# Phylogeny of Potamogeton (Potamogetonaceae) Revisited: Implications for Hybridization and Introgression in Argentina 

Yu Ito ${ }^{\mathbf{1 , 2}}$, Gerardo Lucio Robledo ${ }^{\mathbf{3}}$, Laura Iharlegui ${ }^{4}$ and Norio Tanaka ${ }^{5}$,*<br>${ }^{1}$ School of Biological Sciences, University of Canterbury, Christchurch, Canterbury 8020, New Zealand<br>${ }^{2}$ Present address: Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Kunming 650223, P. R. China<br>${ }^{3}$ Laboratorio de Micología, Instituto Multidisciplinario de Biología Vegetal, CONICET-Universidad Nacional de Córdoba, Argentina<br>${ }^{4}$ Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina<br>${ }^{5}$ Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan<br>*E-mail: ntanaka@kahaku.go.jp

(Received 28 July 2016; accepted 28 September 2016)


#### Abstract

Potamogeton is a cosmopolitan genus of $90-95$ species in which numerous hybridization events have occurred worldwide. A plant recently collected from Argentina exhibited ambiguous morphology that does not match any species of the genus. We aimed to assess if the plant coexisting with another Potamogeton species is a product of reticulate evolution. A concatenated plastid DNA (psbA-trnH, trnL intron, and $\operatorname{trnL} L-t r n F$ ) and nuclear ribosomal DNA (5S-NTS) data sets, primarily based on previous studies sample set mainly consisting of American and Asian species, were analyzed using Bayesian inference. Nuclear ribosomal ITS sequences were also obtained from five Argentina materials. We recovered similar topologies from both the plastid DNA and nuclear ribosomal 5S-NTS analyses in which most specimens are consistently placed. The specimen of primal interest from Argentina strongly clustered with co-occurring linear-leaved species in the 5S-NTS tree, but was genetically identical to broad-leaved ones in the plastid DNA analysis. The ITS sequence of the specimen was the same as that of the linear-leaved species and no polymorphisms were observed. Considering the discrepant phylogenetic positions between the trees and lack of ITS infra-individual variations, the origin of the specimen from Argentina is better explained by hybridization and subsequent introgression.


Key words: Alismatales, aquatic plants, Bayesian inference, hybridization, introgression, molecular phylogeny, plastid DNA, Potamogeton, topological conflicts, 5S-NTS.

## Introduction

Potamogeton L. is one of the three genera of the aquatic plant family Potamogetonaceae. The number of the species varies depending on literature, but $90-95$ species are in general accepted in the world (Haynes and Holm-Nielsen, 2003; WCSP, 2014). This cosmopolitan genus has its
center of species diversity in temperate regions of the northern hemisphere (Kaplan et al., 2013), with nearly $70 \%$ of the world's species occurring in either Asia, Europe, or North America (Wiegleb and Kaplan, 1998). In contrast, the species in Southern South America, comprising Argentina, Chile, and Uruguay, has been scarcely studied. Following Tur (1982), Wiegleb and Kaplan
(1998), and Haynes and Holm-Nielsen (2003), nine well-recognized species were recorded in southern South America: i) P. crispus L. (cosmopolitan); ii) P. ferrugineus Hagstr. (South America); iii) $P$. gayi A.Benn. (South America); iv) $P$. illinoensis Morong (North and South America); v) P. linguatus Hagstr. (South America); vi) $P$. montevidensis A.Benn. (South America); vii) $P$. polygonus Cham. (South America); viii) P. pusillus L. (cosmopolitan); and ix) P. spirilliformis Hagstr. (South America). As reported in other regions, difficulties of morphological identification of Potamogeton species are known in South America. A plant recently collected from Argentina (Y. Ito YI1992 \& al.; Fig 1; Appendix 1) exhibited ambiguous morphology that does not match any above-mentioned species of the genus (Fig. 1; Table 1).

Potamogeton is a genus in which numerous
hybridization events have occurred; therefore, it is recognized as a "classic" example of hybridization in aquatic plants (Les and Philbrick, 1993). In their morphology-based monographic work, Wiegleb and Kaplan (1998) reported the number of hybrids that are approximately the same as the number of non-hybrid species. Subsequent molecular studies have detected and documented further cases of hybridization in Potamogeton, including ones that do not exhibit obvious morphological characteristics (Les et al., 2009). A case of triple hybridization (a hybrid arisen from crosses of a primary hybrid with a third species) has been also reported in Potamogeton (Kaplan and Fehrer, 2007), implying that the genus has undergone rather complicated evolution. The aforementioned morphologically ambiguous plant from Argentina may be a product of hybridization, because it coexists with P. pusillus.


