difers from that used by Graham in all his publications where the fossils were referred to extant families and genera when possible. We feel that using a fossil taxon naming approach would be more useful when comparing to fossil loras elsewhere in the tropics, where fossil morphotaxa have mostly been used. Also, using natural ainities as the name of a fossil taxon can bring nomenclatural problems in the future, because the ainity of a given fossil species can change when further research is done, specially using SEM and TEM. It would be more practical to have a fossil morphotaxon name with an informally suggested natural ainity; that is, a hypothesis of relationship can change over time, but the morphotaxon name will not. DIVERSITY ANALYSES A number of techniques were used to analyze the patterns of pollen and spore diversity and loral composition. Diversity is used here to denote the number of species (Rosenzweig, 1995). Diversity within a sample was estimated using rarefaction, an interpolation technique that estimates how many species may have been found if the sample had been smaller (Raup, 1975). he rarefaction was calculated with the fungal spores excluded because they can represent a large proportion of the palynological sum and thus can mask possible vegetation patterns; this exclusion from the diversity analyses was also appropriate, because little taxonomic work has been undertaken on Neotropical Neogene fungi. Species accumulation curves (Gilinsky, 1991), using the collector method, were used to calculate how diversity increases as more samples are analyzed. he collector method adds sites in the order they happen to be in the data (Oksanen et al., 2010). It was used to compare the three time intervals that we analyzed (see below), because each interval represents a diferent time span, and comparison of them would have biased the diversity toward the interval with the longest duration (i.e., the longest duration interval would have a greater probability to accumulate more species). 145 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 4. List of all species used in the analysis with their possible natural affinities. The Graham taxon name corresponds to the names used by Graham in his publications. Informal species are those within quotation marks. Taxon Acanthaceae aff. “hygrophilensis” Category Graham taxon name angiosperm Family Genus Acanthaceae Hygrophila Alnipollenites verus (Potonie, 1931) ex Potonie, 1934 angiosperm Betulaceae Alnus Anacardiaceae “morenensis” angiosperm Anacardiaceae Spondias Anacardiaceae “sanchenzis” angiosperm Anacardiaceae Annonaceae (Cymbopetalum) Benth. angiosperm Cymbopetalum Annonaceae Araceae type angiosperm Araceae Arecipites “perfectus” angiosperm Arecaceae Arecipites regio (Van der Hammen and Garcia, 1966) Jaramillo and Dilcher, 2001 angiosperm Arecaceae Baculipollenites “inciertus” angiosperm Cymbopetalum Bignoniaceae type angiosperm Bignoniaceae Bombacaceae (cf. Aguiaria) Ducke angiosperm cf. Aguiaria Bombacoideae Aguiaria Bombacacidites “bombacopsiformis” angiosperm Bombacoideae Bombacopsis Bombacacidites “colpiechinatus” angiosperm Bombacacidites “problematicus” angiosperm Pseudobombax Bombacacidites “pseudobombiformis” angiosperm Pseudobombax Bombacoideae Bombacacidites araracuarensis Hoorn, 1994 angiosperm Ceiba Bombacoideae Ceiba Bombacacidites baculatus Muller et al., 1987 angiosperm Bombacoideae Pachira aquatica Bombacacidites brevis (Dueñas, 1980) Muller et al., 1987 angiosperm Unknown Type 10 Bombacoideae Bombacacidites nacimientoensis (Anderson, 1960) Elsik, 1968 angiosperm Bernoullia Bombacoideae Brevitricolpites “panamensis” angiosperm Brevitricolpites “triangulatus” angiosperm Unknown Type 9 Bernoullia Brevitricolporites “scabratus” angiosperm Brevitricolpites sp. Gonzalez, 1967 angiosperm Unknown Type 8 Fabaceae Bromeliacidites sp. 1 angiosperm Bromeliacidites sp. 2 angiosperm Bromeliaceae Catopsis Burseraceae “protiumensis” angiosperm Burseraceae Protium Bromeliaceae Cabombaceae (Cabomba) Aubl. angiosperm Cabomba Cabombaceae Cabomba Chelonanthus type (Griseb.) Gilg angiosperm Gentianaceae Chelonanthus Cichoreacidites longispinosus (Lorente, 1986) Silva-Caminha et al., 2010 angiosperm Asteraceae Clavainaperturites clavatus Van der Hammen and Wymstra, 1964 angiosperm Clavainaperturites microclavatus Hoorn, 1994b angiosperm Clavaperiporites “crotonoides” angiosperm Clavapollenites “circularis” angiosperm Clavapollenites “triangulatus” angiosperm Clavatricolpites “ininitus” angiosperm Clavatricolpites “tectatum” angiosperm Tetrorchidium Clavatricolpites sp. Van Hoeken Klinkenberg, 1964 angiosperm Colombipollis “guerrillensis” angiosperm Chloranthaceae Hedyosmum Euphorbiaceae Euphorbiaceae Tetrorchidium (continued) 146 PALEOBOTANY AND BIOGEOGRAPHY TABLE 4. (continued) Taxon Combretaceae (cf. Bucida) L. Category Graham taxon name angiosperm cf. Bucida Family Genus Combretaceae Bucida Compositae (Mutisieae type) Cass. angiosperm Mutisieae type Asteraceae Mutisieae Corsinipollenites psilatus Jaramillo and Dilcher, 2001 angiosperm Onagraceae Ludwigia Crassiectoapertites columbianus Dueñas, 1980; emend. Lorente, 1986 angiosperm Fabaceae Dioclea relexa Cricotriporites “chagrensis” angiosperm Cricotriporites “minimus” angiosperm Cricotriporites aff. macroporus Jaramillo and Dilcher, 2001 angiosperm Crototricolpites “euphorbiensis” angiosperm Crototricolpites “pseudodaemoni” angiosperm Cucurbitaceae (cf. Cionosicys) Griseb. angiosperm cf. Cionosicys Cucurbitaceae Cionosicys Cucurbitaceae type angiosperm Cucurbitaceae Cayaponia Cyperaceae angiosperm Cyperaceae Dioscorea L./Rajania L. angiosperm Dioscorea/Rajania Dioscoreaceae Echimonocolpites “dariensis” angiosperm Arecaceae Echimonocolpites “mauritiformis” angiosperm Arecaceae Echimonocolpites “mosquitensis” angiosperm Arecaceae Echimonocolpites “panamensis” angiosperm Arecaceae Mauritia Echiperiporites “aquaticus” angiosperm Echiperiporites “ipomoensis” angiosperm Echiperiporites “pantagruelicus” angiosperm Echiperiporites akanthos Van der Hammen and Wymstra, 1964 angiosperm Echiperiporites estelae Germeraad et al., 1968 angiosperm Hampea/Hibiscus Malvoideae HampeaHibiscus Echiperiporites sp. Van der Hammen and Wymstra, 1964 angiosperm Unknown Type 1 Echistephanoporites “saggitarianus” angiosperm Echitricolporites “chiquitinus” angiosperm Echitricolporites “devriesi” angiosperm Euphorbiaceae DioscoreaRajania Asteraceae Echitricolporites “microspinosus” angiosperm Boraginaceae Echitricolporites “vesiculoides” angiosperm Compositae Asteraceae Echitricolporites mcneillyi Germeraad et al., 1968 angiosperm Asteraceae Echitricolporites sp. (Van der Hammen) Germeraad, Hopping & Muller 1968 angiosperm Echitricolporites spinosus Van der Hammen, 1956 angiosperm Asteraceae Echitricolporites spinosus var. microspinosus angiosperm Asteraceae Echitriporites “abutiloensis” angiosperm Malvoideae Echitriporites “megaexinatus” angiosperm Echitriporites aff. “eocenicus” angiosperm Ericaceae Type 1 angiosperm Ericaceae Type 1 Ericaceae Type 2 angiosperm Ericaceae Type 2 Ericaceae Ericipites “baculatus” angiosperm Ericaceae Ericipites “psilatus” angiosperm Ericaceae Type 2 Ericaceae Ericaceae Cordia Ambrosia Abutilon 147 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 4. (continued) Taxon Erythrina L. Category Graham taxon name angiosperm Erythrina Family Fabaceae Genus Erythrina Euphorbiaceae (cf. Glycydendron) Ducke angiosperm cf. Glycydendrum Euphorbiaceae Glycydendron Euphorbiaceae (cf. Jatropha) L. angiosperm cf. Jatropha Euphorbiaceae Jatropha Euphorbiaceae (cf. Stillingia) Garden ex L. angiosperm cf. Stillingia Euphorbiaceae Stillingia Fagaceae (Quercus) L. angiosperm Quercus Fagaceae Quercus Fenestrites “silanensis” angiosperm Asteraceae Fenestrites spinosus Van der Hammen, 1956 angiosperm Asteraceae Vernonia Foveomonocolpites “panamensis” angiosperm Desmoncus-type Arecaceae Desmoncus Foveostephanocolpites CU488 angiosperm Unknown Type 4 Foveotricolporites “brevicolpatus” angiosperm Foveotricolporites “cingulatum” angiosperm Euphorbiaceae Sapium caudatum Foveotricolporites “colonensis” angiosperm Doliocarpus Dilleniaceae Doliocarpus Foveotricolporites “longaporatus” angiosperm Foveotriporites “bocencis” angiosperm Unknown Type 11 and 12 Rubiaceae Sabicea Gomphrena Foveotriporites “ochromensis” angiosperm Foveotriporites “protohammenii” angiosperm Sabicea Gemmatricolporites sp. Leidelmeyer, 1966 angiosperm Unknown Type 6 Gemmatriporites “matisialis” angiosperm Gomphrena sp. L. angiosperm Amaranthaceae Grimsdalea “aparecida” angiosperm Arecaceae Hauya DC. angiosperm Hauya Onagraceae Hauya Heterocolpites “combretoides” angiosperm Combretaceae Combretum Heterocolpites “irregularis” angiosperm Melastomataceae Heterocolpites “melastomicus” angiosperm Melastomataceae Heterocolpites “minutus” angiosperm Melastomataceae Heterocolpites incomptus Hoorn, 1993 angiosperm Melastomataceae Miconia Heterocolpites rotundus Hoorn, 1993 angiosperm Combretum/ Terminalia Combretaceae CombretumTerminalia Heterocolpites sp. Van der Hammen, 1956 angiosperm Horniella “longicolpatus” angiosperm Ilexpollenites “chiquitus” angiosperm Ilexpollenites “clavavariatus” angiosperm Ilex Aquifoliaceae Ilex Ilexpollenites “larguitus” angiosperm Aquifoliaceae Ilex Ilexpollenites “redonditus” angiosperm Inaperturopollenites “crotonoides” angiosperm Inaperturopollenites “grandiosus” angiosperm Inaperturopollenites “reticulatus” angiosperm Chomelia type Rubiaceae Chomelia Ladakhipollenites simplex (Gonzalez, 1967) Jaramillo and Dilcher, 2001 angiosperm Lanagiopollis crassa (Van der Hammen and Wymstra, 1964) Frederiksen, 1988 angiosperm Tetrameristaceae Pelliciera rhizophorae (continued) 148 PALEOBOTANY AND BIOGEOGRAPHY TABLE 4. (continued) Taxon Category Graham taxon name Family Leguminosae angiosperm Leguminosae Fabaceae Lentibulariaceae angiosperm Lentibulariaceae Lentibulariaceae Lingulodinium machaerophorum (Delandre and Cookson 1955) Wall, 1967 angiosperm Longapertites “foveolatus” angiosperm Cryosophila type Loranthaceae “atriensis” angiosperm Arecaceae Loranthaceae “marginalis” angiosperm Loranthaceae Loranthaceae “oryctanthusis” angiosperm Loranthaceae Loranthaceae Type 1 angiosperm Loranthaceae Type 1 Loranthaceae Loranthaceae Type 2 angiosperm Loranthaceae Type 2 Loranthaceae Magnastriatites grandiosus (Kedves and Sole de Porta, 1963) Dueñas, 1980 angiosperm Ceratopteris Pteridaceae Malpighiaceae “bunchoensis” angiosperm Malpighiaceae Malpighiaceae Type 2 angiosperm Malpighiaceae Type 2 Malpighiaceae Margocolporites “hematoxyformis” angiosperm Caesalpinioideae Margocolporites “simpliporatus” angiosperm Genus Cryosophila Oryctanthus Ceratopteris Caesalpinia Margocolporites vanwijhei Germeraad et al., 1968 angiosperm Fabaceae Mauritiidites franciscoi var. franciscoi (Van der Hammen, 1956) Van Hoeken Klinkenberg, 1964 angiosperm Arecaceae Mauritiidites franciscoi var. minutus Van der Hammen and Garcia, 1966 angiosperm Arecaceae Melastomataceae angiosperm Melastomataceae Melastomataceae Momipites “panamensis” angiosperm Alfaroa/ Engelhardia Juglandaceae AlfaroaEngelhardia Mauritia lexuosa Momipites africanus Van Hoeken Klinkenberg, 1966 angiosperm Betulaceae Corylus Monocolpopollenites “canalensis” angiosperm Synechanthus-type Arecaceae Synechanthus Monoporopollenites “minutus” angiosperm Poaceae Monoporopollenites annulatus (Van der Hammen, 1954) Jaramillo and Dilcher, 2001 angiosperm Gramineae Poaceae Multimarginites vanderhammenii Germeraad et al., 1968 angiosperm Acanthaceae Sanchezia klugii Myrtaceae type angiosperm Myrtaceae Psidium Nymphaeaceae angiosperm Nymphaeaceae Nymphaeaceae Ochnaceae type angiosperm Ochnaceae Onagraceae angiosperm Onagraceae Onagraceae Pachydermites diederixi Germeraad et al., 1968 angiosperm Clusiaceae Palmae Type 1 angiosperm Palmae Type 1 Arecaceae Palmapollenites “iriartoides” angiosperm Arecaceae Iriartea deltoidea Palmapollenites “microperforatus” angiosperm Palmae Type 2 Arecaceae Oenocarpus Palmapollenites “phytelephensis” angiosperm Arecaceae Phytelephas Palmapollenites “scheeleaensis” angiosperm Arecaceae Scheelea zonensis Symphonia globulifera 149 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 4. (continued) Taxon Category Graham taxon name Papilionoideae angiosperm Papilionoideae Parsonsidites “multiporatus” angiosperm Family Genus Faboideae Perisyncolporites “gemmatus” angiosperm Perisyncolporites pokornyi Germeraad et al., 1968 angiosperm Malpighiaceae Malpighiaceae Poloretitricolpites “centenarius” angiosperm Pouteria Sapotaceae Polyadopollenites “minutus” angiosperm Mimosoideae Acacia Polyadopollenites mariae Dueñas, 1980 angiosperm Acacia Mimosoideae Acacia Pouteria “mamey” angiosperm Proteacidites triangulatus Lorente, 1986 angiosperm Allophylus Sapindaceae Allophylus Proxapertites “scabra?” angiosperm Araceae Proxapertites psilatus Sarmiento, 1992 angiosperm Araceae Psilabrevitricolpites aff. lexibilis van Hoeken-Klinkenberg, 1966 angiosperm Humiriaceae Psilabrevitricolporites “magnoporatus” angiosperm Psilabrevitricolporites “vestibulatus” angiosperm Psilabrevitricolpites aff. rotundus Van Hoeken-Klinkenberg, 1966 angiosperm Apocynaceae Psilabrevitricolporites devriesi (Lorente, 1986) Silva-Caminha et al., 2010 angiosperm Humiriaceae Psilabrevitricolporites triangularis (Van der Hammen and Wymstra, 1964) Jaramillo and Dilcher, 2001 angiosperm Sapindaceae Psiladiporites “faramensis” angiosperm Psiladiporites “infragranulatus” angiosperm Psiladiporites “annulatus” angiosperm Psiladiporites sp. Varma & Rawat, 1963 angiosperm Psilamonocolpites “longiformis” angiosperm Psilamonocolpites amazonicus Hoorn, 1993 angiosperm Arecaceae Psilamonocolpites medius (Van der Hammen, 1956) Van der Hammen and Garcia, 1966 angiosperm Arecaceae Arecaceae Psilamonocolpites rinconii Duenas, 1986 angiosperm Psilaperiporites “juglands” angiosperm Psilaperiporites minimus Regali et al., 1974 angiosperm Chenopodiaceae/ Amaranthaceae Pouteria Humiria Euterpe Oenocarpus Amaranthaceae Psilastephanocolpites “janduforius” angiosperm Unknown Type 5 Psilastephanocolporites “acalyphoides” angiosperm Euphorbiaceae Acalypha diversifolia Psilastephanocolporites “cedreloides” angiosperm Cedrela Meliaceae Cedrela Psilastephanocolporites issilis Leidelmeyer, 1966 angiosperm Polygalaceae Psilastephanoporites “crassiannulatus” angiosperm Psilastephanoporites “magnus” angiosperm Psilastephanoporites “microcaribiensis” angiosperm Psilastephanoporites “pareado” angiosperm Psilastephanoporites “punctatus” angiosperm Psilastephanoporites herngreenii Hoorn, 1993 angiosperm Apocynaceae Apocynaceae (continued) 150 PALEOBOTANY AND BIOGEOGRAPHY TABLE 4. (continued) Taxon Psilasyncolpites “recticolpatus” Category Graham taxon name Family Genus angiosperm Psilasyncolporites “reticolpatus” angiosperm Psilatricolpites CU490 angiosperm Unknown Type 2 Psilatricolpites sp. (Van der Hammen) Pierce, 1961 angiosperm Psilatricolporites “colpiconstrictus” angiosperm Psilatricolporites “communis” angiosperm Psilatricolporites “crassiexinatus” angiosperm Psilatricolporites “faboides” angiosperm Psilatricolporites “hornii” angiosperm Psilatricolporites “poriperfectus” angiosperm Psilatricolporites “rotund” angiosperm Psilatricolporites “sphericus” angiosperm Psilatricolporites “vest” angiosperm Psilatricolporites “vestibulatus” angiosperm Psilatricolporites costatus Dueñas, 1980 angiosperm Casearia Psilatricolporites sp. Van der Hammen ex. Pierce, 1961 angiosperm Psilatriporites “anilloides” angiosperm Psilatriporites “lobatus” angiosperm Psilatriporites “moraceoides” angiosperm Psilatriporites “ulmoides” angiosperm Psilatriporites “vestibulatum” angiosperm Ranunculacidites operculatus (Van der Hammen and Wymstra, 1964) Jaramillo and Dilcher, 2001 angiosperm Alchornea Apocynaceae Salicaceae Casearia Ulmaceae Euphorbiaceae Alchornea Retibrevitricolporites “vestibulatum” angiosperm Retidiporites “cordiaeformis” angiosperm Retidiporites “vestibulatum” angiosperm Retimonocolpites “colpimarginatus” angiosperm Retimonocolpites “heteroretifossulatus” angiosperm Manicaria-type Arecaceae Manicaria Retimonocolpites “palmatus” angiosperm Arecaceae Cryosophila Retipericolporites sp. angiosperm Retipollenites “minutus” angiosperm Araceae Retistephanocolpites “brevicolpatus” angiosperm Rubiaceae Retistephanocolpites “hexalabiatus” angiosperm Retistephanocolpites “octolabiatus” angiosperm Retistephanocolporites “bombacoides” angiosperm Retistephanocolporites “borrerioides” angiosperm Retistephanocolporites “crassimuratus” angiosperm Labiatae Rubiaceae Retistephanoporites aff. crassiannulatus Lorente, 1986 angiosperm Malvaceae Retitrescolpites “amanoensis” angiosperm Phyllanthaceae Retitrescolpites “amplibrochatus” angiosperm Retitrescolpites “deformis” angiosperm Retitrescolpites “homogeneus” angiosperm Retitrescolpites “usualis” angiosperm Borreria Borreria Amanoa 151 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 4. (continued) Taxon Category Retitrescolpites? irregularis (Van der Hammen and Wymstra, 1964) Jaramillo and Dilcher, 2001 angiosperm Retitricolpites “generalis” angiosperm Graham taxon name Retitricolpites “pseudosimplex” angiosperm Retitricolpites “spiraloides” angiosperm Unknown Type 14 Retitricolpites simplex Gonzalez, 1967 angiosperm Sapium Family Genus Phyllanthaceae Amanoa Euphorbiaceae Sapium Retitricolpites sp. (Van der Hammen) Pierce, 1961 angiosperm Retitricolporites “amplibrochatus” angiosperm Retitricolporites “colpimarginatus” angiosperm Retitricolporites “communis” angiosperm Rourea Connaraceae Rourea Retitricolporites “crassiannulatus” angiosperm Rubiaceae Genipa americana Faboideae Machaerium Retitricolporites “hlongorate” angiosperm Retitricolporites “minibrochatus” angiosperm Retitricolporites “papilioniformis” angiosperm Retitricolporites “pluricolumellatus” angiosperm Unknown Type 7 Retitricolporites “poricostatus” angiosperm Retitricolporites “pseudoperculatus” angiosperm Retitricolporites “simplibaculatus” angiosperm Retitricolporites “spheroidalis” angiosperm Retitricolporites “triangularis” angiosperm Retitricolporites “zonoaperturatus” angiosperm Retitricolporites “zonocolpatus” angiosperm Retitricolporites CU456 angiosperm Cupania Sapindaceae Cupania Retitricolporites CU456-2 angiosperm Guazuma Byttneroideae Guazuma Retitricolporites CU57 angiosperm Unknown Type 1 Retitricolporites sp. Van der Hammen & Wymstra, 1964 angiosperm Retitriporites “erythrinoides” angiosperm Retitriporites “heterobrochatus” angiosperm Retitriporites “vestibulatum” angiosperm Retitriporites aff. poricostatus Jaramillo and Dilcher, 2001 angiosperm Rhoipites “colpizonatus” angiosperm Rhoipites “poricostatus” angiosperm Rhoipites aff. Cienagensis (Dueñas, 1980) Barreda, 1997 angiosperm Rhoipites guianensis (Van der Hammen and Wymstra, 1964) Jaramillo and Dilcher, 2001 angiosperm Rubiaceae Malvaceae Rousea “cristatus” angiosperm Rubiaceae (Cosmibuena) Ruiz & Pav. angiosperm Cosmibuena Rubiaceae Rubiaceae (Faramea) Aubl. angiosperm Faramea Rubiaceae Faramea Rubiaceae (Posoqueria) Aubl. angiosperm Posoqueria Rubiaceae Posoqueria Rubiaceae (Type 1) angiosperm Rubiaceae Type 1 Rubiaceae Rubiaceae (Type 2) angiosperm Rubiaceae Type 2 Rubiaceae Rubiopollis “muellerii” angiosperm Cosmibuena (continued) 152 PALEOBOTANY AND BIOGEOGRAPHY TABLE 4. (continued) Taxon Category Graham taxon name Family Genus Rutaceae (Casimiroa) La Llave & Lex. angiosperm Casimiroa Rutaceae Casimiroa Sapindaceae (Paullinia) L. angiosperm Paullinia Sapindaceae Paullinia Sapindaceae (Serjania) Mill. angiosperm Serjania Sapindaceae Serjania Sapotaceae (cf. Bumelia) Sw. angiosperm cf. Bumelia Sapotaceae Bumelia Scabraperiporites “nothofaguiformis” angiosperm Scabrastephanoporites “apocynaceous” angiosperm Siltaria “comunis” angiosperm Siltaria dilcheri Silva-Caminha et al., 2010 angiosperm Stephanocolporites “lalongatus” angiosperm Stephanoporites “scabratus” angiosperm Striatopollis catatumbus (Gonzalez, 1967) Takahashi and Jux, 1989 angiosperm Crudia Caesalpinioideae Crudia Striatricolporites “burseriformis” angiosperm Bursera Burseraceae Bursera simarouba Striatricolporites digitatus Jaramillo and Dilcher, 2001 angiosperm Striatricolporites melenae Dueñas, 1980 angiosperm Anacardiaceae Striatricolporites tenuissimus Dueñas, 1980 angiosperm Caesalpinioideae Crudia Symplocaceae (Symplocos) Jacq. angiosperm Symplocos Symplocaceae Symplocos Syncolporites “paraisus” angiosperm Matayba Sapindaceae Matayba Syncolporites “silvais” angiosperm Myrtaceae Eugenia-Myrcia Meliaceae Guarea Meliaceae Trichilia Chrysophyllum Syncolporites poricostatus van Hoeken Klinkenberg, 1966 angiosperm Eugenia/Myrcia Tetracolpites “rectangularis” angiosperm Tetracolporites “guareaensis” angiosperm Guarea Tetracolporites “meliaciformis” angiosperm Tetracolporites “trichiliensis” angiosperm Tetracolporites “vestibulatum” angiosperm Tetracolporopollenites aff. spongiosus Jaramillo and Dilcher, 2001 angiosperm Tetracolporopollenites maculosus (Regali et al., 1974) Jaramillo and Dilcher, 2001 angiosperm Sapotaceae Tetracolporopollenites transversalis (Dueñas, 1980) Jaramillo and Dilcher 2001 angiosperm Sapotaceae Grewioideae Tiliaceae (Mortoniodendron) Standl. & Steyerm. angiosperm Mortoniodendron Tricolpites “minutibacularis” angiosperm Tricolpites “punctatus” angiosperm Unknown Type 3 Tricolporites “annulatus” angiosperm Tricolporites “caveatus” angiosperm Tricolporites “colpidigitatus” angiosperm Tricolporites “ericipitiformis” angiosperm Tricolporites “megaporatus” angiosperm Unknown 1 angiosperm Unknown 1 Unknown 2 angiosperm Unknown 2 Unknown 3 angiosperm Unknown 3 Unknown 4 angiosperm Unknown 4 Mortoniodendron 153 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 4. (continued) Taxon Category Graham taxon name Unknown 5 angiosperm Unknown 5 Unknown 6 angiosperm Unknown 6 Unknown 7 angiosperm Unknown 7 Unknown 8 angiosperm Unknown 8 Unknown 9 angiosperm Unknown 9 Unknown 10 angiosperm Unknown 10 Unknown 11 angiosperm Unknown 11 Unknown 12 angiosperm Unknown 12 Unknown 13 angiosperm Unknown 13 Unknown 14 angiosperm Unknown 14 Unknown 15 angiosperm Unknown 15 Unknown 16 angiosperm Unknown 16 Unknown 17 angiosperm Unknown 17 Unknown 18 angiosperm Unknown 18 Unknown 19 angiosperm Unknown 19 Unknown 20 angiosperm Unknown 20 Unknown 21 angiosperm Unknown 21 Unknown 22 angiosperm Unknown 22 Unknown 23 angiosperm Unknown 23 Unknown 24 angiosperm Unknown 24 Unknown 25 angiosperm Unknown 25 Unknown 26 angiosperm Unknown 26 Unknown 27 angiosperm Unknown 27 Utricularia L. angiosperm Utricularia Venezuelites “centroamericanus” angiosperm Family Lentibulariaceae Genus Utricularia Verbenaceae (Aegiphila) Jacq. angiosperm Aegiphila Lamiaceae Aegiphila Verbenaceae (Petrea) L. angiosperm Petrea Verbenaceae Petrea Verrutricolporites “desmodiensis” angiosperm Verrutricolporites “faboides” angiosperm Vochysiaceae Vochysia Verrutricolporites “poricircularis” angiosperm Verrutricolporites sp. Van der Hammen & Wymstra, 1964 angiosperm Vochysia type Aubl. angiosperm Zonocostites “elongatus” angiosperm Zonocostites ramonae Germeraad et al., 1968 angiosperm Rhizophora Rhizophoraceae Rhizophora Podocarpidites “globosus” gymnosperm Podocarpaceae Podocarpus Dinolagellate marine Foram lining marine Anthocerotaceae spore Apiculatasporites obscurus Jaramillo and Dilcher, 2001 spore Baculatisporites “circularis” spore Baculatisporites “triangularis” spore Camarozonoporites “crassus” spore Podocarpus Anthocerotaceae Selaginella Selaginellaceae Selaginella (continued) 154 PALEOBOTANY AND BIOGEOGRAPHY TABLE 4. (continued) Taxon Chomotriletes minor (Kedves, 1961) Pocock, 1970 Category Graham taxon name Family Genus spore Cicatricosisporites “bocatorensis” spore Cingulatisporites “distafossulatus” spore Cingulatisporites “gemmatus” spore Cingulatisporites “pteriformis” spore Cingulatisporites “rugulatus” spore Cingulatisporites “verrutiformis” spore Cingulatisporites psilatus Groot and Penny spore Concavissimisporites “kyrtomatus” spore Concavissimisporites fossulatus Duenas, 1980 spore Crassoretitriletes vanraadshooveni Germeraad et al., 1968 spore Cyatheaceae (Alsophila) R. Br. spore Cyatheaceae (Cnemidaria) C. Presl spore Cyatheaceae (Type 1) Schizaeaceae Lygodium microphyllum Alsophila Cyatheaceae Alsophila Cnemidaria Cyatheaceae Cnemidaria spore Type 1 Cyatheaceae Cyatheaceae (Type 2) spore Type 2 Cyatheaceae Cyatheacidites annulatus Cookson, 1967 spore Cyathidites “typicus” spore Cyathea Cyatheaceae Cyathea Ctenitis Leiotriletes adriennis (Potonie & Gelletich 1933) Krutzsch, spore 1959 Distaverrusporites “usmensis” spore Dryopteridaceae (Ctenitis) (C. Chr.) C. Chr. spore Ctenitis Dryopteridaceae Dryopteridaceae Type 1 spore Dryopteridaceae Type 1 Dryopteridaceae Dryopteridaceae Type 2 spore Dryopteridaceae Type 2 Dryopteridaceae Dryopteridaceae Type 3 spore Dryopteridaceae Type 3 Dryopteridaceae Echinosporis sp. Krutzsch, 1967 spore Echinatisporis muelleri (Regali et al., 1974) Silva-Caminha et al., 2010 spore Echinomonoletes “amplimarginatus” spore Echinomonoletes “bifurcatus” spore Echinomonoletes “hirsutus” spore Echinomonoletes “megaechinatus” spore Echinomonoletes “sphericus” spore Echitriletes “dasilviensis” spore Echitriletes “densispinosus” spore Echitriletes “minispinosus” spore Echitriletes “minutuechinulatus” spore Echitriletes “selaginelloides” type “bacularis” spore Selaginellaceae Echitriletes “selaginelloides” type “bifurcatus” spore Selaginellaceae Echitriletes “selaginelloides” type “echiplanatus” spore Selaginellaceae Echitriletes “selaginelloides” type “muelleri” spore Selaginellaceae 155 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 4. (continued) Taxon Category Echitriletes “selaginelloides” type “regularis” spore Echitriletes sp. Potonie, 1956 spore Fossutriletes “communis” spore Fossutriletes “guapissimus” spore Foveotriletes “arrugatus” spore Foveotriletes “laterodepressus” spore Foveotriletes “proximopsilatus” spore Foveotriletes “pseudoornatus” spore Graham taxon name Selaginellaceae Selaginella Lycopodium Lycopodiaceae Lycopodium Polypodiaceae Grammitis Cyatheaceae HemiteliaCnemidaria Foveotriletes aff. ornatus Regali et al., 1974 spore spore Trilete fern spores Type 1 and 2 Grammitisporites “verruminutus” spore Grammitis Kuylisporites “irregularis” spore Kuylisporites “miniorodate” spore spore Kuylisporites waterbolki Potonié, 1956 spore Genus Selaginella Foveotriletes ornatus Regali et al., 1974 Kuylisporites “multiorodate” Family Selaginellaceae Laevigatosporites “magnus” spore Laevigatosporites catanejensis Mullet et al., 1987 spore Laevigatosporites tibuensis (Van der Hammen, 1956a) Jaramillo and Dilcher, 2001 spore Monolete fern spores Type 1 and 2 Lycopodiaceae spore Lycopodium type 1 Lycopodiaceae Lycopodium Lycopodiaceae spore Lycopodium type 2 Lycopodiaceae Lycopodium Lycopodiaceae spore Lycopodium type 3 Lycopodiaceae Lycopodium Lycopodiaceae spore Lycopodium type 4 Lycopodiaceae Lycopodium Lycopodiumsporites “clavaelongatus” spore Lycopodiaceae Lycopodiumsporites “clavatus” spore Lycopodiaceae Lycopodiumsporites “morenoi” spore Lycopodiaceae Lycopodiumsporites “spinosus” spore Lycopodiaceae Lycopodiumsporites sp. Thiergart ex Delcourt & Sprumont, 1955 spore Lycopodiaceae Matonisporites mulleri Playford, 1982 spore Monolete fern spore Type 1 spore Monolete fern spore Type 1 Monolete fern spore Type 2 spore Monolete fern spore Type 2 Monolete fern spore Type 3 spore Monolete fern spore Type 3 Monolete fern spore Type 4 spore Monolete fern spore Type 4 Monolete fern spore Type 5 spore Monolete fern spore Type 5 Nijssenosporites “pteridoides” spore Nijssenosporites fossulatus Lorente, 1986 spore Pityrogramma Adianthaceae Pityrogramma (continued) 156 PALEOBOTANY AND BIOGEOGRAPHY TABLE 4. (continued) Taxon Category Ophioglossaceae (Ophioglossum) L. spore Perinomonoletes “aciculiformis” spore Perinomonoletes “microechinulatus” spore Perinomonoletes “minispinosus” spore Perinomonoletes “minutus” spore Perinomonoletes “pseudoreticulatus” spore Perinomonoletes “reticuloacicularis” spore Perinomonoletes sp. Krutzsch, 1967 spore Planisporites sp. 2 Jaramillo and Dilcher, 2001 spore Polypodiaceoisporites pseudopsilatus Lorente, 1986 spore Polypodiaceoisporites “circularis” spore Polypodiaceoisporites “reticulatus” spore Polypodiaceoisporites fossulatus Jaramillo and Dilcher, 2001 spore Polypodiaceoisporites pseudopsilatus Lorente, 1986 spore Polypodiaceoisporites? fossulatus Jaramillo and Dilcher, 2001 spore Polypodiisporites “microverrucate” spore Polypodiisporites “planus” spore Polypodiisporites “reniformis” spore Polypodiisporites scabraproximatus Silva-Caminha et al., 2010 spore Polypodiisporites “verruplanatus” spore Polypodiisporites aff. echinatus Jaramillo and Dilcher, 2001 spore Graham taxon name Ophioglossum Pteridaceae Pteris Pteridaceae Pteris Blechnaceae Stenochlaena palustris Antrophyum Pteridaceae Antrophyum Lygodium Lygodiaceae Lygodium Cyathea Cyatheaceae Cyathea Pteridaceae Jamesonia Pteridaceae Type 1 Pteridaceae Pteris spore Polypodiisporites aff. specious Sah, 1967 spore Monolete fern spore Type 3 Polypodiisporites scabraproximatus Silva-Caminha et al., 2010 spore Monolete fern spores Type 2 Polypodiisporites usmensis (Van der Hammen, 1956a) Khan and Martin, 1972 spore Polypodiisporites? planus Silva-Caminha et al., 2010 spore Psilatriletes “brevilaesuratus” spore Psilatriletes “camerata” spore spore Psilatriletes “enormis” spore Psilatriletes “minor” spore Psilatriletes < 25 µm spore Psilatriletes > 50 µm spore Psilatriletes 25–50 µm spore Psilatriletes lobatus Hoorn, 1994 spore Psilatriletes peruanus Hoorn, 1994 spore Pteridaceae (Type 1) spore Genus Ophioglossum Polypodiisporites aff. sp. 2 J & D Jaramillo and Dilcher, 2001 Psilatriletes “crassitriangulatus” Family Ophioglossaceae 157 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 4. (continued) Taxon Category Graham taxon name Family Pteridaceae (Type 2) spore Pteridaceae Type 2 Pteridaceae Pteridaceae (Type 3) spore Pteridaceae Type 3 Pteridaceae Pteridaceae (Type 4) spore Pteridaceae Type 4 Pteridaceae Pteridaceae (Type 5) spore Pteridaceae Type 5 Pteridaceae Retitriletes “perforatus” spore Retitriletes sommeri Regali et al., 1974 spore Rugulatisporites “irregularis” spore Rugulatisporites “minutus” spore Scabramonoletes “elongatus” spore Scabratriletes “complicatus” spore Trilete fern spores Lycopodiaecae Type 3 Schizaea “mosquitensis” spore Selaginellasporites “cingulatus” spore Selaginellaceae Selaginellasporites “crestatus” spore Selaginellaceae Selaginellasporites “psilatus” spore Selaginellaceae Selaginellasporites “variechinatus” spore Selaginellaceae Striatomonoletes “inciertus” spore Striatriletes “saccolomicites” spore Trilete fern spore Type 1 spore Trilete fern spore Type 1 Trilete fern spore Type 2 spore Trilete fern spore Type 2 Undulatisporites “undulapolus” spore Verrucatotriletes etayoi Duenas, 1980 spore Verrucatotriletes sp. van Hoeken-Klinkenberg, 1964 spore Verrutriletes “bullatus” spore Verrutriletes “densiverrucatus” spore Verrutriletes “magnoviruelensis” spore Verrutriletes “perforatus” spore Verrutriletes “uniformis” spore Verrutriletes “variverrucatus” spore Verrutriletes sp. Pierce, 1961 spore Baculatriletes “palmiformis” spore Echimonoletes “panamensis” spore Genus Trilete fern spores Type 4 Danaea Marattiaceae Danaea 158 Samples were divided into three groups (19.5– 10 Ma, 10–3.5 Ma, and < 3.5 Ma) because, as mentioned previously, they represent three major periods in the geological evolution of the isthmus history. All comparisons are the result of twosided t-tests to evaluate the equality of means in two unpaired samples. Probability (P) is reported for each test, along with degrees of freedom (df ) calculated using the Welch modiication to account for diferent variances in the groups being compared. All analyses were done using R Project for Statistical Computing (R Development Core Team, 2012) and the package “vegan” (Oksanen et al., 2010). All R codes used here are presented in Appendix 3. Samples with less than 80 grains (excluding fungi) were excluded from most of the analyses. RESULTS OVERALL PATTERN A total of 27,910 grains (pollen/spores), yielding 496 morphotypes in 282 samples, were registered (Tables 4, 5, Supplementary Appendix, Appendix 2). Angiosperm abundance per sample did not change substantially across the 19.5–3.5 Ma interval (40% in the 19.5–10 Ma interval, 36% in the 10–3.5 Ma interval, P = 0.2, df = 109), and slightly decreased in the last 3.5 Ma (26%), although the diference is not signiicant (P = 0.07, df = 17) (Fig. 3). Ferns represent 59% of the abundance per sample in the 19.5–10 Ma interval, and 62% in the 10–3.5 Ma interval (P = 0.3, df = 108), increasing slightly in the last 3.5 Ma (73%, P = 0.07, df = 17), although the diference is not signiicant (Fig. 3). Biogeographic affinities. he biogeographic ainity of each individual extant tree and shrub in the Barro Colorado Island (BCI) 50-ha vegetation plot is dominated by Gondwana-Amazonian families: 68% of individuals are Gondwana-Amazonian, 20.5% are Gondwana-northern Andean, 3.2% are Gondwana-southern Andean, and only 6.1% PALEOBOTANY AND BIOGEOGRAPHY are Laurasian (2.2% are unassigned to families) (Fig. 4, Appendix 1). We analyzed the biogeographic ainities of the entire fossil dataset (496 taxa) but only in samples with counts larger than 80 grains (N = 124). he mean of GondwanaAmazonian individuals in a sample is 27% (SD = 16.9); Gondwana-northern Andean, 1% (SD = 1.7); Gondwana-southern Andean, 0.5% (SD = 1.3); and Laurasian-centered, 1.8% (SD = 0.2) (Fig. 4, Table 5). here was still a large proportion of individuals excluded from this calculation (69%, SD = 16.6), because either the family does not have a distinct