Fig. 1. Habitat of Potamogeton sp. YI1992_TNS in Córdoba, Argentina.

|  | Submerged leaves |  |  |  |  |  |  |  | Floating leaves | Inflorescences |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | shape | petiolate (mm) | length (mm) | width <br> (mm) | lengthwidth ratio | margins | no. veins | apex |  | carpel no. | flower no. |
| P. illinoensis | narrowly oblong/ oblanceolate/ elliptical | short petiolate/ sessile | $\begin{aligned} & (50-) 70- \\ & 180(-220) \end{aligned}$ | $\begin{aligned} & (4-) 15- \\ & 40(-53) \end{aligned}$ | 3.5-7 | minutely denticulate/ entire | $\begin{aligned} & (7-) 9- \\ & 17(-19) \end{aligned}$ | mucronate | absent/ present | (2-)4 | numerous |
| P. pusillus | linear | sessile | $\begin{aligned} & (15-) 20- \\ & 85(110) \end{aligned}$ | $\begin{gathered} (0.3-) 0.8- \\ 2.5(-3.1) \end{gathered}$ | $\begin{aligned} & (15-) 20- \\ & 60(-90) \end{aligned}$ | entire | $(1-) 3(-5)$ | acuminate/ <br> acute/ <br> subob- <br> tuse | absent | (3-)4(-7) | 2-7 |
| Potamogeton sp . | linear-lanceolate | sessile | 20-85 | 2.5-9 | 8-16 | entire | (3-)5 | acuminate | ?absent | 4 | <12 |

Molecular phylogenetic analyses on Potamogeton have been independently conducted by different research groups based on their own unique sample and data sets that scarcely overlapped each other (e.g., Iida et al., 2004; Lindqvist et al., 2006; Wang et al., 2007; Zhang et al., 2008; Les et al., 2009; Ito and Tanaka, 2013; Kaplan et al., 2013). Therefore, it remains unclear which phylogeny is the most reliable one, as significant topological incongruences have occasionally been found among the studies (Ito and Tanaka, 2013). Lindqvist et al. (2006) provided a relatively well-resolved phylogeny of the genus, comprising broad-leaved and linear-leaved lineages based on the 5 S non-transcribed spacer [hereinafter called 5S-NTS of the nuclear ribosomal DNA (nrDNA)], followed by Kaplan et al.'s (2013) 5S-NTS tree. Still, a question remains as to whether the same or similar topology can be recovered with a plastid DNA (hereinafter called ptDNA) data set because Lindqvist et al. (2006) failed to reconstruct a resolved phylogeny in their ptDNA analysis using two fastevolving markers, psbA-trnH and trnL intron, and no analyses using ptDNA sequences were performed by Kaplan et al. (2013). However, Lindqvist et al.'s (2006) data set itself appears to be useful if 19 outgroups from the other genera of Potamogetonaceae and other distantly related monocots and non-monocot families, e.g., Araceae, Alismataceae, Juncaginaceae, and Magnoliaceae, are excluded from the analysis. Comparative data are available by Zhang et al. (2008, unpublished data), which using $\operatorname{trn} T-\operatorname{trn} L$, $\operatorname{trnL}$ intron, and trnL-trnF, recovered roughly the same broad-leaved and linear-leaved lineages (Zhang et al., 2008).

To assess whether the unidentified Potamogeton (Y. Ito YII992 \& al.) with ambiguous morphology from Argentina is a product of hybridization, we employed simultaneous molecular phylogenetic analyses of nrDNA and ptDNA based on data sets of Lindqvist et al. (2006) and Zhang et al. (2008) and comparable data from GenBank, which occasionally contains $\operatorname{trnL}-\operatorname{trn} F$ from ptDNA (Kaplan and Fehrer, 2007; Zhang et al.,
2008). The data set of Lindqvist et al. (2006) is particularly relevant for our purpose because it mainly consisted of North American species that either are distributed in South America or apparently have South American relatives (Wiegleb and Kaplan, 1998; Haynes and Holm-Nielsen, 2003). Topological incongruence between reconstructed phylogenetic trees were compared, with a particular focus on the taxa from Argentina. In addition, DNA sequences of the internal transcribed spacer (ITS) region of nrDNA were generated to seek another line of evidence of hybridization.

## Materials and Methods

## Taxon sampling

The data set for molecular phylogenetic analyses mainly consists of sequences deposited in GenBank: 41 samples (Lindqvist et al., 2006); 26 (Zhang et al., 2008, unpublished data); four (Kaplan and Fehrer, 2007; Kaplan et al., 2013). Seventeen out of samples used in Lindqvist et al. (2006) that lack either ptDNA or 5S-NTS were not included in this study. Five samples from Argentina were added, which were $P$. gayi (one specimen), P. pusillus (three), and the unidentified Potamogeton sp. YI1992_TNS (one). The data set included 76 samples, which were equivalent to 46 species including one putative hybrid, P. $\times$ haynesii Hellq. \& G.E.Crow (Appendix 1).