biogeographic origin (23 taxa) or the family that the individual belongs to is still unknown (315 taxa). Does this proportion change when time slots are analyzed independently? Gondwana-Amazonian taxa are signiicantly more abundant prior to 3.5 Ma (> 3.5 Ma: 28%; < 3.5 Ma: 17%; P = 0.03, df = 12). Conversely, Laurasian taxa (> 3.5 Ma: 1.7%; < 3.5 Ma: 2.5%) and northern Andean taxa (> 3.5 Ma: 1%; < 3.5 Ma: 1.7%) are slightly less abundant prior to 3.5 Ma, although these diferences are not signiicant (P = 0.2, df = 12 and P = 0.1, df = 16, respectively) (Fig. 4). Amazonian taxa are slightly more abundant prior to 10 Ma, compared to the 10–3.5 Ma interval, although the diference is not signiicant (19.5–10 Ma: 31.8%; 10–3.5 Ma: 24.6%; P = 0.02, df = 108), while Laurasian taxa are signiicantly more abundant in the 10–3.5 Ma interval compared to older strata (10–3.5 Ma: 2.8%; 19.5–10 Ma: 0.8%; P = 0.001, df = 92); the same pattern is depicted by northern Andean taxa (10–3.5 Ma: 1.9%; 19.5–10 Ma: 0.3%; P = 0.001, df = 63) (Fig. 4). Extant species on BCI are dominated by South American families: 66.4% of species are Gondwana-Amazonian, 13.1% are Gondwana-northern Andean, and 4.8%, Gondwana-southern Andean, while only 10.9% are Laurasian (4.4% are unassigned families) (Fig. 5, Appendix 1). he biogeographic ainity of each fossil taxon is very similar to the pattern described for extant plants: the Gondwana-Amazonian mean is 26.7% (SD TABLE 5. Summary table. The following values correspond to pollen/spore grains and species counted in each sample, and abundances (given as percentages) of species grouped by both biogeographic and ecological categories. Samples with counts of < 80 grains are included here but were not considered for the biogeographic and ecological analyses. Area Formation Sample age (Ma) N1 S S(80) AZ (%) NAN (%) SAN (%) LA (%) U (%) TRFO (%) PMF (%) MF (%) TDFO (%) SV (%) FW (%) MG (%) MR (%) UK (%) Bocas del Toro Swan Cay 1.285 34 14 — Bocas del Toro unnamed 1.810 81 30 29.8 — — — — — — — — — — — — — — 0.14 0.02 0.04 0.06 0.74 0.20 0.20 0.15 0.05 0.00 0.00 0.05 0.01 0.72 Bocas del Toro Nancy Point 1.820 57 23 — — — — — — — — — — — — — — — Bocas del Toro unnamed 2.000 123 17 15.15 0.12 0.02 0.00 0.02 0.84 0.04 0.02 0.02 0.00 0.00 0.00 0.08 0.00 0.88 Bocas del Toro Escudo Veraguas 2.051 111 31 24.8 0.44 0.04 0.00 0.04 0.49 0.26 0.23 0.17 0.04 0.00 0.00 0.29 0.01 0.43 Bocas del Toro Escudo Veraguas 2.052 78 31 — — — — — — — — — — — — — — — Bocas del Toro Escudo Veraguas 2.053 76 27 — — — — — — — — — — — — — — — Bocas del Toro Escudo Veraguas 2.054 158 36 24.56 0.32 0.01 0.01 0.01 0.64 0.29 0.27 0.20 0.08 0.01 0.00 0.19 0.00 0.49 Bocas del Toro Escudo Veraguas 2.055 326 47 26.85 0.23 0.02 0.02 0.05 0.68 0.19 0.16 0.12 0.04 0.01 0.00 0.12 0.00 0.67 Bocas del Toro unnamed 2.300 45 13 — — — — — — — — — — — — — — — Bocas del Toro unnamed 2.400 298 31 17.79 0.05 0.01 0.01 0.05 0.88 0.18 0.16 0.14 0.00 0.01 0.00 0.03 0.01 0.77 Bocas del Toro unnamed 2.500 21 11 — — — — — — — — — — — — — — — Bocas del Toro unnamed 2.651 297 46 26.44 0.06 0.02 0.01 0.04 0.86 0.24 0.23 0.23 0.01 0.01 0.00 0.04 0.00 0.68 Bocas del Toro unnamed 2.652 141 20 15.92 0.08 0.01 0.00 0.01 0.91 0.04 0.02 0.02 0.00 0.00 0.00 0.06 0.00 0.90 Bocas del Toro unnamed 2.653 105 12 10.75 0.02 0.00 0.00 0.00 0.98 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.96 Bocas del Toro Escudo de Veraguas 2.751 22 10 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 2.752 105 18 15.63 0.36 0.01 0.00 0.01 0.62 0.06 0.04 0.01 0.01 0.00 0.00 0.33 0.00 0.61 Bocas del Toro Escudo de Veraguas 2.753 14 6 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 2.754 297 40 19.41 0.04 0.01 0.00 0.00 0.95 0.18 0.15 0.15 0.00 0.00 0.00 0.01 0.00 0.79 Bocas del Toro Escudo de Veraguas 2.755 31 14 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 2.756 39 20 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 2.757 13 10 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 2.758 26 16 — — — — — — — — — — — — — — — Bocas del Toro Shark Hole Point 3.450 72 17 — — — — — — — — — — — — — — — Bocas del Toro Shark Hole Point 3.451 38 14 — — — — — — — — — — — — — — — (continued) TABLE 5. (continued) Formation Sample age (Ma) N1 S S(80) AZ (%) NAN (%) SAN (%) LA (%) U (%) TRFO (%) PMF (%) MF (%) TDFO (%) SV (%) FW (%) MG (%) MR (%) UK (%) Bocas del Toro Escudo de Veraguas 3.551 52 16 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.551 38 16 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.551 79 21 — — — — — — — — — — — — — — — Bocas del Toro Escudo Veraguas 3.551 68 29 — — — — — — — — — — — — — — — Bocas del Toro Escudo Veraguas 3.551 61 25 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.552 70 20 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.552 32 7 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.552 37 12 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.552 65 19 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.552 0 0 — — — — — — — — — — — — — — — Bocas del Toro Escudo de Veraguas 3.552 308 38 21.82 0.16 0.02 0.01 0.00 0.81 0.17 0.14 0.13 0.00 0.00 0.00 0.12 0.00 0.71 Bocas del Toro Escudo de Veraguas 3.552 52 24 — — — — — — — — — — — — — — — Bocas del Toro unnamed 3.552 67 19 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.552 31 11 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.552 77 25 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.553 94 28 25.95 0.23 0.05 0.00 0.02 0.69 0.16 0.12 0.10 0.00 0.00 0.00 0.18 0.00 0.65 Bocas del Toro Cayo Agua 3.553 71 16 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.553 70 16 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.553 9 6 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.553 111 27 24.29 0.23 0.07 0.01 0.07 0.61 0.29 0.27 0.16 0.05 0.00 0.00 0.09 0.00 0.59 Bocas del Toro Cayo Agua 3.553 264 48 23.37 0.41 0.03 0.01 0.01 0.54 0.22 0.21 0.19 0.01 0.00 0.02 0.19 0.00 0.56 Bocas del Toro Cayo Agua 3.553 101 25 21.74 0.06 0.01 0.00 0.06 0.87 0.16 0.11 0.14 0.01 0.00 0.01 0.02 0.00 0.75 Bocas del Toro Cayo Agua 3.553 32 17 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.553 42 14 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 3.553 46 16 — — — — — — — — — — — — — — — Bocas del Toro unnamed 3.554 109 30 24.69 0.16 0.05 0.00 0.06 0.74 0.38 0.37 0.32 0.06 0.01 0.00 0.06 0.00 0.53 Bocas del Toro unnamed 3.554 5 5 — — — — — — — — — — — — — — — Area Bocas del Toro unnamed 3.554 279 35 21.08 0.08 0.00 0.00 0.03 0.89 0.23 0.19 0.16 0.00 0.01 0.00 0.00 0.00 0.75 Bocas del Toro unnamed 3.554 171 37 26.22 0.07 0.03 0.01 0.02 0.87 0.19 0.14 0.13 0.02 0.01 0.00 0.02 0.00 0.77 Bocas del Toro Shark Hole Point 4.000 206 40 25.4 0.20 0.01 0.00 0.01 0.78 0.22 0.19 0.14 0.04 0.01 0.00 0.08 0.00 0.69 Bocas del Toro Cayo Agua 4.250 196 34 22.45 0.35 0.03 0.00 0.01 0.61 0.18 0.17 0.11 0.05 0.01 0.00 0.25 0.00 0.56 Bocas del Toro Cayo Agua 4.250 41 17 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.250 6 5 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.250 11 4 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 7 5 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 23 10 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 21 12 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 45 18 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 35 15 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 35 13 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 70 25 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 22 11 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 36 11 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.251 17 9 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.252 67 22 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.252 92 28 26.59 0.18 0.05 0.00 0.10 0.66 0.21 0.21 0.21 0.02 0.00 0.02 0.07 0.00 0.63 Bocas del Toro Cayo Agua 4.252 140 32 25.59 0.21 0.02 0.02 0.06 0.69 0.24 0.22 0.20 0.03 0.01 0.00 0.16 0.00 0.57 Bocas del Toro Cayo Agua 4.252 85 23 22.29 0.44 0.08 0.02 0.02 0.44 0.20 0.20 0.19 0.02 0.00 0.00 0.35 0.01 0.40 Bocas del Toro Cayo Agua 4.252 76 23 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.252 37 19 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.252 149 15 11.05 0.03 0.00 0.01 0.00 0.97 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.98 Bocas del Toro Cayo Agua 4.252 26 16 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.252 323 63 30.52 0.21 0.02 0.01 0.05 0.70 0.31 0.28 0.23 0.02 0.00 0.00 0.11 0.00 0.56 Bocas del Toro Cayo Agua 4.252 7 4 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.253 21 11 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.253 174 29 20.48 0.04 0.03 0.01 0.01 0.91 0.19 0.17 0.17 0.00 0.00 0.02 0.02 0.00 0.76 Bocas del Toro Cayo Agua 4.253 88 20 19.14 0.11 0.01 0.00 0.00 0.88 0.14 0.11 0.09 0.00 0.00 0.00 0.07 0.00 0.80 Bocas del Toro Cayo Agua 4.253 148 21 15.7 0.06 0.03 0.00 0.01 0.91 0.30 0.27 0.26 0.01 0.00 0.01 0.04 0.00 0.63 Bocas del Toro Cayo Agua 4.253 95 24 22.23 0.05 0.00 0.01 0.05 0.88 0.16 0.18 0.20 0.00 0.00 0.00 0.04 0.01 0.73 (continued) TABLE 5. (continued) Area Formation Sample age (Ma) N1 S S(80) AZ (%) NAN (%) SAN (%) LA (%) U (%) TRFO (%) PMF (%) MF (%) TDFO (%) SV (%) FW (%) MG (%) MR (%) UK (%) Bocas del Toro Cayo Agua 4.253 48 19 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.253 15 6 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.253 49 14 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.253 57 22 — — — — — — — — — — — — — — — Bocas del Toro Cayo Agua 4.253 34 10 — — — — — — — — — — — — — — — Bocas del Toro unnamed 4.254 33 16 — — — — — — — — — — — — — — — Bocas del Toro Shark Hole Point 4.400 25 17 — — — — — — — — — — — — — — — Bocas del Toro Shark Hole Point 4.610 6 3 — — — — — — — — — — — — — — — Bocas del Toro Shark Hole Point 4.620 164 36 27.52 0.15 0.01 0.00 0.02 0.82 0.13 0.14 0.13 0.01 0.00 0.01 0.05 0.00 0.76 Bocas del Toro Shark Hole Point 4.630 99 26 23.8 0.07 0.01 0.00 0.03 0.89 0.15 0.15 0.15 0.01 0.00 0.00 0.01 0.00 0.81 Bocas del Toro Nancy Point 5.650 132 25 19.57 0.32 0.02 0.01 0.00 0.66 0.20 0.19 0.14 0.05 0.01 0.00 0.23 0.00 0.55 Panama Central Gatun 6.000 114 25 21.51 0.43 0.10 0.01 0.04 0.43 0.25 0.22 0.16 0.04 0.00 0.00 0.22 0.01 0.50 Panama Central Chagres 6.010 156 29 21.14 0.13 0.01 0.00 0.02 0.83 0.36 0.31 0.26 0.05 0.01 0.00 0.03 0.00 0.60 Panama Central Chagres 6.020 106 22 20.04 0.06 0.01 0.01 0.00 0.92 0.12 0.08 0.08 0.00 0.00 0.00 0.01 0.00 0.86 Bocas del Toro Nancy Point 6.051 10 4 — — — — — — — — — — — — — — — Bocas del Toro Nancy Point 6.052 22 11 — — — — — — — — — — — — — — — Bocas del Toro Nancy Point 6.300 16 10 — — — — — — — — — — — — — — — Bocas del Toro Nancy Point 6.400 54 20 — — — — — — — — — — — — — — — Panama Central Gatun 6.400 36 12 — — — — — — — — — — — — — — — Panama Central Gatun 6.410 40 13 — — — — — — — — — — — — — — — Darien Pucro 6.950 22 8 — — — — — — — — — — — — — — — Darien Pucro 6.950 18 8 — — — — — — — — — — — — — — — Darien Tuira 6.950 9 7 — — — — — — — — — — — — — — — Darien Chucunaque 6.950 16 5 — — — — — — — — — — — — — — — Darien Tuira 6.951 5 4 — — — — — — — — — — — — — — — Darien Tuira 6.951 32 13 — — — — — — — — — — — — — — — Darien Tuira 6.951 82 22 21.73 0.23 0.00 0.00 0.01 0.76 0.02 0.02 0.02 0.00 0.00 0.00 0.15 0.00 0.83 Darien Tuira 6.951 16 5 — — — — — — — — — — — — — — — Darien Tuira 6.951 47 12 — — — — — — — — — — — — — — — Darien Tuira 6.951 44 11 — — — — — — — — — — — — — — — Darien Tuira 6.951 269 31 19.16 0.30 0.02 0.01 0.06 0.62 0.19 0.18 0.16 0.01 0.00 0.00 0.24 0.00 0.56 Darien Tuira 6.951 23 9 — — — — — — — — — — — — — — — Darien Tuira 6.951 46 12 — — — — — — — — — — — — — — — Darien Tuira 6.951 12 8 — — — — — — — — — — — — — — — Darien Tuira 6.952 7 6 — — — — — — — — — — — — — — — Darien Tuira 6.952 13 7 — — — — — — — — — — — — — — — Darien Tuira 6.952 219 27 17.67 0.25 0.01 0.00 0.00 0.73 0.22 0.21 0.17 0.03 0.00 0.01 0.18 0.00 0.57 Darien Tuira 6.952 28 13 — — — — — — — — — — — — — — — Darien Tuira 6.952 226 24 15.5 0.59 0.00 0.02 0.03 0.36 0.10 0.10 0.11 0.00 0.00 0.00 0.54 0.00 0.33 Darien Tuira 6.952 70 18 Darien Chucunaque 6.952 225 29 19.79 0.29 0.02 0.01 0.03 0.66 0.14 0.13 0.12 0.01 0.01 0.00 0.13 0.00 0.70 Darien Lara 6.952 112 19 16.13 0.66 0.01 0.01 0.00 0.32 0.04 0.04 0.02 0.01 0.00 0.00 0.60 0.01 0.35 Darien Tuira 6.952 24 13 — — — — — — — — — — — — — — — Darien Tuira 6.952 24 9 — — — — — — — — — — — — — — — Darien Tuira 6.953 51 19 — — — — — — — — — — — — — — — Darien Tuira 6.953 1 1 — — — — — — — — — — — — — — — Darien Tuira 6.953 35 10 — — — — — — — — — — — — — — — Darien Tuira 6.953 0 0 — — — — — — — — — — — — — — — Darien Pucro 6.953 53 18 — — — — — — — — — — — — — — — Darien Pucro 6.953 82 26 25.61 0.16 0.00 0.00 0.00 0.84 0.06 0.06 0.01 0.04 0.00 0.00 0.04 0.01 0.89 Darien Pucro 6.953 57 16 — — — — — — — — — — — — — — — Bocas del Toro Nancy Point 6.953 30 14 — — — — — — — — — — — — — — — Bocas del Toro Nancy Point 6.953 10 6 — — — — — — — — — — — — — — — Bocas del Toro Nancy Point 6.953 12 7 — — — — — — — — — — — — — — — Bocas del Toro Nancy Point 6.954 34 15 — — — — — — — — — — — — — — — Bocas del Toro unnamed 6.954 20 8 — — — — — — — — — — — — — — — 0.40 Darien Chucunaque 7.050 105 25 21.29 0.55 0.01 0.01 0.01 0.42 0.16 0.11 0.10 0.05 0.00 0.01 0.40 0.00 Bocas del Toro Nancy Point 7.150 15 7 — — — — — — — — — — — — — — — Panama Central Gatun 8.300 165 24 19.33 0.21 0.00 0.01 0.03 0.75 0.18 0.15 0.05 0.00 0.01 0.00 0.02 0.00 0.79 (continued) TABLE 5. (continued) Area Formation Sample age (Ma) N1 S S(80) AZ (%) NAN (%) SAN (%) LA (%) U (%) TRFO (%) PMF (%) MF (%) TDFO (%) SV (%) FW (%) MG (%) MR (%) UK (%) Panama Central Gatun 8.400 163 25 21.35 0.30 0.03 0.09 0.03 0.55 0.32 0.32 0.10 0.00 0.09 0.08 0.04 0.00 0.43 Panama Central Gatun 8.407 182 25 17.32 0.46 0.02 0.07 0.02 0.43 0.29 0.29 0.03 0.00 0.07 0.22 0.03 0.00 0.36 Panama Central Gatun 8.412 240 88 42.74 0.24 0.05 0.08 0.04 0.59 0.26 0.26 0.10 0.03 0.04 0.08 0.04 0.00 0.55 Panama Central Gatun 8.418 199 15 0.90 0.00 0.01 0.01 0.08 0.07 0.05 0.02 0.02 0.00 0.04 0.82 0.00 0.06 Panama Central Gatun 8.472 176 23 19.86 0.30 0.00 0.03 0.04 0.63 0.20 0.23 0.16 0.00 0.00 0.19 0.11 0.09 0.37 Panama Central Gatun 8.473 179 21 16.34 0.35 0.01 0.00 0.00 0.64 0.14 0.10 0.09 0.01 0.01 0.30 0.11 0.08 0.36 Panama Central Gatun 8.474 182 16 15.07 0.37 0.02 0.00 0.05 0.55 0.16 0.15 0.14 0.00 0.00 0.31 0.10 0.08 0.30 Panama Central Gatun 8.563 184 18 15.18 0.33 0.02 0.00 0.03 0.63 0.08 0.11 0.08 0.00 0.00 0.25 0.09 0.00 0.55 Panama Central Gatun 8.596 179 14 12.45 0.16 0.02 0.02 0.04 0.77 0.11 0.16 0.14 0.01 0.00 0.20 0.08 0.00 0.56 Panama Central Gatun 8.610 10 4 — — — — — — — — — — — — — — — Panama Central Gatun 8.620 13 5 — — — — — — — — — — — — — — — Panama Central Gatun 8.630 23 9 — — — — — — — — — — — — — — — Panama Central Gatun 8.640 8 4 — — — — — — — — — — — — — — — Panama Central Gatun 8.650 0 0 — — — — — — — — — — — — — — — Panama Central Gatun 8.660 0 0 — — — — — — — — — — — — — — — Panama Central Gatun 8.670 49 19 — — — — — — — — — — — — — — — Panama Central Gatun 8.726 265 21 14.36 0.19 0.00 0.00 0.01 0.80 0.23 0.23 0.17 0.01 0.00 0.00 0.08 0.00 0.67 Panama Central Gatun 8.753 156 25 19.16 0.14 0.00 0.00 0.01 0.85 0.17 0.15 0.08 0.00 0.00 0.01 0.01 0.00 0.81 Panama Central Gatun 8.754 287 35 21.85 0.25 0.00 0.03 0.03 0.68 0.09 0.06 0.01 0.00 0.00 0.00 0.09 0.00 0.81 Panama Central Gatun 8.754 69 17 — — — — — — — — — — — — — — — Panama Central Gatun 8.770 363 58 25.52 0.27 0.01 0.01 0.01 0.69 0.31 0.26 0.16 0.02 0.01 0.00 0.02 0.00 0.65 Panama Central Gatun 8.773 746 66 21.39 0.34 0.00 0.00 0.04 0.61 0.23 0.22 0.07 0.01 0.00 0.00 0.08 0.00 0.67 Panama Central Gatun 9.398 41 18 — — — — — — — — — — — — — — — Panama Central Gatun 9.401 11 7 — — — — — — — — — — — — — — — Panama Central Gatun 9.402 24 10 — — — — — — — — — — — — — — — Panama Central Gatun 9.412 219 22 14.28 0.32 0.00 0.00 0.00 0.67 0.09 0.07 0.06 0.00 0.00 0.00 0.24 0.00 0.67 Panama Central Gatun 9.424 58 10 — — — — — — — — — — — — — — — 9.881 Panama Central Gatun 9.432 83 24 23.56 0.05 0.04 0.00 0.10 0.82 0.24 0.25 0.23 0.02 0.00 0.01 0.00 0.00 0.71 Panama Central Gatun 9.464 63 17 — — — — — — — — — — — — — — — Panama Central Gatun 9.500 34 13 — — — — — — — — — — — — — — — Panama Central Gatun 9.519 37 13 — — — — — — — — — — — — — — — Panama Central Gatun 9.552 50 16 — — — — — — — — — — — — — — — Panama Central Gatun 9.589 137 29 21.78 0.09 0.00 0.00 0.05 0.86 0.07 0.09 0.06 0.03 0.00 0.01 0.02 0.00 0.86 Panama Central Gatun 9.737 171 36 26.73 0.25 0.01 0.01 0.04 0.70 0.44 0.32 0.29 0.05 0.00 0.00 0.04 0.00 0.48 Panama Central Gatun 9.932 207 37 22.78 0.15 0.03 0.01 0.02 0.79 0.17 0.14 0.10 0.02 0.00 0.00 0.02 0.00 0.79 Panama Central Gatun 9.932 17 8 — — — — — — — — — — — — — — — Panama Central Gatun 9.932 129 26 21.23 0.15 0.00 0.00 0.05 0.80 0.23 0.22 0.20 0.02 0.00 0.00 0.05 0.00 0.69 Panama Central Gatun 10.143 323 43 21.97 0.25 0.02 0.01 0.05 0.67 0.29 0.27 0.22 0.03 0.00 0.01 0.14 0.00 0.55 Darien Tuira 10.151 50 16 — — — — — — — — — — — — — — — Darien Tuira 10.152 44 10 — — — — — — — — — — — — — — — Darien Tuira 10.153 49 17 — — — — — — — — — — — — — — — Darien Tuira 10.154 30 11 — — — — — — — — — — — — — — — Darien Tuira 10.155 47 16 — — — — — — — — — — — — — — — Darien Tuira 10.156 23 10 — — — — — — — — — — — — — — — Darien Tuira 10.157 19 12 — — — — — — — — — — — — — — — Panama Central Gatun 10.874 91 19 18.09 0.04 0.01 0.00 0.09 0.86 0.46 0.47 0.48 0.02 0.00 0.00 0.00 0.00 0.49 Panama Central Gatun 10.877 299 29 18.93 0.24 0.00 0.00 0.01 0.75 0.10 0.09 0.03 0.00 0.00 0.00 0.03 0.00 0.86 Panama Central Gatun 10.878 129 26 20.73 0.05 0.00 0.00 0.02 0.93 0.16 0.13 0.11 0.00 0.00 0.00 0.00 0.00 0.84 Panama Central Gatun 10.881 268 32 19.4 0.08 0.01 0.00 0.01 0.90 0.07 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.93 Panama Central Gatun 10.883 51 15 — — — — — — — — — — — — — — — Panama Central Gatun 11.553 185 43 29.46 0.22 0.04 0.00 0.02 0.72 0.29 0.26 0.20 0.05 0.02 0.02 0.06 0.01 0.60 Panama Central Gatun 11.674 139 29 22.79 0.08 0.01 0.00 0.06 0.85 0.20 0.18 0.17 0.03 0.00 0.00 0.00 0.00 0.78 Darien Tuira 12.601 12 9 — — — — — — — — — — — — — — — Darien Tuira 12.602 13 6 — — — — — — — — — — — — — — — Darien Tuira 12.603 15 9 — — — — — — — — — — — — — — — Darien Tuira 12.604 7 6 — — — — — — — — — — — — — — — Panama Central Cucaracha 18.834 3 1 — — — — — — — — — — — — — — — Panama Central Culebra 18.915 86 8 0.65 0.00 0.00 0.00 0.35 0.13 0.09 0.03 0.35 0.00 0.00 0.07 0.00 0.45 Panama Central Cucaracha 18.925 6 5 — — — — — — — — — — — — — — 8 — (continued) TABLE 5. (continued) Area Formation Sample age (Ma) N1 S S(80) AZ (%) NAN (%) SAN (%) LA (%) U (%) TRFO (%) PMF (%) MF (%) TDFO (%) SV (%) FW (%) MG (%) MR (%) UK (%) Panama Central Culebra 18.928 82 11 10.95 0.43 0.00 0.00 0.00 0.57 0.20 0.16 0.06 0.04 0.01 0.00 0.10 0.00 0.66 Panama Central Culebra 18.931 86 14 13.65 0.53 0.00 0.00 0.01 0.45 0.38 0.38 0.27 0.13 0.00 0.00 0.10 0.00 0.37 Panama Central Culebra 18.935 94 13 12.66 0.43 0.00 0.00 0.00 0.57 0.37 0.35 0.21 0.13 0.00 0.00 0.05 0.00 0.45 Panama Central Culebra 18.948 182 38 28.08 0.35 0.01 0.00 0.03 0.62 0.35 0.35 0.15 0.04 0.01 0.02 0.03 0.00 0.58 Panama Central Culebra 18.953 182 19 13.79 0.41 0.00 0.00 0.01 0.59 0.37 0.32 0.18 0.02 0.00 0.00 0.02 0.00 0.61 Panama Central Culebra 18.954 181 32 26.04 0.33 0.00 0.02 0.04 0.61 0.40 0.37 0.20 0.06 0.00 0.00 0.06 0.00 0.48 Panama Central Culebra 18.961 185 25 19.62 0.36 0.01 0.01 0.01 0.63 0.32 0.24 0.18 0.05 0.00 0.02 0.09 0.00 0.53 Panama Central Culebra 18.962 162 17 15.04 0.27 0.00 0.00 0.00 0.73 0.41 0.33 0.23 0.04 0.01 0.00 0.04 0.00 0.51 Panama Central Culebra 18.962 187 12 10.64 0.29 0.00 0.00 0.00 0.71 0.25 0.21 0.16 0.11 0.00 0.00 0.04 0.00 0.59 Panama Central Culebra 18.962 180 13 11.77 0.27 0.00 0.00 0.00 0.73 0.49 0.40 0.31 0.07 0.00 0.00 0.12 0.00 0.33 Panama Central Cucaracha 18.974 323 9 0.76 0.00 0.00 0.00 0.24 0.03 0.03 0.01 0.00 0.00 0.21 0.00 0.00 0.76 Panama Central Cucaracha 18.974 223 15 10.53 0.48 0.00 0.00 0.00 0.52 0.04 0.04 0.02 0.00 0.00 0.07 0.01 0.00 0.89 Panama Central Cucaracha 18.981 0 0 — — — — — — — — — — — — — — — Panama Central Cucaracha 19.061 3 1 — — — — — — — — — — — — — — — Panama Central Cucaracha 19.086 299 16 10.89 0.54 0.00 0.00 0.00 0.46 0.14 0.14 0.10 0.00 0.00 0.10 0.00 0.00 0.77 Panama Central Cucaracha 19.100 10 5 — — — — — — — — — — — — — — — Panama Central Cucaracha 19.143 0 0 — — — — — — — — — — — — — — — Panama Central Cucaracha 19.173 298 22 13.91 0.35 0.00 0.00 0.00 0.65 0.16 0.16 0.14 0.00 0.01 0.03 0.00 0.00 0.81 Panama Central Cucaracha 19.175 167 18 13.46 0.44 0.00 0.00 0.00 0.56 0.21 0.21 0.20 0.00 0.01 0.07 0.00 0.00 0.78 Panama Central Cucaracha 19.196 0 0 — — — — — — — — — — — — — — — Panama Central Culebra 19.201 179 26 17.63 0.22 0.00 0.00 0.00 0.78 0.25 0.23 0.21 0.00 0.00 0.08 0.02 0.00 0.66 Panama Central Cucaracha 19.203 0 0 — — — — — — — — — — — — — — — Panama Central Cucaracha 19.210 0 0 — — — — — — — — — — — — — — — Panama Central Culebra 19.215 117 21 18.01 0.30 0.00 0.00 0.01 0.69 0.27 0.26 0.23 0.01 0.00 0.02 0.00 0.00 0.70 Panama Central Cucaracha 19.230 0 0 — — — — — — — — — — — — — — — Panama Central Cucaracha 19.241 0 0 — — — — — — — — — — — — — — — Panama Central Culebra 19.241 172 19 15.12 0.19 0.01 0.00 0.01 0.80 0.32 0.29 0.27 0.01 0.00 0.05 0.00 0.00 0.63 5.957 Panama Central Cucaracha 19.251 0 0 Panama Central Culebra 19.254 108 20 — Panama Central Cucaracha 19.262 0 0 Panama Central Cucaracha 19.264 326 10 Panama Central Culebra 19.268 101 23 Panama Central Cucaracha 19.269 321 8 Panama Central Cucaracha 19.278 132 20 Panama Central Culebra 19.281 54 Panama Central Cucaracha 19.290 140 Panama Central Culebra 19.294 0 0 — — — — — — — — — — — — — — — Panama Central Culebra 19.308 171 16 12.39 0.37 0.00 0.00 0.01 0.61 0.29 0.30 0.30 0.01 0.00 0.22 0.11 0.00 0.58 Panama Central Cucaracha 19.311 133 19 16.26 0.11 0.00 0.00 0.00 0.89 0.26 0.21 0.20 0.00 0.02 0.08 0.00 0.00 0.68 Panama Central Culebra 19.316 8 4 — — — — — — — — — — — — — — — Panama Central Culebra 19.321 238 19 15.01 0.25 0.00 0.00 0.00 0.75 0.11 0.11 0.11 0.00 0.00 0.16 0.03 0.00 0.71 Panama Central Culebra 19.327 102 17 15.97 0.68 0.00 0.00 0.00 0.32 0.14 0.14 0.08 0.00 0.01 0.02 0.07 0.00 0.76 Panama Central Culebra 19.334 73 21 — — — — — — — — — — — — — — — Panama Central Culebra 19.347 53 12 — — — — — — — — — — — — — — — Panama Central Culebra 19.374 55 10 — — — — — — — — — — — — — — — Panama Central Culebra 19.381 270 22 13.52 0.19 0.00 0.00 0.00 0.80 0.14 0.15 0.14 0.00 0.00 0.23 0.00 0.00 0.63 Panama Central Culebra 19.385 1 1 — — — — — — — — — — — — — — — Panama Central Culebra 19.398 150 19 16.49 0.45 0.00 0.00 0.01 0.55 0.29 0.15 0.09 0.01 0.00 0.03 0.00 0.00 0.67 Panama Central Culebra 19.407 177 21 17.58 0.44 0.00 0.00 0.00 0.56 0.21 0.21 0.15 0.00 0.00 0.02 0.01 0.00 0.76 Panama Central Culebra 19.409 281 22 14.09 0.37 0.00 0.00 0.00 0.63 0.11 0.10 0.08 0.01 0.00 0.10 0.10 0.01 0.70 Panama Central Culebra 19.414 8 4 — — — — — — — — — — — — — — — Panama Central Culebra 19.416 198 21 15.79 0.39 0.00 0.00 0.01 0.61 0.28 0.25 0.22 0.00 0.00 0.01 0.00 0.00 0.71 Panama Central Culebra 19.425 277 25 18.11 0.51 0.00 0.00 0.00 0.49 0.28 0.25 0.20 0.00 0.00 0.03 0.00 0.00 0.69 Panama Central Culebra 19.433 251 21 15.61 0.34 0.00 0.00 0.02 0.65 0.28 0.25 0.20 0.00 0.01 0.04 0.00 0.00 0.66 Panama Central Culebra 19.434 313 29 20 0.47 0.00 0.00 0.02 0.51 0.26 0.27 0.23 0.00 0.00 0.01 0.01 0.00 0.70 Panama Central Culebra 19.444 303 27 15.52 0.33 0.00 0.00 0.00 0.67 0.45 0.46 0.38 0.00 0.00 0.03 0.00 0.00 0.51 Panama Central Culebra 19.454 285 22 14.35 0.34 0.00 0.00 0.02 0.64 0.33 0.35 0.32 0.00 0.00 0.03 0.00 0.00 0.61 Panama Central Culebra 19.462 301 23 13.44 0.36 0.00 0.00 0.00 0.64 0.11 0.11 0.11 0.00 0.00 0.10 0.03 0.01 0.77 Panama Central Culebra 19.462 194 17 11.73 0.28 0.00 0.00 0.01 0.71 0.30 0.30 0.26 0.01 0.00 0.01 0.00 0.00 0.68 17.92 — — — — — — — — — — — — — — — 0.27 0.00 0.00 0.00 0.73 0.28 0.24 0.23 0.01 0.00 0.01 0.00 0.00 0.72 — — — — — — — — — — — — — — 0.30 0.00 0.00 0.00 0.70 0.15 0.15 0.02 0.00 0.00 0.04 0.00 0.00 0.80 0.22 0.00 0.00 0.00 0.78 0.26 0.13 0.12 0.02 0.01 0.04 0.00 0.00 0.69 0.31 0.00 0.00 0.00 0.69 0.13 0.13 0.00 0.00 0.00 0.14 0.00 0.00 0.74 16.84 0.09 0.00 0.00 0.00 0.91 0.21 0.19 0.20 0.01 0.01 0.05 0.00 0.00 0.73 14 — — — — — — — — — — — — — — — 17 13.38 0.11 0.01 0.00 0.00 0.89 0.34 0.34 0.34 0.00 0.01 0.19 0.01 0.00 0.54 8.192 20.33 5.935 (continued) TABLE 5. (continued) Area 1 Formation Sample age (Ma) N1 S S(80) AZ (%) NAN (%) SAN (%) LA (%) U (%) TRFO (%) PMF (%) MF (%) TDFO (%) SV (%) FW (%) MG (%) MR (%) UK (%) Panama Central Culebra 19.470 299 20 14.12 0.22 0.00 0.00 0.00 0.77 0.43 0.41 0.39 0.02 0.00 0.06 0.00 0.00 0.50 Panama Central Culebra 19.478 313 18 12.52 0.27 0.00 0.00 0.01 0.72 0.35 0.36 0.33 0.00 0.01 0.02 0.00 0.00 0.62 Panama Central Cucaracha 19.479 100 12 11.67 0.34 0.00 0.02 0.01 0.63 0.18 0.19 0.13 0.00 0.00 0.00 0.17 0.00 0.64 Panama Central Cucaracha 19.480 100 6 5.76 0.21 0.00 0.00 0.00 0.79 0.06 0.06 0.00 0.00 0.00 0.00 0.11 0.00 0.83 Panama Central Cucaracha 19.480 100 4 3.962 0.08 0.00 0.00 0.00 0.92 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.98 Panama Central Cucaracha 19.481 100 8 7.523 0.18 0.02 0.00 0.01 0.79 0.04 0.04 0.01 0.00 0.00 0.00 0.09 0.00 0.87 Panama Central Culebra 19.485 310 17 10.87 0.32 0.00 0.00 0.01 0.67 0.40 0.41 0.36 0.01 0.00 0.02 0.00 0.00 0.57 Panama Central Culebra 19.493 289 19 12.65 0.26 0.00 0.00 0.00 0.74 0.50 0.49 0.46 0.00 0.00 0.03 0.01 0.00 0.46 Panama Central Cucaracha 19.525 100 9 8.193 0.17 0.00 0.00 0.00 0.83 0.03 0.03 0.01 0.00 0.00 0.02 0.07 0.00 0.89 Panama Central Cucaracha 19.527 100 5 4.993 0.26 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.87 Panama Central Cucaracha 19.528 97 5 4.825 0.74 0.00 0.00 0.00 0.26 0.01 0.01 0.00 0.00 0.00 0.00 0.62 0.00 0.37 Abbreviations: N = number of individuals (pollen/spore grains) counted per sample; S = number of species; S(80) = rareied number of species at a cutoff of 80 grains; AZ = Gondwana-Amazonian; NAN = Gondwana-northern Andean; SAN = Gondwana-southern Andean; LA = Laurasian; U = Unassigned; TRFO = tropical wet/moist forest; PMF = premontane wet/moist/rainforest; MF = lower montane to montane moist/wet forest; TDFO = tropical to premontane dry forest; SV = savanna; FW = freshwater marsh community; MG = mangrove swamps; MR = shallow water marine community; UK = unknown. 169 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 0.8 5 0.6 0.0 0.4 0.8 Proportion of individuals 15 0.1 20 59.3 20 15 10 age(My) 62.6 age(My) 0 20 0.4 Proportion of individuals 0.4 5 5 10 age(My) 0.2 15 10 15 20 0.0 0 0 0 0 36.6 40.7 marine 73 0.2 5 26.4 age(My) ferns and allies gymnosperms 10 angiosperms 0.0 0.4 0.8 Proportion of individuals 0.0 0.4 0.8 Proportion of individuals FIGURE 3. Proportion of the abundance of individuals per sample of the main groups of palynomorphs found in this study, including angiosperms, gymnosperms, fern spores and allies, and marine palynomorphs. The sequence is divided into three segments (19.5–10 Ma, 10–3.5 Ma, and < 3.5 Ma), and for each segment the mean abundance per sample is given on the right-hand side. = 1); Gondwana-northern Andean, 3.8% (SD = 4.3); Gondwana-southern Andean, 1.5% (SD = 2.4); and Laurasian, 4.2% (SD = 3.6) (Fig. 5, Table 5). However, 63% (SD = 11) of species are still unassigned to families because either the family does not have a distinct biogeographic origin (23 taxa) or the natural ainity of the species is still unknown (315 taxa). Does this proportion change when time slots are analyzed independently? Amazonian taxa are signiicantly more abundant prior to 3.5 Ma (> 3.5 Ma: 27.6%; < 3.5 Ma: 18.7%; P = 0.001, df = 17), Laurasian taxa do not change (> 3.5 Ma: 4.1%; < 3.5 Ma: 5.7%; P = 0.2, df = 11), and northern Andean taxa are signiicantly more abundant in the last 3.5 My (> 3.5 Ma: 3.6%; < 3.5 Ma: 6.4%; P = 0.01, df = 14). Amazonian taxa are more abundant > 10 Ma compared to the 10–3.5 Ma interval (19.5–10 Ma: 30.7%; 10–3.5 Ma: 24.2%; P = 0.001, df = 102), while Laurasian taxa (19.5– 10 Ma: 2.9%; 10–3.5 Ma: 5.5%; P = 0.001, df = 110) and northern Andean taxa (10–3.5 Ma: 6%; 19.5–10 Ma: 1.4%; P = 0.01, df = 86) show the opposite pattern (Fig. 5). BIOMES Tropical rainforest (TRFO) and premontane rainforest (PMF) dominate the fossil assemblages, constituting ca. 42% of the assemblage over the entire time studied (Fig. 6, Table 5): TRFO = 20.7% (SD = 11.5), PMF = 19.1% (SD = 11). Lower montane to montane moist/wet forest (MF) 170 PALEOBOTANY AND BIOGEOGRAPHY 0.0 0.4 0.8 Proportion of individuals 0.8 0 5 0.0 0.4 0.8 Proportion of individuals 10 69.6 age(My) 10 67 20 0.8 20 20 0.4 15 age(My) 10 15 age(My) 0.0 Proportion of individuals 77.9 2.8 1.1 0.1 2.2 5 2.5 5 5 10 15 20 20 0.3 unknown 6.1 0.9 1.9 age(My) 10 15 age(My) 24.6 31.8 3.2 1.7 5 17 Laurasian 15 20.5 0 0 68 Gondwana southern Andean 0 Gondwana northern Andean 0 Gondwana Amazonian 0.0 0.4 0.8 Proportion of individuals 0.0 0.4 0.8 Proportion of individuals FIGURE 4. Proportion of abundance of individuals per sample that belongs to a given biogeographic afinity. The sequence is divided into three segments (19.5–10 Ma, 10–3.5 Ma, and < 3.5 Ma), and for each segment the mean abundance per sample is given on the right-hand side (except for “unknown” mean abundance, given on the left-hand side). is also important, representing 14.8% (SD = 10.1). Dry biomes represent a very small fraction of the assemblage, and they do not increase signiicantly over time: tropical dry forest (TDFO) = 2.0% (SD = 3.8), savanna (SV) = 0.4% (SD = 1.1). Freshwater marshes (FW) are present over the entire sequence (FW = 3.4%, SD = 6.6), as are an abundant and constant presence of both mangrove swamps (MG = 8.5%, SD = 13.1) and shallow water marine communities (MR), recognized by the presence of dinolagellates/foram lining (MR = 0.3%, SD = 1.3) (Fig. 6). Mangroves increased signiicantly in the last 10 My (> 10 Ma: 4.3%; < 10 Ma: 12.3%; P = 0.001, df = 104). A large proportion of the taxa remain either unknown as to natural ainities (265 taxa = 53%) or the taxa do not have a preferred biome (104 taxa = 21%), and they correspond to a mean of 65% of the individuals counted per sample (SD = 16.4). When biomes are analyzed by region (eastern/ central/western Panama), the pattern described above does not change substantially. TRFO and PMF do not change when the three areas in Panama are analyzed independently (Fig. 7), and they dominate the assemblage in all three regions. MF is third in dominance in all three regions, but is signiicantly more abundant in Bocas del Toro and central Panama in the period of 3.5–10 Ma compared to Darien (Bocas del Toro & central Panama 13.9% vs. Darien 8.8%, P = 0.001, df = 10) (Fig. 7). TDFO and SV are also of very low proportion in all three areas and do not change signiicantly over time (Fig. 7). DIVERSITY here is a signiicant increase in diversity (rareied to 80 grains), from an average of 14.5 species per sample in the 10–19.5 Ma interval to 21.2 in the 10–3.5 Ma interval (P = 0.01, df = 110) (Fig. 8, 171 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 0.4 0.8 Proportion of species 0.0 0.4 0.8 Proportion of species 0 5 5 0.4 0.8 Proportion of species 10 64.7 20 2.9 20 0.0 61.6 age(My) 10 15 age(My) 10 15 20 0.3 4.4 67.1 5.5 2.7 age(My) 20 0.0 5.7 5 5 age(My) 10 15 10 age(My) 15 20 1.4 unknown 10.9 2.1 6 24.2 30.7 4.8 6.4 5 18.7 Laurasian 15 13.1 0 0 66.4 Gondwana southern Andean 0 Gondwana northern Andean 0 Gondwana Amazonian 0.0 0.4 0.8 Proportion of species 0.0 0.4 0.8 Proportion of species FIGURE 5. Proportion of abundance of species per sample that belongs to a given biogeographic afinity. The sequence is divided into three segments (19.5–10 Ma, 10–3.5 Ma, and < 3.5 Ma), and for each segment the mean abundance per sample is given on the right-hand side (except for “unknown” mean abundance, given on the left-hand side). Table 5). he diversity does not change from 10–3.5 Ma to the < 3.5 Ma interval (< 3.5 = 20.6, P = 0.7, df = 13.1). he species accumulation curve for each of the three time intervals (Fig. 9) shows a similar pattern, with an initial high slope of species accumulation followed by a lower slope. he 10–19.5 and 3.5–10 Ma intervals have a longer time series than the < 3.5 Ma interval, and both show an increase in the slope again, after a long hiatus of species recovery (6 My in the 10–19.5 Ma interval, and ca. 1 My in the 3.5–10 Ma interval; Fig. 9). PLANT MACROFOSSILS Neogene macrofossils from Panama, including wood, leaves, and fruits, were irst described by Berry in 1918 and 1921. hese fossils were collected during the initial excavations of the Panama Canal but since then, little attention has been given to their loristic ainities. We reexamined Berry’s original specimens housed at the National Museum of Natural History (Washington, DC) and present here a revised list of macrofossil taxa from the loras of the Neogene of Panama (Table 6). From these taxa, only leaves, wood, and fruits of Arecaceae and Fabaceae of the Culebra and Gatun formations are accepted. hese families were also recognized from pollen by Graham (1988b, 1991a, 1991c). he remaining fossil leaves described by Berry (1918) are poorly preserved and lack distinctive characters for their familial and generic placement. Despite the questionable ainity of the majority of the fossil leaves described by Berry, the physiognomy of these leaves and those in new collections made by the authors, i.e., entiremargined and notophyll to mesophyll in size, suggests warm and probably wet conditions during the Miocene and Pliocene of Panama. New exposures of the early Middle Miocene Cucaracha Formation (ca. 17–19.5 Ma) from the 172 PALEOBOTANY AND BIOGEOGRAPHY PMF 0.8 0.8 Proportion of individuals 0.4 0.8 Proportion of individuals 0 10 age(My) 0 0 5 71.9 0.4 0.8 Proportion of individuals 10 10 66.5 20 0.1 20 0.0 62 age(My) 0.6 age(My) 10 15 20 4.3 0.8 UK 5 5 12.6 age(My) 0.0 0.4 Proportion of individuals 0.4 11.1 5 10 15 age(My) 20 4.1 0.0 MR 0 0 0 10 15 20 0.4 0.8 MG 3.3 0.6 0.2 0.4 Proportion of individuals 0 5 0.4 0.0 0.0 FW 2.2 15 0.4 Proportion of individuals SV 15 20 0.0 Proportion of individuals 15 0.8 17.1 20 21.8 1.7 10 age(My) 15 15 10 age(My) 0.4 5 13.1 20 20 0.0 2.2 5 5 5 10 15 age(My) 11 17.3 18.9 23.5 TDFO 0 13.4 15.4 age(My) MF 0 0 TRFO 0.0 0.4 0.8 Proportion of individuals 0.0 0.4 0.8 Proportion of individuals FIGURE 6. Proportion of abundance of individuals per sample that belongs to a particular biome. TRFO = tropical wet/moist forest; PMF = premontane wet/moist/rainforest; MF = lower montane to montane moist/wet forest; TDFO = tropical to premontane dry forest; SV = savanna; FW = freshwater marsh community; MG = mangrove swamps; MR = shallow water marine community; UK = unassigned. The sequence is divided into three segments (19.5–10 Ma, 10–3.5 Ma, and < 3.5 Ma), and for each segment the mean abundance per sample is given on the right-hand side (except for “unassigned” mean abundance, given on the left-hand side). 