DNA extraction, PCR amplification, and sequencing

Total genomic DNA was extracted from the five newly collected Potamogeton specimens from Argentina following the method outlined in Ito et al. (2010) and their sequences of ptDNA and nrDNA regions were determined by PCR amplification and direct sequencing. The following primer pairs were used for PCR and sequencing: psbAF and trnHR (Sang et al., 1997) for psbA-trnH; "c" and "d" (Taberlet et al., 1991) for $\operatorname{trnL}$ intron; "e" and "f" (Taberlet et al., 1991) for $\operatorname{trnL}-\mathrm{trnF}$; and PI and PII (Cox et al., 1992) for 5S-NTS, and ITS-4 and ITS-5 for nrITS (Bald-
win, 1992). The PCR amplification was conducted using TaKaRa Ex Taq polymerase (TaKaRa Bio, Japan), and PCR cycling conditions were $94^{\circ} \mathrm{C}$ for 60 s ; then 30 cycles of $94^{\circ} \mathrm{C}$ for $45 \mathrm{~s}, 52^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 60 s ; and finally $72^{\circ} \mathrm{C}$ for 5 min . The PCR products were cleaned using illustra ExoProStar (GE Healthcare, Piscataway, USA) and then reacted using ABI Big Dye Terminator ver. 3.1 (Applied Biosystems, USA) with the same primers as those used for the PCR amplifications. DNA sequencing was performed with an ABI PRISM 3130xl DNA sequencer (Applied Biosystems). Automatic base calling was checked by eye using Genetyx-Win ver. 3 (Software Development Co., Japan). All sequences generated in the present study have been submitted to the DNA Data Bank of Japan (DDBJ), which is linked to GenBank, and their accession numbers and voucher specimen information are presented (Appendix 1).

## Data analysis

We assembled two datasets from the 76 samples, which included the aforementioned five samples from Argentina: i) ptDNA ( $p s b A-\operatorname{trn} H$, $\operatorname{trn} L$ intron, and $\operatorname{trnL-trnF}$ ) and ii) nuclear 5S-NTS. Missing data found in ptDNA were retained because "it should generally be possible to accurately place incomplete taxa in phylogenies, if enough informative characters are sampled" (Wiens and Morrill, 2011); those are used as equivocal characters (N). Following Kaplan et al. (2013), one of the basal-most Potamogeton taxa in their ITS tree, namely $P$. spirillus, were chosen as an outgroup for addressing the intrageneric relationships, because this region was too variable to allow a reliable alignment with the other two genera. Sequences were aligned using MAFFT ver. 7.058 (Katoh and Standley, 2013) using "leave gappy regions" option and then inspected manually.

Phylogenetic inference was performed using Bayesian inference (BI; Yang and Rannala, 1997). Analyses were conducted with MrBayes ver. 3.2.2 (Ronquist and Huelsenbeck, 2003; Ronquist et al., 2012) run on the CIPRES portal
(Miller et al., 2010) after the best models had been determined in MrModeltest ver. 3.7 (Nylander, 2002); these models were GTR $+\mathrm{I}+\mathrm{G}$ for ptDNA and GTR + G for 5S-NTS. For gap characters, the datatype $=$ standard option of MrBayes was used. Analyses were run for $8,150,000$ million and 460,000 million generations for the ptDNA and 5S-NTS data sets, respectively, until the average standard deviation of split frequencies dropped below 0.01 , sampling every 1,000 generations and discarding the first $25 \%$ as burn-in. The convergence and effective sampling sizes (ESS) of all parameters were checked in Tracer ver. 1.6 (Rambaut et al., 2014). All trees were visualized using FigTree ver. 1.3.1 (Rambaut, 2009). The data matrices and the MrBayes trees are available at Treebase (TB2:S18639).

## Results

## Molecular phylogeny

The ptDNA data set of Potamogeton included 1,391 aligned characters (psbA-trnH: 364 bp ; trnL intron: $591 \mathrm{bp} ; \operatorname{trnL}-t r n F: 436 \mathrm{bp}$ ) and 17 indels, of which 146 characters including the binary-coded indels are polymorphic. The topology is resolved, yet the support values are mostly low (Fig. 2a).

The 5S-NTS data set of Potamogeton included 310 aligned characters and six indels, of which 275 characters including the binary-coded indels are polymorphic. We obtained a well-resolved tree, which topology followed that of the ptDNA tree (Fig. 2b).

Respective four groups, that belonged to lin-ear-leaved and broad-leaved lineages detected in Lindqvist et al. (2006) and Kaplan et al. (2013), were recovered in either or both ptDNA and 5S-NTS trees; those are numbered from groups L1-L4 and groups B1-B4, respectively: group L1 ( $P$. diversifolius $-P$. spirilus); group L2 ( $P$. compressus $-P$. gayi- - . obtusifolius $-P$. subsibiricus $P$. trichoides]; group L3 [P. clystocarpus $-P$.foliosus $P$. friesii- $P . \times$ haynesii $-P$. pusillus (China) $-P$. strictifolius]; group L4 [P. oxyphyllus $-P$. pusillus

Fig. 2. MrBayes trees for Potamogeton based on a) the concatenated plastid DNA (psbA-trnH, $\operatorname{trnL}$ intron, and $\operatorname{trnL}-\operatorname{trn} F$ ) and b) the nuclear 5S-NTS data sets. Letters refer to groups noted in the text. The six accessions of which phylogenetic positions are inconsistent between the data sets are emphasized in bold, for which the corresponding phylogenetic positions in the other analysis are indicated by dotted arrows. Numbers above or below the branches indicate Bayesian posterior probabilities (PP). Clades with $\mathrm{PP}<0.7$ are indicated by hyphens.
(North and South America)]; group B1 ( $P$. crispus - P. maackianus - P. robbinsii); group B2 $[P$. alpinus $-P$. distinctus $-P$. malaianus $-P$. malainoides $-P$. nodosus (RRH6256 UNA)- $P$. perfoliatus- $P$. richardsonii- $P$. wrightii]; group B3 [ $P$. gramineus $-P$. illinoensis (VEM87816 UNA)-P. lucens]; group B4 ( $P$. amplifolius $-P$. floridanus - P. oakesianus $-P$. natans $-P$. pulcher).

Of samples from Argentina, Potamogeton sp. YI1992_TNS was positioned significantly differently between ptDNA and 5S-NTS trees (group B3 in ptDNA; group L4 in 5S-NTS; Fig. 2).

## Nuclear DNA (ITS) sequence comparisons

ITS sequences obtained from the five specimens from Argentina were 713 bp in length. No intra-individual variation were found in any of the specimens, except the 1-bp intra-individual variation observed in Potamogeton pusillus YI1997. No sequence differences were found between P. pusillus and Potamogeton sp. Y1992_TNS, from which P. gayi is distinguishable by two nucleotide substitutions.

## Discussion

The present study reconstructed phylogenies of Potamogeton based on ptDNA and nuclear 5S-NTS of nrDNA data sets, in which six accessions show significant inconsistency between the trees (Fig. 2). Such topological incongruences resulting from ptDNA and nrDNA markers are often reported in phylogenetic studies (Wendel and Doyle, 1998, Degnan and Rosenberg, 2009). Although some causes of phylogenetic incongruence, e.g. gene choice and incomplete lineage sorting, are suggested, hybridization and introgression are likely to be attributed to the topological conflicts in Potamogeton, as is concluded by Hamzeh and Dayanandan (2004), Fehrer et al. (2007), Tippery and Les (2011), Ito et al. (2013), Ren et al. (2015), Soto-Trejo et al. (2015). The six specimens discrepantly resolved between the trees may indicate such reticulate evolution. Here, out of the six accessions, we discussed only for Potamogeton sp. YI1992_TNS, that was
collected by ourselves.
Potamogeton sp. (Y. Ito YI1992 \& al.) has ptDNA close to those of broad-leaved species, such as $P$. illinoensis and $P$. lucens (group B3: Fig. 2a) and nrDNA identical or closely related to that of the co-occurring linear-leaved P. pusillus (group L3: Fig. 2b). Considering the incongruence of phylogenetic position and the lack of ITS intra-individual polymorphisms, which has been used as a line of evidence to identify Potamogeton hybrids (e.g. Kaplan and Fehrer 2007, Du et al., 2010), not simple hybridization but introgression following multiple hybridizations between linear-leaved and broad-leaved species better explain the origin of Potamogeton sp. YI1992_TNS. With the empirically confirmed maternal inheritance of chloroplast DNA in Potamogeton (Kaplan and Fehrer, 2006), hybridization between a paternal P. pusillus and a maternal broad-leaved Potamogeton species is likely. The maternal parent is most probably P. illinoensis because this American species is also distributed in Argentina (Haynes and Holm-Nielsen, 2003), where it once may have occurred with P. pusillus (which yet co-exists in the river in Córdoba, Argentina) and have repeatedly hybridized with its pollen, termed "cytoplasmic introgression" (Rieseberg, 1997).

## Conclusions

We performed simultaneous molecular phylogenetic analyses of Potamogeton based on previous studies' data sets and our newly collected samples. The topological comparison between ptDNA and 5S-NTS clearly exhibited significant incongruences. A single accessions from Argentina that was inconsistently positioned between the trees may be a product of hybridization or introgression. Future phylogenetic researches may aim at i) improving the support values by adding more valuable ptDNA regions, ii) seeking alternative nrDNA markers, such as low-copy nuclear DNA loci, and iii) applying alternative methods such as AFLP and RADseq.

## Acknowledgment

The authors thank N.B. Deginani (SI) for her help with examining specimens, C. Ishii (Tsukuba) for help with DNA sequencing, J. Viljoen (Cape) for his kind advice on molecular phylogenetic analyses, Y. Ito (Kunming) for assistance with preparing the appendix, P. B. Pelser (CANU), J. Li (Kunming), and J. Murata, H. Ikeda, T. Ohi-Toma (TI) for their continuous encouragement and support, and Enago (www. enago.jp) for the English language review. Secretaria de Ambiente of Córdoba Province is acknowledged by collection permits. This research was partly supported by FY 2012 Researcher Exchange Program between JSPS and RSNZ to YI and JSPS KAKENHI Grant Number 25440224 to NT.

## References

Baldwin, B. G. 1992. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae. Molecular Phylogenetics and Evolution 1:3-16.
Cox, A. V., Bennett, M. D. and Dyer, T. A. 1992. Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5 s -rRNA gene clusters and to locate such clusters in Wheat (Triticum aestivum L.). Theoretical and Applied Genetics 83: 684-690.
Degnan, J. H. and Rosenberg, N. A. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology and Evolution 24: 332340.

Du, Z.-Y., Yang, C.-F., Chen, J.-M. and Guo, Y.-H. 2010. Using DNA-based techniques to identify the hybrids among the linear-leaved Potamogeton plants collected in China. Journal of Systematic Evolution 48: 265-270.
Fehrer, J., Gemeinholzer, B., Chrtek, J. and Brautigam, S. 2007. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molecular Phylogenetics and Evolution 42: 347361.