0.8 0.4 0 0 5 5 10 age(My) 15 10 age(My) 15 20 20 0.0 0 0 0.4 0.8 Proportion of individuals 0.8 TDFO Darien 5 NaN 5 0.0 0.4 Proportion of individuals 10 NaN 20 2.2 10 2 age(My) 1.4 15 10 15 0.8 Proportion of individuals 0.8 NaN 5 age(My) 20 0.0 0.4 1.9 NaN NaN TDFO Panama Central 0 0 10 NaN 20 0.4 Proportion of individuals 0.0 Proportion of individuals 2.2 8.8 age(My) 0.0 0.8 TDFO Bocas del Toro 5 5 10 15 20 17.1 0.4 NaN 11.8 age(My) 0.8 0.0 Proportion of individuals MF Darien 0 0 5 age(My) 10 15 20 0.4 0.8 NaN 16.2 Proportion of individuals 5 MF Panama Central 11 0.0 0.4 age(My) MF Bocas del Toro NaN age(My) 0.0 Proportion of individuals 21.8 15 0.8 10.7 20 0.4 10 0.0 Proportion of individuals NaN 15 0.8 15 0.4 NaN 18.6 20 20 20 0.0 Proportion of individuals NaN PMF Darien NaN 18.3 10 age(My) 15 10 age(My) 15 10 15 20 11.9 23.5 PMF Panama Central 13.4 5 5 5 NaN 20 20.2 NaN PMF Bocas del Toro 0 0 NaN 15.4 age(My) TRFO Darien 0 TRFO Panama Central 0 TRFO Bocas del Toro 0.0 0.4 0.8 Proportion of individuals 0.0 0.4 0.8 Proportion of individuals FIGURE 7. Proportion of abundance of individuals per sample that belongs to a given biome, organized by region (Bocas del Toro = western Panama; Darien = eastern Panama). TRFO = tropical wet/moist forest; PMF = premontane wet/moist/rainforest; MF = lower montane to montane moist/wet forest; TDFO = tropical to premontane dry forest. 174 PALEOBOTANY AND BIOGEOGRAPHY 0 Panama Canal have yielded a rich deposit of well-preserved permineralized fruits and seeds (Herrera et al., 2012a; work in progress). hese fossils provide additional characters of systematic signiicance that can facilitate accurate identiication to the familial and generic levels in Panamanian macroloras. Families and genera recognized from this carpolora include Anacardiaceae (Spondias L., Pentoperculum Manchester), Annonaceae, Arecaceae, Cannabaceae, Chrysobalanaceae (cf. Parinari Aubl.), Euphorbiaceae, Fabaceae, Humiriaceae (Sacoglottis Mart.; Herrera et al., 2010), Icacinaceae (Phytocreneae tribe), Juglandaceae (Oreomunnea Oerst.), Lauraceae, Menispermaceae, Myristicaceae, Passiloraceae, and Vitaceae (Cissus L.). Some of these genera, e.g., Spondias, Parinari, Sacoglottis, and Cissus, are recognized for the irst time in the Miocene of Panama. New collections of fruits and seeds from the Late Miocene layers of the Gatun Formation include the earliest record of Vantanea cipaconensis (Berry) Herrera (Humiriaceae) in Central America, and unidentiied specimens of Anacardiaceae and Arecaceae. 5 20.6 10 15 age(My) 21.2 20 14.5 0 10 20 30 40 number of species (rarefy cutoff=80) FIGURE 8. Rareied diversity at a counting level of 80 grains per sample. The sequence is divided into three segments (19.5–10 Ma, 10–3.5 Ma, and < 3.5 Ma), and for each segment the mean diversity per sample is given on the right-hand side. 200 100 50 number of species 300 <3.5 Ma 3.5-10 Ma 10-19.5 Ma 0 2 4 6 time interval (Ma) 8 10 FIGURE 9. Species accumulation curve using the collector’s method. There is a curve for each segment (19.5–10 Ma, 10–3.5 Ma, and < 3.5 Ma). The regions of the curves with high slopes are probably due to a sampling artifact, as they are preceded by a sampling hiatus. 175 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 6. Revised list of plant taxa of Panamanian Neogene floras described by Berry (1918, 1921*). Taxon Familial assignment by Berry (1918, 1921) Current view of the familial/ generic assignment Formation Cucaracha Fossil type and comments Palmoxylon palmacites (Sprengel) Stenzel Arecaceae OK stem Iriartites vaughani Berry* Arecaceae family provisionally Gatun accepted fruit has abundant ibers as seen in modern palms; however, the specimen requires further study Ficus culebrensis Berry Moraceae rejected Culebra fossil leaf lacks any distinctive characters Guatteria culebrensis Berry Annonaceae rejected Culebra, Caimito, and Gatun leaves; poorly preserved specimens Myristicophyllum panamense Berry Myristicaceae rejected Culebra leaf; poorly preserved venation and fragmented Taenioxylon multiradiatum Felix Fabaceae provisionally accepted Bohio, Culebra, and Cucaracha wood Inga oligocenica Berry Fabaceae family provisionally Culebra accepted the leaf shows crowded basal venation and an asymmetrical base typical of Fabaceae leaves; however, its generic assignment is highly questionable Cassia culebrensis Berry Fabaceae family and genus highly questionable Culebra leaf; no common Fabaceae characters present Hiraea oligocaenica Berry Malpighiaceae rejected Caimito leaf; poorly preserved venation Banisteria praenuntia Berry Malpighiaceae rejected Culebra leaf; poorly preserved venation Hieronymia lehmannii Engelhardt Euphorbiaceae rejected Caimito leaf; poorly preserved venation and fragmented Schmidelia bejucensis Berry Sapindaceae rejected Caimito and Culebra leaves are entire, pinnate, and eucamptodromous; we do not see any diagnostic characters for placement in Sapindaceae or Schmidelia (now Boraginaceae) Mespilodaphne culebrensis Berry Lauraceae rejected Culebra leaf; poorly preserved venation and fragmented Calyptranthes gatunensis Berry Myrtaceae family and genus highly questionable Gatun similar venation is seen in other families such as Moraceae and Clusiaceae Melastomites miconioides Berry Melastomataceae highly questionable Culebra leaf; tertiary veins are not well preserved; it is dificult to differentiate it from leaves in Lauraceae with similar acrodromous venation Rondeletia goldmanii Berry Rubiaceae rejected Gatun leaf lacks any distinctive characters Rubiacites ixoreoides Berry Rubiaceae rejected Gatun fruit; the specimen shows evidence of germination valves unlike any Rubiaceae fruits 176 CARBON ISOTOPES Percentages of total nitrogen (%TN) and total organic carbon (%TOC) display diferent trends for the marine Culebra Formation and the terrestrial Cucaracha Formation (Fig. 10, Table 7). he PALEOBOTANY AND BIOGEOGRAPHY %TN varies between 0.09 and 0.13 for the Culebra Formation, whereas %TN ranges between 0.02 and 0.04 for the terrestrial Cucaracha Formation. Similarly, the marine Culebra Formation displays higher TOC percentages than the Cu- FIGURE 10. Total nitrogen, total organic carbon, and stable carbon isotope values for selected samples from the Cucaracha and Culebra formations. VPDB = Vienna Pee Dee Belemnite. 177 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA TABLE 7. Total nitrogen, total carbon (inorganic and organic fractions), and carbon isotope values for 14 selected samples from the Culebra and Cucaracha formations. Culebra Cucaracha C/N wt% total inorganic C wt% total organic C δ13C (permil, vs.VPDB) 26.17 0.15 3.14 –28.37 2.24 26.14 0.41 1.83 –28.13 0.13 3.76 27.92 0.13 3.63 –28.32 CC010052 0.09 2.39 21.33 0.47 1.92 –27.80 23.0 CC010061 0.13 4.20 29.62 0.35 3.85 –27.67 41.0 CC010078 0.09 3.86 42.56 0.03 3.83 –27.14 46.5 CC010095 0.04 1.01 22.75 0.10 0.91 –27.51 53.5 CC010001 0.03 0.75 22.67 0.07 0.68 –27.64 68.0 CC010104 0.02 0.20 1.00 0.18 0.02 –27.93 76.0 CC010008 0.03 0.96 30.33 0.05 0.91 –27.37 87.0 CC010112 0.02 0.33 0.00 0.40 0.00 — 100.0 CC010011 0.02 0.20 8.00 0.04 0.16 –26.29 118.5 CC010012 0.02 0.33 13.50 0.06 0.27 –27.11 129.0 CC010016 0.04 1.90 46.50 0.04 1.86 –26.79 Sample ID wt% total N wt% total C CC010046 0.12 3.29 5.0 CC010048 0.07 8.5 CC010062 12.8 Depth (m) 1.5 Abbreviation: VPDB = Vienna Pee Dee Belemnite. caracha Formation. he %TOC ranges between 1.83 and 3.85 for the Culebra Formation and between 0.00 and 1.86 for the Culebra Formation. Carbon isotope values do not display signiicant diferences between both formations, and values range between –26.29 and –28.37. DISCUSSION he Isthmus of Panama represents an excellent opportunity to understand how the vegetation of a newly formed landscape in a tropical setting evolves, because most of the landscape of Panama emerged above sea level only during the last 22 Ma. It was irst solely connected to a large land mass (North America) over a long period of time, from 22 to 10 Ma. It was then connected intermittently to a second large mass (South America) from 10 to 3.5 Ma, when the isthmus became permanently connected to both South America and North America. he two connections, however, are not equally balanced. While the North American connection was to a landscape dominated by temperate biomes, the South American connection was to a landscape dominated by tropical biomes. he new landscape of Panama was formed in a tropical latitude (Montes et al., 2012a, 2012b). But were the earlier loras of Panama dominated by North American (Laurasian) families, when the connection with South America was not fully established until 3.5 Ma ago? he results presented here indicate they were not. hroughout the entire interval studied here (19.5–1.2 Ma) and in the modern lora of Barro Colorado Island, the loras are strongly dominated by GondwanaAmazonian families, followed by Gondwananorthern Andean, when either the biogeographic ainities of individuals (Fig. 4) or species (Fig. 5) are considered. he Early Miocene macrobotanical record from Panama (Table 2) also indicates an earlier arrival for many South American lineages (e.g., Humiriaceae, Annonaceae, Euphorbiaceae). hese results imply that plants were able to cross 178 the Central American Seaway (CAS, the deep ocean gap that occurred along the tectonic boundary between the South American plate and the Panama microplate) much earlier, at least 10 Ma before other groups, mainly mammals. hese results derived from the fossil record were also suggested by Graham in his multiple studies (Graham, 1988a, 1988b, 1991c, 1992, 1999, 2010, 2011), and are also supported by a recent meta-analysis of genetic data of a number of plant clades with members on both sides of the isthmus (Cody et al., 2010) that indicate migrations across CAS much earlier than the traditionally accepted 3.5 Ma inal closure of the isthmus. As Cody et al. (2010) pointed out, this could relect a higher ability of plant disseminules to travel larger distances over water and establish founder populations successfully. hese long-distance dispersal events are also interpreted from Late Eocene fruits from the Azuero Peninsula in Panama (Herrera et al., 2012b). Other recent fossil indings by our intense paleontological exploration in the Canal area have found earlier migrations (ca. 19 Ma) of turtles (Cadena et al., 2012), of snakes (Head et al., 2012), and of crocodiles (Hastings et al., 2013) from South America into Panama across CAS. Genetic evidence also indicates earlier exchanges of bees (Roubik & Camargo, 2012), tree frogs (Pinto-Sanchez et al., 2012), salamanders (Elmer et al., 2013), freshwater Poecilia Bloch & Schneider ishes (Alda et al., 2013), and Amazilia Lesson hummingbirds (Ornelas et al., 2013). Mammals, on the other hand, do not have an active exchange until much later times, starting at 10 Ma, with an acceleration at 2.7 Ma (Webb, 1976, 2006; Woodburne, 2010). he large variety of mammals found in Panama in the 22–17 Ma interval, including horses, camels, peccaries, bear-dogs, anthracotheriums, rhinocerids, geomyoid rodents, dogs, oreodonts, and protoceratids (Whitmore & Stewart, 1965; Slaughter, 1981; MacFadden & Higgins, 2004; MacFadden, 2006a, 2006b, 2009, 2010; MacFadden et al., 2012; Rincon et al., PALEOBOTANY AND BIOGEOGRAPHY 2012, 2013), are derived from Laurasian lineages but inhabited the newly formed landscape of Panama that was dominated by a tropical rainforest of Gondwanan origin. Occasionally the same species of mammal (e.g., the rhinoceros Floridaceras whitei Wood) was found both in Panama and in Texas and Florida during the Early Miocene, but in contrasting biomes: a temperate forest in North America composed of Laurasian taxa, and a tropical forest in Panama composed mostly of Gondwanan taxa. How did these species interact with the tropical or temperate forest? Were there drastic changes in diet? Or were only generalist mammals able to move into the newly developed tropical forest of Panama? hese questions are still open and will require more detailed analyses to be answered. he dominance of the Gondwanan taxa in the earlier stages of Panama, when the CAS was still active, also underscores the importance of niche conservatism (Wiens & Donoghue, 2004). It was easier for tropical plants to cross the CAS and occupy the lowland tropical Panamanian landscape than for Laurasian temperate taxa to migrate south and shift to a new low-elevation tropical biome. However, some taxa, especially those adapted to montane forests, have Laurasian ainities. Niche conservatism is very strong and has been observed worldwide in a number of biomes (e.g., Crisp et al., 2009) and in the plant fossil record of South America (Jaramillo & Cardenas, 2013). he extensive work of Graham (1988a, 1988b, 1989, 1991c) indicated that the landscape of Panama was dominated by tropical rainforest, with an associated lower montane and montane forest related to the evolution of the diferent volcanic arcs that are present in the isthmus (Farris et al., 2011). Graham did not ind extensive presence of dry forests or savannas in any part of the sedimentary record. his view is in contrast with the view of Retallack and Kirby (2007), who, from a study of the paleosols of the Cucaracha Formation, inferred an extensive dry habitat for PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA the Early Miocene of Panama. Our results support Graham’s view that the habitats of Panama were strongly dominated by tropical rainforest and montane/lower montane forest, with minimal expansion of dry forest or savanna (Fig. 6). he carbon isotope record of the Culebra and Cucaracha loras (Fig. 10) also supports the absence of extensive dry conditions. he ratio of total (organic) carbon to total nitrogen (TC/TN) in sediments is used as an indicator of the relative contributions of organic matter from terrestrial versus aquatic sources. Terrestrial organic matter typically possesses TC/TN values > 20, whereas algal organic matter generally displays TC/TN values from 4 to 10 (Meyers, 1994). Physiological diferences between C3 and C4 plants result in diferent carbon isotope signatures (Tipple & Pagani, 2007). C3 plants have a wide range of isotopic values (–20 to –35‰), whereas C4 plants have a narrower range (–10 to –14‰) (Tipple & Pagani, 2007). hus, the isotopic composition of total organic carbon relects the relative contribution of terrestrial C3 and C4 plants to the organic matter pool (Huang et al., 1999, 2001; Filley et al., 2001). Results from the continental Cucaracha Formation indicate a dominance of C3 plants, more common to a Neotropical forest than to a tropical grassland ecosystem. Total carbon and total nitrogen values provide further evidence of the continental (i.e., Cucaracha Formation) and mostly marine (i.e., Culebra Formation) depositional environment for these two formations. he absence of extensive C4 savannas also is supported by the carbon isotopic record of mammal enamel that indicate a dominance of C3 plants during the accumulation of the Cucaracha Formation (MacFadden & Higgins, 2004). he geochemical model used by Retallack and Kirby (2007) to infer dry conditions, the Chemical Index of Alteration without Potash (CIA-K), uses the greater mobility of base cations relative to aluminum oxides during pedogenesis to estimate paleoprecipitation in paleosols. However, this relationship has only been established for 179 temperate climates with a mean annual precipitation (MAP) < 1500 mm and never has been tested in tropical settings. Preliminary attempts to assess this for tropical soils under a MAP > 1500 mm have indicated that there is not a signiicant correlation of CIA-K with precipitation when tropical soils are included, and the CIA-K should not be applied to tropical settings (Morón et al., 2011). How did diversity of Panamanian forests luctuate from the Early Miocene to the present day? Has plant diversity been constantly increasing? Our results indicate that plant diversity was lower in the 10–19 Ma part of the record, and then increased over the past 10 Ma (Fig. 8). However, it is not clear if this pattern is a result of taphonomic artifact. For example, we observed that the sedimentary conditions afect the proportion of pollen grains indicative of mangrove habitats. Lithofacies of the Cucaracha Formation are mostly terrestrial, while lithofacies of the younger formations (Gatún, Chagres, and Bocas del Toro and Darién regions) are shallow marine (Coates et al., 1992, 2003, 2004, 2005; Coates & Obando, 1996; Collins & Coates, 1999; Montes et al., 2012a, 2012b; Hendy, 2013; Pimiento et al., 2013a, 2013b). he taphonomic iltering for plant diversity reconstructions is suggested by the presence of mangroves that increased signiicantly during the last 10 My in direct association with the sedimentary deposition (Figs. 6, 7) (> 10 Ma: 4.3%; < 10 Ma: 12.3%; P = 0.001, df = 104). his taphonomic iltering alone may increase the plant diversity in marine samples because the pollen is probably derived from a larger landscape. herefore, the observed plant diversity in the younger formations studied here would be greater, as it has been noted for modern tropical delta and shallow marine sediments (Muller, 1959; Scheihing & Pfeferkorn, 1984). To fully understand the plant diversity changes seen from the 10–19 Ma to the < 10 Ma records, we would need terrestrial environments in the entire stratigraphic sequence to rule out a possible taphonomic bias. 180 ACKNOWLEDGMENTS his research was made possible through the collaboration and funding of Senacyt, the Autoridad del Canal de Panama, the Mark Tupper Fellowship, Ricardo Perez S.A., the National Science Foundation grants EAR 0824299 and OISE, EAR, DRL 0966884, and the National Geographic Society. We thank the paleontology/ geology teams at the Smithsonian Tropical Research Institute and the University of Florida for help with ield work. hanks to A. O’Dea for permission to use Panama Paleontology Project samples. LITERATURE CITED Alda, F., R. G. Reina, I. Doadrio & E. Bermingham. 2013. Phylogeny and biogeography of the Poecilia sphenops species complex (Actinopterygii, Poeciliidae) in Central America. Molec. Phylogen. Evol. 66: 1011–1026. Amante, C. & B. W. Eakins. 2009. ETOPO1 1 Arc-Minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado. Berry, E. W. 1918. he fossil higher plants from the Canal Zone. Bull. U.S. Natl. Mus. 103: 15–44. Berry, E. W. 1921. A palm nut from the Miocene of the Canal Zone. Proc. U.S. Natl. Mus. 59: 21–22. Bush, M. & R. Rivera. 1998. Pollen dispersal and representation in a neotropical rain forest. Global Ecol. Biogeogr. Lett. 7: 379–392. Cadena, E., J. Bourque, A. Rincon, J. I. Bloch, C. Jaramillo & B. MacFadden. 2012. New turtles (Chelonia) from the Late Eocene through Late Miocene of the Panama Canal Basin. J. Paleontol. 86: 539– 557. Carrasquilla, L. G. 2006. Árboles y Arbustos de Panamá. Universidad de Panamá-Autoridad Nacional del Ambiente, Editora Novo Art, Panama City. Chave, J., R. Condit, S. Lao, J. P. Caspersen, R. B. Foster & S. P. Hubbell. 2003. Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. J. Ecol. 91: 240–252. Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, T. Kira, J.-P. Lescure, B. W. Nelson, PALEOBOTANY AND BIOGEOGRAPHY H. Ogawa, H. Puig, B. Riéra & T. Yamakura. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87–99. Coates, A. & J. Obando. 1996. he geologic evolution of the Central American isthmus. Pp. 21–56 in J. Jackson, A. Budd & A. Coates (editors), Evolution and Environment in Tropical America. he University of Chicago Press, Chicago. Coates, A., J. B. C. Jackson, A. G. Collins, T. M. Cronin, H. J. Dowsett, L. M. Bybell, P. Jung & J. A. Obando. 1992. Closure of the Ishtmus of Panama: he near-shore marine record of Costa Rica and western Panama. Geol. Soc. Amer. Bull. 104: 814– 828. Coates, A. G., M. P. Aubry, B. W. A. Berggren, L. S. Collins & M. Kunk. 2003. Early Neogene history of the Central American arc from Bocas del Toro, western Panama. Geol. Soc. Amer. Bull. 115: 271– 287. Coates, A. G., L. S. Collins, M. P. Aubry & W. A. Berggren. 2004. he geology of the Darien, Panama, and the Late Miocene-Pliocene collision of the Panama Arc with northwestern South America. Geol. Soc. Amer. Bull. 116: 1327–1344. Coates, A. G., D. F. McNeill, M. P. Aubry, W. A. Berggren & L. S. Collins. 2005. An introduction to the geology of the Bocas del Toro Archipelago, Panama. Caribbean J. Sci. 41: 374–391. Cody, S., J. E. Richardson, V. Rull, C. Ellis & R. T. Pennington. 2010. he Great American Biotic Interchange revisited. Ecography 33: 326–332. Collins, L. S. & A. G. Coates. 1999. A paleobiotic survey of Caribbean faunas from the Neogene of the Isthmus of Panama. Bull. Amer. Paleontol. 357: 1–351. Condit, R., S. Aguilar, A. Hernandez, R. Perez, S. Lao, G. Angehr, S. P. Hubbell & R. B. Foster. 2004. Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J. Trop. Ecol. 20: 51–72. Correa, M. & I. Valdespino. 1998. Flora de Panamá: Una de las más ricas y diversas del mundo. ANCON 1: 16–23. Correa, M., C. Galdames & M. de Stapf. 2004. Catálogo de las Plantas Vasculares de Panamá. Editora Quebecor World, Bogotá. Crisp, M. D., M. T. K. Arroyo, L. G. Cook, M. A. Gandolfo, G. J. Jordan, M. S. McGlone, P. H. Weston, M. Westoby, P. Wilf & H. P. Linder. 2009. Phylogenetic biome conservatism on a global scale. Nature 458: 754–756. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Croat, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford, California. Elmer, K. R., R. M. Bonett, D. B. Wake & S. Lougheed. 2013. Early Miocene origin and cryptic diversiication of South American salamanders. BMC Evolutionary Biol. 13: 59. Farris, D. W., C. Jaramillo, G. Bayona, S. RestrepoMoreno, C. Montes, A. Cardona, A. Mora, R. J. Speakman, M. D. Glascock, P. Reiners & V. Valencia. 2011. Fracturing of the Panamanian Isthmus during initial collision with South America. Geology 39: 1007–1010. Filley, T. R., K. H. Freeman, T. Bianchi, M. Baskaran, L. A. Colarusso & P. Hatcher. 2001. An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Org. Geochem. 32: 1153–1167. Gentry, A. H. 1982. Neotropical loristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic luctuations, or an accident of the andean orogeny? Ann. Missouri Bot. Gard. 69: 557–593. Germeraad, J. H., C. A. Hopping & J. Muller. 1968. Palynology of Tertiary sediments from tropical areas. Rev. Palaeobot. Palynol. 6: 189–348. Gilinsky, N. L. 1991. Bootstrapping and the fossil record. Pp. 185–206 in N. L. Gilinsky & P. W. Signor (editors), Analytical Paleobiology. Paleontological Society, Knoxville, Tennessee. Graham, A. 1977. New records of Pelliciera (heaceae/ Pelliceriaceae) in the Tertiary of the Caribbean. Biotropica 9: 48–52. Graham, A. 1987. Fossil pollen of Sabicea (Rubiaceae) from the Lower Miocene Culebra formation of Panama. Ann. Missouri Bot. Gard. 74: 868– 870. Graham, A. 1988a. Studies in Neotropical paleobotany. VI. he Lower Miocene communities of Panama— he Cucaracha Formation. Ann. Missouri Bot. Gard. 75: 1467–1479. Graham, A. 1988b. Studies in Neotropical paleobotany. V. he Lower Miocene communities of Panama— he Culebra Formation. Ann. Missouri Bot. Gard. 75: 1440–1466. Graham, A. 1989. Studies in Neotropical paleobotany. VII. he Lower Miocene communities of Panama— he La Boca Formation. Ann. Missouri Bot. Gard. 76: 50–66. Graham, A. 1991a. Studies in Neotropical paleobotany. IX. he Pliocene communities of Panama— Angiosperms (dicots). Ann. Missouri Bot. Gard. 78: 201–223. 181 Graham, A. 1991b. Studies in Neotropical Paleobotany. VIII. he Pliocene communities of Panama— Introduction and ferns, gymnosperms, angiosperms (monocots). Ann. Missouri Bot. Gard. 78: 190– 200. Graham, A. 1991c. Studies in Neotropical paleobotany. X. he Pliocene communities of Panama— Composition, numerical representation, and paleocommunity paleoenvironmental reconstructions. Ann. Missouri Bot. Gard. 78: 465–475. Graham, A. 1992. Utilization of the isthmian land bridge during the Cenozoic—Paleobotanical evidence for timing, and the selective inluence of altitudes and climate. Rev. Palaeobot. Palynol. 72: 119– 128. Graham, A. 1995. Diversiication of Gulf/Caribbean mangrove communities through Cenozoic time. Biotropica 27: 20–27. Graham, A. 1999. Late Cretaceous and Cenozoic History of North American Vegetation (North of Mexico). Oxford University Press, New York. Graham, A. 2010. Late Cretaceous and Cenozoic History of Latin American Vegetation and Terrestrial Environments. Missouri Botanical Garden Press, St. Louis. Graham, A. 2011. he age and diversiication of terrestrial New World ecosystems through Cretaceous and Cenozoic time. Amer. J. Bot. 98: 336–351. Haselhorst, D. S., J. E. Moreno & S.W. Punyasena. 2013. Variability within the 10-year pollen rain of a seasonal Neotropical forest and its implications for paleoenvironmental and phenological research. PLoS ONE 8: e53485. Hastings, A., J. Bloch, C. Jaramillo, A. Rincon & B. MacFadden. 2013. Systematics and biogeography of crocodylians from the Miocene of Panama. J. Vertebrate Paleontol. 33: 239–263. Haug, G. H. & R. Tiedemann. 1998. Efect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393: 673– 676. Haug, G. H., R. Tiedemann, R. Zahn & A. C. Ravelo. 2001. Role of Panama uplift on oceanic freshwater balance. Geology 29: 207–210. Haug, G., R. Tiedemann & L. Keigwin. 2004. How the Isthmus of Panama put ice in the Arctic. Oceanus 42: 94–97. Head, J., A. Rincon, C. Suarez, C. Montes & C. Jaramillo. 2012. Fossil evidence for earliest Neogene American faunal interchange: Boa (Serpentes, Boinae) from the early Miocene of Panama. Vertebrate Paleontol. 32: 1328–1334. 182 Henderson, A. 2011. A revision of Desmoncus (Arecaceae). Phytotaxa 35: 1–88. Henderson, A., G. Galeano & R. Bernal. 1995. Field Guide to the Palms of the Americas. Princeton University Press, Princeton, New Jersey. Hendy, A. J. W. 2013. Spatial and stratigraphic variation of marine paleoenvironments in the MiddleUpper Miocene Gatún Formation, Isthmus of Panama. PALAIOS 28: 210–227. doi: 10.2110/palo. 2012.p12-024r. Herrera, F., S. Manchester, C. Jaramillo, B. MacFadden & S. da Silva-Carminha. 2010. Phytogeographic history and phylogeny of the Humiriaceae. Int. J. Pl. Sci. 171: 392–408. Herrera, F., S. Manchester, M. Carvalho, E. Correa & C. Jaramillo. 2012a. Permineralized fruits and seeds from the Early Middle Miocene Cucaracha Formation of Panama. Botanical Society of America, Columbus, Ohio, July 11, 2012. <http://2012.botany conference.org/engine/search/index.php?func= detail&aid=793>. Herrera, F., S. Manchester & C. Jaramillo. 2012b. Permineralized fruits from the Late Eocene of Panama give clues of the composition of forests established early in the uplift of Central America. Rev. Palaeobot. Palynol. 175: 10–24. Huang, Y., K. H. Freeman, T. I. Eglinton & F. A. Street-Perrott. 1999. δ13C analyses of individual lignin phenols in Quaternary lake sediments: A novel proxy for deciphering past terrestrial vegetation change. Geology 27: 471–474. Huang, Y., F. A. Street-Perrott, S. E. Metcalfe, M. Brenner, M. Moreland & K. H. Freeman. 2001. Climate change as the dominate control on glacialinterglacial variations in C3 and C4 plant abundance. Science 293: 1647–1651. Jaramillo, C. & A. Cardenas. 2013. Global warming and Neotropical rainforests: A historical perspective. Annual Rev. Earth Planet. Sci. 41: 741–766. Jaramillo, C. A. & D. L. Dilcher. 2001. Middle Paleogene palynology of central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontographica Abt. B, Paläophytol. 258: 87–213. Jaramillo, C. & M. Rueda. 2013. A Morphological Electronic Database of Cretaceous-Tertiary Fossil Pollen and Spores from Northern South America, Vers. 2012–2013. Colombian Petroleum Institute & Smithsonian Tropical Research Institute, Panama City. MacFadden, B. J. 2006a. Extinct mammalian biodiversity of the ancient New World tropics. Trends Ecol. Evol. 21: 157–165. PALEOBOTANY AND BIOGEOGRAPHY MacFadden, B. J. 2006b. North American Miocene land mammals from Panama. J. Vertebrate Paleontol. 26: 720–734. MacFadden, B. J. 2009. hree-toes browsing horse Anchiterium (Echidae) from the Miocene of Panama. J. Paleontol. 83: 489–492. MacFadden, B. J. 2010. Extinct peccary “Cynorca” occidentale (Tayassuidae, Tayassuinae) from the Miocene of Panama and correlations to North America. J. Paleontol. 84: 288–298. MacFadden, B. J. & P. Higgins. 2004. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama. Oecologia 140: 169–182. MacFadden, B. J., D. A. Foster, A. F. Rincón, G. S. Morgan & C. Jaramillo. 2012. he New World Tropics as a cradle of biodiversity during the Early Miocene: Calibration of the Centenario fauna from Panama. Geol. Soc. Amer. Abstracts with Programs 44: 163. Marchant, R., H. Behling, J. C. Berrio, A. M. Cleef, J. Duivenvoorden, H. Hooghiemstra, P. Kuhry, B. Melief, B. van Geel, T. Van der Hammen, G. van Reenen & M. Wille. 2001. Mid- to Late-Holocene pollen-based biome reconstructions for Colombia. Quatern. Sci. Rev. 20: 1289–1308. Meyers, P. A. 1994. Preservation of elemental and isotopic source identiication of sedimentary organic matter. Chem. Geol. 114: 289–302. Montes, C., G. Bayona, A. Cardona, D. M. Buchs, C. A. Silva, S. E. Morón, N. Hoyos, D. A. Ramírez, C. Jaramillo & V. Valencia. 2012a. Arc-continent collision and Orocline formation: Closing of the Central American Seaway. J. Geophys. Res. 117: B04105. Montes, C., A. Cardona, R. R. McFadden, S. Morón, C. A. Silva, S. Restrepo-Moreno, D. Ramírez, N. Hoyos, J. Wilson, D. W. Farris, G. Bayona, C. Jaramillo, V. Valencia, J. Bryan & J.-A. Flores. 2012b. Evidence for Middle Eocene and younger emergence in Central Panama: Implications for Ishtmus closure. Geol. Soc. Amer. Bull. 124: 780– 799. doi: 10.1130/B30528.1. Morón, S., D. Fox, B. Turner, C. Jaramillo, C. Montes & J. Bloch. 2011. Pedogenic index of paleo-precipitation in tropical rain forests. Geol. Soc. Amer. Abstracts with Programs 43: 662. Muller, J. 1959. Palynology of recent Orinoco delta and shelf sediments: Reports of the Orinoco shelf expedition. Micropaleontology 5: 1–32. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Stevens & H. Wagner. 2010. Vegan: Community ecology package. R Project for Statistical Computing. Institute for Statistics and Mathematics of Wirtschaftsuniversität Wien. <http://cran.r-project .org/web/packages/vegan/index.html>. Ornelas, J. F., C. Gonzáles, A. Espinosa de los Monteros, F. Rodríguez-Gómez & L. M. García-Feria. 2013. In and out of Mesoamerica: Temporal divergence of Amazilia hummingbirds pre-dates the orthodox account of the completion of the Isthmus of Panama. J. Biogeogr. 41: 168–181. Pimiento, C., G. Gonzales, A. Hendy, C. Jaramillo, B. MacFadden, C. Montes, S. Suarez & M. Shippritt. 2013a. Early Miocene chondrichthyans from the Culebra Formation, Panama: A window into marine vertebrate faunas before closure the Central American Seaway. J. S. Amer. Earth Sci. 42: 159– 170. Pimiento, C., G. Gonzales-Barba, D. J. Ehret, A. Hendy, B. J. MacFadden & C. Jaramillo. 2013b. Sharks and rays (Chondrichthyes, Elasmobranchii) from the Late Miocene Gatún Formation of Panama. J. Paleontol. 87: 755–774. Pinto-Sanchez, N., R. Ibáñez, S. Madriñán, O. Sanjur, E. Bermingham & A. J. Crawford. 2012. he Great American Biotic Interchange in frogs: Multiple and early colonization of Central America by the South American genus Pristimantis (Anura: Craugastoridae). Molec. Phylogen. Evol. 62: 954–972. Pyke, C. R., R. Condit, S. Aguilar & S. Lao. 2001. Floristic composition across a climatic gradient in a Neotropical lowland forest. J. Veg. Sci. 12: 553–566. Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology 1: 333–342. R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. <http://www.R-project.org>. Retallack, G. J. & M. X. Kirby. 2007. Middle Miocene global change and paleogeography of Panama. PALAIOS 22: 667–679. Rincon, A., J. I. Bloch, C. Suarez, B. J. MacFadden & C. Jaramillo. 2012. New Floridatragulines (Mammalia, Camelidae) from the Early Miocene Las Cascadas Formation, Panama. J. Vertebrate Paleontol. 32: 456–475. Rincon, A., J. I. Bloch, B. J. MacFadden & C. Jaramillo. 