Hamzeh, M. and Dayanandan, S. 2004. Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast trnT-trnF region and nuclear rDNA. American Journal of Botany 91: 1398-1408.
Haynes, R. R. and Holm-Nielsen, L. B. 2003. Potamogetonaceae. In: Luteyn, J. L. and Gradstein, S. R. (eds.), Flora Neotropica Monograph 85: 1-52. New York

Botanical Garden, New York.
Iida, S., Kosuge, K. and Kadono, Y. 2004. Molecular phylogeny of Japanese Potamogeton species in light of noncoding chloroplast sequences. Aquatic Botany 80: 115-127.
Ito, Y. and Tanaka, N. 2013. Additional Potamogeton hybrids from China: Evidence from a comparison of plastid trnT-trnF and nuclear ITS phylogenies. Acta Phytotaxonomica et Geobotanica 64: 1-14.
Ito, Y., Ohi-Toma, T., Murata, J. and Tanaka, N. 2010. Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. American Journal of Botany 97: 1156-1167.
Ito, Y., Ohi-Toma, T., Murata, J. and Tanaka, N. 2013. Comprehensive phylogenetic analyses of the Ruppia maritima complex focusing on taxa from the Mediterranean. Journal of Plant Research 126: 753-762.
Kaplan, Z. and Fehrer, J. 2006. Comparison of natural and artificial hybridization in Potamogeton. Preslia 78: 303-316.
Kaplan, Z. and Fehrer, J. 2007. Molecular evidence for a natural primary triple hybrid in plants revealed from direct sequencing. Annals of Botany 99: 1213-1222.
Kaplan, Z., Jarolímová, V. and Fehrer, J. 2013. Revision of chromosome numbers of Potamogetonaceae: A new basis for taxonomic and evolutionary implications. Preslia 85: 421-482.
Katoh, K. and Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780.
Les, D. H. and Philbrick, C. T. 1993. Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquatic Botany 44: 181-228.
Les, D. H., Murray, N. M. and Tippery, N. P. 2009. Systematics of two imperiled pondweeds (Potamogeton vaseyi, $P$. gemmiparus) and taxonomic ramifications for subsection Pusilli (Potamogetonaceae). Systematic Botany 34: 643-651.
Lindqvist, C., De Laet, J., Haynes, R. R., Aagesen, L., Keener, B. R. and Albert, V. A. 2006. Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics 22: 568-588.
Miller, M. A., Pfeiffer, W. and Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Anonymous (ed.), Proceedings of the Gateway Computing Environments Workshop (GCE), pp. 1-8. New Orleans.
Nylander, J. A. A. 2002. MrModeltest. Ver 1.0. Program distributed by the author. Department of Systematic Zoology, Uppsala University, Uppsala.
Rambaut, A. 2009. FigTree v1.3.1: Tree Figure Drawing Tool.

Rambaut, A., Suchard, M. A., Xie, W. and Drummond, A. J. 2014. Tracer.Ver 1.6.

Ren, G., Conti, E. and Salamin, N. 2015. Phylogeny and biogeography of Primula sect. Armerina: Implications for plant evolution under climate change and the uplift of the Qinghai-Tibet Plateau. BMC Evolutionary Biology 15: 161.
Rieseberg, L. H. 1997. Hybrid origins of plant species. Annual Review of Ecology, Evolution, and Systematics 28: 359-389.
Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. and Huelsenbeck, J. P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systemaric Biology 61: 539-542.
Sang, T., Crawford, D. J. and Stuessy, T. F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136.
Soto-Trejo, F., Schilling, E., Solórzano, S., Oyama, K., Lira, R. and Dávila, P. 2015. Phylogenetic relationships in the genus Florestina (Asteraceae, Bahieae). Plant Systematics and Evolution 301: 2147-2160.
Taberlet, P., Gielly, L., Pautou, G. and Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109.
Tippery, N. P. and Les, D. H. 2011. Evidence for the hybrid origin of Nymphoides montana Aston (Menyan-
thaceae). Telopea 13: 285-294.
Tur, N. M. 1982. Revision del genero Potamogeton L. en la Argentina. Darwiniana 24: 217-266.
Wang, Q. D., Zhang, T. and Wang, J. B. 2007. Phylogenetic relationships and hybrid origin of Potamogeton species (Potamogetonaceae) distributed in China: insights from the nuclear ribosomal internal transcribed spacer sequence (ITS). Plant Systematics and Evolution 267: 65-78.
WCSP 2014. World Checklist of Selected Plant Families. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://apps.kew.org/wcsp/, accessed 18 December 2015.
Wendel, J. F. and Doyle, J. J. 1998. Phylogenetic incongruence: Window into genome history and molecular evolution. In: Soltis, P. S., Soltis, D. E. and Doyle, J. J. (eds.), Molecular Systematics of Plants II, pp. 265-296. Kluwer Academic, Dordrecht.
Wiegleb, G. and Kaplan, Z. 1998. An account of the species of Potamogeton L. (Potamogetonaceae). Folia Geobotanica 33: 241-316.
Wiens, J. J. and Morrill, M. C. 2011. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology 60: 719-731.
Yang, Z. and Rannala, B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Molecular Biological Evolution 14: 717-724.
Zhang, T., Wang, Q. D., Li, W., Cheng, Y. and Wang, J. B. 2008. Analysis of phylogenetic relationships of Potamogeton species in China based on chloroplast trnT-trnF sequences. Aquatic Botany 89: 34-42.
Appendix 1. List of the GenBank accessions ( $p \operatorname{sbA}-\operatorname{trnH}, \operatorname{trnL}$ intron, $\operatorname{trnL}-\operatorname{trnF}, 5 \mathrm{~S}-\mathrm{NTS}$, and ITS) of Potamogeton used in the present study. Also provided are:

| Taxon | Voucher | Code | Locality | Reference | psbA-trnH | $t r n L$ intron | trnL-trnF | 5S-NTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P. alpinus Balb. | S. S. Talbot 21 (UNA) | SST21_UNA | USA: Alaska | Lindqvist et al. (2006) | DQ786526 | DQ786423 |  | DQ786461 |
| P. alpinus Balb | Wang \& Zhang 0641 (WH) | W.Z0641_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428411 |  | FJ495487 |
| P. amplifo lius Tuckerm. | M. Birk 694 (UNA) | MB694_ÜNA | USA: Alabama | Lindqvist et al. (2006) | DQ786563 | DQ786424 |  | DQ786476 |
| P. amplifolius Tuckerm. | J. K. Bissell 1977:109 (UNA) | JKB1977:109_UNA | USA: Ohio | Lindqvist et al. (2006) | DQ786564 |  |  | DQ786477 |
| P. clystocarpus Fernald | C. B. Hellquist 16574 (UNA) | CBH16574_UNA | USA: Texas | Lindqvist et al. (2006) | DQ786558 |  |  | DQ786492 |
| P. compressus L . | Wang \& Zhang 0514 (WH) | W.Z0514_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428389 | EF432079 | FJ495491 |
| P. compressus L. | Wang \& Zhang 0645 (WH) | W.Z0645_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428414 |  | FJ495492 |
| P. compressus L. | Wang \& Zhang 0646 (WH) | W.Z0646_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428415 |  | FJ495494 |
| P. confervoides Reichb. | C. B. Hellquist 11328 (UNA) | CBH11328_UNA | USA: New Jersey | Lindqvist et al. (2006) |  | DQ786425 |  | DQ786486 |
| P. crispus L . | R. R. Haynes 10212 (UNA) | RRH10212_UNA | USA: Alabama | Lindqvist et al. (2006) | DQ786528 | DQ786426 |  | DQ786458 |
| P. crispus L. | Wang \& Zhang 0507 (WH) | W.Z0507_W W | China | Zhang et al. (2008; Unpubl.) |  | EF428382 | EF432072 | FJ495473 |
| P. crispus L. | Wang \& Zhang 0532 (WH) | W.Z0532_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428404 | EF432094 | FJ495474 |
| P. crispus L . | A. Tiehm 3814 (UNA) | AT3814_UNA | USA: Nevada | Lindqvist et al. (2006) | DQ786527 |  |  | DQ786457 |
| P. cristatus Regel \& Maack | Wang \& Zhang 0520 (WH) | W.Z0520_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428394 | EF432084 | FJ495503 |
| P. distinctus A. Benn. | Wang \& Zhang 0506 (WH) | W.Z0506_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428381 | EF432071 | FJ495471 |
| P. distinctus A. Benn. | Wang \& Zhang 0531 (WH) | W.Z0531_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428403 | EF432093 | FJ495472 |
| P. diversifolius Raf. | R. R. Haynes 10165 (UNA) | RRH10165_UNA | USA: Florida | Lindqvist et al. (2006) | DQ786530 | DQ786427 |  | DQ786489 |
| P. diversifolius Raf. | L. J. Davenport 1255 (UNA) | LJD1255_UNA | USA: Alabama | Lindqvist et al. (2006) | DQ786529 |  |  | DQ786488 |
| P. floridanus Small | R. R. Haynes 10166 (UNA) | RRH10166_UNA | USA: Florida | Lindqvist et al. (2006) | DQ786561 | DQ786428 |  | DQ786478 |
| P. foliosus Raf. | R. R. Haynes 10216 (UNA) | RRH10216_UNA | USA: Alabama | Lindqvist et al. (2006) | DQ786559 | DQ786429 |  | DQ786494 |
| P. friesii Rupr. | R. R. Haynes 6217 (UNA) | RRH6217_UNA | USA: Michigan | Lindqvist et al. (2006) | DQ786560 |  |  | DQ786495 |
| P. gayii A.Benn. | N. Ritter et al. 3432 (UNA) | NR3432_UNA | Bolivia | Lindqvist et al. (2006) | DQ786533 | DQ786430 |  | DQ786496 |
| P. gayii A.Benn. | Banifacio 1855 (SI) | Banifaciol855_SI | Argentina | this study | KT634263 | KT634278 | KT634283 | KT634288 |
| P. gramineus L. | Z. Kaplan 96/638 (PRA) | ZK96.638_PRA | Czech Republic | Kaplan \& Fehrer (2007); Kaplan et al. (2013) |  | EF174575 | EF174575 | KF270961 |
| P. gramineus L. | P. Wolff $\mathrm{x} . \mathrm{n}$. (PRA) | Wolff_PRA | France | Kaplan \& Fehrer (2007); Kaplan et al. (2013) |  | EF174576 | EF174576 | KF270963 |
| P. gramineus L. | Wang \& Zhang 0512 (WH) | W.Z0512_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428387 | EF432077 | FJ495481 |
| P. gramineus L. | Wang \& Zhang 0536 (WH) | W.Z0536_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428408 | EF432098 | FJ495482 |
| P. gramineus L. | Wang \& Zhang 0540 (WH) | W.Z0540_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428410 | EF432100 | FJ495484 |
| P. gramineus L. | Z. Kaplan 97/829 (PRA) | ZK97.829_PRA | Czech Republic | Kaplan \& Fehrer (2007); Kaplan et al. (2013) | EF174574 |  |  | KF270960 |
| P. gramineus L. | R. R. Haynes 5068 (UNA) | RRH5068_UNA | USA: Michigan | Lindqvist et al. (2006) | DQ786534 |  |  | DQ786473 |
| $P$. $\times$ haynesii Hellq. \& G. E. Crow | R. R.Haynes 3800 (UNA) | RRH3800_UNA | USA: Michigan | Lindqvist et al. (2006) | DQ786556 | DQ786445 |  | DQ786510 |
| P. hillii Morong | C. B. Hellquist 15409 (UNA) | CBH15409_UNA | USA: New York State | Lindqvist et al. (2006) | DQ786535 | DQ786431 |  | DQ786498 |
| P. illinoensis Morong | V. E. McNeilus 87-816 (UNA) | VEM87816_UNA | USA: Minnesota | Lindqvist et al. (2006) | DQ786536 | DQ786432 |  | DQ786467 |
| P. illinoensis Morong | J. K. Bissell 1985:254 (UNA) | JKB1985:254_UNA | USA: Pennsylvania | Lindqvist et al. (2006) | DQ786537 | DQ786433 |  | DQ786466 |
| P. lucens L. | R. R. Haynes 8736 (UNA) | RRH8736_UNA | Denmark | Lindqvist et al. (2006) | DQ786538 | DQ786434 |  | DQ786474 |
| P. lucens L. | P. Denny s. n. (PRA) | Denny_PRA | The Netherlands | Kaplan \& Fehrer (2007) | EF174573 | EF174578 | EF174578 | KF270967 |
| P. maackianus A.Benn. | Wang \& Zhang 0502 (WH) | W.Z0502_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428377 | EF432067 | FJ495464 |
| P. maackianus A.Benn. | Wang \& Zhang 0528 (WH) | W.Z0528_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428401 | EF432091 | FJ495465 |
| P. malaianus Miq. | G. Leach 7805 (UNA) | GL7805_UNA | Papua New Guinea | Lindqvist et al. (2006) | DQ786539 |  |  | DQ786465 |
| P. malainoides | Wang \& Zhang 0526 (WH) | W.Z0526_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428400 | EF432090 | FJ495513 |
| P. natans L. | J. S. Williams s.n., 26 June 1981 (UNA) | JSW26June1981 UNA | USA: Oregon | Lindqvist et al. (2006) | DQ786540 |  |  | DQ786480 |
| P. nodosus Poir. | R. R. Haynes 6256 (UNA) | RRH6256_UNA | USA: Michigan | Lindqvist et al. (2006) | DQ786541 | DQ786435 |  | DQ786471 |
| P. nodosus Poir. | C. B. Hellquist 12906 (UNA) | CBH12906_UNA | USA: Texas | Lindqvist et al. (2006) | DQ786565 |  |  | DQ786472 |
| P. oakesianus Robbins ex. A. Gray | L. J. Davenport 1414 (UNA) | LJD1414_UNA | USA: Michigan | Lindqvist et al. (2006) | DQ786562 | DQ786436 |  | DQ786479 |
| P. obtusifolius Mert. \& Koch. | A. E. Schuyler 5147 (UNA) | AES5147_UNA | USA: Montana | Lindqvist et al. (2006) | DQ786542 |  |  | DQ786499 |
| P. ochreatus Raoul | R. R. Haynes 8471 (UNA) | RRH8471_UNA | Australia: NSW | Lindqvist et al. (2006) | DQ786543 |  |  | DQ786501 |