2013. First Central American record of Anthracotheriidae (Mammalia, Bothriodontinae) from 183 the Early Miocene of Panama. J. Vertebrate Paleontol. 33: 421–433. Rosenzweig, M. L. 1995. Species Diversity in Space and Time. 3rd edition. Cambridge University Press, Cambridge. Roubik, D. W. & J. M. Camargo. 2012. he Panama microplate, island studies and relictual species of Melipona (Melikerria) (Hymenoptera: Apidae: Meliponini). Syst. Entomol. 37: 189–199. Scheihing, M. H. & H. W. Pfeferkorn. 1984. he taphonomy of land plants in the Orinoco delta: A model for the incorporation of plant parts in clastic sediments of late Carboniferous age of Euramerica. Rev. Palaeobot. Palynol. 41: 205–240. Slaughter, B. H. 1981. A new genus of geomyoid rodent from the Miocene of Texas and Panama. J. Vertebrate Paleontol. 1: 111–115. Stehli, F. G. & D. S. Webb (editors). 1985. he Great American Biotic Interchange. Plenum Press, New York. Tipple, B. J. & M. Pagani. 2007. he early origins of terrestrial C4 photosynthesis. Annual Rev. Earth Planet. Sci. 35: 435–461. Traverse, A. 2007. Paleopalynology, 2nd ed. Springer, Dordrecht. U.S.G.S. (United States Geological Survey). 2004. Shuttle Radar Topography Mission, 30 Arc second scene SRTM_GTOPO_u30_n040W100, unilled, uninished 2.0. Global Land Cover Facility, University of Maryland, College Park. Vaughan, T. W. 1919. Contributions to the geology and paleontology of the Canal Zone, Panama, and geologically related areas in Central America and the West Indies. U.S. Natl. Mus. Bull. 103. U.S. Govt. Print. Of., Washington, D.C. Webb, S. D. 1976. Mammalian faunal dynamics of the Great American Interchange. Paleobiology 2: 220–234. Webb, S. D. 2006. he great American biotic interchange: Patterns and processes. Ann. Missouri Bot. Gard. 93: 245–257. Whitmore, F. C. & R. H. Stewart. 1965. Miocene mammals and Central American seaways. Science 148: 180–185. Wiens, J. J. & M. J. Donoghue. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19: 639–644. Woodburne, M. O. 2010. he Great American Biotic Interchange: Dispersals, tectonics, climate, sea level and holding pens. J. Mammalian Evol. 17: 245–264. 184 PALEOBOTANY AND BIOGEOGRAPHY APPENDIX 1. Species abundances for extant species of the Barro Colorado Island (BCI) 50-ha plot, 2005 census. —Table A. Summary of the number of individuals and species per family. Each family is assigned to a biogeographic province following Gentry’s 1982 classification. —Table B. Species documented from each family and the number of individuals of each. A. Family summary Family Number of individuals (BCI 50-ha plot) Number of species Biogeographic province or major distributional group Acanthaceae 2 1 Gondwana-northern Andean Achariaceae 50 1 Laurasian Adianthaceae — — unassigned Amaranthaceae — — unassigned Anacardiaceae 154 4 Gondwana-Amazonian Annonaceae 609 7 Gondwana-Amazonian Anthocerotaceae — — Apocynaceae 475 4 Aquifoliaceae — — Laurasian Araceae — — Gondwana-northern Andean unassigned Gondwana-Amazonian Araliaceae 68 1 Gondwana-northern Andean Arecaceae 1279 5 Gondwana-Amazonian Asteraceae — — Gondwana-northern Andean Betulaceae — — Laurasian Bignoniaceae 316 3 Blechnaceae — — Bombacoideae 801 7 Gondwana-Amazonian Boraginaceae 628 3 Laurasian Bromeliaceae — — Burseraceae 996 6 Gondwana-Amazonian Byttneroideae — — Gondwana-Amazonian Cabombaceae — — unassigned Caesalpinioideae 473 4 19 1 Laurasian Laurasian Celastraceae Gondwana-southern Andean unassigned Gondwana-northern Andean Gondwana-Amazonian Chloranthaceae — — Chrysobalanaceae 786 4 Gondwana-Amazonian Clusiaceae 214 7 Gondwana-northern Andean 69 2 Gondwana-Amazonian — Gondwana-Amazonian Combretaceae Connaraceae — Cucurbitaceae — — unassigned Cyatheaceae — — unassigned Cyperaceae — — unassigned Dilleniaceae — — Gondwana-Amazonian Dioscoreaceae — — unassigned Dryopteridaceae — — unassigned Ebenaceae 17 1 Gondwana-Amazonian Elaeocarpaceae 67 1 Gondwana-Amazonian Ericaceae Erythroxylaceae — 15 — Gondwana-northern Andean 1 Dry area Gondwanan group 185 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Family Number of individuals (BCI 50-ha plot) Number of species Biogeographic province or major distributional group Euphorbiaceae 745 12 Gondwana-Amazonian Fabaceae — — Gondwana-Amazonian Faboideae 691 13 Gondwana-Amazonian Fagaceae — — Laurasian Gentianaceae — — Laurasian Grewioideae — — Gondwana-Amazonian Humiriaceae — — Gondwana-Amazonian Juglandaceae — — Laurasian Labiatae — — Lacistemataceae 31 1 Laurasian Gondwana-Amazonian Lamiaceae — — unassigned Lauraceae 603 10 Gondwana-Amazonian Lecythidaceae 619 1 Lentibulariaceae — — unassigned Loranthaceae — — Gondwana-northern Andean Lycopodiaceae — — unassigned Lygodiaceae — — unassigned Gondwana-Amazonian Lythraceae 4 1 Laurasian Malpighiaceae 7 1 Gondwana-Amazonian 10 1 unassigned unassigned Malvaceae Malvoideae — — Marattiaceae — — unassigned 5 Laurasian Melastomataceae Meliaceae 85 1939 6 Gondwana-Amazonian Mimosoideae 453 18 Gondwana-Amazonian Monimiaceae 26 2 1139 16 Gondwana-Amazonian Myristicaceae 733 3 Gondwana-Amazonian Myrtaceae 347 7 Gondwana-southern Andean Nyctaginaceae 103 1 Gondwana-northern Andean Nymphaeaceae — — Moraceae Ochnaceae 1 Gondwana-northern Andean unassigned 1 Gondwana-Amazonian Gondwana-Amazonian Olacaceae 299 2 Onagraceae — — Gondwana-southern Andean Ophioglossaceae — — unassigned Phyllanthaceae — — Picramniaceae Piperaceae 37 8 Gondwana-Amazonian 1 unassigned 1 Gondwana-northern Andean Poaceae — — unassigned Podocarpaceae — — Gondwana-southern Andean Polygalaceae — — Polygonaceae 171 3 Gondwana-Amazonian unassigned Polypodiaceae — — unassigned Pteridaceae — — unassigned 1 Laurasian Rhamnaceae 1 186 PALEOBOTANY AND BIOGEOGRAPHY Family Rhizophoraceae Number of individuals (BCI 50-ha plot) Number of species Biogeographic province or major distributional group 97 1 Rubiaceae 3395 13 Gondwana-Amazonian Rutaceae 215 4 Salicaceae 373 10 Sapindaceae 99 6 Gondwana-Amazonian Sapotaceae 348 5 Gondwana-Amazonian Schizaeaceae — — unassigned Selaginellaceae — — unassigned Simaroubaceae 249 2 Gondwana-Amazonian Solanaceae 12 1 Gondwana-southern Andean Staphyleaceae 42 1 Laurasian Sterculiaceae 79 3 Gondwana-Amazonian Gondwana-northern Andean unassigned Laurasian Symplocaceae — — Tetrameristaceae — — Gondwana-Amazonian Tiliaceae 307 4 Gondwana-Amazonian Ulmaceae 61 2 Laurasian Urticaceae 454 4 Gondwana-northern Andean 18 1 unassigned 1 1 Gondwana-Amazonian 12 1 Gondwana-Amazonian Verbenaceae Violaceae Vochysiaceae Laurasian B. Species summary Family Species Acanthaceae Trichanthera gigantea (Bonpl.) Nees Achariaceae Lindackeria laurina C. Presl Number of individuals (BCI 50-ha plot) 2 50 Euphorbiaceae Acalypha diversifolia Jacq. 1 Euphorbiaceae Acalypha macrostachya Jacq. 2 Anacardiaceae Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels 21 Anacardiaceae Astronium graveolens Jacq. 37 71 Euphorbiaceae Adelia triloba (Müll. Arg.) Hemsl. Anacardiaceae Spondias mombin L. Euphorbiaceae Alchornea costaricensis Pax & K. Hoffm. Euphorbiaceae Alchornea latifolia Sw. Anacardiaceae Spondias radlkoferi Donn. Sm. 32 146 1 64 Annonaceae Annona acuminata Saff. Euphorbiaceae Croton billbergianus Müll. Arg. 1 Euphorbiaceae Drypetes standleyi G. L. Webster Annonaceae Annona spraguei Saff. 17 Euphorbiaceae Hieronyma alchorneoides Allemão 40 50 318 Annonaceae Desmopsis panamensis (B. L. Rob.) Saff Annonaceae Guatteria dumetorum R. E. Fr. 11 Euphorbiaceae Hura crepitans L. 95 Annonaceae Mosannona garwoodii Chatrou & Welzenis 17 Euphorbiaceae Margaritaria nobilis L. f. 195 2 187 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Family Species Euphorbiaceae Sapium ‘broadleaf ’ Jacq. Arecaceae Attalea butyracea (Mutis ex L. f.) Wess. Boer Annonaceae Unonopsis pittieri Saff. Euphorbiaceae Sapium glandulosum (L.) Morong Annonaceae Xylopia macrantha Triana & Planch. Number of individuals (BCI 50-ha plot) 2 34 175 17 193 Apocynaceae Aspidosperma spruceanum Benth. ex Müll. Arg. 57 Apocynaceae Lacmellea panamensis (Woodson) Markgr. 55 Fabaceae:Caesalpinioideae Prioria copaifera Griseb. Fabaceae:Caesalpinioideae Schizolobium parahyba (Vell.) S. F. Blake 6 Fabaceae:Caesalpinioideae Senna dariensis (Britton & Rose) H. S. Irwin & Barneby 1 357 Fabaceae:Caesalpinioideae Tachigali versicolor Standl. & L. O. Williams Fabaceae:Mimosoideae Abarema macradenia (Pittier) Barneby & J. W. Grimes 109 1 Fabaceae:Mimosoideae Acacia melanoceras Beurl. 2 Fabaceae:Mimosoideae Cojoba rufescens (Benth.) Britton & Rose Apocynaceae Tabernaemontana arborea Rose Apocynaceae Thevetia ahouai (L.) A. DC. Fabaceae:Mimosoideae Enterolobium schomburgkii (Benth.) Benth. Araliaceae Dendropanax arboreus (L.) Decne. & Planch. 1 362 1 4 68 Arecaceae Astrocaryum standleyanum L. H. Bailey Fabaceae:Mimosoideae Inga acuminata Benth. 160 Arecaceae Oenocarpus mapora H. Karst. Fabaceae:Mimosoideae Inga cocleensis Pittier 2 Fabaceae:Mimosoideae Inga goldmanii Pittier 32 Fabaceae:Mimosoideae Inga laurina (Sw.) Willd. Fabaceae:Mimosoideae Inga marginata Willd. Fabaceae:Mimosoideae Inga nobilis Willd. Fabaceae:Mimosoideae Inga oerstediana Benth. ex Seem. Arecaceae Socratea exorrhiza (Mart.) H. Wendl. Fabaceae:Mimosoideae Inga pezizifera Benth. Bignoniaceae Jacaranda copaia (Aubl.) D. Don Bignoniaceae Tabebuia guayacan (Seem.) Hemsl. Fabaceae:Mimosoideae Inga punctata Willd. 7 Fabaceae:Mimosoideae Inga ruiziana G. Don 4 Fabaceae:Mimosoideae Inga sapindoides Willd. 72 Fabaceae:Mimosoideae Inga spectabilis (Vahl) Willd. 12 Bignoniaceae Tabebuia rosea (Bertol.) DC. 64 Bombacaceae Cavanillesia platanifolia (Bonpl.) Kunth 18 Bombacaceae Ceiba pentandra (L.) Gaertn. 41 Fabaceae:Mimosoideae Inga thibaudiana DC. 45 Fabaceae:Mimosoideae Inga umbellifera (Vahl) Steud. 12 Bombacaceae Ochroma pyramidale (Cav. ex Lam.) Urb. Bombacaceae Pachira quinata ( Jacq.) W. S. Alverson Arecaceae Elaeis oleifera (Kunth) Cortés 21 Bombacaceae Pachira sessilis Benth. 10 Bombacaceae Pseudobombax septenatum ( Jacq.) Dugand 55 767 8 102 71 2 297 21 221 31 8 1 9 188 PALEOBOTANY AND BIOGEOGRAPHY Family Species Bombacaceae Quararibea asterolepis Pittier Boraginaceae Cordia alliodora (Ruiz & Pav.) Oken Boraginaceae Cordia bicolor A. DC. Fabaceae:Papilionoideae Andira inermis (W. Wright) Kunth ex DC. Boraginaceae Cordia lasiocalyx Pittier Burseraceae Protium confusum (Rose) Pittier Fabaceae:Papilionoideae Dipteryx oleifera Benth. Number of individuals (BCI 50-ha plot) 714 57 323 32 248 1 33 Fabaceae:Papilionoideae Erythrina costaricensis Micheli Fabaceae:Papilionoideae Lonchocarpus heptaphyllus (Poir.) DC. 105 18 111 Burseraceae Protium costaricense (Rose) Engl. Burseraceae Protium panamense (Rose) I. M. Johnst. Fabaceae:Papilionoideae Myrospermum frutescens Jacq. 4 Fabaceae:Papilionoideae Ormosia amazonica Ducke 1 Fabaceae:Papilionoideae Ormosia coccinea (Aubl.) Jacks. 6 Burseraceae Protium tenuifolium (Engl.) Engl. 406 Fabaceae:Papilionoideae Ormosia macrocalyx Ducke Fabaceae:Papilionoideae Platymiscium pinnatum ( Jacq.) Dugand 47 399 39 4 Burseraceae Tetragastris panamensis (Engl.) Kuntze Burseraceae Trattinnickia aspera (Standl.) Swart 40 Celastraceae Maytenus schippii Lundell 19 Chrysobalanaceae Hirtella americana L. Chrysobalanaceae Hirtella triandra Sw. 3 765 Chrysobalanaceae Licania hypoleuca Benth. Chrysobalanaceae Licania platypus (Hemsl.) Fritsch Fabaceae:Papilionoideae Platypodium elegans Vogel Fabaceae:Papilionoideae Pterocarpus rohrii Vahl 53 Clusiaceae Calophyllum longifolium Willd. 44 Clusiaceae Chrysochlamys eclipes L. O. Williams Clusiaceae Garcinia intermedia (Pittier) Hammel 11 7 36 3 127 Clusiaceae Garcinia madruno (Kunth) Hammel Fabaceae:Papilionoideae Swartzia simplex var. grandilora (Raddi) R. S. Cowan 219 9 Fabaceae:Papilionoideae Swartzia simplex var. ochnacea (DC.) R. S. Cowan 133 Clusiaceae Marila laxilora Rusby Clusiaceae Symphonia globulifera L. f. 9 20 Clusiaceae Vismia baccifera (L.) Triana & Planch. 2 Combretaceae Terminalia amazonia ( J. F. Gmel.) Exell 27 Combretaceae Terminalia oblonga (Ruiz & Pav.) Steud. 42 Ebenaceae Diospyros artanthifolia Mart. 17 Lacistemataceae Lacistema aggregatum (P. J. Bergius) Rusby Lauraceae Beilschmiedia pendula (Sw.) Hemsl. 31 Lauraceae Cinnamomum triplinerve (Ruiz & Pav.) Kosterm. Lauraceae Nectandra ‘fuzzy’ Rol. ex Rottb. Lauraceae Nectandra cissilora Mez & Rusby 31 Lauraceae Nectandra lineata (Kunth) Rohwer 10 Lauraceae Nectandra purpurea (Ruiz & Pav.) Mez 270 14 1 5 189 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Family Species Number of individuals (BCI 50-ha plot) Lauraceae Ocotea cernua (Nees) Mez 26 Lauraceae Ocotea oblonga (Meisn.) Mez 42 Lauraceae Ocotea puberula (Rich.) Nees Lauraceae Ocotea whitei (Rich.) Nees 183 Lecythidaceae Gustavia superba (Kunth) O. Berg 619 Lythraceae Lafoensia punicifolia DC. Malpighiaceae Spachea membranacea Cuatrec. Malvaceae Hampea appendiculata (Donn. Sm.) Standl. Melastomataceae Miconia afinis DC. Melastomataceae Miconia argentea (Sw.) DC. Melastomataceae Miconia elata (Sw.) DC. 1 Melastomataceae Miconia hondurensis Donn. Sm. 6 Melastomataceae Miconia prasina (Sw.) DC. 1 Meliaceae Cedrela odorata L. Meliaceae Guarea ‘fuzzy’ F. Allam. ex L. Meliaceae Guarea grandifolia DC. Meliaceae Guarea guidonia (L.) Sleumer Meliaceae Trichilia pallida Sw. Meliaceae Trichilia tuberculata (Triana & Planch.) C. DC. 21 4 7 10 6 71 2 49 10 359 90 1429 Monimiaceae Siparuna guianensis Aubl. Monimiaceae Siparuna paucilora (Beurl.) A. DC. 10 Moraceae Brosimum alicastrum Sw. Moraceae Ficus costaricana (Liebm.) Miq. 6 Moraceae Ficus insipida Willd. 1 Moraceae Ficus maxima Mill. 4 Moraceae Ficus obtusifolia Kunth 6 Moraceae Ficus popenoei Standl. 2 Moraceae Ficus tonduzii Standl. 14 16 205 Moraceae Ficus trigonata L. Moraceae Ficus yoponensis Desv. 4 5 Moraceae Maclura tinctoria (L.) D. Don ex Steud. 1 Moraceae Maquira guianensis Aubl. Moraceae Perebea xanthochyma H. Karst. 153 24 Moraceae Poulsenia armata (Miq.) Standl. 630 Moraceae Sorocea afinis Kunth 19 Moraceae Trophis caucana (Pittier) C. C. Berg 45 Moraceae Trophis racemosa (L.) Urb. 20 Myristicaceae Virola multilora (Standl.) A. C. Sm. 26 Myristicaceae Virola sebifera Aubl. 559 Myristicaceae Virola surinamensis (Rol. ex Rottb.) Warb. 148 Myrtaceae Chamguava schippii (Standl.) L. R. Landrum Myrtaceae Eugenia coloradoensis Standl. 6 81 Myrtaceae Eugenia galalonensis (C. Wright ex Griseb.) Krug & Urb. 17 Myrtaceae Eugenia nesiotica Standl. 51 Myrtaceae Eugenia oerstediana O. Berg 187 190 PALEOBOTANY AND BIOGEOGRAPHY Family Species Number of individuals (BCI 50-ha plot) Myrtaceae Myrcia gatunensis Standl. 1 Myrtaceae Psidium friedrichsthalianum (O. Berg) Nied. 4 Nyctaginaceae Guapira standleyana Woodson Ochnaceae Cespedesia spathulata (Ruiz & Pav.) Planch. 1 Olacaceae Heisteria acuminata (Bonpl.) Engl. 7 Olacaceae Heisteria concinna Standl. Picramniaceae Picramnia latifolia Tul. Piperaceae Piper reticulatum L. Polygonaceae Coccoloba coronata Jacq. Polygonaceae Coccoloba manzinellensis Beurl. Polygonaceae Triplaris cumingiana Fisch. & C. A. Mey. Rhamnaceae Colubrina glandulosa Perkins Rhizophoraceae Cassipourea elliptica (Sw.) Poir. 103 292 37 8 21 12 138 1 97 Rubiaceae Alseis blackiana Hemsl. Rubiaceae Amaioua corymbosa Kunth 2 Rubiaceae Chimarrhis parvilora Standl. 2 Rubiaceae Coussarea curvigemmia Dwyer Rubiaceae Coutarea hexandra ( Jacq.) K. Schum. Rubiaceae Faramea occidentalis (L.) A. Rich. 1046 63 1 1909 Rubiaceae Genipa americana L. Rubiaceae Guettarda foliacea Standl. 63 Rubiaceae Macrocnemum roseum (Ruiz & Pav.) Wedd. 24 12 Rubiaceae Posoqueria latifolia (Rudge) Schult. Rubiaceae Psychotria grandis Sw. Rubiaceae Randia armata (Sw.) DC. Rubiaceae Tocoyena pittieri (Standl.) Standl. Rutaceae Zanthoxylum acuminatum (Sw.) Sw. 21 2 245 5 29 Rutaceae Zanthoxylum ekmanii (Urb.) Alain 127 Rutaceae Zanthoxylum panamense P. Wilson 58 Rutaceae Zanthoxylum setulosum P. Wilson Salicaceae Casearia aculeata Jacq. 14 75 1 Salicaceae Casearia arborea (Rich.) Urb. Salicaceae Casearia commersoniana Cambess. 3 Salicaceae Casearia guianensis (Aubl.) Urb. 1 Salicaceae Casearia sylvestris Sw. Salicaceae Hasseltia loribunda Kunth 44 182 Salicaceae Laetia procera (Poepp.) Eichler 15 Salicaceae Laetia thamnia L. 26 Salicaceae Tetrathylacium johansenii Standl. Salicaceae Zuelania guidonia (Sw.) Britton & Millsp. Sapindaceae Allophylus psilospermus Radlk. 28 12 6 7 Sapindaceae Cupania latifolia Kunth Sapindaceae Cupania rufescens Triana & Planch. 2 Sapindaceae Cupania seemannii Triana & Planch. 53 Sapindaceae Talisia nervosa Radlk. 1 191 PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Family Species Number of individuals (BCI 50-ha plot) Sapindaceae Talisia princeps Oliv. Sapotaceae Chrysophyllum argenteum Jacq. 75 3 23 Sapotaceae Chrysophyllum cainito L. Sapotaceae Pouteria fossicola Cronquist Sapotaceae Pouteria reticulata (Engl.) Eyma 2 217 Sapotaceae Pouteria stipitata Cronquist Simaroubaceae Quassia amara L. 31 Simaroubaceae Simarouba amara Aubl. Solanaceae Solanum hayesii Fernald 12 Staphyleaceae Turpinia occidentalis (Sw.) G. Don 42 5 244 Sterculiaceae Guazuma ulmifolia Lam. 38 Sterculiaceae Sterculia apetala ( Jacq.) H. Karst. 30 Sterculiaceae Theobroma cacao L. Tiliaceae Apeiba membranacea Spruce ex Benth. Tiliaceae Apeiba tibourbou Aubl. 16 Tiliaceae Luehea seemannii Triana & Planch. 85 Tiliaceae Trichospermum galeottii (Turcz.) Kosterm. Ulmaceae Celtis schippii Standl. Ulmaceae Trema micrantha (L.) Blume Urticaceae Cecropia insignis Liebm. Urticaceae Cecropia longipes Pittier Urticaceae Cecropia obtusifolia Bertol. Urticaceae Pourouma bicolor Mart. 18 Verbenaceae Aegiphila panamensis Moldenke 18 Violaceae Rinorea sylvatica (Seem.) Kuntze Vochysiaceae Vochysia ferruginea Mart. 11 205 1 42 19 342 3 91 1 12 APPENDIX 2. Description and illustration of pollen and spore morphotypes. Morphologic characteristics of the pollen grains were compared with illustrations and descriptions from literature and summarized in Jaramillo and Rueda (2013). Major nomenclatural usages follow those in Jaramillo and Dilcher (2001). Informal species are those between quotation marks; the most important taxa are illustrated in Plates 1 to 11 and brief descriptions are given below. he taxa encountered and their counts are listed in the Supplementary Appendix (available here: <http://dx.doi.org/10.5479/data.stri.jaramillo -2014.>, as well as in Table 4, where possible natural ainities are provided. We have decided to use a nomenclature using fossil names for each taxon, even when the natural ainities are known. his approach is diferent from that used by Graham in all his publications, where a natural ainity is given as the name of the taxon. We feel that using a fossil taxa naming approach would be more useful when comparing to fossil loras elsewhere in the tropics, where fossil taxa have mostly been used. Also, using natural ainities as the name of a fossil taxon can bring nomenclatural problems in the future because the ainity of a given fossil species can change when further research is done, especially when using SEM and 192 TEM. It would be more practical to have a morphologically based fossil taxon name with a given natural ainity; that is, a hypothesis of relationship can change over time, but the name of the morphotaxon will not. We treated 414 morphological fossil species in this appendix; we describe 241 morphologically, which correspond to informal taxa indicated by quotations marks. he other 173 are published and illustrated taxa but not described and correspond to published species. Grain descriptions follow Graham’s style and organization: fern spores (trilete and monolete), followed by gymnosperms and angiosperms (monocots and eudicots). Descriptions maintain the Graham format: for pollen grains, form, ambitus, group, apertures, sculpture, exine, and size; for spores, ambitus, group, aperture, sculpture, sporodermis, and size, followed by a tentative modern botanical ainity. he illustrations (Plates 1–11, Figs. 1–399) have a graphic scale that corresponds to 1 cm = 10 µm. Exceptions are indicated directly on the corresponding picture with a special scale bar. Additionally, the slide sample number, microscope coordinate (England Finder), and geological formation are given for each illustration in the igure legend. Most of the microphotographs were taken under oil immersion (×100) using a Pixera (San Jose, California, U.S.A.) System Camera coupled to an Olympus (Tokyo, Japan) BH-2 biological scope. he palynological terminology of the original Graham descriptions has been maintained when possible, and complemented with terms proposed by Punt et al. (2007). Abbreviations used in the text are as follows: SL = slide sample, EF = England Finder, Amb = ambitus (pollen polar and spore distal face outlines), af. = similar to, cf. = confer with, Fm. = formation, age = expressed as million years ago (Ma), Ref: = bibliographical reference, ID = identiication number that corresponds to the species ID in the public electronic database of Jaramillo and Rueda at <http://biogeodb.stri.si PALEOBOTANY AND BIOGEOGRAPHY .edu/jaramillo/palynomorph> (Jaramillo & Rueda, 2013). Source of the authorities for extant taxa is Tropicos® (2013). FERNS:TRILETE SPORES Anthocerotaceae (Fig. 1). Amb circular; trilete, laesurae inconspicuous, short, thin; inely scabrate, scabrae < 1 µm long, spores displaying ca. 7 depressions fenestrae-like, fenestrae 9–10 µm in diameter; wall ca. 2.5 µm thick; 31–33 µm. Afinity: Pteridophyta, Anthocerotaceae. Apiculatasporites obscurus. Ref: ID 10011 (Jaramillo & Rueda, 2013); ig. 7 (Graham, 1991a). Ainity: Pteridophyta, Selaginellaceae, Selaginella P. Beauv. Baculatisporites “circularis” (Fig. 2). Amb circular; trilete, laesurae inconspicuous; baculate, baculae slightly dispersed, irregular, sometimes resembling verrucae and short echinae; wall 1 µm thick; ca. 48 µm. Ainity: Pteridophyta. Baculatisporites “triangularis” (Fig. 3). Amb triangular-obtuse-concave; trilete, laesurae irregular, very thin, inconspicuous, extending to spore margin; baculate, baculae variable, ca. 1.5 µm long at proximal surface to < 1 µm at distal surface; wall < 1 µm thick; 30 µm. Ainity: Pteridophyta. Baculatriletes “palmiformis” (Fig. 4). Amb circular to triangular-obtuse-convex; trilete, laesurae wide, opened, extending to spore margin; baculate, baculae conspicuous; wall variable, 3 µm thick at proximal surface and 4 µm thick at distal surface; 51 µm. Ainity: Pteridophyta. Cicatricosisporites “bocatorensis” (Fig. 5). Amb triangular obtuse-convex; trilete; laesurae indistinct; cicatricose; wall 3 µm thick; 46 µm. Ref: igs. 14, 15 (Graham, 1988b). Ainity: Pteridophyta, Pteridaceae, Ceratopteris Brongn. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 193 Cingulatisporites psilatus (Fig. 6). Amb triangularobtuse-concave; trilete, laesurae extending to spore margin, thin, straight; laevigate; wall thin, < 1 µm thick, conspicuous lange present, smooth, ca. 3.5 µm thick, undulating; 26 µm. Ref: ID 10130 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. spore, straight; foveolate-reticulate, foveolae resembling lumina pattern, variable in shape and size, muri ca. 5 µm wide; wall 5 µm thick, irregular; ca. 74 µm. Ref: ID 10044 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Lygodiaceae, Lygodium microphyllum (Cav.) R. Br. Cingulatisporites “pteriformis” (Fig. 7). Amb triangular-obtuse-convex; trilete, laesurae extending 3/4 of the distance to spore margin, marginate, margo thick, conspicuous lange present, smooth, 7 µm wide at lateral margins and 5 µm wide at apical margins; laevigate to slightly reticulate; wall 3.5 µm thick at distal surface; 33 µm. Ainity: Pteridophyta, Pteridaceae, Pteris L. Cyatheaceae (Alsophila). Ref: igs. 8–11 (Graham, 1991a). Ainity: Pteridophyta, Cyatheceae, Alsophila R. Br. Cingulatisporites “rugulatus.” Ref: ID 10443 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Cingulatisporites “verrutiformis” (Fig. 8). Amb triangular-obtuse-convex; trilete, laesurae straight, extending to spore margin, spore surrounded by a smooth lange, ca. 5 µm thick; verrucate, verrucae uniform, dense; wall 1 µm thick; 38 µm. Afinity: Pteridophyta. Concavissimisporites fossulatus (Fig. 9). Amb triangular-obtuse-concave; trilete, laesurae as wide as proximal face; reticulate, brochi variable, resembling foveolate pattern; wall thin, ca. 1 µm thick, surrounded by an irregular smooth lange; 33 µm. Ref: ID 10322 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Cyatheaceae (Cnemidaria). Ref: igs. 12, 13 (Graham, 1991a). Ainity: Pteridophyta, Cyatheceae, Cnemidaria C. Presl. Cyatheaceae (Type 1). Ref: ig. 14 (Graham, 1991a). Ainity: Pteridophyta, Cyatheceae Type 1. Cyatheaceae (Type 2). Ref: igs. 15–17 (Graham, 1991a). Ainity: Pteridophyta, Cyatheceae Type 2. Cyatheacidites annulatus (Fig. 12). Amb circular; trilete; laesurae undulating, extending to spore margin, marginate, margo thin, subtle, laesurae having conspicuous torus; laevigate; wall 1–1.2 µm thick, surrounded by a smooth lange ca. 7 µm thick; 53 µm. Ref: ID 10065 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Dicksoniaceae, Lophosoria C. Presl. Cyathidites “typicus.” Ref: igs. 7–9 (Graham, 1988a). Ainity: Pteridophyta, Cyatheceae, Cyathea Sm. Concavissimisporites “kyrtomatus” (Fig. 10). Amb triangular-obtuse-concave; trilete, laesurae marginate, extending to spore margin; laevigate at lateral margins and slightly verrucate at apical margins, displaying the kyrtomate condition; wall ca. 2 µm thick; 19 µm. Ainity: Pteridophyta. Distaverrusporites “usmensis” (Fig. 13). Amb circular to slightly triangular-obtuse-convex; trilete, laesurae extending to spore margin, straight, ca. 3 µm thick; verrucate, verrucae uniform, dense, generally 3–5 µm in diameter; wall 1 µm thick; 40 µm. Ref: ID 10508 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Crassoretitriletes vanraadshoovenii (Fig. 11). Amb circular; trilete, laesurae extending 2/3 length of Echinatisporis muelleri. Ref: ID 10043 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. 194 Echitriletes “minispinosus” (Figs. 14, 15). Amb circular to triangular-obtuse-convex; trilete, laesurae irregular, extending to spore margin; echinate, echinae < 1 µm long, uniform; wall < 1 µm thick; ca. 14 µm. Ainity: Pteridophyta. Echitriletes “minutuechinulatus” (Fig. 16). Amb triangular-obtuse-straight; trilete, laesurae extending to spore margin; echinate, echinae variable, 0.5–1.9 × 0.5–1 µm, conical to cylindrical, pointed-blunted ends, densely distributed; wall 0.8 µm thick; 47 µm. Ainity: Pteridophyta. Echitriletes “selaginelloides” type “bacularis” (Figs. 17, 18). Amb triangular-obtuse-convex; trilete, laesurae extending to spore margin, thin, marginate, margo thin, inconspicuous; echinate, echinae irregular, having projections resembling baculae and clavae types, 2–5 µm long; wall 1 µm thick; 16.5 µm. Ainity: Pteridophyta, Selaginellaceae, Selaginella. Echitriletes “selaginelloides” type “bifurcatus” (Figs. 19, 20). Amb circular; trilete, laesurae inconspicuous; baculate-echinulate, sculptural elements vari- PALEOBOTANY AND BIOGEOGRAPHY able in shape and size, sometimes bifurcated; wall 2.5 µm (excluding ornamentation); ca. 23 µm. Ainity: Pteridophyta, Selaginellaceae, Selaginella. Echitriletes “selaginelloides” type “echiplanatus” (Figs. 21, 22). Amb triangular-acute-convex; trilete, laesurae inconspicuous, masked by ornamentation; echinate, echinae variable in size and shape; 18 µm. Ainity: Pteridophyta, Selaginellaceae, Selaginella. Echitriletes “selaginelloides” type “muelleri” (Figs. 23, 24). Amb triangular-obtuse-convex; trilete, laesurae extending to spore margin, marginate, margo thin, irregular; echinate, echinae variable, 1–5 µm long, dense on proximal surface, apparently verrucate on distal surface; wall 1 µm thick; ca. 29 µm (excluding sculptural elements). Ainity: Pteridophyta, Selaginellaceae, Selaginella. Echitriletes “selaginelloides” type “regularis” (Figs. 25, 26). Amb triangular-obtuse-convex; trilete, laesurae thin, inconspicuous, marginate; echinate, echinae 2 × 2 µm, conical, acute ends; wall 1.5 µm thick; 21 µm. Ainity: Selaginellaceae, Selaginella. PLATE 1. Figures 1–26. 1. Anthocerotaceae SL G27/1, EF F18, Shark Hole Point Fm. –4.6 Ma. 2. Baculatisporites “circularis” SL 6, EF K-20/2, Chucunaque Fm. –6.95 Ma. 3. Baculatisporites “triangularis” SL 174, EF H-35/2, Escudo Veraguas Fm. –2.05 Ma. 4. Baculatriletes “palmiformis” SL 174, EF M-36/4, Escudo Veraguas Fm. –2.05 Ma. 5. Cicatricosisporites “bocatorensis” SL 196, EF G-28, Shark Hole Point Fm. –4.6 Ma. 6. Cingulatisporites psilatus SL 6, EF Y15-2, Gatun Fm. –5.6 Ma. 7. Cingulatisporites “pteriformis” SL G26-1, EF D-17, Gatun Fm. –10.02 Ma. 8. Cingulatisporites “verrutiformis” SL 18, EF U-41/2, Gatun Fm. –9.4 Ma. 9. Concavissimisporites fossulatus SL 68, EF V-17/4, Gatun Fm. –5.6 Ma. 10. Concavissimisporites “kyrtomatus” SL 307, EF L3-2, Gatun Fm. –5.6 Ma. 11. Crassoretitriletes vanraadshoovenii SL 6, EF G-24/3, Chucunaque Fm. –6.95 Ma. 12. Cyatheacidites annulatus SL G27-2, EF H-7/2, Gatun Fm. –9.4 Ma. 13. Distaverrusporites “usmensis” SL 75.5, EF P-12, Culebra Fm. –19.20 Ma. 14, 15. Echitriletes “minispinosus” SL 65, EF H-15/2-4, Cayo Agua Fm. –4.25 Ma. 16. Echitriletes “minutuechinulatus” SL 186, EF J-41, Gatun Fm. –9.6 Ma. 17, 18. Echitriletes “selaginelloides” type “bacularis” SL G27-2, EF S-47/3, Tuira Fm. –10.15 Ma. 19, 20. Echitriletes “selaginelloides” type “bifurcatus” SL G27-1, EF L-5/4, Gatun Fm. –8.9 Ma. 21, 22. Echitriletes “selaginelloides” type “echiplanatus” SL 167, EF X-22, Tuira Fm. –12.6 Ma. 23, 24. Echitriletes “selaginelloides” type “muelleri” SL 175, EF V-6/2-4, Gatun Fm. –8.9 Ma. 25, 26. Echitriletes “selaginelloides” type “regularis” SL 178, EF F-23/4=F24/3, Tuira Fm. –12.6 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 195 196 Fossutriletes “communis” (Figs. 27, 28). Amb triangular-acute-convex; trilete, laesurae 15 µm long, almost extending to spore margin, marginate, margo 1.8 µm thick; fossulate at distal surface and laevigate at proximal surface; wall 1 µm thick; 27 µm. Ainity: Pteridophyta. Fossutriletes “guapissimus” (Figs. 29, 30). Amb triangular-obtuse-convex; trilete, laesurae extending to spore margin; fossulate to foveolate at distal surface, laevigate at proximal surface; wall 2.5 µm thick; 32 µm. Ainity: Pteridophyta. Foveotriletes “arrugatus” (Figs. 31, 32). Amb triangular-acute-straight; trilete, laesurae extending to spore margin; foveolate, foveolae 1 µm wide; wall 3 µm thick; 32 µm. Ainity: Pteridophyta, Ophioglossaceae, Ophioglossum L. Foveotriletes “laterodepressus” (Fig. 33). Amb triangular-obtuse-convex; trilete, laesurae straight, almost extending to spore margin, marginate, margo irregular, undulating; foveolate, foveolae 1 µm wide; wall 2 µm thick; ca. 37 µm. Ainity: Pteridophyta. PALEOBOTANY AND BIOGEOGRAPHY Foveotriletes ornatus Ref: igs. 26–28 (Graham, 1991a). Ainity: Pteridophyta, trilete fern spores Type 1 & 2. Foveotriletes af. ornatus (Fig. 34). Amb triangularobtuse-convex; trilete, laesurae straight, acute ends, marginate, margo thin, subtle; foveolate, foveolae resembling punctate pattern, perforations ca. 1 µm in diameter, dispersed; wall < 1 µm thick; 37 µm. Ainity: Pteridophyta. Foveotriletes “proximopsilatus.” Ref: igs. 1–3 (Graham, 1988a). Ainity: Pteridophyta, Lycopodiaceae, Lycopodium L. Foveotriletes “pseudoornatus” (Fig. 35). Amb triangular-obtuse-concave; trilete, laesurae thin, extending to spore margin, distinct; foveolate, foveolae 1 µm wide; wall 2 µm thick; ca. 28 µm. Ref: ID 10505 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Grammitisporites “verruminutus” (Fig. 36). Amb circular; trilete, laesurae extending to spore margin, masked by margo, marginate, margo thick, PLATE 2. Figures 27–54. 27, 28. Fossutriletes “communis” SL G26-1, EF M-11, Gatun Fm. –9.6 Ma. 29, 30. Fossutriletes “guapissimus” SL 184, EF E-15/4, Tuira Fm. –10.15 Ma. 31, 32. Foveotriletes “arrugatus” SL 370, EF T-62, Tuira Fm. –12.6 Ma. 33. Foveotriletes “laterodepressus” SL 2172, EF N-22, Escudo de Veraguas Fm. –2.75 Ma. 34. Foveotriletes aff. ornatus SL G27-2, EF W-7/2, Tuira Fm. –10.15 Ma. 35. Foveotriletes “pseudoornatus” SL Cucaracha 76, EF E-50/2, Cucaracha Fm. –18.85 Ma. 36. Grammitisporites “verruminutus” SL 204b, EF L-27/3, Gatun Fm. –8.47 Ma. 37. Kuylisporites “irregularis” SL 174, EF J-18/2, Gatun Fm. –9.6 Ma. 38. Kuylisporites “multiorodate” SL 187, EF V-24, Cayo Agua Fm. –4.25 Ma. 39. Kuylisporites waterbolki SL G26-1, EF N-19/4, Tuira Fm. –10.15 Ma. 40, 41. Lycopodiumsporites “clavaelongatus” SL 2172, EF Y-47, Escudo Veraguas Fm. –2.75 Ma. 42, 43. Lycopodiumsporites “clavatus” SL 1253, EF C-26/4=D-26/2, Tuira Fm. –6.95Ma. 44. Nijssenosporites fossulatus SL G27-1, EF C-16/2, Culebra Fm. –19.40 Ma. 45. Nijssenosporites “pteridoides” SL G27-1, EF C-15, Tuira Fm. –10.15 Ma. 46, 47. Polypodiaceoisporites fossulatus SL 176, EF Q-10/2, Gatun Fm. –9.6 48. Polypodiaceoisporites “reticulatus” SL G26-1, EF T-13/3, Tuira Fm. –12.6 Ma. 49, 50. Psilatriletes lobatus SL 174, EF L-15/2, Cayo Agua Fm. –3.55 Ma. 51. Psilatriletes sp. < 25 µm SL 27-1, EF C-9, Culebra Fm. –19.46 Ma. 52, 53. Psilatriletes sp. 25–50 µm SL G26-1, EF K-17, Culebra Fm. –19.46 Ma. 54. Psilatriletes sp. > 50 µm SL 174, EF M-9/2, Escudo Veraguas Fm. –2.5 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 197 198 irregular, broken, subtle lange present, smooth; verrucate, verrucae variable; wall ca. 2 µm thick; ca. 41 µm. Ref: ig. 19 (Graham, 1991a). Ainity: Pteridophyta, Polypodiaceae, Grammitis Sw. Kuylisporites “irregularis” (Fig. 37). Amb triangularobtuse-convex; trilete, laesurae extending almost to spore margin, marginate, margo 3.5 µm thick, rounded ends; laevigate; spores displaying irregular perisporium, undulating, cribate, having dispersed and rounded perforations variable in size, ca. 4 µm wide; wall variable, 1.5–2 µm thick; 30 µm. Ainity: Pteridophyta, Cyatheaceae, Cnemidaria. Kuylisporites “multiorodate” (Fig. 38). Amb triangular-obtuse-convex; trilete, structure complex, laesurae thin, straight, marginate, margo delimited by sculptural elements; foveolate, resembling areolate condition; wall 3.5 µm thick; 39 µm. Ainity: Pteridophyta, Cyatheaceae. Kuylisporites waterbolki (Fig. 39). Amb triangularobtuse-convex; trilete, laesurae extending to spore margin, marginate, margo thin at ends, increasing at center; laevigate, having irregular and scarce perforations resembling fossulate pattern; spores surrounded by a conspicuous smooth lange, thin at apices, up to 5 µm thick at center, displaying ample apertures as pore-like, ca. 10 µm wide, annulate, sometimes up to three pores laterally; wall 1 µm thick; 35 µm. Ref: ID 10352 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Cyatheaceae, Hemitelia R. Br./Cnemidaria types. Lycopodiaceae. Ref: ig. 2 (Graham, 1991a). Afinity: Pteridophyta, Polypodiaceae, Lycopodiaceae, Lycopodium Type 1. Lycopodiaceae. Ref: ig. 3 (Graham, 1991a). Afinity: Pteridophyta, Polypodiaceae, Lycopodiaceae, Lycopodium Type 2. Lycopodiaceae. Ref: igs. 4, 5 (Graham, 1991a). Ainity: Pteridophyta, Polypodiaceae, Lycopodiaceae, Lycopodium Type 3. PALEOBOTANY AND BIOGEOGRAPHY Lycopodiaceae. Ref: ig. 6 (Graham, 1991a). Afinity: Pteridophyta, Polypodiaceae, Lycopodiaceae, Lycopodium Type 4. Lycopodiumsporites “clavaelongatus” (Figs. 40, 41). Amb triangular-obtuse-convex; trilete, laesurae extending almost to spore margin; reticulate, apparently perisporium present, echinate, echinae irregular; wall 1 µm thick; ca. 28 µm. Ainity: Pteridophyta. Lycopodiumsporites “clavatus” (Figs. 42, 43). Amb triangular-obtuse-convex to circular; trilete, laesurae extending to spore margin; reticulate resembling the lopho-reticulate condition, apparently perisporium present, echinate, echinae irregular, thin, acute ends; 23 µm. Ainity: Pteridophyta, Lycopodiaceae, Lycopodium clavatum L. Lycopodiumsporites “morenoi.” Ref: ID 10507 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Lycopodiaceae. Lycopodiumsporites sp. Ref: ID 10476 ( Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Lycopodiaceae. Magnastriatites grandiosus. Ref: ID 10045 (Jaramillo & Rueda, 2013); ig. 20 (Graham, 1991a). Ainity: Pteridophyta, Pteridaceae, Ceratopteris. Matonisporites mullerii. Ref: ID 10363 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Nijssenosporites fossulatus (Fig. 44). Amb triangularobtuse-convex; trilete, laesurae extending to spore margin, thin, marginate, margo straight, conspicuous lange present, smooth, 4.5 µm thick, displaying external vestigial membrane; rugulate, rugulae thick, wide, sinuous, irregularly rounded at proximal surface, compressed at distal surface; wall 3 µm thick; ca. 38 µm. Ref: ID 10216 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Adianthaceae, Pityrogramma Link. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Nijssenosporites “pteridoides” (Fig. 45). Amb triangular-obtuse-convex, rounded apices; trilete, laesurae extending to spore margin, thin, subtle, irregular, undulating, conspicuous lange present, scabrate, 8 µm wide; rugulate, rugulae thick, wide, sinuous, irregularly rounded at proximal surface, compressed at distal surface; wall 3 µm thick; ca. 47 µm. Ainity: Pteridophyta, Pteridaceae, Pityrogramma. Ophioglossaceae (Ophioglossum). Ref: ig. 18 (Graham, 1991a). Ainity: Pteridophyta, Ophioglossaceae, Ophioglossum. Planisporites sp. 2. Ref: ID 10013 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Polypodiaceoisporites fossulatus (Figs. 46, 47). Amb triangular-obtuse-concave; trilete, laesurae extending to spore margin, undulating, having conspicuous and irregular verrucae around; verrucate, verrucae lat; wall ca. 1 µm thick, surrounded by smooth lange, ca. 4.5 µm thick; 30–34 µm. Ainity: Pteridophyta. Polypodiaceoisporites? fossulatus. Ref: ID 10041 (Jaramillo & Rueda, 2013); ig. 21 (Graham, 1991a). Ainity: Pteridophyta, Pteridaceae, Pteris Type 1. Polypodiaceoisporites “reticulatus” (Fig. 48). Amb triangular-obtuse-convex; trilete, laesurae wide, triangular, having verrucate processes on margins; laevigate, presence of perisporium on distal surface, reticulate, variable in size; wall ca. 4 µm thick; 39 µm. Ainity: Pteridophyta. Psilatriletes “brevilaesuratus.” Ref: ID 10503 (Jaramillo & Rueda, 2013); igs. 18, 20 (Graham, 1988a), ig. 14 (Graham, 1989). Ainity: Pteridophyta, Pteridaceae, Antrophyum Kaulf. Psilatriletes “enormis.” Ref: ID 10504 (Jaramillo & Rueda, 2013); igs. 5, 6, 11, 12, 17 (Graham, 1988a). Ainity: Pteridophyta, Lygodiaceae, Lygodium Sw. 199 Psilatriletes lobatus (Figs. 49, 50). Amb triangularrounded; trilete, laesurae inconspicuous, thin, short, masked by lange; laevigate; lange variable in size, ca. 1–6 µm thick; wall 1.5 µm thick, surrounded by irregular, undulating, scabrate lange; 30 µm. Ref: ID 10325 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Psilatriletes peruanus. Ref: ID 10326 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Pteridaceae, Jamesonia Hook. & Grev., Pteris rangiferina Pr. & Miq. Psilatriletes sp. < 25 µm. (Fig. 51). Amb triangular-obtuse-straight; trilete, laesurae thin, straight, extending 3/4 of the distance to spore margin; laevigate, slightly echinulate at angular areas, resembling a subtle lange; wall 1 µm thick; 22 µm. Ref: ID 10019 (Jaramillo & Rueda, 2013). Afinity: Pteridophyta. Psilatriletes sp. 25–50 µm. (Figs. 52, 53). Amb triangular-obtuse-straight; trilete, laesurae thin, straight, extending to spore margin, marginate, margo thin at apex and thick at inter-radius areas; laevigate, having subtle granular perispori; wall 2.5 µm thick; 26 µm. Ref: ID 10020 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Cyatheaceae, Cyathea. Psilatriletes sp. > 50 µm. (Fig. 54). Amb triangularobtuse-convex; trilete, laesurae thin, extending to spore margin, marginate, margo 5 µm wide; laevigate; wall 2.5 µm thick; 65 × 47 µm (distal face). Ref: ID 10021 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Pteridaceae (Type 1). Ref: ig. 21 (Graham, 1991a). Ainity: Pteridophyta, Pteridaceae, PterisType 1. Pteridaceae (Type 2). Ref: ig. 22 (Graham, 1991a). Ainity: Pteridophyta, Pteridaceae, PterisType 2. 200 Pteridaceae (Type 3). Ref: ig. 23 (Graham, 1991a). Ainity: Pteridophyta, Pteridaceae, PterisType 3. Pteridaceae (Type 4). Ref: ig. 24 (Graham, 1991a). Ainity: Pteridophyta, Pteridaceae, PterisType 4. Pteridaceae (Type 5). Ref: ig. 25 (Graham, 1991a). Ainity: Pteridophyta, Pteridaceae, PterisType 5. Retitriletes sommeri. Ref: ID 10052 (Jaramillo & Rueda, 2013); igs. 15, 16 (Graham, 1988a). Afinity: Pteridophyta, Lycopodiaceae, trilete fern spores Type 3. Rugulatisporites “irregularis” (Fig. 55). Amb triangular-obtuse-convex; trilete, laesurae straight, extending 2/3 of the distance to spore margin, acute ends, marginate, margo wider at vertices; laevigate, presence of subtle, irregular and persistent perisporium, rugulate; wall < 1 µm thick; 33 µm. Ainity: Pteridophyta. PALEOBOTANY AND BIOGEOGRAPHY Rugulatisporites “minutus” (Figs. 56, 57). Amb triangular-obtuse-convex; trilete, laesurae inconspicuous; rugulate, rugulae irregular, thick, short; wall 2 µm thick; 14 µm. Ainity: Pteridophyta. Scabratriletes “complicatus” (Fig. 58). Amb circular; trilete, laesurae thin, sinuous, acute ends, extending to spore margin, marginate, margo coarse; baculate, baculae small, thin, < 1 µm thick; wall < 1 µm thick; 47 µm. Ainity: Pteridophyta. Selaginellasporites “crestatus” (Figs. 59, 60). Amb triangular-obtuse-convex; trilete, laesurae wide, triangular, extending 2/3 of the distance to spore margin, margins with small granules; laevigate, lange present, displaying margins irregular and serrate to baculate, ca. 4 µm thick; wall < 1 µm thick; 26 × 23 µm (distal face). Ainity: Pteridophyta, Selaginellaceae, Selaginella. Selaginellasporites “psilatus” (Figs. 61, 62). Amb circular; trilete, laesurae irregular, thin, sinuous, extending 3/4 of the distance to spore margin; laevigate; wall 1 µm thick; 16.5 µm. Ainity: Pteridophyta, Selaginellaceae, Selaginella. PLATE 3. Figures 55–86. 55. Rugulatisporites “irregularis” SL G27-2, EF E-19, Gatun Fm. –8.9 Ma. 56, 57. Rugulatisporites “minutus” SL 61, EF N-45/1=2, unnamed Fm. –2.65 Ma. 58. Scabratriletes “complicatus” SL G26-1, EF P-50, Gatun Fm. –8.9 Ma. 59, 60. Selaginellasporites “crestatus” SL 6, EF J-22/2, Gatun Fm. –9.6 Ma. 61, 62. Selaginellasporites “psilatus” SL 174, EF R-36/3, Gatun Fm. –9.6 Ma. 63, 64. Selaginellasporites “variechinatus” SL 391, EFS-20=T-20, Gatun Fm. –10.05 Ma. 65. Striatriletes “saccolomicites” SL 391, EF T-7/2=4, Tuira Fm. –10.15 Ma. 66. Verrucatotriletes etayoi SL G26-1, EF L40/4=L41/3, Tuira Fm. –10.15 Ma. 67. Verrutriletes “densiverrucatus” SL G27-1, EF E-17, Gatun Fm. –10.05 Ma. 68. Verrutriletes “magnoviruelensis” SL Culebra 12.75, EF P-39/2, Culebra Fm. –19.13 Ma. 69, 70. Verrutriletes “perforatus” SL 5a, EF F-7/4=G-7/2, Gatun Fm. –5.6 Ma. 71, 72. Verrutriletes “uniformis” SL 61, EF Q-20/4, Tuira Fm. –12.6 Ma. 73. Verrutriletes “variverrucatus” SL 177, EF K-22/4=K-23/3, Gatun Fm. –8.9 Ma. 74, 75. Echinomonoletes “amplimarginatus” SL 6, EF G-17/1, Gatun Fm. –8.4 Ma. 76, 77. Echinomonoletes “bifurcatus” SL 20, EF P-21/1, Gatun Fm. –10.0 Ma. 78. Echinomonoletes “hirsutus” SL G26-1, EF L-44, Tuira Fm. –10.15 Ma. 79. Echinomonoletes “megaechinatus” SL G27-1, EF C-15/4, Tuira Fm. –10.15 Ma. 80, 81. Echinomonoletes “sphericus” SL G27-2, EF E-36/1=D-36/3, Tuira Fm. –10.15 Ma. 82. Laevigatosporites “magnus” SL 1556, EF T-48/4, Tuira Fm. –6.95 Ma. 83, 84. Perinomonoletes “aciculiformis” SL 1253, EF Q-11/4, Tuira Fm. –12.6 Ma. 85. Perinomonoletes “microechinulatus” SL 193, EF L-17/2, Tuira Fm. –10.15 Ma. 86. Perinomonoletes “minispinosus” SL 349, EF J-15/4, Cayo Agua Fm. –4.25 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 201 202 Selaginellasporites “variechinatus” (Figs. 63, 64). Amb triangular-obtuse-convex; trilete, laesurae extending to spore margin, marginate, margo ca. 1.5 µm wide, radius 8 µm long; laevigate at proximal surface and echinate at distal surface, echinae 1 µm long, 0.5 µm apart, rounded ends, resembling small baculae; wall 1.5 µm thick; 17 µm. Ainity: Pteridophyta, Selaginellaceae, Selaginella. Striatriletes “saccolomicites” (Fig. 65). Amb triangular-obtuse, slightly convex; trilete, laesurae extending 2/3 of the distance to spore margin, straight, thin, marginate, margo wide, straight; rugulate, rugulae variable in size; wall 2.5 µm thick; 44 µm. Ainity: Pteridophyta, Dennstaedtiaceae, Saccoloma Kaulf. Trilete fern spore Type 1. Ref: ig. 26, 27 (Graham, 1991a). Ainity: Pteridophyta. Trilete fern spore Type 2. Ref: ig. 28 (Graham, 1991a). Ainity: Pteridophyta. Undulatisporites “undulapolus.” Ref: ID 10202 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Verrucatotriletes etayoi (Fig. 66). Amb triangularobtuse-convex; trilete, laesure thin, straight extending to spore margin, masked by ornamentation; verrucate, verrucae dense, variable, ca. 2–3 × 5–9 µm; wall 2.5 µm thick; 34–36 µm. Ref: ID 10323 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Verrutriletes “densiverrucatus” (Fig. 67). Amb circular; trilete, laesurae thin, extending to spore margin, margins bordered by conspicuous gemmae; gemmate, gemmae irregular, < 1 µm long, grouped in patches resembling “rosettes”; wall 1 µm thick; 38 µm. Ainity: Pteridophyta. Verrutriletes “magnoviruelensis” (Fig. 68). Amb circular to slightly triangular-obtuse-convex; trilete, PALEOBOTANY AND BIOGEOGRAPHY laesurae extending to spore margin, straight, ca. 2 µm thick, ends pointed, masked by sculptural elements; verrucate, verrucae variable, 3–4 µm wide, densely distributed over spore surface; wall 2 µm thick; 43 µm. Ref: ID 10330 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Verrutriletes “perforatus” (Figs. 69, 70). Amb circular to slightly triangular-obtuse-convex; trilete, laesurae extending to spore margin, straight, marginate; verrucate, verrucae prominent, dense, uniform, resembling the microreticulate pattern; wall 1 µm thick; 28 × 19 µm (distal face). Ainity: Pteridophyta. Verrutriletes “uniformis” (Figs. 71, 72). Amb circular to triangular-obtuse-convex; trilete, laesurae thin, inconspicuous, extending almost to spore margin; probably laevigate, spores having lange, ca. 3.5 µm thick, lange gemmate, gemmae irregular, dense; wall 1 µm thick; 17 µm. Ainity: Pteridophyta. Verrutriletes “variverrucatus” (Fig. 73). Amb triangular-obtuse-concave; trilete, laesurae extending to spore margin, slightly marginate, margo straight; verrucate, verrucae variable, small, elongated, scarce, disperse on spore surfaces; wall ca. 1 µm thick, becoming wider at interangular areas; 25–27 µm. Ainity: Pteridophyta. Verrutriletes sp. Ref: ig. 19 (Graham, 1988a). Afinity: Trilete fern spore Type 4. FERNS: MONOLETE SPORES Dryopteridaceae (Ctenitis). Ref: ig. 29 (Graham, 1991a). Ainity: Pteridophyta, Dryopteridaceae, Ctenitis (C. Chr.) C. Chr. Dryopteridaceae Type 1. Ref: ig. 29 (Graham, 1991a). Ainity: Pteridophyta, Dryopteridaceae Type 1. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Dryopteridaceae Type 2. Ref: ig. 30 (Graham, 1991a). Ainity: Pteridophyta, Dryopteridaceae Type 2. Dryopteridaceae Type 3. Ref: ig. 31 (Graham, 1991a). Ainity: Pteridophyta, Dryopteridaceae Type 3. Echinosporis “panamensis.” Ref: ID 10290 (Jaramillo & Rueda, 2013); ig. 21 (Graham, 1988a). Ainity: Pteridophyta, Marattiaceae, Danaea Sm. Echinomonoletes “amplimarginatus” (Figs. 74, 75). Biconvex; monolete, laesurae wide, extending 2/3 of the distance to spore margin, marginate, margo thin, inconspicuous; echinate, echinae acute, wide at base, irregular; 28 × 26 µm (proximal face). Ainity: Pteridophyta. 203 Laevigatosporites “magnus” (Fig. 82). Circular; monolete, laesurae extending 3/4 of the distance to spore margin, marginate, margo 3.5 µm thick; laevigate; wall 3 µm thick; 62 × 48 µm (distal face). Ainity: Pteridophyta. Laevigatosporites tibuensis. Ref: ID 10009 (Jaramillo & Rueda, 2013); igs. 32, 33 (Graham, 1991a). Ainity: Monolete fern spores Types 1 & 2. Monolete fern spore Type 1. Ref: ig. 32 (Graham, 1991a). Ainity: Pteridophyta. Monolete fern spore Type 2. Ref: ig. 33 (Graham, 1991a). Ainity: Pteridophyta. Monolete fern spore Type 3. Ref: ig. 34 (Graham, 1991a). Ainity: Pteridophyta. Echinomonoletes “bifurcatus” (Figs. 76, 77). Plane-convex; monolete; echinate, echinae 2–5 µm long, irregular ends, crest-like; wall 2 µm thick; 30 × 20 µm (lateral face). Ainity: Pteridophyta. Monolete fern spore Type 4. Ref: ig. 35 (Graham, 1991a). Ainity: Pteridophyta. Echinomonoletes “hirsutus” (Fig. 78). Reniform; monolete; echinate, echinae 1.5–2 µm long, < 1 µm wide, densely distributed on surface; wall 1.5 µm thick; 33 µm. Ainity: Pteridophyta. Perinomonoletes “aciculiformis” (Figs. 83, 84). Reniform; monolete, laesurae inconspicuous, extending 3/4 of the distance to spore margin; laevigate, spores having perisporium, echinate, undulating, irregular, resembling a reticulate pattern; wall 1 µm thick; 20 × 30 µm (distal face). Ainity: Pteridophyta, Aspleniaceae, Asplenium L. Echinomonoletes “megaechinatus” (Fig. 79). Biconvex; monolete, extending half the distance to spore margin, thin, inconspicuous; echinate, echinae 5 µm long, dense; wall 2 µm thick; 33 µm. Ainity: Pteridophyta, Polypodiaceae. Echinomonoletes “sphericus” (Figs. 80, 81). Planeconvex; monolete; echinate, echinae 2 × 1 µm, acute ends; wall < 1 µm thick; 22 µm. Ainity: Pteridophyta. Laevigatosporites catanejensis. Ref: ID 10219 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Monolete fern spore Type 5. Ref: ig. 36 (Graham, 1991a). Ainity: Pteridophyta. Perinomonoletes “microechinulatus” (Fig. 85). Biconvex; monolete, laesurae extending 2/3 of the distance to spore margin, ca. 21 × 3 µm; laevigate, spores having a thin perisporium, echinulate, translucid; wall ca.1 µm thick; 32 × 22 µm (distal face). Ainity: Pteridophyta. Perinomonoletes “minispinosus” (Fig. 86). Biconvex; monolete, laesurae extending to spore margin, echinate, echinae < 1 µm long, thin; wall ca. 204 1 µm thick; ca. 52 × 35 µm (distal face). Ainity: Pteridophyta. Perinomonoletes “minutus” (Fig. 87). Plane-convex; monolete, laesurae inconspicuous; laevigate, spores having perisporium, ca. 1 µm thick, irregular, sessile, resembling the striate pattern; wall 1 µm thick; 26 × 18 µm (distal face). Ainity: Pteridophyta. Perinomonoletes “pseudoreticulatus” (Fig. 88). Plane-convex; monolete, laesurae simple, extending 2/3 of the distance to spore margin; laevigate, spores having perisporium, irregular, sessile, echinate, echinae 2 µm long, acute ends, resembling a reticulate pattern; wall 1.8–2.4 µm thick; 20 × 14 µm (distal face). Ainity: Pteridophyta. Perinomonoletes “reticuloacicularis.” Ref: ID 10350 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Polypodiisporites af. echinatus (Fig. 89). Biconvex; monolete, laesurae extending 2/3 of the distance to spore margin, thin; laevigate; subtle lange present, echinate, echinae irregular, variable, wide, PALEOBOTANY AND BIOGEOGRAPHY rounded ends, sometimes resembling reticulate pattern; wall ca.1 µm thick; 30 µm. Ainity: Pteridophyta. Polypodiisporites “microverrucate” (Fig. 90). Reniform; monolete, laesurae extending 3/4 of the distance to spore margin; verrucate at distal surface and laevigate at proximal surface, verrucae small, rounded, resembling small baculae; wall 1–1.2 µm thick; 22.5 × 18 µm. Ainity: Pteridophyta, Polypodiaceae, Polypodium L. Polypodiisporites ? planus. Ref: ID 10449 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Polypodiisporites “reniformis” (Fig. 91). Reniform; monolete, laesurae extending to spore margin, marginate, margo inconspicuous; verrucate, verrucae rounded to rectangular, variable, 1.5 × 4 µm; wall 3–6 µm thick; 45 × 27 µm (distal face). Ainity: Pteridophyta, Polypodiaceae, Polypodium. Polypodiisporites scabraproximatus. Ref: ID 10031 (Jaramillo & Rueda, 2013) and ig. 33 (Graham, PLATE 4. Figures 87–115. 87. Perinomonoletes “minutus” SL 19, EF G-17/2=4, Gatun Fm. –10.0 Ma. 88. Perinomonoletes “pseudoreticulatus” SL 174, EF D-40/3, Tuira Fm. –10.15 Ma. 89. Polypodiisporites aff. echinatus SL 1241, EF G-68, Tuira Fm. –10.15 Ma. 90. Polypodiisporites “microverrucate” SL 174, EF D-22/3, unnamed Fm. –6.95 Ma. 91. Polypodiisporites “reniformis” SL 2190, EF U-22/2, Tuira Fm. –10.15 Ma. 92, 93. Polypodiisporites “verruplanatus” SL G27-1, EF E-13/1, Tuira Fm. –12.6 Ma. 94, 95. Polypodiisporites aff. sp. 2 J & D SL 174, EF F-47/3=G-47/1, Gatun Fm. –5.6 Ma. 96. Scabramonoletes “elongatus” SL G26-1, EF S-6/4, Gatun Fm. –8.9 Ma. 97. Schizaea “mosquitensis” SL G27-1, EF V-17/1, Escudo Veraguas Fm. –2.05 Ma. 98, 99. Striatomonoletes “incertus” SL 175, EF L-5/2=L-6/1, Escudo Veraguas Fm. –2.05 Ma. 100. Podocarpidites “globosus” SL Culebra 12.75, EF P-39/2, Culebra Fm. –19.3 Ma. 101. Bromeliacidites sp. 1. SL 5b, EF W-19/2=4, Gatun Fm. –8.9 Ma. 102. Bromeliacidites sp. 2. SL 65, EF J-9/4, Cayo Agua Fm. –4.25 Ma. 103. Echimonocolpites “dariensis” SL 5b, EF Q-21/4, Chucunaque Fm. –6.95 Ma. 104, 105. Echimonocolpites “mauritiformis” SL G26-1, EF N-22, Pucro Fm. –6.95 Ma. 106. Echimonocolpites “mosquitensis” SL 68, EF L-17, Tuira Fm. –6.95 Ma. 107. Echimonocolpites “panamensis” SL 174, EF D-13/1, Tuira Fm. –10.15 Ma. 108, 109. Echiperiporites “aquaticus” SL 1620, EF B-25/4=C-26/1, Tuira Fm. –6.95 Ma. 110. Longapertites “foveolatus” SL Culebra 3.5, EF Q-44/1, Culebra Fm. –19.40 Ma. 111. Mauritiidites “franciscoi” var. “franciscoi” SL 5a, EF J-9/1, Tuira Fm. –12.6 Ma. 112, 113. Monoporopollenites “minutus” SL 204, EF R-15/3, Pucro Fm. –6.95 Ma. 114, 115. Palmapollenites “iriartoides” SL 175, EF G-23, Tuira Fm. –12.6 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 205 206 1991a). Ainity: Pteridophyta, Monolete fern spore Type 2. Polypodiisporites af. speciosus. Ref: ID 10028 (Jaramillo & Rueda, 2013) and ig. 34 (Graham, 1991a). Ainity: Pteridophyta, Polypodiaceae, Stenochlaena palustris (Burm.) Bedd. Polypodiisporites usmensis. Ref: ID 10046 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta, Blechnaceae, Stenochlaena palustris; Dennstaedtiaceae, Histiopteris incisa (hunb.) J. Sm.; Polypodiaceae, Phlebodium aureum (L.) J. Sm. Polypodiisporites “verruplanatus” (Figs. 92, 93). Reniform; monolete, laesurae thin, extending to spore margin; verrucate, verrucae irregular in shape and size, 3–7 µm wide, decreasing toward proximal surface; wall 1 µm thick; 34 × 21 µm (distal face). Ainity: Pteridophyta. Polypodiisporites af. sp. 2 J & D (Figs. 94, 95). Plano-convex; monolete, laesurae thin, extending to spore margin; verrucate, verrucae irregular, 1–5 µm wide; wall 2.5 µm thick; 24 × 45.5 µm (lateral face). Ref: ID 10034 (Jaramillo & Rueda, 2013). Ainity: Pteridophyta. Scabramonoletes “elongatus” (Fig. 96). Plane-convex; monolete, laesurae thin, straight, extending half distance to spore margin, ca. 24 µm long, marginate, margo subtle, thin; scabrate, displaying irregular and dispersed granules; wall 1 µm thick; 50 × 24 µm (distal face). Ainity: Pteridophyta. Schizaea “mosquitensis” (Fig. 97). Plane-convex; monolete, laesurae masked by folded wall; cingulated, cingulum ca. 3.5 µm thick, reticulate, muri thin, lumina rounded; wall < 1 µm thick; 44 × 23 µm (distal face). Ainity: Pteridophyta, Schizaeaceae, Schizaea Sm. Striatomonoletes “incertus” (Figs. 98, 99). Biconvex; monolete, laesurae extending to spore mar- PALEOBOTANY AND BIOGEOGRAPHY gin; striate, striae oriented from distal to proximal surface, dense, wide; wall 2 µm thick; 30 × 18 µm (distal face). Ainity: Pteridophyta. GYMNOSPERMS Podocarpidites “globosus” (Fig. 100). Bisaccate, inaperturate; body amb circular, psilate to inely scabrate, 20 µm, body wall 3.5 µm thick; air sacs two, hemispheric, psilate, translucid, angularly oriented; overall dimension (including air sacs) 48 µm. Ref: ig. 37 (Graham, 1991a). Ainity: Gymnospermae, Podocarpaceae, Podocarpus L’Hér. ex Pers. ANGIOSPERMS: MONOCOTS Arecipites “perfectus.” Ref: ID 2036 ( Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Arecaceae. Arecipites regio. Ref: ID 34 (Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Arecaceae. Bromeliacidites sp. 1 (Fig. 101). Amb elliptic; monocolpate, colpus wide, extending nearly entire length of grain, margins masked by reticulum; reticulate, lumina variable, 2–4 µm wide, muri 1 µm thick, simplicolumellate; tectate, wall 2 µm thick; 57 × 47 µm. Ainity: Monocotyledoneae, Bromeliaceae. Bromeliacidites sp. 2 (Fig. 102). Amb elliptic; monocolpate, colpus thin, extending nearly entire length of grain, margins masked by small baculae; baculate, baculae short, dense, ca. 1 µm thick; apparently intectate, wall 1.2 µm thick; 43 × 16 µm. Ainity: Monocotyledoneae, Bromeliaceae, Catopsis Griseb. Cyperaceae. Ref: ID 228 (Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Cyperaceae. Dioscorea/Rajania. Ref: ID 236 (Jaramillo & Rueda, 2013); ig. 51 (Graham, 1988a). Ainity: PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 207 Monocotyledoneae, Dioscoreaceae, Dioscorea L./ Rajania L. types. ity: Monocotyledoneae, Alismataceae, Echinodorus Rich. Echimonocolpites “dariensis” (Fig. 103). Amb elliptic; monocolpate, colpus wide, extending nearly entire length of grain; echinate-verrucate, echinae acute, irregular, wide at base, surface between echinae illed by small, dense, and variable verrucae; tectate, wall 1 µm thick, tectum 0.5 µm thick, sexine 0.5 µm thick, nexine 0.5 µm thick; 43 × 27 µm (excluding ornamentation). Ainity: Monocotyledoneae, Arecaceae. Foveomonocolpites “panamensis.” Ref: ID 2090 (Jaramillo & Rueda, 2013); igs. 33, 34 (Graham, 1988a). Ainity: Monocotyledoneae, Arecaceae, Desmoncus Mart. type. Echimonocolpites “mauritiformis” (Figs. 104, 105). Amb circular, monocolpate, colpus wide, extending 2/3 length of grain; echinate, echinae acute, thin with rounded and wide base, ca. 1 µm thick; tectate, wall 1 µm thick; 21 × 17 µm. Ainity: Monocotyledoneae, Arecaceae. Echimonocolpites “mosquitensis” (Fig. 106). Amb elliptic; monocolpate, colpus extending nearly entire length of grain, wide, bordered by sculptural elements; echinate, echinae irregular and dispersed, 3–6 µm long; intectate, wall 1 µm thick, nexine 1 µm thick (excluding ornamentation); 33 × 15 µm. Ainity: Monocotyledoneae, Arecaceae. Echimonocolpites “panamensis” (Fig. 107). Amb circular, monocolpate, colpus extending nearly entire length of grain, thin, irregular, with margins not well deined; echinate, echinae acute, pyramidal, slightly depressed, 1.5–2.5 µm tall; tectate, wall < 1 µm thick (excluding ornamentation); 24 µm. Ainity: Monocotyledoneae, Arecaceae, cf. Mauritia L. f. (similar to Mauritia, but Mauritia has been reported as porate). Echiperiporites “aquaticus” (Figs. 108, 109). Spherical, amb circular; periporate, pores 8, circular, 2.5 µm wide, annulate; echinate, echinae conical, sharp, wider at base, 1.5 µm long; tectate, wall 2.5 µm thick (including echinae); 25 µm. Ain- Longapertites “foveolatus” (Fig. 110). Amb elliptic; monocolpate, colpus extending nearly entire length of grain, straight, thin; foveolate, foveolae uniform; tectate; ca. 33 µm. Ref: igs. 29–32 (Graham, 1988a); ig. 19 (Graham, 1988b). Afinity: Monocotyledoneae, Arecaceae, Cryosophila Blume. Mauritiidites “franciscoi” var. “franciscoi” (Fig. 111). Amb elliptic, monocolpate, colpus wide, extending nearly entire length of grain; echinate, echinae acute, conical-based, appearing as inserted into slightly ectexine concavity, 3 µm long; tectate, wall 1.2 µm thick (excluding ornamentation); 41 × 28 µm. Ref: ID 469 ( Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Arecaceae, Mauritia lexuosa L. f. Mauritiidites franciscoi var. minutus. Ref: ID 470 (Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Arecaceae, Mauritia. Monocolpopollenites “canalensis.” Ref: ID 2092 (Jaramillo & Rueda, 2013); igs. 35, 36 (Graham, 1988a); igs. 28, 29 (Graham, 1989). Ainity: Monocotyledoneae, Arecaceae, Synechanthus H. Wendl. Monoporopollenites annulatus. Ref: ID 487 (Jaramillo & Rueda, 2013); ig. 38 (Graham, 1991a). Ainity: Monocotyledoneae, Poaceae. Monoporopollenites “minutus” (Figs. 112, 113). Spherical, amb circular; monoporate, pore circular, ca. 1 µm wide, displaying subtle annulus; psilate; tectate, wall 1 µm thick, tectum 0.5 µm 208 thick, sexine 0.5 µm thick, nexine 0.5 µm thick; 12 µm. Ainity: Monocotyledoneae, Poaceae. Palmae Type 1. Ref: igs. 39, 40 (Graham, 1991a). Ainity: Monocotyledoneae, Arecaceae. Palmapollenites “iriartoides” (Figs. 114, 115). Amb elliptic; monocolpate, colpus inconspicuous, irregular, thin; clavate, clavae variable, 1–1.5 µm long, scarce, irregularly distributed; intectate, wall < 1 µm thick, columellae 0.5 µm tall, nexine 0.5 µm thick; 29 µm. Ainity: Arecaceae, Iriartea deltoidea Ruiz & Pav. Palmapollenites “microperforatus.” Ref: igs. 41, 42 (Graham, 1991a). Ainity: Monocotyledoneae, Arecaceae, Oenocarpus Mart., Palmae Type 2. Palmapollenites “phytelephensis” (Fig. 116). Amb elliptic, monocolpate, colpus extending 2/3 length of grain; apparently reticulate, resembling the micropitted condition, lumina < 1 µm wide; tectate; 51 µm. Ainity: Monocotyledoneae, Arecaceae, Phytelephas Ruiz & Pav. Palmapollenites “scheeleaensis” (Fig. 117). Amb elliptic; monocolpate, colpus irregular, thin, extending nearly entire length of grain; apparently verrucate, columellae grouping as small packages resembling verrucate pattern; tectate, wall 2 µm thick, strongly columellate, tectum 1 µm thick, sexine 1 µm thick, nexine 1 µm thick; 45 × 26 µm. Ainity: Monocotyledoneae, Arecaceae, Scheelea zonensis L. H. Bailey. PALEOBOTANY AND BIOGEOGRAPHY Psilamonocolpites medius (Fig. 119). Amb elliptic; monocolpate, colpus wide, extending nearly entire length of grain; psilate; tectate, wall 1 µm thick; 41 µm. Ref: ID 593 (Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Arecaceae. Psilamonocolpites rinconii (Fig. 120). Amb elliptic; monocolpate, colpus wide, extending nearly entire length of grain; reticulate, lumina < 1 µm wide, ine; tectate, wall 1 µm thick, densely columellate; 26 µm. Ref: ID 1031 (Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Arecaceae. Retimonocolpites “heteroretifossulatus.” Ref: ID 2091 ( Jaramillo & Rueda, 2013); igs. 20–22 (Graham, 1988b); igs. 25–27 (Graham, 1989). Ainity: Monocotyledoneae, Arecaceae, Manicaria Gaertn. type. Retimonocolpites “palmatus” (Figs. 121, 122). Amb circular, slightly elliptic; monocolpate, colpus wide, straight, extending nearly entire length of grain; reticulate, lumina variable, 1–1.5 µm wide, decreasing toward aperture, rounded, muri thick, simplicolumellate; tectate, wall 1 µm thick; 24 × 18 µm. Ainity: Monocotyledoneae, Arecaceae, Cryosophila. Retipollenites “minutus” (Figs. 123, 124). Spherical, amb circular; inaperturate; reticulate, lumina 1 µm wide; tectate, wall 1 µm thick, densely columellate, columellae baculae-shaped; 12 µm. Afinity: Monocotyledoneae, Araceae. ANGIOSPERMS: EUDICOTS Psilamonocolpites amazonicus. Ref: ID 978 (Jaramillo & Rueda, 2013). Ainity: Monocotyledoneae, Arecaceae, Euterpe Mart. Psilamonocolpites “longiformis” (Fig. 118). Amb elliptic; monocolpate, colpus thin, extending nearly entire length of grain; psilate; tectate, wall 1 µm thick; 60 × 18 µm. Ainity: Monocotyledoneae, Araceae. Acanthaceae af. “hygrophilensis” (Fig. 125). Suboblate, amb circular; stephanocolporate, approximately 10 to 12 colpi, equatorially arranged, equidistant, thin, straight, extending nearly entire length of grain; pores inconspicuous, not seen in polar view; baculate, baculae irregular; intectate, wall 2 µm thick, sexine 1 µm thick, nexine 1 µm thick, columellae 1 µm thick, tectum PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 209 absent; 21 µm. Ainity: Dicotyledonae, Acanthaceae, Hygrophila guianensis Nees. Dicotyledonae, Malvaceae-Bombacoideae, Aguiaria Ducke. Alnipollenites verus (Fig. 126). Suboblate, amb circular; stephanoporate, pores 5, vestibulate, circular, 3–4 µm wide; psilate; tectate, wall 1–2 µm thick, densely columellate; 18–20 µm. Ref: ID 15 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Betulaceae, Alnus Mill. Bombacacidites araracuarensis. Ref: ig. 34 (Graham, 1989); ig. 9 (Graham, 1991b). Ainity: Dicotyledonae, Malvaceae–Bombacoideae, Ceiba Mill. Anacardiaceae “morenensis” (Figs. 127, 128). Subprolate, amb circular; tricolporate, colpi equatorially arranged, equidistant, straight, extending nearly entire length of grain, apparently having costae colpi 5–6 µm wide; pore oblongate, becoming circular, 4 µm wide; striato-reticulate, striae not well deined, thin, longitudinally oriented, lumina uniform, < 1 µm wide; tectate, wall 2 µm thick, sexine 1 µm thick, nexine 1 µm thick, tectum 1 µm thick; 26 × 18 µm wide. Afinity: Dicotyledonae, Anacardiaceae, Spondias L. Annonaceae (Cymbopetalum). Ref: igs. 1, 2 (Graham, 1991b). Ainity: Dicotyledonae, Annonaceae, Cymbopetalum Benth. Baculipollenites “inciertus” (Fig. 129). Suboblate, amb circular-triangular-convex, trilobate; tricolporate, equatorially arranged, equidistant, thin, acute, extending 3/4 length of grain, pores apparently endexinic, protruding; baculate, baculae < 1 µm tall; tectate, wall ca. 1.2 µm thick at intercolpium area, 2 µm at colpus area; 39 µm. Ainity: Dicotyledonae. “Bignoniaceae” Type (Figs. 130, 131). Suboblate, amb circular-triangular-convex; tricolporate, equatorially arranged, equidistant, thin, acute, extending 3/4 length of grain, pores circular, 5 µm wide; scabrate, scabrae < 1 µm tall; tectate, wall ca. 1.5 µm thick; 22 × 24 µm. Ainity: Dicotyledonae, Bignoniaceae, Tabebuia Gomes ex DC. Bombacaceae (cf. Aguiaria). Ref: ig. 30 (Graham, 1989); ig. 6 (Graham, 1991b). Ainity: Bombacacidites baculatus (Fig. 132). Oblate, amb triangular-obtuse-straight; tricolporate, colpi equatorially arranged, equidistant, short, pointed ends, pores inconspicuous, circular; reticulate, lumina variable, scrobiculate at polar areas, diminishing from 2 µm (polar area) to < 0.5 µm wide at equatorial interaperture areas, muri simplicolumellate, free bacuale at apertures; semitectate, wall 1–2.5 µm thick; 50 µm (polar diameter). Ref: ID 55 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Malvaceae–Bombacoideae, Pachira aquatica Aubl. Bombacacidites “bombacopsiformis” (Figs. 133, 134). Oblate, amb triangular-obtuse-straight; tricolporate, colpi equatorially arranged, equidistant, short, pointed ends, pores inconspicuous, apparently protruding, small; reticulate, lumina diminishing from 2 µm (polar area) to < 0.5 µm wide (equatorial interaperture areas), muri simplicolumellate; tectate, wall 1 µm thick, tectum 0.5 µm thick, sexine 0.5 µm thick, nexine 0.5 µm thick; 27 µm (polar diameter). Ref: ig. 7 (Graham, 1991b). Ainity: Dicotyledonae, Malvaceae– Bombacoideae, Bombacopsis Pittier/Bernoullia Oliv. types. Bombacacidites brevis (Figs. 135, 136). Oblate, amb circular; apparently tricolporate, colpi equatorially arranged, equidistant, short, rounded ends, pores inconspicuous, small, annulate, lolongate; reticulate, lumina < 1 µm wide (equatorial interaperture areas), muri simplicolumellate, columellae dense; tectate, wall < 1 µm thick; 20 µm (polar diameter). Ref: ig. 108 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 10. 