Appendix 1. Continued

| Taxon | Voucher | Code | Locality | Reference | psbA-trnH | trnL intron | trnL-trnF | 5S-NTS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P. octandrus Poir. | Wang \& Zhang 0516 (WH) | W.Z0516_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428390 | EF432080 | FJ495495 |
| P. octandrus Poir. | Wang \& Zhang 0648 (WH) | W.Z0648_WH | China | Zhang et al. (Unpubl.) |  | EF428417 | EF432107 | FJ495497 |
| P. octandrus Poir. | G. E. Gibbs Russell \& H. M. Biegel 1485 (UNA) | GEGR.HMB1485_ UNA | Botswana | Lindqvist et al. (2006) | DQ786544 |  |  | DQ786491 |
| P. oxyphyllus Miq. | Wang \& Zhang 0513 (WH) | W.Z0513_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428388 | EF432078 | FJ495488 |
| P. oxyphyllus Miq. | Wang \& Zhang 0517 (WH) | W.Z0517_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428391 | EF432081 | FJ495489 |
| P. perfoliatus L. | Wang \& Zhang 0508 (WH) | W.Z0508_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428383 | EF432073 | FJ495475 |
| P. perfoliatus L. | Wang \& Zhang 0533 (WH) | W.Z0533_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428405 | EF432095 | FJ495477 |
| P. perfoliatus L . | Wang \& Zhang 0650 (WH) | W.Z0650_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428419 |  | FJ495478 |
| P. perfoliatus L. | R. R. Haynes 8739 (UNA) | RRH8739_UNA | Denmark | Lindqvist et al. (2006) | DQ786545 |  |  | DQ786462 |
| "P. praelongus"* | Wang \& Zhang 0518 (WH) | W.Z0518_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428392 | EF432082 | FJ495479 |
| P. pulcher Tuckerm. | V. E. McNeilus 87-840 (UNA) | VEM87840_UNA | USA: Tennessee | Lindqvist et al. (2006) | DQ786566 |  |  | DQ786475 |
| P. pusillus L. | Y. Ito YI1993 \& al. (TNS) | YI1993_TNS | Argentina | this study | KT634259 | KT634274 | KT634279 | KT634284 |
| P. pusillus L. | Y. Ito YI1997 \& al. (TNS) | YI1997_TNS | Argentina | this study | KT634260 | KT634275 | KT634280 | KT634285 |
| P. pusillus L. | Y. Ito YI2011 \& al. (TNS) | YI2011_TNS | Argentina | this study | KT634261 | KT634276 | KT634281 | KT634286 |
| P. pusillus L. | R. R. Haynes 10213 (UNA) | RRH10213_UNA | USA: Alabama | Lindqvist et al. (2006) | DQ786548 | DQ786439 |  | DQ786505 |
| P. pusillus L. | Wang \& Zhang 0534 (WH) | W.Z0534_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428406 | EF432096 | FJ495499 |
| P. pusillus L. | Wang \& Zhang 0538 (WH) | W.Z0538_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428409 | EF432099 | FJ495500 |
| P. pusillus var. pusillus | B. McCune \& A. E. Schuyler 4980 (UNA) | BM.AES4980_UNA | USA: Montana | Lindqvist et al. (2006) | DQ786547 | DQ786438 |  | DQ786504 |
| P. richardsonii Rydb. | S. \& S. Talbot 079 (UNA) | SST079_UNA | USA: Alabama | Lindqvist et al. (2006) | DQ786549 | DQ786440 |  | DQ786463 |
| P. richardsonii Rydb. | S. \& S. Talbot 95-1351 (UNA) | SST951351_UNA | USA: Alabama | Lindqvist et al. (2006) | DQ786550 |  |  | DQ786464 |
| P. robbinsii Oakes | J. S. Pringle 1726 (UNA) | JSP1726_UNA | Canada | Lindqvist et al. (2006) | DQ786552 | DQ786442 |  | DQ786460 |
| P. spirillus Tuckerm. | J. K. Bissell 1982:203 (UNA) | JKB1982:203_UNA | USA: Ohio | Lindqvist et al. (2006) | DQ786531 | DQ786443 |  | DQ786490 |
| P. strictifolius A.Benn. | R. R. Haynes 5286 (UNA) | RRH5286_UNA | USA: Michigan | Lindqvist et al. (2006) | DQ786553 | DQ786444 |  | DQ786507 |
| P. subsibiricus Hagstr. | S. \& S. Talbot 262 (UNA) | SST262_UNA | USA: Alabama | Lindqvist et al. (2006) | DQ786546 | DQ786437 |  | DQ786502 |
| P. tennesseensis Fernald | V. E. McNeilus 87-843 (UNA) | VEM87843_UNA | USA: Tennessee | Lindqvist et al. (2006) | DQ786532 |  |  | DQ786483 |
| P. trichoides Cham. \& Schlecht. | M. Bernues \& P. Garcia s. n., 11 April 1987 (UNA) | MB.PG11April1987_ UNA | Spain | Lindqvist et al. (2006) | DQ786554 |  |  | DQ786508 |
| P. vaseyi J. W. Robbins | J. K. Bissell 1988:106 (UNA) | JKB1988:106_UNA | USA: Pennsylvania | Lindqvist et al. (2006) | DQ786555 |  |  | DQ786509 |
| P. wrightii L. | Wang \& Zhang 0504 (WH) | W.Z0504_WH | China | Zhang et al. (2008; Unpubl.) |  | EF428379 | EF432069 | FJ495466 |
| P. zosteriformis Fern. | R. R. Haynes 3344 (UNA) | RRH3344_UNA | USA: New York State | Lindqvist et al. (2006) | DQ786557 |  |  | DQ786511 |
| Potamogeton sp. | Y. Ito YI1992 \& al. (TNS) | YI1992_TNS | Argentina | this study | KT634262 | KT634277 | KT634282 | KT634287 |

[^0]
[^0]:    * Originally named as P. praelongus in Zhang et al. (2008) but is re-identified (Ito and Tanaka 2013).