210 PALEOBOTANY AND BIOGEOGRAPHY Bombacacidites “colpiechinatus” (Fig. 137). Oblate, amb triangular-obtuse-convex; tricolporate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, indistinct; pores inconspicuous, echinate, echinae short, scarcely distributed; tectate; 21 × 24 µm. Ainity: Dicotyledonae, Malvaceae–Bombacoideae. pores inconspicuous, small; reticulate, lumina homogeneous, ine, 1 µm wide, muri simplicolumellate; tectate, wall 1.5 µm thick; 44 µm (polar diameter). Ref: ig. 8 (Graham, 1991b); ig. 35 (Graham, 1989). Ainity: Dicotyledonae, Malvaceae–Bombacoideae, Pseudobombax septenatum (Jacq.) Dugand. Bombacacidites nacimientoensis. Ref: ig. 7 (Graham, 1991b). Ainity: Dicotyledonae, Malvaceae– Bombacoideae, Bernoullia. Brevitricolpites “panamensis” (Fig. 141). Spherical, amb circular; tricolpate, colpi equatorially arranged, equidistant, short, wide, margins straight, ends pointed, costate, margo 4 × 1 µm; baculate, baculae short, rounded; intectate, wall 1 µm thick; 27.5 µm. Ainity: Dicotyledonae. Bombacacidites “problematicus” (Figs. 138, 139). Oblate, amb circular; tricolporate, colpi equatorially arranged, equidistant, short; reticulate, lumina variable, mesocolpium psilate to micropitted; tectate; 20 × 28 µm. Ainity: Dicotyledonae, Malvaceae–Bombacoideae. Bombacacidites “pseudobombiformis” (Fig. 140). Oblate, amb circular; tricolporate, colpi equatorially arranged, equidistant, short, acute ends, Brevitricolpites “triangulatus.” Ref: ig. 91 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 9. Brevitricolpites “scabratus” (Figs. 142, 143). Spherical, amb circular; tricolporate, colpi equatorially arranged, equidistant, thin, straight, short, PLATE 5. Figures 116–151. 116. Palmapollenites “phytelephensis” SL G29-2, EF O-13, Gatun Fm. –9.6 Ma. 117. Palmapollenites “scheeleaensis” SL 17, EF H-14/4, Tuira Fm. –6.95 Ma. 118. Psilamonocolpites “longiformis” SL 158, EF N-10/2=4, Gatun Fm. –8.6 Ma. 119. Psilamonocolpites medius SL 174, EF M-15/1, Gatun Fm. –10.0 Ma. 120. Psilamonocolpites rinconii SL 4, EF A-9/4, Gatun Fm. –9.6 Ma. 121, 122. Retimonocolpites “palmatus” SL 5a, EF J-21/2, Gatun Fm. –10.2 Ma. 123, 124. Retipollenites “minutus” SL 175, EF J-35/1, Gatun Fm. –9.6 Ma. 125. Acanthaceae aff. “hygrophilensis” SL 178, EF W-10/2, Escudo Veraguas Fm. –2.05 Ma. 126. Alnipollenites verus SL 210, EF X-35/2, Gatun Fm. –9.6 Ma. 127, 128. Anacardiaceae “morenensis” SL 2165, EF W-22/1=2, Escudo Veraguas Fm. –2.05 Ma. 129. Baculipollenites “inciertus” SL G26-1, EF J-18/1, Gatun Fm. –5.6 Ma. 130, 131. “Bignoniaceae” Type SL 175/6, EF U-21/4, Gatun Fm. –10.0 Ma. 132. Bombacacidites baculatus SL 193, EF H-15/4, Chucunaque Fm. –7.05 Ma. 133, 134. Bombacacidites “bombacopsiformis” SL 178, EF U-9/1, Gatun Fm. –5.6 Ma. 135, 136. Bombacacidites brevis SL 193, EF E-22/4, Chagres Fm. –10.0 Ma. 137. Bombacacidites “colpiechinatus” SL Cucaracha 56.5, EF S-47/1, Cucaracha Fm. –18.93 Ma. 138, 139. Bombacacidites “problematicus” SL 1620, EF H-36/1, Gatun Fm. –10.2 Ma. 140. Bombacacidites “pseudobombiformis” SL 193, EF Y-22/1, Gatun Fm. –5.6 Ma. 141. Brevitricolpites “panamensis” SL La Boca 37.5, EF E-47/2, Culebra Fm. –19.20 Ma. 142, 143. Brevitricolpites “scabratus” SL 168, EF C-21/4, Gatun Fm. –5.6 Ma. 144, 145. Burseraceae “protiumensis” SL 174, EF C-39/3, Gatun Fm. –10.2 Ma. 146. Chelonanthus type SL 5a, EF S-25/3, Gatun Fm. –5.6 Ma. 147. Clavainaperturites microclavatus SL G26-1, EF L-7/2, Gatun Fm. –10.2 Ma. 148. Clavapollenites “circularis” SL G27-2, EF F-19/1, Cayo Agua Fm. –4.25 Ma. 149. Clavapollenites “triangulatus” SL 60, EF Q-10/1, Cayo Agua Fm. –4.25 Ma. 150, 151. Clavatricolpites “ininitus” SL G26-1, EF N-52/4, Gatun Fm. –10.0 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 211 212 inconspicuous, pores elongated, short, becoming lineal, ca. 3 µm long; verrucate-perforate, showing variable and small verrucae with small perforation betwen them resembling rugulate pattern, verrucae variable, 1–1.5 µm tall; tectate, wall 2 µm thick, tectum 1 µm thick, sexine 1 µm thick, nexine 1 µm thick; 14 µm. Ainity: Dicotyledonae, Fabaceae. Brevitricolpites sp. Ref: ig. 96–98 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 8. Burseraceae “protiumensis” (Figs. 144, 145). Subprolate, amb circular; tricolporate, colpi equatorially arranged, equidistant, thin, extending nearly entire length of grain, straight, pore elongatedoblongate, ca. 4 × 8 µm; reticulate, muri simplicolumellate, columellae thin, dense; tectate, wall variable, 1 µm thick at polar area and 2 µm thick at aperture areas, tectum 1 µm thick, sexine 1 µm thick, nexine 1 µm thick; 19–20 × 12–16.5 µm. Ainity: Dicotyledonae, Burseraceae, Protium Burm. f. Cabombaceae (Cabomba). Ref: ig. 38 (Graham, 1991b). Ainity: Dicotyledonae, Cabombaceae, Cabomba Aubl. Chelonanthus type (Fig. 146). Lineal and crossed tetrad; individual grains oblate (compressed in tetrad), amb circular; triporate, pores adjacent at contact areas between grains, circular, 2 µm wide, annulate, annulus thin; reticulate, lumina variable, 1–2.5 µm wide, muri thin, simplibacullate; tectate, wall 1 µm thick; individual grains 26 µm, tetrad 38 µm. Ainity: Dicotyledonae, Gentianaceae, Chelonanthus alatus (Aubl.) Pulle. Cichoreacidites longispinosus Ref: ID 318 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Asteraceae, Ligulilorae type. Clavainaperturites clavatus Ref: ID 152 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. PALEOBOTANY AND BIOGEOGRAPHY Clavainaperturites microclavatus (Fig. 147). Spherical, amb circular; inaperturate; clavate, clavae resembling small and ine baculae < 1 µm tall; intectate, wall 1 µm thick; 20 µm. Ref: ID 1056 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Chloranthaceae, Hedyosmum Sw. Clavapollenites “circularis” (Fig. 148). Spherical, amb circular-trilobate; tricolpate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, wide, with margins bordered by baculae; clavate-baculate, baculae ca. 1.5 µm tall; intectate, wall ca. 2.5 µm thick, exhibiting dense and uniform baculae; 38 µm. Ainity: Dicotyledonae, Euphorbiaceae. Clavapollenites “triangulatus” (Fig. 149). Amb triangular-obtuse-convex; tricolporate, colpi equatorially arranged, equidistant, short, pore indistinct; reticulate, lumina variable, 2–4 µm wide, muri curvimurate, simplicolumellate, columellae ca. 2.5 µm long; semitectate, wall 4 µm thick; 38 µm. Ainity: Dicotyledonae. Clavatricolpites “ininitus” (Figs. 150, 151). Subprolate, amb circular; tricolpate, colpi equatorially arranged, equidistant, wide, deep, extending 3/4 length of grain, pores inconspicuous; clavate, having irregular and dispersed clavae not longer than 1 µm; intectate, wall 1.5 thick; 19 µm. Afinity: Dicotyledonae. Clavatricolpites “tectatum.” Ref: ID 915 (Jaramillo & Rueda, 2013); igs. 55–58 (Graham, 1988a). Ainity: Dicotyledonae, Euphorbiaceae, Tetrorchidium Poepp. Combretaceae (cf. Bucida). Ref: igs. 10, 11 (Graham, 1991b). Ainity: Dicotyledonae, Combretaceae, cf. Bucida L. Compositae (Mutisieae type). Ref: ig. 14 (Graham, 1991b). Ainity: Dicotyledonae, Asteraceae, Mutisieae type. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Corsinipollenites psilatus (Fig. 152). Suboblate, amb circular; triporate, pores circular, annulate, inconspicuous, protruding, coarse; scabrate; tectate, wall variable, 3 µm thick at intercolporium area to 7 µm thick at aperture; 27 µm. Ref: ID 175 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Onagraceae, Ludwigia L. Crassiectoapertites columbianus (Fig. 153). Suboblate, amb circular-triangular; tricolporate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, straight, wide, acute ends, almost joined at apices, pore inconspicuous, probably circular; psilate; tectate, wall 4 µm thick; 47 µm. Ref: ID 180 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Fabaceae–Faboideae, Dioclea relexa Hook. f. Cricotriporites af. macroporus. Ref: ID 198 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Cricotriporites “minimus” (Figs. 154, 155). Spherical, amb circular; triporate, pore equatorially arranged, equidistant, circular, annulate; psilate, intectate; 8 µm. Ainity: Dicotyledonae. Crototricolpites “euphorbiensis” (Figs. 156, 157). Subprolate, amb circular; tricolpate, colpi equatorially arranged, equidistant, inconspicuous, masked by sculptural elements; clavate-verrucate, clavae short, resembling verrucae pattern, uniform; intectate, wall ca. 1 µm thick; 34 × 25 µm. Ainity: Dicotyledonae, Euphorbiaceae. Crototricolpites “pseudodaemoni” (Figs. 158, 159). Spheroidal, amb circular; tricolpate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, inconspicuous; clavate, clavae resembling the crotonoid pattern, 1–1.5 µm high, > 1 µm wide, irregular, becoming baculae or gemmae; intectate, wall > 1 µm thick; 23 µm. Ainity: Dicotyledonae, Euphorbiaceae. Cucurbitaceae Type (Fig. 160). Spherical, amb circular; periporate, pores 4 to 6, inconspicuous, 213 circular, wide, annulate; baculate-echinate, baculae short, thin, echinae rounded, conical, ca. 5 × 2 µm; intectate, wall 6 µm thick; 52 µm. Ainity: Dicotyledonae, Cucurbitaceae. Echiperiporites akanthos (Figs. 161, 162). Spherical, amb circular; periporate, 6 pores, uniformly distributed, appearing as equatorial area resembling stephanoporate condition, pores circular, 1.5 µm wide, annulate, annulus 1 µm thick; echinate, echinae conical, sharp, wide at base, short, ca. 1 µm long; tectate, wall 1.5 µm thick; ca. 23 µm. Ainity: Dicotyledonae. Echiperiporites estelae (Fig. 163). Spherical, amb circular; periporate, > 20 pores, uniformly distributed, pores circular, 3.5 µm wide, annulate, annulus 2 µm thick; echinate-scabrate, echinae acute, ca. 5 µm long, wide at base; tectate, wall 3 µm thick; ca. 45 µm. Ref: ID 251 ( Jaramillo & Rueda, 2013); ig. 36 (Graham, 1991b); igs. 59, 60 (Graham, 1988a). Ainity: Dicotyledonae, Malvaceae–Malvoideae, hespesia populnea (L.) Sol. ex Corrêa, Hibiscus tiliaceus L., Hampea Schltdl./Hibiscus L. types; Convolvulaceae, Ipomoea L. Echiperiporites “ipomoensis” (Figs. 164, 165). Spherical, amb circular; periporate, pores uniformly distributed, equidistant, circular, 3–4 µm wide; echinate, surface between echinae scabrate; tectate, wall 1.5–2 µm thick, columellae baculaeshaped; 35–44 µm. Ainity: Dicotyledonae, Convolvulaceae, Ipomoea L. Echiperiporites “pantagruelicus” (Fig. 166). Spherical, amb circular; periporate, pores uniformly distributed, equidistant pores circular; echinate, echinae 15–17 µm long, uniformly arranged on surface; tectate, wall 5 µm thick, columellae 1 µm long, size increasing under the spines, tectum 0.5 µm thick, sexine 1.5 µm thick, nexine 4 µm thick; ca. 100 µm. Ainity: Dicotyledonae, Malvaceae. 214 Echiperiporites sp. Ref: ig. 81 (Graham, 1988b). Ainity: Dicotyledonae, Unknown 1. Echitricolporites “chiquitinus” (Figs. 167–169). Prolate-spheroidal, amb circular; tricolporate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, thin, pore indistinct, probably elongated, small; echinate, echinae acute, 2 µm tall; tectate, wall 3 µm thick (including ornamentation); 13 × 11.5 µm. Ainity: Dicotyledonae, Asteraceae. Echitricolporites mcneillyi. Ref: ID 261 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Asteraceae. Echitricolporites “microspinosus” (Figs. 170, 171). Subprolate, amb circular, becoming spheroidal; tricolporate, colpi equatorially arranged, equidistant, short, wide, not well deined, having irregular margo interrupted at equator, pores elongated-oblongate; echinate, echinae short, scarce, acute, wide at base; tectate, wall 2.5 µm thick (including ornamentation); 26 × 24 µm. Ainity: Dicotyledonae, Boraginaceae, Cordia L. Echitricolporites spinosus (Figs. 172, 173). Spheroidal, amb circular; tricolporate, colpi equatori- PALEOBOTANY AND BIOGEOGRAPHY ally arranged, equidistant, extending nearly entire length of grain, straight, wide, pores inconspicuous, apparently lalongate; echinate, echinae coarse, 1 µm long, wide at base, acute ends; tectate, wall 2.5 µm thick, sexine clearly separated from nexine; 15 µm. Ref: ID 263 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Asteraceae, Tubililorae, Espeletia Mutis ex Bonpl., Mikania Willd., Pectis L., Riencourtia Cass., Wedelia Jacq., Wulia Neck. ex Cass. types. Echitricolporites “spinosus” var. “microspinosus” (Figs. 174, 175). Spheroidal, amb circular; tricolporate, colpi equatorially arranged, equidistant, pores inconspicuous; echinate, echinae thin, short, < 1 µm long, scarce, acute ends; tectate, wall 2 µm thick; 18 µm. Ainity: Dicotyledonae. Echitricolporites “vesiculoides.” Ref: ID 2094 (Jaramillo & Rueda, 2013). Ref: igs. 42, 43 (Graham, 1988a). Ainity: Dicotyledonae, Asteraceae. Echitriporites “abutiloensis” (Figs. 176, 177). Suboblate, amb circular; triporate, pores circular, ca. 5 µm wide, bordered by dense patches of small baculae; baculate, baculae 1–2.5 µm long; intectate, wall 2.5 µm thick (excluding ornamentation); PLATE 6. Figures 152–183. 152. Corsinipollenites psilatus SL 6, EF R-19/4, Gatun Fm. –9.6 Ma. 153. Crassiectoapertites columbianus SL 357, EF O-39/3=4, Gatun Fm. –10.05 Ma. 154, 155. Cricotriporites “minimus” SL 2202, EF V-33/4, Shark Hole Point Fm. –4.6 Ma. 156, 157. Crototricolpites “euphorbiensis” SL 307, EF S-19/3, Chagres Fm. –10.0 Ma. 158, 159. Crototricolpites “pseudodaemoni” SL La Boca 58.5, EF E-55, Culebra Fm. –19.24 Ma. 160. Cucurbitaceae Type SL 307, EF E-16/1, Cayo Agua Fm. –3.55 Ma. 161, 162. Echiperiporites akanthos SL 1617, EF U-24, Pucro Fm. –6.95 Ma. 163. Echiperiporites estelae SL 6, EF D-4, Gatun Fm. –9.6 Ma. 164, 165. Echiperiporites “ipomoensis” SL 349, EF Y-20, Cayo Agua Fm. –4.25 Ma. 166. Echiperiporites “pantagruelicus” SL 1152, EF Q-18, Cayo Agua Fm. –3.55 Ma. 167–169. Echitricolporites “chiquitinus” SL G26-1, EF L-44, Gatun Fm. –10.0 Ma. 170, 171. Echitricolporites “microspinosus” SL 193, EF E-22/4, Tuira Fm. –12.6 Ma. 172, 173. Echitricolporites spinosus SL 174, EF X-16/1, Gatun Fm. –10.2 Ma. 174, 175. Echitricolporites “spinosus” var. “microspinosus” SL196, EF L39/1, Cayo Agua Fm.–4.25 Ma. 176, 177. Echitriporites “abutiloensis” SL 177, EF R-12/4, Escudo Veraguas Fm. –2.05 Ma. 178, 179. Echitriporites aff. “eocenicus” SL G27-2, EF Q-14, Gatun Fm. –5.6 Ma. 180. Echitriporites “megaexinatus” SL Cucaracha 46.5, EF E-38/2, Cucaracha Fm. –18.48 Ma. 181, 182. Ericipites “baculatus” SL G26-1, EF Q-11/2, Cayo Agua Fm. –4.25 Ma. 183. Ericipites “psilatus” SL G27-2, EF F-20=F-21, Gatun Fm. –10.0 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 215 216 PALEOBOTANY AND BIOGEOGRAPHY 27 µm. Ainity: Dicotyledonae, MalvaceaeMalvoideae, Abutilon Mill. 19 (Graham, 1991b). Ainity: Dicotyledonae, Ericaceae Type 2. Echitriporites af. “eocenicus” (Figs. 178, 179). Suboblate, amb circular; triporate, pores circular, ca. 5 µm wide, subtly bordered by dense patches of small baculae; baculate, baculae variable, irregular, large and bottle shaped, scarce, short and thin, densely distributed; intectate, wall 2 µm thick (excluding ornamentation); 24 µm. Ainity: Dicotyledonae, heaceae. Erythrina. Ref: ig. 26 (Graham, 1991b). Ainity: Dicotyledonae, Fabaceae–Faboideae, Erythrina L. Echitriporites “megaexinatus” (Fig. 180). Subprolate, amb circular; triporate, pores circular, 4–7 µm wide, costate, annulus thick; echinate, echinae 5 µm long, scarcely distributed; tectate, wall ca. 3 µm thick; 50 µm. Ainity: Dicotyledonae. Euphorbiaceae (cf. Glycydendron). Ref: igs. 21, 22 (Graham, 1991b). Ainity: Dicotyledonae, Euphorbiaceae, cf. Glycydendron Ducke. Euphorbiaceae (cf. Jatropha). Ref: ig. 20 (Graham, 1991b). Ainity: Dicotyledonae, Euphorbiaceae, cf. Jatropha L. Euphorbiaceae (cf. Stillingia). Ref: ig. 23 (Graham, 1991b). Ainity: Dicotyledonae, Euphorbiaceae, cf. Stillingia Garden ex L. Ericaceae Type 1. Ref: ig. 18 (Graham, 1991b). Ainity: Dicotyledonae, Ericaceae Type 1. Fagaceae (Quercus). Ref: ig. 16 (Graham, 1991b). Ainity: Dicotyledonae, Fagaceae, Quercus L. Ericaceae Type 2. Ref: ig. 19 (Graham, 1991b). Ainity: Dicotyledonae, Ericaceae Type 2. Fenestrites spinosus (Figs. 184, 185). Spheroidal, amb circular; lophate, ca. 20 lacunae, lacunae almost pentagonal, 6 µm wide, lacunae bridges 2 µm wide; echinate, echinae short, 1–1.5 µm long, acute ends; tectate, wall 7 µm thick, strongly columellate, columellae bifurcated; 28 µm. Ref: ID 319 ( Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Asteraceae, Ligulilorae, Vernonia Schreb. Ericipites “baculatus” (Figs. 181, 182). Tetrahedral tetrad and crossed tetrad; individual grains oblate, amb circular-trilobate; tricolporate, colpi equatorially arranged, equidistant, wide, acute, 3/4 as long as grain, having thin costae, pores probably elongated-ellipsoidal; baculate, baculae as free columellae < 1 µm long; intectate, wall 1 µm thick; tetrahedral tetrad 30–33 µm, crossed tetrad 25 × 33 µm. Ainity: Dicotyledonae, Ericaceae. Ericipites “psilatus” (Fig. 183). Tetrahedral tetrad; individual grains oblate, amb circular; tricolporate, colpi equatorially arranged, equidistant, short, wide, rounded ends, marginate, margo coarse, pores lalongate, displaying the “H” condition, masked by point of junction between grains; psilate to slightly scabrate; tectate, wall 2 µm thick; individual grain 24 µm, tetrad 34 µm. Ref: ig. Foveostephanocolpites CU488. Ref: ig. 107 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 4. Foveotricolporites “brevicolpatus” (Figs. 186, 187). Spheroidal, amb circular; tricolporate, colpi equatorially arranged, equidistant, short, straight, inconspicuous; pores circular; foveolate; tectate, wall 1 µm thick; 39 × 35 µm. Ainity: Dicotyledonae. Foveotricolporites “cingulatum” (Figs. 188, 189). Prolate, amb circular; tricolporate, colpi equato- PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA rially arranged, equidistant, extending nearly entire length of grain, straight, thin, surrounded by a thick and conspicuous margo becoming wider at equator, pore elongated almost as a continuous equatorial ring (colpus equatorialis); reticulate, lumina 1 µm wide, muri simplicolumellate; tectate, wall 1.8 µm thick; 38 × 22 µm. Ainity: Dicotyledonae, Euphorbiaceae, Sapium caudatum Pittier. Foveotricolporites “colonensis.” Ref: ID 116 (Jaramillo & Rueda, 2013). Ref: igs. 46–48 (Graham, 1988a). Ainity: Dicotyledonae, Dilleniaceae, Doliocarpus Rol. Foveotriporites “bocencis” (Figs. 190, 191). Spherical, amb circular; triporate, pores circular, 4 µm wide; foveolate, foveolae variable, 1–1.5 µm wide; tectate, wall 2–3 µm thick; 38 µm. Ref: igs. 101, 102–104 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Types 11 & 12. Foveotriporites “ochromensis” (Figs. 192, 193). Spherical, amb circular; triporate, pores circular, 6 µm wide, annulate, annulus 2.5 µm thick; foveolate, foveolae variable, 1.5–4.5 µm wide; semitectate, wall scrobiculate, 2.5 µm thick; 35 µm. Ainity: Dicotyledonae, Malvaceae–Bombacoideae, Ochroma pyramidale (Cav. ex Lam.) Urb. Foveotriporites “protohammenii” (Fig. 194). Spherical, amb circular; triporate, pores circular, 3.5 µm wide; foveolate, foveolae 1 µm wide; tectate, wall 2 µm thick; 30 µm. Ref: igs. 63, 64 (Graham, 1988a). Ainity: Dicotyledonae, Rubiaceae, Sabicea Aubl. 217 spicuous, wide, annulate, surrounded by dense gemmae; gemmate, gemmae 1.5 µm tall; intectate, wall 1 µm thick; 25 µm. Ainity: Dicotyledonae, Malvaceae-Bombacoideae. Hauya. Ref: ig. 37 (Graham, 1991b). Ainity: Dicotyledonae, Onagraceae, Hauya DC. Heterocolpites “combretoides” (Figs. 197–199). Spherical, amb circular-hexalobate; heterocolpate, with three pseudocolpi, equatorially arranged, equidistant, colpi thin, extending nearly entire length of grain, 1.5 µm wide, pores elongated; psilate; tectate, wall 1 µm thick, tectum 0.5 µm thick, sexine 0.5 µm thick, nexine 0.5 µm thick; 12 µm. Ainity: Dicotyledonae, Combretaceae, Combretum Loel. Heterocolpites incomptus. Ref: ID 1021 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Melastomataceae, Miconia Ruiz & Pav. Heterocolpites “irregularis” (Figs. 200, 201). Spherical, amb circular; heterocolpate, with three pseudocolpi, equatorially arranged, equidistant, colpi thin, inconspicuous, extending nearly entire length of grain, pore indistinct, circular; psilate, slightly scabrate; tectate, wall 1 µm thick, tectum 0.5 µm thick, sexine 0.5 µm thick, nexine 0.5 µm thick; 9.5 µm. Ainity: Dicotyledonae, Melastomataceae. Gemmatricolporites sp. Ref: igs. 105, 106 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 6. Heterocolpites “melastomicus” (Figs. 202, 203). Subprolate, amb circular-hexalobate; heterocolpate, with three pseudocolpi, equatorially arranged, equidistant, colpi thin, extending nearly entire length of grain, showing slightly “exitus digitus,” pores circular to slightly ovate, 4 µm wide; psilate; tectate, wall 1 µm thick; 15 × 12.5 µm. Afinity: Dicotyledonae, Melastomataceae. Gemmatriporites “matisialis” (Figs. 195, 196). Spherical, amb circular; triporate, pores incon- Heterocolpites “minutus” (Figs. 204–206). Prolate spheroidal, amb circular; heterocolpate, with three 218 pseudocolpi, equatorially arranged, equidistant, colpi thin, inconspicuous, extending nearly entire length of grain, pores elongated, becoming almost rectangular, depressed, colpori wider than colpi; psilate; tectate, wall 1 µm thick; 9 × 8 µm. Ainity: Dicotyledonae, Melastomataceae. Heterocolpites rotundus. Ref: ID 1022 (Jaramillo & Rueda, 2013); igs. 4, 5 (Graham, 1991b); igs. 40, 41 (Graham, 1988a). Ainity: Dicotyledonae, Combretaceae, Combretum/Terminalia L. types. Ilexpollenites “clavavariatus.” Ref: ID 2093 (Jaramillo & Rueda, 2013); ig. 3 (Graham, 1991a). Ainity: Dicotyledonae, Aquifoliaceae, Ilex L. Ilexpollenites “larguitus” (Figs. 207, 208). Subprolate, amb circular; tricolporate, colpi equatorially arranged, equidistant, extending 3/4 length of grain, slightly irregular, margins masked by sculptural elements, pore inconspicuous, apparently circular; clavate, clavae irregular, < 1 to 2.5 µm high; intectate, wall ca. 1 µm thick; 30 × 23 µm. Ainity: Dicotyledonae, Aquifoliaceae, Ilex. PALEOBOTANY AND BIOGEOGRAPHY Inaperturopollenites “crotonoides” (Figs. 209, 210). Spherical, amb circular; inaperturate; clavate, clavae arranged in a crotonoid pattern; intectate, wall 1.5 µm thick; 23 µm. Ainity: Dicotyledonae. Inaperturopollenites “grandiosus” (Fig. 211). Spherical, amb circular; inaperturate; gemmate, gemmae ca. 1 µm tall, rounded, uniformly distributed; intectate, wall 2.5 µm thick; 122 µm. Ainity: Dicotyledonae, Annonaceae. Inaperturopollenites “reticulatus” (Figs. 212, 213). Spherical, amb circular; inaperturate; reticulate, lumina variable, muri coarse, simplicolumellate, columellae clavate-shaped, ca. 1.5 µm long, rounded; tectate, tectum subtle, wall 2.5 µm thick; 19 µm. Ref: ig. 40 (Graham, 1991b). Afinity: Dicotyledonae, Rubiaceae, Chomelia Jacq. type. Ladakhipollenites simplex. Ref: ID 424 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Lanagiopollis crassa (Fig. 214). Spherical, amb circular; tricolporate, colpi equatorially arranged, equidistant, extending 2/3 length of grain, costate, PLATE 7. Figures 184–221. 184, 185. Fenestrites spinosus SL 175, EF Q-6/4, Escudo Veraguas Fm. –2.05 Ma. 186, 187. Foveotricolporites “brevicolpatus” SL Culebra 1.5, EFG-54/1, Culebra Fm. –19.18 Ma. 188, 189. Foveotricolporites “cingulatum” SL 178, EF Q-22/3, Tuira Fm. –12.6 Ma. 190, 191. Foveotriporites “bocencis” SL La Boca 67.5, EF H-45/3, Culebra Fm. –19.20 Ma. 192, 193. Foveotriporites “ochromensis” SL 1997, EF X-38/1, Chucunaque Fm. –6.95 Ma. 194. Foveotriporites “protohammenii” SL Culebra 3.5, EF V-18/4, Culebra Fm. –19.11 Ma. 195, 196. Gemmatriporites “matisialis” SL 18, EF J-24/1, Gatun Fm. –5.6 Ma. 197–199. Heterocolpites “combretoides” SL G26-1, EF N-23/3, Gatun Fm. –10.0 Ma. 200, 201. Heterocolpites “irregularis” SL 174, EF G-33/1, Escudo Veraguas Fm. –2.05 Ma. 202, 203. Heterocolpites “melastomicus” SL G26-1, EF H-17/3, Tuira Fm. –6.95 Ma. 204–206. Heterocolpites “minutus” SL 174, EF E-48/4, Escudo Veraguas Fm. –3.55 Ma. 207, 208. Ilexpollenites “larguitus” SL G26-1, EF R-8, Tuira Fm. –12.6 Ma. 209, 210. Inaperturopollenites “crotonoides” SL 11, EF G-7/4, Escudo Veraguas Fm. –2.75 Ma. 211. Inaperturopollenites “grandiosus” SL 19, EF O-19/4, Gatun Fm. –5.6 Ma. 212, 213. Inaperturopollenites “reticulatus” SL G27-2, EF C-6, Gatun Fm. –10.2 Ma. 214. Lanagiopollis crassa SL 178, EF S-7/4, Tuira Fm. –12.6 Ma. 215. Loranthaceae “atriensis” SL 11, EF J-10, Gatun Fm. –5.6 Ma. 216, 217. Loranthaceae “marginalis” SL 168, EF D-17/1, Nancy Point Fm. –5.65 Ma. 218, 219. Loranthaceae “oryctanthusis” SL 175, EF F-51/4, Escudo Veraguas Fm. –2.05 Ma. 220, 221. Malpighiaceae “bunchoensis” SL 174, EF M-25/1; SL 391, EF K-10/4, Gatun Fm. –9.6 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 219 220 PALEOBOTANY AND BIOGEOGRAPHY straight, wide, pore lalongate, ca. 7 × 23 µm; reticulate, lumina < 1 µm wide. Muri thin, pluricolumellate, columellae densely present, thin; tectate, wall 3–3.5 µm thick; 41–57 µm. Ref: ID 430 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Malpighiaceae “bunchoensis” (Figs. 220, 221). Spherical, amb circular; periporate, 4 to 6 pores, equidistant, pores circular, 4–5 µm wide; psilate; tectate, wall 1 µm thick, tectum 0.5 µm thick, sexine 0.5 µm thick, nexine 0.5 µm thick; 22 µm. Ainity: Dicotyledonae, Malpighiaceae. Leguminosae. Ref: igs. 24–26 (Graham, 1991b). Ainity: Dicotyledonae, Fabaceae. Malpighiaceae Type 2. Ref: ig. 40 (Graham, 1989); ig. 33 (Graham, 1991b). Ainity: Dicotyledonae, Malpighiaceae Type 2. Lentibulariaceae. Ref: ig. 30 (Graham, 1991b). Ainity: Dicotyledonae, Lentibulariaceae, Utricularia L. Loranthaceae “atriensis” (Fig. 215). Oblate, amb triangular-obtuse-concave; syncolpate, colpus thin; psilate to scabrate; tectate, wall thickest at intercolpium; 27 µm. Ainity: Dicotyledonae, Loranthaceae. Loranthaceae “marginalis” (Figs. 216, 217). Oblate, amb triangular-obtuse-concave; syncolpate, colpi joined at polar areas forming small triangle (para-syncolpate condition), surrounded by thick and conspicuous margo; psilate; tectate, wall < 0.5 µm thick at intercolpium areas and 1 µm thick at aperture areas; 22 µm. Ainity: Dicotyledonae, Loranthaceae. Loranthaceae “oryctanthusis” (Figs. 218, 219). Oblate, amb circular-semitriangular; tricolpate, structure complex, colpi joined at polar areas, bifurcated, forming three circular plates (aspis?) probably with pseudopori, each one 6 µm wide; psilate; tectate, wall 1 µm thick; 26 µm. Ainity: Dicotyledonae, Loranthaceae, Oryctanthus (Griseb.) Eichler. Loranthaceae Type 1. Ref: ig. 31 (Graham, 1991b). Ainity: Dicotyledonae, Loranthaceae Type 1. Loranthaceae Type 2. Ref: ig. 32 (Graham, 1991b). Ainity: Dicotyledonae, Loranthaceae Type 2. Margocolporites “hematoxyformis” (Figs. 222, 223). Spherical, amb circular; tricolporate, colpi equatorially arranged, equidistant, wide, acute ends, pores circular, 5 µm wide, annulate; reticulate, muri simplicolumellate, lumina variable, 1.5 µm wide; tectate, wall 2 µm thick; 22 µm. Ainity: Dicotyledonae, Fabaceae–Caesalpinioideae, Caesalpinia L. Margocolporites vanwijhei. Ref: ID 465 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Fabaceae, Adipera Raf., Brasilettia (DC.) Kuntze, Haematoxylum L., Mezoneuron Desf., Poincianella Britton & Rose, Caesalpinia bonduc (L.) Roxb., C. coriaria (Jacq.) Willd. Melastomataceae. Ref: ig. 27 (Graham, 1991b). Ainity: Dicotyledonae, Melastomataceae. Momipites africanus (Figs. 224, 225). Spherical, amb circular; triporate, pores equatorially arranged, equidistant, circular, 2.5 µm wide, subtly protruding, annulate, annulus thin; psilate to slightly scabrate; tectate, wall 1 µm thick; 23 µm. Ref: ID 478 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Betulaceae, Corylus L. Momipites “panamensis.” Ref: ID 2097 (Jaramillo & Rueda, 2013); ig. 30 (Graham, 1988b); ig. 33 (Graham, 1989); ig. 17 (Graham, 1991b). Ainity: Dicotyledonae, Juglandaceae, Alfaroa Standl./Oreomunnea Oerst., Alfaroa/Engelhardia Lesch. ex Blume types. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Multimarginites vanderhammenii. Ref: ID 492 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Acanthaceae, Sanchezia klugii Leonard & L. B. Sm. Myrtaceae Type (Figs. 226, 227). Oblate, amb triangular-acute-straight; syncolporate, colpi equatorially arranged, equidistant, straight, thin, pores circular, ca.1.5 µm wide; psilate to slightly scabrate; tectate, wall < 1 µm thick; 20 µm. Ainity: Dicotyledonae, Myrtaceae, Psidium L. Nymphaeaceae. Ref: ig. 38 (Graham, 1991b). Ainity: Dicotyledonae, Nymphaeaceae, Cabomba. Ochnaceae Type (Figs. 228, 229). Suboblate, amb circular; tricolporate, colpi equatorially arranged, equidistant, thin, inconspicuous, short, marginate, margo coarse, pores circular, 3 µm wide, annulate; reticulate, lumina homogeneous, ine, < 1 µm wide, muri thin, simplicolumellate; tectate, wall 1 µm thick; 16.5 × 18 µm. Ainity: Dicotyledonae, Ochnaceae. Onagraceae. Ref: ig. 37 (Graham, 1991b). Afinity: Dicotyledonae, Onagraceae, Hauya. Pachydermites diederixi (Fig. 230). Suboblate to spheroidal, amb circular; stephanoporate, pores equatorially arranged, equidistant, circular, 6 µm wide, margins irregular; psilate; tectate, wall 4.5–5 µm thick; 42 µm. Ref: ID 509 ( Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Clusiaceae, Symphonia globulifera L. f. Papilionoideae. Ref: ig. 26 (Graham, 1991b). Afinity: Dicotyledonae, Fabaceae–Faboideae, Erythrina L. Parsonsidites “multiporatus” (Figs. 231, 232). Spherical, amb circular; periporate, 5 pores, circular, 3 µm wide, annulate; psilate; tectate, wall 1 µm thick; 17 µm. Ainity: Dicotyledonae. 221 Perisyncolporites “gemmatus” (Figs. 233, 234). Spherical, amb circular; perisyncolporate, pseudocolpi inconspicuous, gemmate, gemmae 3 × 2–4 µm, ends rounded, pores circular; semitectate, wall 8 µm thick, columellae 1 µm tall, tectum 3 µm thick, tectum restricted only beneath gemmae; 25 µm. Ainity: Dicotyledonae, Malpighiaceae. Perisyncolporites pokornyi (Figs. 235, 236). Spherical, amb circular; periporate, sometimes having subtle pseudocolpi resembling the perisyncolporate condition, pores circular, 3.5 µm wide; psilate; tectate, wall 3 µm thick, columellate, columellae baculae-shaped; 27 µm. Ref: ID 532 (Jaramillo & Rueda, 2013); igs. 61, 62 (Graham, 1988a). Ainity: Dicotyledonae, Malpighiaceae, Brachypterys A. Juss., Banisteroides, Bunchosia Rich. ex Juss., Hiraea Bertero ex DC., Mascagnia (Bertero ex DC.) Bertero, Stigmaphyllon A. Juss., Tetrapterys Cav. Poloretitricolpites “centenarius.” Ref: igs. 78, 79 (Graham, 1988a). Ainity: Dicotyledonae, Sapotaceae, Pouteria Aubl. Polyadopollenites mariae (Fig. 237). Sixteen-celled polyad; individual grains oblate, amb trapezoid; probably periporate, pores small, inconspicuous, restricted to point of junction of grain; psilate; tectate, wall 2.5 µm thick, thicker at distal face; individual grains ca. 18 µm, polyad 45 µm. Ref: ig. 24 (Graham, 1991b). Ainity: Dicotyledonae, Fabaceae–Mimosoideae, Acacia Mill. Polyadopollenites “minutus” (Figs. 238, 239). Sixteen-celled polyad; individual grains oblate, amb square to polygonal; periporate, pores small, circular; scabrate; tectate, wall 1 µm thick; individual grains ca. 10 µm, polyad 27 × 21 µm. Ainity: Dicotyledonae, Fabaceae–Mimosoideae, Acacia. Pouteria “mamey” (Figs. 240, 241). Subprolate, amb circular; tricolporate, colpi equatorially ar- 222 ranged, equidistant, short, thin, half as long as grain, pores appearing circular, small; psilate; tectate, wall 1.5 µm thick; 20 × 18 µm. Ainity: Dicotyledonae, Sapotaceae, Pouteria. PALEOBOTANY AND BIOGEOGRAPHY tern; tectate, wall 2 µm thick; 15 µm. Ref: ID 580 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Psilabrevitricolporites devriesi. Ref: ID 637 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Humiriaceae, Humiria Aubl. Proteacidites triangulatus (Figs. 242, 243). Suboblate, amb triangular; triporate, pores equatorially arranged, equidistant, circular, 3.5 µm wide; reticulate, sometimes appearing as psilate, lumina very ine, < 0.5 µm wide, muri thin, strongly columellate; tectate, wall 1 µm thick; 22 µm. Ref: ID 562 (Jaramillo & Rueda, 2013): ig. 57 (Graham, 1991b). Ainity: Dicotyledonae, Sapindaceae, Allophylus L. Psilabrevitricolporites “magnoporatus” (Figs. 246, 247). Spherical, amb circular; tricolporate, colpi equatorially arranged, equidistant, short, wide, pores inconspicuous, apparently circular, annulate; psilate; tectate, wall ca. 2 µm thick; 26 µm. Ainity: Dicotyledonae. Psilabrevitricolpites af. lexibilis (Figs. 244, 245). Subprolate, amb circular; tricolporate (although originally it was described as tricolpate), colpi equatorially arranged, equidistant, short, extending half the length of the grain, thin, acute ends, pores inconspicuous, apparently circular, small; psilate, sometimes resembling micropitted pat- Psilabrevitricolporites af. rotundus (Figs. 248, 249). Spherical, amb circular; tricolporate, sometimes appearing as triporate, colpi equatorially arranged, equidistant, subtle, very thin, inconspicuous, pores circular, 1 µm wide, annulate, annulus coarse; psilate; tectate, wall 1 µm thick; 18 µm. Ainity: Dicotyledonae. PLATE 8. Figures 222–269. 222, 223. Margocolporites “hematoxyformis” SL 193, EF W-12/4, Gatun Fm. –5.6 Ma. 224, 225. Momipites africanus SL 174, EF D-9/4, Gatun Fm. –9.6 Ma. 226, 227. Myrtaceae Type SL 177, EF E-9/4, Gatun Fm. –9.6 Ma. 228, 229. Ochnaceae Type SL G27-2, EF E-5, Gatun Fm. –9.6 Ma. 230. Pachydermites diederixi SL 174, EF K-8/2, Chagres Fm. –10.0 Ma. 231, 232. Parsonsidites “multiporatus” SL 2174, EF V-15, Chagres Fm. –10.0 Ma. 233, 234. Perisyncolporites “gemmatus” SL 307, EF O-10/4, Gatun Fm. –8.9 Ma. 235, 236. Perisyncolporites pokornyi SL 174, EF E-22/4=E-23/3, Tuira Fm. –12.6 Ma. 237. Polyadopollenites mariae SL 193, EF Y-17/1=3, Tuira Fm. –6.95 Ma. 238, 239. Polyadopollenites “minutus” SL 176, EF C-21/3, Escudo Veraguas Fm. –2.05 Ma. 240, 241. Pouteria “mamey” SL G26-1, EF H-12/3, Gatun Fm. –5.6 Ma. 242, 243. Proteacidites triangulatus SL 178, EF M-7/4, Pucro Fm. –6.95 Ma. 244, 245. Psilabrevitricolpites aff. lexibilis SL 178, EF A-23/3, Tuira Fm. –12.6 Ma. 246, 247. Psilabrevitricolporites “magnoporatus” SL Culebra 15, EF X-21/2, Culebra Fm. –19.15 Ma. 248, 249. Psilabrevitricolporites aff. rotundus SL G27-2, EF E-26/2=4, Tuira Fm. –6.95 Ma. 250, 251. Psilabrevitricolporites “vestibulatus” SL 350, EF T-16/4, Lara Fm. –6.95 Ma. 252, 253. Psiladiporites “faramensis” SL 1617, EF P-18/2=4, Chucunaque Fm. –6.95 Ma. 254, 255. Psiladiporites “infragranulatus” SL Culebra 19, EF J-43/2, Culebra Fm. –19.1 Ma. 256, 257. Psilaperiporites “juglands” SL 888, EF J-9/4, Chucunaque Fm. –7.05 Ma. 258, 259. Psilaperiporites minimus SL 1253, EF F-44/3=4, Chagres Fm. –10.0 Ma. 260, 261. Psilastephanocolporites “acalyphoides” SL 176, EF Q-20/4, Cayo Agua Fm. –4.25 Ma. 262, 263. Psilastephanocolporites “cedreloides” SL 5a, EF M-16/1, Gatun Fm. –5.6 Ma. 264, 265. Psilastephanocolporites issilis SL 307, EF D-16/4, Cayo Agua Fm. –3.55 Ma. 266–268. Psilastephanoporites “crassiannulatus” SL G27-1, EF K-14/4, Tuira Fm. –6.95 Ma. 269. Psilastephanoporites herngrenii SL 1142, EF Q-8/2, Tuira Fm. –6.95 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 223 224 Psilabrevitricolporites triangularis. Ref: ID 588 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Sapindaceae? Psilabrevitricolporites “vestibulatus” (Figs. 250, 251). Spherical, amb circular; tricolporate, colpi equatorially arranged, equidistant, short, pores 3.5 µm wide, vestibulate, apparently annulate; psilate; tectate, wall 2–3.5 µm thick, thickness around pores; 23 µm. Ainity: Dicotyledonae. Psiladiporites “faramensis” (Figs. 252, 253). Oblate, amb ellipsoidal; diporate, pores annulate, protruding, covered by thin membrane, circular, 4 µm wide, annulus 3.5 µm thick; psilate; tectate, wall < 1 µm thick; 19 × 27 µm. Ainity: Dicotyledonae, Rubiaceae, Faramea Aubl. Psiladiporites “infragranulatus” (Figs. 254, 255). Oblate, amb ellipsoidal; diporate, pores circular, 3.5 µm wide; psilate; tectate, wall ca. 2 µm thick; 19 × 25 µm. Ainity: Dicotyledonae. Psilaperiporites “juglands” (Figs. 256, 257). Spheroidal, amb circular; periporate, ca. 13 pores, pores slightly protruding, circular, 2.5 µm wide, annulate, annulus 1 × 4 µm; psilate; tectate, wall 2 µm thick; 27 µm. Ainity: Dicotyledonae, Juglandaceae, Juglans L. Psilaperiporites minimus (Figs. 258, 259). Spheroidal, amb circular; periporate, > 40 pores, pores circular, 1µm wide, irregularly distributed; scabrate, resembling punctate pattern; tectate, wall 1.2 µm thick, strongly columellate; 21 µm. Ref: ID 594 (Jaramillo & Rueda, 2013); ig. 39 (Graham, 1988a). Ainity: Dicotyledonae, Chenopodiaceae/ Amaranthaceae. PALEOBOTANY AND BIOGEOGRAPHY apertures 5, colpi equatorially arranged, equidistant, inconspicuous, short, thin, pores small, circular, slighty protuberant; psilate to almost verrucate; tectate, wall ca. 1 µm thick; 15 µm. Ainity: Dicotyledonae, Euphorbiaceae, Acalypha diversifolia Jacq. Psilastephanocolporites “cedreloides” (Figs. 262, 263). Prolate spheroidal, amb circular; stephanocolporate, apertures 5, colpi equatorially arranged, equidistant, extending 3/4 length of grain, ca. 35 × 5 µm, having a continuous equatorial costa, pores ellipsoidally lalongate, almost joining, resembling a zonorate ring; psilate; tectate, wall ca. 1.5 µm thick; 28 × 24 µm. Ref: ig. 35 (Graham, 1991b). Ainity: Dicotyledonae, Meliaceae, Cedrela P. Browne. Psilastephanocolporites issilis (Figs. 264, 265). Prolate-spheroidal to spheroidal, amb circular; stephanocolporate, apertures 13, colpi equatorially arranged, equidistant, extending nearly entire length of grain, thin, having a continuous equatorial costa, pores lalongate, almost joining, resembling a zonorate ring; psilate; tectate, wall ca. 2.5 µm thick; 23 × 21 µm. Ref: ID 604 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Polygalaceae, Polygala L. Psilastephanoporites “crassiannulatus” (Figs. 266– 268). Spherical, amb circular; stephanoporate, 4 pores, pores equatorially arranged, costate, costae 1.5 µm thick; psilate; tectate, wall 1.5 µm thick; 13 µm. Ainity: Dicotyledonae. Psilastephanocolpites “janduforius.” Ref: igs. 94, 95 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 5. Psilastephanoporites herngrenii (Fig. 269). Oblate, amb circular; stephanoporate, apertures 4, pores equatorially arranged, circular, 3 µm wide, annulate, annulus 3.5 µm thick; psilate; tectate, wall ca. 1.8 µm thick; 44 µm. Ref: ID 1019 ( Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Apocynaceae. Psilastephanocolporites “acalyphoides” (Figs. 260, 261). Spherical, amb circular; stephanocolporate, Psilastephanoporites “magnus” (Fig. 270). Spherical, amb circular; stephanoporate, pores protruding, PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA annulate, costate, wide; psilate; tectate, wall 2.5 µm thick, tectum clearly diferentiated from nexine; 71 µm. Ainity: Dicotyledonae, Apocynaceae. Psilastephanoporites “microcaribiensis” (Figs. 271, 272). Spherical, amb circular; stephanoporate, pores 4, simple, circular, ca. 3 µm wide; psilate; tectate, wall 1 µm thick; 19 µm. Ainity: Dicotyledonae. Psilastephanoporites “punctatus” (Fig. 273). Spherical, amb circular; stephanoporate, 4 pores, circular, 4 µm wide, costate, annulus thick; psilate; intectate; wall 1.5 µm thick; 30 µm. Ainity: Dicotyledonae. Psilasyncolpites “recticolpatus” (Figs. 274, 275). Oblate, amb triangular-obtuse-straight; syncolpate, colpi continuous, joining at apices; psilate; tectate, wall 1 µm thick, decreasing toward polar areas; 23 µm. Ainity: Dicotyledonae, Myrtaceae. Psilasyncolporites “reticolpatus” (Figs. 276, 277). Oblate, amb triangular-obtuse slightly concave; apparently syncolporate, colpi continuous, joining at apices, forming a small triangle (parasyncolporate condition), pore, if present, inconspicuous; psilate; tectate, wall 1 µm thick; 22 µm. Ainity: Dicotyledonae, Loranthaceae, Struthanthus Mart. Psilatricolpites CU490. Ref: igs. 82–86 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 2. Psilatricolporites “communis” (Figs. 278, 279). Oblate spheroidal, amb circular; tricolporate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, wide, acute ends, pore apparently circular, becoming elongated, protruding; tectate, wall 1 µm thick; 16.5 × 18 µm. Afinity: Dicotyledonae. Psilatricolporites costatus. Ref: ID 635 (Jaramillo & Rueda, 2013); ig. 53 (Graham, 1988a). Ainity: Dicotyledonae, Salicaceae, Casearia Jacq. 225 Psilatricolporites “crassiexinatus” (Figs. 280, 281). Suboblate, amb circular trilobate; tricolporate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, wide, pore elongated; psilate; tectate, wall 5 µm thick; 41 µm. Ainity: Dicotyledonae. Psilatricolporites “faboides” (Figs. 282, 283). Subprolate, amb circular; tricolporate, colpi equatorially arranged, equidistant, extending 3/4 length of grain, thin, pores elongated, becoming circular, 3.5 µm; psilate; tectate, wall 1 µm thick; 14 × 12.5 µm. Ainity: Dicotyledonae, Fabaceae– Faboideae. Psilatricolporites “hornii” (Fig. 284). Suboblate, amb circular; tricolpate, colpi equatorially arranged, equidistant, short, marginate, margo very thick, prominent; psilate; tectate, wall < 0.5 µm thick; 29 × 32 µm. Ainity: Dicotyledonae, Apocynaceae. Psilatricolporites “rotund” (Fig. 285). Subprolate, amb circular; tricolporate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, costate, pores lalongate; psilate, apparently microreticulate; tectate, wall 1 µm thick, displaying short columellae; 44.5 × 35.5 µm. Afinity: Dicotyledonae. Psilatricolporites “sphericus” (Figs. 286, 287). Spherical, amb circular; tricolporate, colpi equatorially arranged, equidistant, extending nearly entire length of grain, pores circular, wide; psilate; tectate, wall 1 µm thick; 15 µm. Ainity: Dicotyledonae. Psilatricolporites “vest” (Fig. 288). Suboblate, amb circular; tricolporate, colpi equatorially arranged, equidistant, short, costate, margo thick; psilate; tectate, wall 1 µm thick; 25 × 25 µm. Ainity: Dicotyledonae. Psilatricolporites sp. Ref: ID 2385 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. 226 Psilatriporites “lobatus” (Figs. 289, 290). Spherical, amb triangular-obtuse-convex; triporate, pores circular, 10 µm wide, annulate, annulus 5 µm thick; psilate; tectate, wall 1.2 µm thick; 31 µm. Ainity: Dicotyledonae. Psilatriporites “moraceoides” (Figs. 291, 292). Spherical, amb circular; triporate, pores circular, 1 µm wide, simple; psilate, slightly scabrate; tectate, wall 1.2 µm thick; 17 µm. Ainity: Dicotyledonae. Psilatriporites “ulmoides” (Figs. 293, 294). Spherical, amb circular; triporate, pores circular, 3 µm wide, having subtle costae; psilate; tectate, wall 1.2 µm thick; 18 µm. Ainity: Dicotyledonae. Psilatriporites “vestibulatum” (Figs. 295, 296). Spherical, amb triangular-rounded; triporate, pores circular-globose; psilate; tectate, wall < 1 µm at interporium area, 3 µm thick at apertural area; 15 µm. Ainity: Dicotyledonae. PALEOBOTANY AND BIOGEOGRAPHY Ranunculacidites operculatus (Figs. 297, 298). Spherical, amb circular; tricolporate, colpi equatorially arranged, equidistant, wide, short, acute ends, polar area distance between adjacent colpi 6 µm long, pores masked by conspicuous opercula, operculum thin, long, bifurcated; reticulate, lumina < 1 µm wide, muri very thin, simplicolumellate; tectate; 18 µm. Ref: ID 656 (Jaramillo & Rueda, 2013); ig. 29 (Graham, 1988b); ig. 32 (Graham, 1989); ig. 13 (Graham, 1991b). Ainity: Dicotyledonae, Euphorbiaceae, Alchornea Sw. Retidiporites “cordiaeformis” (Figs. 299, 300). Spherical, amb circular; diporate, pores circular, 12 µm wide, protruding, annulate; reticulate, lumina decreasing toward center of grain; tectate, wall variable, ca. 1.5 thick; 32 µm. Ainity: Dicotyledonae. Retipericolporites sp. (Figs. 301, 302). Spherical, amb circular; stephanocolpate, ca. 8 to 9 colpori, PLATE 9. Figures 270–310. 270. Psilastephanoporites “magnus” SL 18, EF G-43/1, Gatun Fm. –5.6 Ma. 271, 272. Psilastephanoporites “microcaribiensis” SL Culebra 10.5, EF O-39/2, Culebra Fm. –19.4 Ma. 273. Psilastephanoporites “punctatus” SL Culebra 1.5, EF U-54/3, Culebra Fm. –19.46 Ma. 274, 275. Psilasyncolpites “recticolpatus” SL 177, EF G-6/4, Gatun Fm. –10.2 Ma. 276, 277. Psilasyncolporites “reticolpatus” SL 1188, EF J-25/3, Cayo Agua Fm. –4.25 Ma. 278, 279. Psilatricolporites “communis” SL 174, EF W-35/1, Gatun Fm. –10.05 Ma. 280, 281. Psilatricolporites “crassiexinatus” SL 168, EF K-10/1, Gatun Fm. –5.6 Ma. 282, 283. Psilatricolporites “faboides” SL 2165, EF N-6/2, Gatun Fm. –10.2 Ma. 284. Psilatricolporites “hornii” SLG23-1, EF K-20/1, Gatun Fm. –10.2 Ma. 285. Psilatricolporites “rotund” SL La Boca 27, EF X-14/4, Culebra Fm. –19.38 Ma. 286, 287. Psilatricolporites “sphericus” SL 2165, EF M-40/2, Gatun Fm. –9.6 Ma. 288. Psilatricolporites “vest” SL La Boca 27, EF U-46/3=4, La Boca Fm. –19.46 Ma. 289, 290. Psilatriporites “lobatus” SL 2222, EF M-43, Cayo Agua Fm. –4.25 Ma. 291, 292. Psilatriporites “moraceoides” SL 2165, EF N-6/4, Tuira Fm. –6.95 Ma. 293, 294. Psilatriporites “ulmoides” SL 207, EF L-15/4, Gatun F. –5.6 Ma. 295, 296. Psilatriporites “vestibulatum” SL G28-2, EF T-11, Gatun Fm. –5.6 Ma. 297, 298. Ranunculacidites operculatus SL 184, EF G-50/4, Gatun Fm. –10.2 Ma. 299, 300. Retidiporites “cordiaeformis” SL 2167, EF V-13/1, Gatun Fm. –9.6 Ma. 301, 302. Retipericolporites sp. SL 1566, EF O-6/2=4, Tuira Fm. –6.95 Ma. 303, 304. Retistephanocolpites “brevicolpatus” SL 370, EF R-68/1, Gatun Fm. –8.9 Ma. 305. Retistephanocolpites “hexalabiatus” SL 5a, EF S-25/3, Gatun Fm. –5.6 Ma. 306, 307. Retistephanocolpites “octolabiatus” SL 68, EF D-15/4, Gatun Fm. –9.6 Ma. 308. Retistephanocolporites “bombacoides” SL La Boca 8.5, EF K-54, Culebra Fm. –19.46 Ma. 309, 310. Retistephanocolporites “borrerioides” SL 1241, EF S-19, Gatun Fm. –8.9 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 227 228 colpus very short, thin, lineal, apparently marginate, inconspicuous, pores circular, 1–1.5 µm wide; reticulate, lumina thin, homogeneous, muri simplicolumellate, columellae 0.5 µm long; tectate, wall 1 µm thick; 21 µm. Ainity: Dicotyledonae. Retistephanocolpites “brevicolpatus” (Figs. 303, 304). Spherical, amb circular; stephanocolpate, 4 colpi, colpus equatorially arranged, equidistant, short, acute ends, polar area ample; reticulate, lumina 0.5 µm wide, muri 0.5 µm thick; tectate, wall 1.5 µm thick; 24 µm. Ainity: Dicotyledonae. Retistephanocolpites “hexalabiatus” (Fig. 305). Spherical, amb circular hexalobate; stephanocolpate, 6 colpi, colpus equatorially arranged, equidistant, short, not well deined, pores probably present, inconspicuous; reticulate, lumina 1 µm wide, muri thin, simplibaculate; tectate, wall 1–2 µm thick, increasing toward intercolpium areas; 17 µm. Ainity: Dicotyledonae, Labiatae. Retistephanocolpites “octolabiatus” (Figs. 306, 307). Spherical, amb circular to slightly ovate, octolobate; stephanocolpate, 8 colpi, colpus equatorially arranged, equidistant, extending nearly entire length of grain, deep, wide; reticulate, lumina < 1 µm wide, muri thin, simplicolumellate, columellae dense; tectate, wall 1.8 µm thick; 22 × 19 µm. Ainity: Dicotyledonae, Labiatae. Retistephanocolporites “bombacoides” (Fig. 308). Oblate, amb circular; stephanocolporate, 5 colpori, colpus equatorially arranged, equidistant, short, margins straight, ends pointed, pores indistinct, costate, annulus thick; reticulate-fossulate, lumina variable, 1–4 µm wide; semitectate, wall 1.5 µm thick; 30 µm. Ainity: Dicotyledonae. Retistephanocolporites “borrerioides” (Figs. 309, 310). Oblate spheroidal, amb circular; stephanocolporate, 11 colpi, colpus equatorially arranged, equidistant, short, narrow, pores simple, incon- PALEOBOTANY AND BIOGEOGRAPHY spicuous; baculate, baculae 0.8 µm tall, densely distributed; intectate, wall 2 µm thick; 23 × 25 µm. Ainity: Dicotyledonae, Rubiaceae, Borreria G. Mey. Retistephanoporites af. crassiannulatus (Figs. 311, 312). Spherical, amb circular; stephanoporate, sometimes displaying triporate condition, pores circular, 6 µm wide, costate, annulus 2 µm thick, surrounded by coarse baculae processes; foveolate, foveolae regularly distributed, resembling reticulate pattern, 2.5 µm wide; tectate, wall 2.5 µm thick; 35 µm. Ref: ID 703 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, MalvaceaeBombacoideae, Quararibea Aubl. Retitrescolpites “amanoensis” (Fig. 313). Spherical, amb circular-trilobate; tricolporate, colpus equatorially arranged, equidistant, extending 3/4 length of grain, rounded ends, pores probably circular, wide, inconspicuous; reticulate, lumina variable, 4–7 µm wide, having free baculae, muri 1 µm thick, simplicolumellate, undulating, irregular; semitectate, wall 5 µm thick; 41 µm. Ainity: Dicotyledonae, Phyllanthaceae, Amanoa Aubl. Retitrescolpites? irregularis. Ref: ID 712 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Phyllanthaceae, Amanoa type, Amanoa oblongifolia Müll. Arg., Pseudolachnostylis glauca (Hiern) Hutch. Retitrescolpites “usualis” (Figs. 314, 315). Subprolate, amb tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, thin, pores lalongate, 2 µm long; reticulate, lumina irregular, variable, 1.5–2.5 µm wide, muri thin, < 1 µm thick, simplicolumellate, columellae 1 µm long, baculae-shaped; tectate, wall 1.8–2 µm thick; 19 × 15 µm. Ainity: Dicotyledonae. Retitricolpites “generalis” (Figs. 316, 317). Subprolate, amb circular; tricolpate, colpus equatorially arranged, equidistant, simple; reticulate, PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA lumina 0.7–1 µm wide; tectate, wall 1 µm thick; 34 × 29 µm. Ainity: Dicotyledonae. Retitricolpites “pseudosimplex” (Figs. 318, 319). Subprolate, amb circular; tricolpate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, simple, thin; reticulate, lumina ca. 0.5 µm wide; tectate, wall 1 µm thick; 36 × 20 µm. Ainity: Dicotyledonae. Retitricolpites simplex. Ref: ID 746 (Jaramillo & Rueda, 2013); igs. 49, 50 (Graham, 1988a). Afinity: Dicotyledonae, Euphorbiaceae, Sapium Jacq. Retitricolpites “spiraloides.” Ref: ig. 92 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 14. Retitricolpites sp. Ref: ID 993 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Retitricolpites sp. A. Retitricolporites “amplibrochatus” (Figs. 320, 321). Spherical, amb circular; tricolporate, colpus equatorially arranged, equidistant, simple, pores wide, inconspicuous; reticulate, lumina variable, rounded, muri thick, simplicolumellate, columellae 2.5 µm long, rounded; tectate, wall 3.5 µm thick; 33 µm. Ainity: Dicotyledonae. Retitricolporites “colpimarginatus” (Figs. 322, 323). Spherical, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, wide, pore lalongate, annulate; reticulate, lumina < 1 µm wide, muri thin, simplibaculate; tectate, wall 1.8 µm thick; 13 µm. Ainity: Dicotyledonae. Retitricolporites “communis.” Ref: igs. 44, 45 (Graham, 1988a). Ainity: Dicotyledonae, Connaraceae, Rourea Aubl. Retitricolporites “crassiannulatus” (Figs. 324, 325). Spherical, amb circular; tricolporate, colpus equa- 229 torially arranged, equidistant, extending nearly entire length of grain, wide, pore circular, 3.5 µm wide, annulate, annulus 1 µm thick; reticulate, lumina < 1 µm wide, muri sexine strongly columellate, columellae baculae-shaped; tectate, wall 2.5 µm thick; 20 µm. Ainity: Dicotyledonae, Rubiaceae, Genipa americana L. Retitricolporites “hlongorate” (Figs. 326, 327). Subprolate, amb circular; tricolporate, colpus equatorially arranged, equidistant, 2/3 length of grain, having thick margo broken at equator, pore circular, 2 µm wide, apertures surrounded by a psilate area resembling the “H” condition; reticulate, lumina < 1 µm wide, muri thin, strongly columellate, columellae baculae-shaped; tectate, wall 1.5 µm thick; 18 µm. Ainity: Dicotyledonae. Retitricolporites “minibrochatus” (Figs. 328, 329). Prolate spheroidal, amb circular; tricolporate, colpus equatorially arranged, equidistant, short, thin, pore probably elongated, apertures slightly aspidate; reticulate, lumina < 1 µm wide, muri thin, simplicolumellate; tectate, wall 2 µm thick; 22 µm. Ainity: Dicotyledonae. Retitricolporites “papilioniformis” (Figs. 330, 331). Suboblate to oblate-spheroidal, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, wide, straight, pores lalongate, 4 × 7 µm; reticulate, lumina < 1 µm wide, muri thin, simplicolumellate, columellae conspicuous; tectate, wall 2.5 µm thick; 16.5 × 18 µm. Ainity: Dicotyledonae, Fabaceae-Faboideae, Machaerium Pers. Retitricolporites “pluricolumellatus.” Ref: igs. 99, 100 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 7. Retitricolporites “poricostatus” (Figs. 332, 333). Subprolate, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, thin, pores annulate, ellip- 230 soidal; reticulate, lumina uniform, 1 µm wide, muri thin; tectate, wall 1 µm thick; 25 × 21 µm. Ainity: Dicotyledonae. Retitricolporites “spheroidalis” (Figs. 334, 335). Spherical, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending half the length of the grain, thin, acute ends, marginate, margo displaying costae digitatus, pore slightly elongated; reticulate, lumina < 1 µm wide, muri thin, simplicolumellate; tectate, wall 1.5–2 µm thick; 18 µm. Ainity: Dicotyledonae. Retitricolporites “triangularis” (Figs. 336, 337). Spherical, amb triangular; tricolporate, colpus equatorially arranged, equidistant, extending 2/3 length of grain, thin, acute ends, pores inconspicuous; reticulate, lumina < 1 µm wide, muri thin; tectate, wall 1 µm thick; 16.5 µm. Ainity: Dicotyledonae. PALEOBOTANY AND BIOGEOGRAPHY Retitricolporites “zonoaperturatus” (Figs. 338, 339). Subprolate, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, wide, marginate, margo thick, pori elongated, joining at apices, resembling an equatorial endocingulum condition; reticulate, lumina < 1 µm wide; tectate; 26 × 23 µm. Ainity: Dicotyledonae. Retitricolporites CU456. Ref: igs. 54, 55 (Graham, 1991b). Ainity: Dicotyledonae, Sapindaceae, Cupania L. Retitricolporites CU456-2. Ref: ig. 80 (Graham, 1988a). Ainity: Dicotyledonae, Malvaceae– Byttneroideae, Guazuma Mill. Retitricolporites CU57. Ref: ig. 81 (Graham, 1988a). Ainity: Dicotyledonae, Unknown Type 1. PLATE 10. Figures 311–358. 311, 312. Retistephanoporites aff. crassiannulatus SL G27-1, EF O-48/2, Gatun Fm. –8.9 Ma. 313. Retitrescolpites “amanoensis” SL 193, EF F-11/4, Cayo Agua Fm. –4.25 Ma. 314, 315. Retitrescolpites “usualis” SL G26-1, EF H-8/2, Gatun Fm. –10.0 Ma. 316, 317. Retitricolpites “generalis” SL 176, EF H-14/2=4, Tuira Fm. –6.95 Ma. 318, 319. Retitricolpites “pseudosimplex” SL La Boca 37.5, EF P-54, Culebra Fm. –19.33 Ma. 320, 321. Retitricolporites “amplibrochatus” SL 38, EF H-7/2=4, Tuira Fm. –10.15 Ma. 322, 323. Retitricolporites “colpimarginatus” SL G27-2, EF L-39/4, Tuira Fm. –6.95 Ma. 324, 325. Retitricolporites “crassiannulatus” SL 175, EF L-13/2, Tuira Fm. –10.15 Ma. 326, 327. Retitricolporites “hlongorate” SL 63, EF V-15/2=4, Cayo Agua Fm. –4.25 Ma. 328, 329. Retitricolporites “minibrochatus” SL 5a, EF H-14/2, Gatun Fm. –5.6 Ma. 330, 331. Retitricolporites “papilioniformis” SL 18, EF Q-7/2=4, Tuira Fm. –10.15 Ma. 332, 333. Retitricolporites “poricostatus” SL 1617, EF Q-12/4, Chucunaque Fm. –6.95 Ma. 334, 335. Retitricolporites “spheroidalis” SL 19, EF R-38/1, Gatun Fm. –5.6 Ma. 336, 337. Retitricolporites “triangularis” SL 391, EF M-51/2, Nancy Point Fm. –5.65 Ma. 338, 339. Retitricolporites “zonoaperturatus” SL 1612, EF K-8, Pucro Fm. –6.95 Ma. 340, 341. Retitriporites “erythrinoides” SL 391, EF T-43, Tuira Fm. –12.6 Ma. 342, 343. Retitriporites “heterobrochatus” SL 184, EF F-22/3, Shark Hole Point Fm. –2.05 Ma. 344, 345. Retitriporites “vestibulatum” SL G26-1, EF S-19/1, Gatun Fm. –9.6 Ma. 346. Rhoipites “colpizonatus” SL La Boca 37.5, EF O-55/2, Culebra Fm. –19.46 Ma. 347. Rousea “cristatus” SL Culebra 15.25, EF Q-29/4, Culebra Fm. –19.12 Ma. 348, 349. Scabraperiporites “nothofaguiformis” SL 62, EF G-22/3, Gatun Fm. –5.6 Ma. 350, 351. Scabrastephanoporites “apocynaceous” SL 175, EF Q-8/4, Escudo Veraguas Fm. –2.05 Ma. 352. Siltaria “comunis” SL Culebra 6.75, EF O-40/2, Culebra Fm. –19.16 Ma. 353. Stephanoporites “scabratus” SL 2202, EF O-10/2, Shark Hole Point Fm. –4.6 Ma. 354. Striatopollis catatumbus SL 17, EF F-19/1, Gatun Fm. –11.55 Ma. 355, 356. Striatricolporites “burseriformis” SL G26-1, EF E-14/2, Tuira Fm. –6.95 Ma. 357, 358. Striatricolporites melenae SL 176, EF L-24/2, Cayo Agua Fm. –4.25 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 231 232 PALEOBOTANY AND BIOGEOGRAPHY Retitriporites “erythrinoides” (Figs. 340, 341). Suboblate, amb circular; triporate, pores equatorially arranged, equidistant, circular, 5–6 µm wide; reticulate, lumina rounded, variable, decreasing toward apertures, becoming micropitted, resembling rugulate condition; tectate, wall 1.5 µm thick; 21 µm. Ainity: Dicotyledonae, FabaceaeFaboideae, Erythrina L. margins straight, ends pointed, 3.5 µm wide; reticulate to micropitted, lumina 1 µm wide, angular, densely distributed; semitectate, wall thin; 29 µm. Ainity: Dicotyledonae. Retitriporites “heterobrochatus” (Figs. 342, 343). Spherical, amb circular; triporate, pores equatorially arranged, equidistant, circular, 3 µm wide; reticulate, lumina variable, muri 1 µm thick, simplicolumellate, columellae baculae-shaped; tectate, wall 3.5 µm thick; 32 µm. Ainity: Dicotyledonae. Rubiaceae (Posoqueria). Ref: igs. 51–53 (Graham, 1991b). Ainity: Dicotyledonae, Rubiaceae, Posoqueria Aubl. Retitriporites “vestibulatum” (Figs. 344, 345). Suboblate, amb circular; triporate, pores equatorially arranged, equidistant, lolongate, 3 × 2 µm, acute ends, margins irregular; reticulate, lumina <1 µm wide; tectate, wall 1.8 µm thick, muri simplicolumellate, columellae clavate-shaped; 19 × 24 µm. Ainity: Dicotyledonae, Rubiaceae. Rhoipites af. cienagensis. Ref: ID 793 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Rhoipites “colpizonatus” (Fig. 346). Subprolate, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, ca. 22 µm long, simple, margins straight, ends pointed, pores lalongate; reticulate, lumina 1µm wide; tectate, wall 1.5 µm thick; 24.7 µm. Ainity: Dicotyledonae. Rhoipites guianensis. Ref: ID 794 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Sterculiaceae, Firmiana Marsili, Hildegardia Schott & Endl., Glossostemon Desf., Pterocymbium R. Br., Sterculia L. Rousea “cristatus” (Fig. 347). Prolate, amb circular; tricolpate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, Rubiaceae (Cosmibuena). Ref: ig. 43 (Graham, 1991b). Ainity: Dicotyledonae, Rubiaceae, Cosmibuena Ruiz & Pav. Rubiaceae (Type 1). Ref: ig. 41 (Graham, 1991b). Ainity: Dicotyledonae, Rubiaceae, Faramea Type 1. Rubiaceae (Type 2). Ref: igs. 44, 45, 48 (Graham, 1991b). Ainity: Dicotyledonae, Rubiaceae, Faramea Type 2. Rutaceae (Casimiroa). Ref: igs. 46, 47, 49 (Graham, 1991b). Ainity: Dicotyledonae, Rutaceae, Casimiroa La Llave & Lex. Sapindaceae (Paullinia). Ref: ig. 50 (Graham, 1991b). Ainity: Dicotyledonae, Sapindaceae, Paullinia L. Sapindaceae (Serjania). Ref: ig. 56 (Graham, 1991b). Ainity: Dicotyledonae, Sapindaceae, Serjania Mill. Sapotaceae (cf. Bumelia). Ref: ig. 58 (Graham, 1991b). Ainity: Dicotyledonae, Sapotaceae, cf. Bumelia Sw. Scabraperiporites “nothofaguiformis” (Figs. 348, 349). Spherical, amb circular; periporate, pores 6 to 7, circular, ca. 3 µm wide, slightly annulate, not well deined, appearing as pseudopori; scabrate; tectate, wall 1 µm thick; 21 µm. Ainity: Dicotyledonae, Fagaceae, Nothofagus dombeyi (Mirb.) Oerst. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Scabrastephanoporites “apocynaceous” (Figs. 350, 351). Spherical, amb circular; stephanoporate, pores equatorially arranged, circular, ca. 1.5 µm wide, annulate, annulus < 1 µm wide; scabrate; tectate, wall 1 µm thick; 18 µm. Ainity: Dicotyledonae, Apocynaceae. Siltaria “comunis” (Fig. 352). Spheroidal, amb circular; tricolporate, colpus equatorially arranged, equidistant, short, margins straight, ends pointed, pores circular, costate; micropitted; tectate, wall 1 µm thick; 19 µm. Ainity: Dicotyledonae. Siltaria dilcheri. Ref: ID 2075 ( Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Stephanoporites “scabratus” (Fig. 353). Suboblate, amb circular; stephanoporate, pores 5, circular, vestibulate; reticulate, lumina < 1 µm wide, muri thin; tectate, wall 2.5–3 µm thick; 17 × 22 µm. Ainity: Dicotyledonae. Striatopollis catatumbus (Fig. 354). Subprolate, amb probably circular; tricolpate, colpus equatorially arranged, equidistant, extending 3/4 length of grain, wide, costate, irregular; striate, striae dense, longitudinally oriented, 1 µm wide; tectate, wall 1.5 µm thick; 32 × 22 µm. Ref: ID 2075 (Jaramillo & Rueda, 2013); ig. 31 (Graham, 1988b); igs. 37, 38 (Graham, 1989); ig. 25 (Graham, 1991b). Ainity: Dicotyledonae, Fabaceae, Crudia Schreb., Anthonotha P. Beauv., Isoberlinia Craib & Stapf ex Holland, Macrolobium bifolium (Aubl.) Pers. Striatricolporites “burseriformis” (Figs. 355, 356). Oblate spheroidal, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, thin, pori lalongate, 1 × 4 µm, slightly protruding, costate, annulus inconspicuous; reticulate-striate, lumina < 1 µm wide, muri thin, simplicolumellate, columellae baculae-shaped, striae longitudinally oriented; tectate, wall 1.8 µm thick; 15 × 16.5 µm. Ref: ig. 233 12 (Graham, 1991b). Ainity: Dicotyledonae, Burseraceae, Bursera simaruba (L.) Sarg. Striatricolporites digitatus. Ref: ID 883 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Striatricolporites melenae (Figs. 357, 358). Prolate, amb probably circular; tricolporate, colpus equatorially arranged, equidistant, extending 2/3 length of grain, thin, pori circular, 2 µm wide, slightly protruding, costate, annulus inconspicuous; reticulate-striate, lumina < 1 µm wide, muri thin, simplicolumellate, columellae baculaeshaped, striae longitudinally oriented; tectate, wall 1.8 µm thick; 22 × 14 µm. Ref: ID 883 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Anacardiaceae? Striatricolporites tenuissimus. Ref: ID 888 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Symplocaceae (Symplocos). Ref: ig. 59 (Graham, 1991b). Ainity: Dicotyledonae, Symplocaceae, Symplocos Jacq. Type 1. Syncolporites “paraisus.” Ref: ID 2095 (Jaramillo & Rueda, 2013); ig. 77 (Graham, 1988a). Ainity: Dicotyledonae, Sapindaceae, Matayba Aubl. Syncolporites poricostatus. Ref: ID 900 (Jaramillo & Rueda, 2013); igs. 65, 66 (Graham, 1988a); ig. 32 (Graham, 1988b); ig. 28 (Graham, 1991b). Ainity: Dicotyledonae, Myrtaceae, Eugenia L./ Myrcia DC. types. Tetracolpites “rectangularis” (Figs. 359, 360). Oblate, amb rectangular; stephanocolpate, colpi 4, colpus equatorially arranged, equidistant, extending nearly entire length of grain, wide, irregular; perforate; tectate, wall 1.5 µm thick; 22 µm. Afinity: Dicotyledonae. Tetracolporites “guareaensis” (Figs. 361–363). Oblate, amb rectangular; stephanocolpate, colpori 4, 234 colpus equatorially arranged, equidistant, short, very thin, pore slightly oval, having subtle costae, annulus thin; psilate; tectate, wall 1 µm thick; 18 µm. Ref: igs. 39, 42 (Graham, 1991b). Ainity: Dicotyledonae, Meliaceae, Guarea F. Allam. ex L. Tetracolporites “trichiliensis” (Figs. 364–366). Subprolate, amb circular; stephanocolporate, colpori 4, colpus equatorially arranged, equidistant, colpus 2/3 length of grain, thin, pores lalongateellipsoidal, 2 × 8 µm, costate, costae ca. 2 µm thick; reticulate, lumina < 1 µm wide, muri simplicolumellate; tectate, wall 1 µm thick at intercolpium area and 2.5 µm at apertural area; 20 × 16.5 µm. Ainity: Dicotyledonae, Meliaceae, Trichilia P. Browne. Tetracolporites “vestibulatum” (Figs. 367, 368). Spherical, amb circular; stephanocolporate, colpori 4, colpus equatorially arranged, equidistant, short, 4–5 µm long, pores circular, 2.5–3 µm wide, annulate, vestibulate; psilate, slightly scabrate; tectate, wall 1.5 µm thick; 26 µm. Ainity: Dicotyledoneae. Tetracolporopollenites maculosus. Ref: ID 909 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Sapotaceae, Chrysophyllum argenteum Jacq. PALEOBOTANY AND BIOGEOGRAPHY Tetracolporopollenites af. spongiosus. Ref: ID 912 ( Jaramillo & Rueda, 2013). Ainity: Dicotyledonae. Tetracolporopollenites transversalis. Ref: ID 913 (Jaramillo & Rueda, 2013). Ainity: Dicotyledonae, Sapotaceae, subtype VII-A of Harley (1991), Micropholis (Griseb.) Pierre. Tiliaceae (Mortoniodendron). Ref: ig. 61 (Graham, 1991b). Ainity: Dicotyledonae, Tiliaceae, Mortoniodendron Standl. & Steyerm. Tricolpites “minutibacularis” (Figs. 369–371). Subprolate, amb circular; tricolpate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, marginate, margo surrounded by small baculae; baculate; intectate, wall 1.2 µm thick; 20 × 17 µm. Ainity: Dicotyledonae. Tricolpites “punctatus.” Ref: igs. 87–90 (Graham, 1988b). Ainity: Dicotyledonae, Unknown Type 3. Tricolporites “annulatus” (Figs. 372–374). Spherical, amb triangular to circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, pore annulate; retic- PLATE 11. Figures 359–399. 359, 360. Tetracolpites “rectangularis” SL 1553, EF P-5/4, Tuira Fm. –6.95 Ma. 361–363. Tetracolporites “guareaensis” SL 5b, EF N-12/2=4, Gatun Fm. –5.6 Ma. 364–366. Tetracolporites “trichiliensis” SL G27-2, EF T-6/1, Tuira Fm. –10.15 Ma. 367, 368. Tetracolporites “vestibulatum” SL 11, EF C-18/4=D-18/2, Gatun Fm. –5.6 Ma. 369–371. Tricolpites “minutibacularis” SL 68, EF K-22, unnamed Fm. –3.55 Ma. 372–374. Tricolporites “annulatus” SL 2179, EF E-48, Cayo Agua Fm. –4.25 Ma. 375–378. Tricolporites “colpidigitatus” SL G26-1, EF V-6, Gatun Fm. –9.6 Ma. 379–381. Tricolporites “ericipitiformis” SL G28-1, EF H-45/4, Tuira Fm. –6.95 Ma. 382, 383. Tricolporites “megaporatus” SL 177, EF O-26/3, Cayo Agua Fm. –4.25 Ma. 384, 385. Venezuelites “centroamericanus” SL La Boca 8.5, EF X-38/2, Culebra Fm. –19.49 Ma. 386, 387. Verrutricolporites “desmodiensis” SL 65, EF L-21/1, Cayo Agua Fm. –4.25 Ma. 388, 389. Verrutricolporites “faboides” SL 169, EF H-46/1, Tuira Fm. –6.95 Ma. 390, 391. Verrutricolporites “poricircularis” SL 1553, EF D-13/2, Tuira Fm. –6.95 Ma. 392–394. Vochysia Type SL 174, EF E-21/4, Gatun Fm. –11.55 Ma. 395, 396. Zonocostites “elongatus” SL Culebra 1.5, EFS-43, Culebra Fm. –19.18 Ma. 397–399. Zonocostites ramonae SL 174, EF D-19/3, Tuira Fm. –12.6 Ma. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 235 236 ulate, lumina < 1 µm wide, appearing almost psilate; tectate, wall variable, 1 µm thick at apertural area, cavate at intercolpium area, cavea 1 µm long; 24 µm. Ainity: Dicotyledonae. Tricolporites “colpidigitatus” (Figs. 375–378). Prolate spheroidal, amb circular; tricolporate, colpus equatorially arranged, equidistant, thin, 1 µm wide, marginate, margo bifurcated at equator (exitus digitus), pore elongated, not well deined; apparently clavate, resembling reticulate pattern; tectate, wall 2–2.5 µm thick, sexine 1.5 µm thick, strongly columellate, columellae baculae-like, thin, nexine < 1 µm thick; 20 × 19 µm. Ainity: Dicotyledonae. Tricolporites “ericipitiformis” (Figs. 379–381). Suboblate, amb circular-triangular; tricolporate, colpus equatorially arranged, equidistant, 22 × 2.5 µm, marginate, margo 2.5 µm thick, almost joining at polar area, pores elongated, surrounded by a psilate area resembling the “H” condition; psilate; tectate, wall 2 µm thick; 19 × 22 µm. Ainity: Dicotyledonae, Ericaceae. Tricolporites “megaporatus” (Figs. 382, 383). Spherical, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, subtle, wide, acute ends, pores circular, 5 µm wide, annulate, annulus 2.5 µm thick; baculate, baculae < 1 µm long, dense; intectate, wall 1 µm thick; 32 µm. Ainity: Dicotyledonae. Unknown 1. Ref: igs. 65, 66 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 1. PALEOBOTANY AND BIOGEOGRAPHY Unknown 7. Ref: igs. 74–77 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 7. Unknown 8. Ref: ig. 78 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 8. Unknown 9. Ref: igs. 79, 80 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 9. Unknown 10. Ref: ig. 81 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 10. Unknown 11. Ref: ig. 82 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 11. Unknown 12. Ref: ig. 83 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 12. Unknown 13. Ref: ig. 84 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 13. Unknown 14. Ref: ig. 85 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 14. Unknown 15. Ref: ig. 86 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 15. Unknown 16. Ref: ig. 92 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 16. Unknown 17. Ref: ig. 91 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 17. Unknown 18. Ref: igs. 87, 88 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 18. Unknown 2. Ref: igs. 67, 68 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 2. Unknown 19. Ref: igs. 97, 98 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 19. Unknown 4. Ref: ig. 71 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 4. Unknown 20. Ref: igs. 89, 90 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 20. Unknown 6. Ref: ig. 73 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 6. Unknown 21. Ref: ig. 95 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 21. PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA Unknown 22. Ref: ig. 94 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 22. Unknown 23. Ref: ig. 96 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 23. Unknown 24. Ref: ig. 93 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 24. Unknown 25. Ref: igs. 100, 101 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 25. Unknown 26. Ref: igs. 102, 103 (Graham, 1991b). Ainity: Dicotyledonae, Unknown Type 26. Unknown 27. Ref: ig. 99 (Graham, 1991b). Afinity: Dicotyledonae, Unknown Type 27. Utricularia. Ref: ID 950 (Jaramillo & Rueda, 2013); ig. 30 (Graham, 1991b); ig. 36 (Graham, 1989). Ainity: Dicotyledonae, Lentibulariaceae, Utricularia L. Venezuelites “centroamericanus” (Figs. 384, 385). Oblate, amb circular; stephanoporate, pores 4, circular, 1 µm wide, costate, annulus thick; psilate; wall 3 µm thick; 25 µm. Ainity: Dicotyledonae. Verbenaceae (Aegiphila). Ref: igs. 62, 63 (Graham, 1991b). Ainity: Dicotyledonae, Verbenaceae, Aegiphila Jacq. 237 Verrutricolporites “faboides” (Figs. 388, 389). Oblate, amb circular; tricolporate, colpus equatorially arranged, equidistant, short, 12 × 1 µm, surrounded by dense patches of verrucae resembling a thick margo, pore lineal-elongated, 1 × 8 µm; verrucate, verrucae variable in shape and size; tectate, wall > 3 µm thick, masked by sculpture; 18 × 31 µm. Ainity: Dicotyledonae, FabaceaeFaboideae. Verrutricolporites “poricircularis” (Figs. 390, 391). Prolate spheroidal, amb circular; tricolporate, colpus equatorially arranged, equidistant, 3/4 length of grain, inconspicuous, pores circular, 2 µm wide; verrucate, verrucae lat, variable in size; tectate, wall 1–1.5 µm thick; 18 × 17 µm. Ainity: Dicotyledonae. Vochysia Type (Figs. 392–394). Suboblate, amb circular-hexagonal, concave; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain × 1.5 µm wide, rounded ends, pores elongated, surrounded by a psilate area resembling the “H” condition; psilate; tectate, wall > 3 µm thick, masked by sculpture, densely columellate; 18–19 µm. Ainity: Dicotyledonae,Vochysiaceae, Vochysia Aubl. Verbenaceae (Petrea). Ref: ig. 64 (Graham, 1991b). Ainity: Dicotyledonae, Verbenaceae, Petrea L. Zonocostites “elongatus” (Figs. 395, 396). Subprolate, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, simple, pores apparently lalongate, inconspicuous; psilate to micropitted; tectate, wall 1 µm thick; 26.5 × 22 µm. Ainity: Dicotyledonae. Verrutricolporites “desmodiensis” (Figs. 386, 387). Suboblate, amb circular, slightly angular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, pores inconspicuous, masked by ornamentation; verrucate, verrucae lat, wide, 2 µm long; tectate, wall 6 µm thick; 48 µm. Ainity: Dicotyledonae, Fabaceae–Faboideae, Desmodium Desv. Zonocostites ramonae (Figs. 397–399). Prolate spheroidal, amb circular; tricolporate, colpus equatorially arranged, equidistant, extending nearly entire length of grain, thin, pores lalongate, joining at apices, displaying a continuous equatorial ring, costate, costae slightly protruding; psilate; tectate, wall 1.8 µm thick; 12 × 11 µm. Ref: ID 975 (Jaramillo & Rueda, 2013); igs. 67–70 (Graham, 238 1988a); igs. 33, 34 (Graham, 1988b); ig. 47 (Graham, 1989), ig. 29 (Graham, 1991b). Afinity: Dicotyledonae, Rhizophoraceae, Rhizophora L., Bruguiera Lam., Ceriops Arn., Carallia Roxb. types. LITERATURE CITED IN APPENDIX 2 Croat, T. B. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford, California. Graham, A. 1988a. Studies in Neotropical paleobotany. V. he Lower Miocene communities of Panama—he Culebra Formation. Ann. Missouri Bot. Gard. 75: 1440–1466. Graham, A. 1988b. Studies in Neotropical paleobotany. VI. he Lower Miocene communities of Panama— he Cucaracha Formation. Ann. Missouri Bot. Gard. 75: 1467–1479. Graham, A. 1989. Studies in Neotropical paleobotany. VII. he Lower Miocene communities of Panama— he La Boca Formation. Ann. Missouri Bot. Gard. 76: 50–66. Graham, A. 1991a. Studies in Neotropical paleobotany. VIII. he Pliocene communities of Panama— PALEOBOTANY AND BIOGEOGRAPHY Introduction and ferns, gymnosperms, angiosperms (monocots). Ann. Missouri Bot. Gard. 78: 190– 200. Graham, A. 1991b. Studies in Neotropical paleobotany. IX. he Pliocene communities of Panama— Angiosperms (dicots). Ann. Missouri Bot. Gard. 78: 201–223. Harley. M. M. 1991. he Pollen Morphology of the Sapotaceae. Kew Bull. 46: 379–491. Jaramillo, C. A. & D. L. Dilcher. 2001. Middle Paleogene palynology of central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontographica Abt. B, Paläophytol. 258: 87–213. Jaramillo, C. & M. Rueda. 2013. A Morphological Electronic Database of Cretaceous-Tertiary and Extant Pollen and Spores from Northern South America, Vers. 2012/2013. <http://biogeodb.stri.si.edu/ jaramillo/palynomorph>. Punt, W., P. P. Hoen, S. Blackmore, A. Nilsson & A. Le homas. 2007. Glossary of pollen and spore terminology. Rev. Palaeobot. Palynol. 143: 1–81. Tropicos.org. Missouri Botanical Garden. <http:// www.tropicos.org>, accessed 25 April 2013. APPENDIX 3. Code for the analysis used in this paper using the R Project for Statistical Computing syntaxis (R Development Core Team, 2012). library(permute) library(vegan) count.temp<-read.delim(“count_data.txt”, header = FALSE, sep = “\t”,na.strings = “NA”)#count data count.temp=as.matrix(count.temp) age=count.temp[1,] count.graham=count.temp[2:nrow(count.temp),] count.graham[is.na(count.graham)] = 0 origin<-read.delim(“origin.txt”, header = TRUE, sep = “\t”,na.strings = “NA”)#family origin locality=read.delim(“sample_area.txt”, header = TRUE, sep = “\t”,na.strings = “NA”)# samples site BCI.temp<-read.delim(“BCI.txt”, header = TRUE, sep = “\t”,na.strings = “NA”)#BCI data BCI.count=as.matrix(BCI.temp[,1:2]) BCI.per=prop.table(BCI.count, 2)#BCI table in percentages ##abundances in absolute counts totalcount=apply(count.graham,2, sum)#counts per sample angiosperms=apply(count.graham[which(origin[,3]==“Angiosperm”),],2, sum)##sum angiosperms PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 239 gymnosperms=count.graham[which(origin[,3]==“Gymnosperm”),]#only one gymnosperm ferns=apply(count.graham[which(origin[,3]==“Spore”),],2, sum)# marine=apply(count.graham[which(origin[,3]==“Marine”),],2, sum)# #abundances in percentages perc.graham=prop.table(count.graham, 2)#table in percentages age.80=age[which(totalcount>80)]##ages for samples >80 ##ONLY SAMPLES WITH COUNTS LARGER THAN 80 grains angiosperms.per=apply(perc.graham[which(origin[,3]==“Angiosperm”),which(totalcount>80)],2, sum)##sum angiosperms gymnosperms.per=perc.graham[which(origin[,3]==“Gymnosperm”),which(totalcount>80)]#only one gymnosperm ferns.per=apply(perc.graham[which(origin[,3]==“Spore”),which(totalcount>80)],2, sum)# marine.per=apply(perc.graham[which(origin[,3]==“Marine”),which(totalcount>80)],2, sum)# par(mfrow = c(1, 4))##FIGURE ANGIOSPERMS OVER TIME plot(angiosperms.per,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1),xlab=“Proportion of individuals”, ylab=“age(My)”, main=“angiosperms”) abline(h=3.5)# abline(h=10)# text(0.9, 2, round(mean(100*angiosperms.per[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.9, 7, round(mean(100*angiosperms.per[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.9, 15, round(mean(100*angiosperms.per[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(gymnosperms.per,age[which(totalcount>80)], xlim=c(0,1),ylim=c(20,0),xlab=“Proportion of individuals”, ylab=“age(My)”,main=“gymnosperms”) abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*gymnosperms.per[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*gymnosperms.per[which(age.80<10 & age.80>3.5)],na.rm = TRUE), 1),cex = .75) text(0.8, 15, round(mean(100*gymnosperms.per[which(age.80>10)],na.rm = TRUE),3),cex = .75) plot(ferns.per,age[which(totalcount>80)], xlim=c(0,1),ylim=c(20,0),xlab=“Proportion of individuals”, ylab=“age(My)”,main=“ferns and allies”) abline(h=3.5)# abline(h=10) text(0.1, 2, round(mean(100*ferns.per[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.1, 7, round(mean(100*ferns.per[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.1, 15, round(mean(100*ferns.per[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(marine.per,age[which(totalcount>80)], xlim=c(0,1),ylim=c(20,0),xlab=“Proportion of individuals”, ylab=“age(My)”, main=“marine”) 240 PALEOBOTANY AND BIOGEOGRAPHY abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*marine.per[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*marine.per[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*marine.per[which(age.80>10)],na.rm = TRUE),1),cex = .75) ##END FIGURE t.test(angiosperms.per[which(age.80>10)],angiosperms.per[which(age.80<10 & age.80>3.5)])#>10 0.40, 10-3.5 0.36, p 0.2, df 109; angiosperms proportion do not difer from the 3.5 to 19.5 My interval t.test(angiosperms.per[which(age.80<10 & age.80>3.5)],angiosperms.per[which(age.80<3.5)])#10-3.5 0.36, <3.5 0.26, p 0.07, df 17. t.test(ferns.per[which(age.80>10)],ferns.per[which(age.80<10 & age.80>3.5)])#>10 0.59, 10-3.5 0.62, p 0.3, DF 108 ferns proportion do not difer from the 3.5 to 19.5 My interval t.test(ferns.per[which(age.80<10 & age.80>3.5)],ferns.per[which(age.80<3.5)])#10-3.5 0.62, >10 0.73, p 0.009, dF 17 #INDIVIDUAL ANALYSIS abundances in percentages per origin, counts larger than 80 grains Amazonian.or=apply(perc.graham[which(origin[,2]==“Gondwana-Amazonian centered”),which(totalcount>80)],2, sum)##sum angiosperms Andean.or=apply(perc.graham[which(origin[,2]==“Gondwana-Northern Andean centered”),which (totalcount>80)],2, sum)#only one gymnosperm Southern.or=apply(perc.graham[which(origin[,2]==“Gondwana-Southern Andean centered”),which (totalcount>80)],2, sum)# Laurasia.or=apply(perc.graham[which(origin[,2]==“Laurasia”),which(totalcount>80)],2, sum)# BCI.Az=sum(BCI.per[which(BCI.temp[,3]==“Gondwana-Amazonian centered”),1])##data %indiv for BCI BCI.Andes=sum(BCI.per[which(BCI.temp[,3]==“Gondwana-Northern Andean centered”),1]) BCI.SouthAndes=sum(BCI.per[which(BCI.temp[,3]==“Gondwana-Southern Andean centered”),1]) BCI.Laur=sum(BCI.per[which(BCI.temp[,3]==“Laurasia”),1]) BCI.Unk=sum(BCI.per[which(BCI.temp[,3]==“Unassigned”),1]) unknown.or=1-(Amazonian.or+Andean.or+Southern.or+Laurasia.or)#percentage of unknown abundance of species per sample plot(unknown.or,age[which(totalcount>80)], ylim=c(20,0),xlab=“Proportion of individuals”, ylab= “age(My)”, main=“Proportion of individuals with unknown natural ainities”)##FIGURE unknown SP length(which(is.na(origin$Origin)==FALSE))##how many unknown taxa PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 241 par(mfrow = c(1, 5))##FIGURE ORIGIN OVER TIME, % of individuals in assemblage plot(Amazonian.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“Gondwana\nAmazonian centered”,cex.main=1) points(BCI.Az,0) text(0.8, 0, round(mean(100*BCI.Az),1),cex = .75) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*Amazonian.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Amazonian.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*Amazonian.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(Andean.or,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of individuals”, ylab=“age(My)”,main=“Gondwana\nNorthern Andean centered”,cex.main=1) points(BCI.Andes,0) text(0.8, 0, round(mean(100*BCI.Andes),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*Andean.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Andean.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*Andean.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(Southern.or,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of individuals”, ylab=“age(My)”,main=“Gondwana\nSouthern Andean centered”,cex.main=1) points(BCI.SouthAndes,0) text(0.8, 0, round(mean(100*BCI.SouthAndes),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*Southern.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Southern.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*Southern.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(Laurasia.or,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of individuals”, ylab=“age(My)”, main=“Laurasia”,cex.main=1) points(BCI.Laur,0) text(0.8, 0, round(mean(100*BCI.Laur),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*Laurasia.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Laurasia.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*Laurasia.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(unknown.or,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of individuals”, ylab=“age(My)”, main=“Unknown”,cex.main=1) points(BCI.Unk,0) 242 PALEOBOTANY AND BIOGEOGRAPHY text(0.8, 0, round(mean(100*BCI.Unk),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.1, 2, round(mean(100*unknown.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.1, 7, round(mean(100*unknown.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.1, 15, round(mean(100*unknown.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) ##END OF FIGURE t.test(Amazonian.or[which(age.80>3.5)],Amazonian.or[which(age.80<3.5)])# t.test(Laurasia.or[which(age.80>3.5)],Laurasia.or[which(age.80<3.5)])# t.test(Andean.or[which(age.80>3.5)],Andean.or[which(age.80<3.5)])# t.test(Amazonian.or[which(age.80<10 & age.80>3.5)],Amazonian.or[which(age.80>10)])# t.test(Laurasia.or[which(age.80<10 & age.80>3.5)],Laurasia.or[which(age.80>10)])# summary (Amazonian.or)##summary data Amazonian centered, # of individuals summary (Andean.or) summary (Southern.or) summary (Laurasia.or) summary(unknown.or) sd(unknown.or) ##SPECIES ANALYSIS pa.graham=perc.graham##presence absence table pa.graham[(pa.graham>0)]=1## only presence/absence paper.graham=prop.table(pa.graham, 2)#presence/absence in percentages Amazonian.sp=apply(paper.graham[which(origin[,2]==“Gondwana-Amazonian centered”),which (totalcount>80)],2, sum)##sum angiosperms Andean.sp=apply(paper.graham[which(origin[,2]==“Gondwana-Northern Andean centered”),which (totalcount>80)],2, sum)#only one gymnosperm Southern.sp=apply(paper.graham[which(origin[,2]==“Gondwana-Southern Andean centered”),which (totalcount>80)],2, sum)# Laurasia.sp=apply(paper.graham[which(origin[,2]==“Laurasia”),which(totalcount>80)],2, sum)# BCIsp.Az=sum(BCI.per[which(BCI.temp[,3]==“Gondwana-Amazonian centered”),2])##data %sp for BCI BCIsp.Andes=sum(BCI.per[which(BCI.temp[,3]==“Gondwana-Northern Andean centered”),2]) BCIsp.SouthAndes=sum(BCI.per[which(BCI.temp[,3]==“Gondwana-Southern Andean centered”),2]) BCIsp.Laur=sum(BCI.per[which(BCI.temp[,3]==“Laurasia”),2]) BCIsp.Unk=sum(BCI.per[which(BCI.temp[,3]==“Unassigned”),2]) unknown.sp=1-(Amazonian.sp+Andean.sp+Southern.sp+Laurasia.sp)#percentage of unknown species per sample PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 243 plot(unknown.sp,age[which(totalcount>80)], ylim=c(20,0),xlab=“Proportion of species”, ylab= “age(My)”, main=“Proportion of species with unknown origin”)## par(mfrow = c(1, 5))##FIGURE ORIGIN OVER TIME, % of species in assemblage plot(Amazonian.sp,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of species”, ylab=“age(My)”, main=“Gondwana\nAmazonian centered”,cex.main=1) points(BCIsp.Az,0) text(0.8, 0, round(mean(100*BCIsp.Az),1),cex = .75) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*Amazonian.sp[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Amazonian.sp[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*Amazonian.sp[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(Andean.sp,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of species”, ylab=“age(My)”,main=“Gondwana\nNorthern Andean centered”,cex.main=1) points(BCIsp.Andes,0) text(0.8, 0, round(mean(100*BCIsp.Andes),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*Andean.sp[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Andean.sp[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*Andean.sp[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(Southern.sp,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of species”, ylab=“age(My)”,main=“Gondwana\nSouthern Andean centered”,cex.main=1) points(BCIsp.SouthAndes,0) text(0.8, 0, round(mean(100*BCIsp.SouthAndes),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*Southern.sp[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Southern.sp[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.8, 15, round(mean(100*Southern.sp[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(Laurasia.sp,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of species”, ylab=“age(My)”, main=“Laurasia”,cex.main=1) points(BCIsp.Laur,0) text(0.8, 0, round(mean(100*BCIsp.Laur),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.8, 2, round(mean(100*Laurasia.sp[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*Laurasia.sp[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) 244 PALEOBOTANY AND BIOGEOGRAPHY text(0.8, 15, round(mean(100*Laurasia.sp[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(unknown.sp,age[which(totalcount>80)], ylim=c(20,0),xlim=c(0,1),xlab=“Proportion of species”, ylab=“age(My)”, main=“Unknown”,cex.main=1) points(BCIsp.Unk,0) text(0.8, 0, round(mean(100*BCIsp.Unk),1),cex = .75) abline(h=3.5)# abline(h=10) text(0.1, 2, round(mean(100*unknown.sp[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.1, 7, round(mean(100*unknown.sp[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1), cex = .75) text(0.1, 15, round(mean(100*unknown.sp[which(age.80>10)],na.rm = TRUE),1),cex = .75) ##END OF FIGURE t.test(Amazonian.sp[which(age.80>3.5)],Amazonian.sp[which(age.80<3.5)])# t.test(Laurasia.sp[which(age.80>3.5)],Laurasia.sp[which(age.80<3.5)])# t.test(Andean.sp[which(age.80>3.5)],Andean.sp[which(age.80<3.5)])# t.test(Amazonian.sp[which(age.80<10 & age.80>3.5)],Amazonian.sp[which(age.80>10)])# t.test(Laurasia.sp[which(age.80<10 & age.80>3.5)],Laurasia.sp[which(age.80>10)])# mean (Amazonian.sp)##summary data Amazonian centered, # of species sd (Amazonian.sp) mean (Andean.sp) sd (Andean.sp) mean (Southern.sp) sd (Southern.sp) mean (Laurasia.sp) sd (Laurasia.sp) mean(unknown.sp) sd(unknown.sp) ##ECOLOGICAL ANALYSES ecol<-read.delim(“ecology.txt”, header = TRUE, sep = “\t”,na.strings = “NA”)#count data ecol[is.na(ecol)] = 0 Uk.temp=apply(ecol,1, sum)#species that do have any ecology #proportion individuals TRFO.or=apply(perc.graham[which(ecol$TRFO==1),which(totalcount>80)],2, sum)##sum TRFO PMF.or=apply(perc.graham[which(ecol$PMF==1),which(totalcount>80)],2, sum)##sum MF.or=apply(perc.graham[which(ecol$MF==1),which(totalcount>80)],2, sum)##sum TDFO.or=apply(perc.graham[which(ecol$TDFO==1),which(totalcount>80)],2, sum)##sum SV.or=apply(perc.graham[which(ecol$SV==1),which(totalcount>80)],2, sum)##sum FW.or=apply(perc.graham[which(ecol$FW==1),which(totalcount>80)],2, sum)##sum MG.or=apply(perc.graham[which(ecol$MG==1),which(totalcount>80)],2, sum)##sum MR.or=apply(perc.graham[which(ecol$MR==1),which(totalcount>80)],2, sum)##sum PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 245 UK.or=apply(perc.graham[which(Uk.temp==0),which(totalcount>80)],2, sum)##sum par(mfrow = c(1, 4))##Ecology ORIGIN OVER TIME PART A, % of individuals in assemblage plot(TRFO.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“TRFO”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*TRFO.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TRFO.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*TRFO.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(PMF.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“PMF”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*PMF.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*PMF.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*PMF.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(MF.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“MF”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*MF.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*MF.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*MF.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(TDFO.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“TDFO”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*TDFO.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TDFO.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*TDFO.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) ##END FIGURE par(mfrow = c(1, 5))##Ecology ORIGIN OVER TIME PART B, % of individuals in assemblage plot(SV.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“SV”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*SV.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*SV.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*SV.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) 246 PALEOBOTANY AND BIOGEOGRAPHY plot(FW.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“FW”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*FW.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*FW.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*FW.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(MG.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“MG”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*MG.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*MG.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*MG.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(MR.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“MR”) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*MR.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*MR.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*MR.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) plot(UK.or,age[which(totalcount>80)], ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“UK”) abline(h=3.5)# abline(h=10)# text(0.1, 2, round(mean(100*UK.or[which(age.80<3.5)],na.rm = TRUE),1),cex = .75) text(0.1, 7, round(mean(100*UK.or[which(age.80<10 & age.80>3.5)],na.rm = TRUE),1),cex = .75) text(0.1, 15, round(mean(100*UK.or[which(age.80>10)],na.rm = TRUE),1),cex = .75) ##END FIGURE round(100*sd(TRFO.or,na.rm = TRUE),2) round(100*sd(PMF.or,na.rm = TRUE),2) round(100*sd(MF.or,na.rm = TRUE),2) round(100*sd(TDFO.or,na.rm = TRUE),2) round(100*sd(SV.or,na.rm = TRUE),2) round(100*sd(FW.or,na.rm = TRUE),2) round(100*sd(MG.or,na.rm = TRUE),2) round(100*sd(MR.or,na.rm = TRUE),2) round(100*sd(UK.or,na.rm = TRUE),2) t.test(MF.or[which(age.80>10)],MF.or[which(age.80<10)])# famgen<-read.delim(“family_genus.txt”, header = TRUE, sep = “\t”)#family/genus PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 247 length(which(famgen[,1]!=“Unknown” & Uk.temp==0)) number of taxa that have a family assignment but not an ecological preference ##SAMPLE AREAS area<-read.delim(“sample_area.txt”, header = TRUE, sep = “\t”)#family/genus sample_area.txt #proportion individuals per region TRFO.pc=apply(perc.graham[which(ecol$TRFO==1), which(totalcount>80 & area[,1]==“Panama Central”)],2, sum)##sum TRFO pc age.pc=age[totalcount>80 & area[,1]==“Panama Central”] TRFO.d=apply(perc.graham[which(ecol$TRFO==1), which(totalcount>80 & area[,1]==“Darien”)],2, sum)##sum TRFO d age.d=age[totalcount>80 & area[,1]==“Darien”] TRFO.b=apply(perc.graham[which(ecol$TRFO==1), which(totalcount>80 & area[,1]==“Bocas del Toro”)],2, sum)##sum TRFO bocas age.b=age[totalcount>80 & area[,1]==“Bocas del Toro”] par(mfrow = c(1, 3))##Ecology FIGURE, % of individuals in assemblage by AREA TRF plot(TRFO.b,age.b, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“TRFO\nBocas del Toro”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*TRFO.b[which(age.b<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TRFO.b[which(age.b<10 & age.b>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*TRFO.b[which(age.b>10)],na.rm = TRUE),1),cex = .75) plot(TRFO.pc,age.pc, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“TRFO\nPanama Central”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*TRFO.pc[which(age.pc<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TRFO.pc[which(age.pc<10 & age.pc>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*TRFO.pc[which(age.pc>10)],na.rm = TRUE),1),cex = .75) plot(TRFO.d,age.d, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“TRFO\nDarien”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*TRFO.d[which(age.d<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TRFO.d[which(age.d<10 & age.d>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*TRFO.d[which(age.d>10)],na.rm = TRUE),1),cex = .75) ##END PMF.pc=apply(perc.graham[which(ecol$PMF==1), which(totalcount>80 & area[,1]==“Panama Central”)],2, sum)##sum PMF pc 248 PALEOBOTANY AND BIOGEOGRAPHY age.pcPMF=age[totalcount>80 & area[,1]==“Panama Central”] PMF.d=apply(perc.graham[which(ecol$PMF==1), which(totalcount>80 & area[,1]==“Darien”)],2, sum)##sum PMF darien age.dPMF=age[totalcount>80 & area[,1]==“Darien”] PMF.b=apply(perc.graham[which(ecol$PMF==1), which(totalcount>80 & area[,1]==“Bocas del Toro”)],2, sum)##sum PMF bocas age.bPMF=age[totalcount>80 & area[,1]==“Bocas del Toro”] par(mfrow = c(1, 3))##Ecology FIGURE, % of individuals in assemblage by AREA PMF plot(PMF.b,age.bPMF, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“PMF\nBocas del Toro”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*PMF.b[which(age.bPMF<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*PMF.b[which(age.bPMF<10 & age.bPMF>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*PMF.b[which(age.bPMF>10)],na.rm = TRUE),1),cex = .75) plot(PMF.pc,age.pcPMF, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“PMF\nPanama Central”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*PMF.pc[which(age.pcPMF<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*PMF.pc[which(age.pcPMF<10 & age.pcPMF>3.5)],na.rm = TRUE), 1),cex = .75) text(0.8, 15, round(mean(100*PMF.pc[which(age.pcPMF>10)],na.rm = TRUE),1),cex = .75) plot(PMF.d,age.dPMF, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“PMF\nDarien”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*PMF.d[which(age.dPMF<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*PMF.d[which(age.dPMF<10 & age.dPMF>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*PMF.d[which(age.dPMF>10)],na.rm = TRUE),1),cex = .75) ##END MF.pc=apply(perc.graham[which(ecol$MF==1), which(totalcount>80 & area[,1]==“Panama Central”)],2, sum)##sum PMF pc age.pcMF=age[totalcount>80 & area[,1]==“Panama Central”] MF.d=apply(perc.graham[which(ecol$MF==1), which(totalcount>80 & area[,1]==“Darien”)],2, sum) ##sum PMF darien age.dMF=age[totalcount>80 & area[,1]==“Darien”] MF.b=apply(perc.graham[which(ecol$MF==1), which(totalcount>80 & area[,1]==“Bocas del Toro”)], 2, sum)##sum PMF bocas PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 249 age.bMF=age[totalcount>80 & area[,1]==“Bocas del Toro”] par(mfrow = c(1, 3))##Ecology FIGURE, % of individuals by AREA MF plot(MF.b,age.bMF, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“MF\nBocas del Toro”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*MF.b[which(age.bMF<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*MF.b[which(age.bMF<10 & age.bMF>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*MF.b[which(age.bMF>10)],na.rm = TRUE),1),cex = .75) plot(MF.pc,age.pcMF, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“MF\nPanama Central”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*MF.pc[which(age.pcMF<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*MF.pc[which(age.pcMF<10 & age.pcMF>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*MF.pc[which(age.pcMF>10)],na.rm = TRUE),1),cex = .75) plot(MF.d,age.dMF, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab=“age(My)”, main=“MF\nDarien”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*MF.d[which(age.dMF<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*MF.d[which(age.dMF<10 & age.dMF>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*MF.d[which(age.dMF>10)],na.rm = TRUE),1),cex = .75) ##END TDFO.pc=apply(perc.graham[which(ecol$TDFO==1), which(totalcount>80 & area[,1]==“Panama Central”)],2, sum)##sum PMF pc age.pcTDFO=age[totalcount>80 & area[,1]==“Panama Central”] TDFO.d=apply(perc.graham[which(ecol$TDFO==1), which(totalcount>80 & area[,1]==“Darien”)],2, sum)##sum PMF darien age.dTDFO=age[totalcount>80 & area[,1]==“Darien”] TDFO.b=apply(perc.graham[which(ecol$TDFO==1), which(totalcount>80 & area[,1]==“Bocas del Toro”)],2, sum)##sum PMF bocas age.bTDFO=age[totalcount>80 & area[,1]==“Bocas del Toro”] par(mfrow = c(1, 3))##Ecology FIGURE, % of individuals by AREA TDFO plot(TDFO.b,age.bTDFO, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab= “age(My)”, main=“TDFO\nBocas del Toro”,cex.main=1) abline(h=3.5)# 250 PALEOBOTANY AND BIOGEOGRAPHY abline(h=10)# text(0.8, 2, round(mean(100*TDFO.b[which(age.bTDFO<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TDFO.b[which(age.bTDFO<10 & age.bTDFO>3.5)],na.rm = TRUE), 1),cex = .75) text(0.8, 15, round(mean(100*TDFO.b[which(age.bTDFO>10)],na.rm = TRUE),1),cex = .75) plot(TDFO.pc,age.pcTDFO, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab= “age(My)”, main=“TDFO\nPanama Central”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*TDFO.pc[which(age.pcTDFO<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TDFO.pc[which(age.pcTDFO<10 & age.pcTDFO>3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 15, round(mean(100*TDFO.pc[which(age.pcTDFO>10)],na.rm = TRUE),1),cex = .75) plot(TDFO.d,age.dTDFO, ylim=c(20,0), xlim=c(0,1), xlab=“Proportion of individuals”, ylab= “age(My)”, main=“TDFO\nDarien”,cex.main=1) abline(h=3.5)# abline(h=10)# text(0.8, 2, round(mean(100*TDFO.d[which(age.dTDFO<3.5)],na.rm = TRUE),1),cex = .75) text(0.8, 7, round(mean(100*TDFO.d[which(age.dTDFO<10 & age.dTDFO>3.5)],na.rm = TRUE), 1),cex = .75) text(0.8, 15, round(mean(100*TDFO.d[which(age.dTDFO>10)],na.rm = TRUE),1),cex = .75) ##END t.test(c(MF.pc[which(age.pcMF >3.5 & age.pcMF<10)],MF.b[which(age.bMF >3.5 & age.bMF<10)]), MF.d[which(age.dMF >3.5 & age.dMF<10)]) ##diversity diversity.35 <- specaccum(t(count.graham[,which(age<3.5 & totalcount>80)])) diversity.1035 <- specaccum(t(count.graham[,which(age<10 & age>3.5 & totalcount>80)])) diversity.2010 <- specaccum(t(count.graham[,which(age>10 & totalcount>80)])) plot(diversity.1035,col=“red”, lwd=2, ci.lty=0, ci.col=“red”, xlim=c(0,60), xlab=“samples”, ylab=“number of species”)##FIGURE SPECIES ACCUMULATION CURVE plot(diversity.35,col=“purple”, add=TRUE) plot(diversity.1035,col=“red”, add=TRUE) plot(diversity.2010,col=“blue”, add=TRUE) legend(0, 350, c(“<3.5 Ma”,“3.5-10 Ma”, “10-19.5 Ma”), cex=0.8, col=c(“purple”,“red”,“blue”), lty=1) ##END diverColl.1035 <- specaccum(divetemp[which(divetemp[,1]<10 & divetemp[,1]>3.5),2:ncol(divetemp)], method = ‘collector’) diverColl.35 <- specaccum(divetemp[which(divetemp[,1]<3.5),2:ncol(divetemp)], method = ‘collector’) diverColl.10 <- specaccum(divetemp[which(divetemp[,1]>10),2:ncol(divetemp)], method = ‘collector’) PALYNOLOGICAL RECORD OF THE LAST 20 MILLION YEARS IN PANAMA 251 plot(divetemp[which(divetemp[,1]<10 & divetemp[,1]>3.5),1]+6.59204-10.14304,diverColl.1035$ richness, xlab=“Time Interval (Ma)”,ylab=“number of species”,xlim=c(0,10), pch=2)##FIGURE A COLLECTORS CURVE points(divetemp[which(divetemp[,1]<3.5),1]+8.85804-10.14304,diverColl.35$richness,col=“red”) points(divetemp[which(divetemp[,1]>10),1]-10.14304,diverColl.10$richness, col=“blue”, pch=3) legend(8, 350, c(“<3.5 Ma”,“3.5-10 Ma”, “10-19.5 Ma”), cex=0.5, pch=c(1,2,3), col=c(“red”,“black”,“blue”)) ##ENDS library(vegan) data(BCI) sp1 <- specaccum(BCI) plot(sp1$sites,sp1$richness) #the plot assuming equal time bins times <- c(1:5, 8, 22, 23, 25, 26:46, 56:65, 81:90) plot(times,sp1$richness) #the plot with diferent time bins ##rarefaction richness.80=rarefy(t(count.graham[,which(totalcount>80)]),80) age.rar=age[which(totalcount>80)] plot(richness.80,age.rar, ylim=c(20,0), xlim=c(0,45), xlab=“number of species (rarefy cutof=80)”, ylab=“age(My)”)##FIGURE RAREFACTION abline(h=3.5)# abline(h=10)# text(40, 2, round(mean(richness.80[which(age.rar<3.5)],na.rm = TRUE),1),cex = .75) text(40, 7, round(mean(richness.80[which(age.rar<10 & age.rar>3.5)],na.rm = TRUE),1),cex = .75) text(40, 15, round(mean(richness.80[which(age.rar>10)],na.rm = TRUE),1),cex = .75) ##ENDS t.test(richness.80[which(age.rar<10 & age.rar>3.5)],richness.80[which(age.rar>10)])