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Abstract 
 

The Sahara desert fluctuated between desert and tropical conditions over the 

past seven million years, which has had a profound effect on the evolution of its flora 

and fauna. Desertification of the Sahara appears to have promoted species 

diversification in some cases. This diversification is probably due to the repeated 

isolation of lineages in extreme environmental conditions, which can promote 

ecological adaptation and divergence.  

The diversification of species via ecological adaptation seems to be 

particularly important in aquatic taxa that are distributed in lowland and mountain 

areas, as they are often isolated and connected through changes in stream and river 

drainages. Changes in precipitation in desert areas are often extreme and occur 

seasonally as well as decadal and much longer scales (e.g., the Pleistocene 

glaciations). Consequently, many relict fish populations survived in those habitats 

with extreme climates.  

The main goal of this research was to measure population structure and 

genetic diversity in Tilapia fishes from the mountain and lowland regions of 

Mauritania. We chose to study Tilapias to help to determine if the desertification of 

the Sahara has impacted rates of divergence of aquatic species by altering patterns 

of dispersal and variance and promoting ecological adaptation. The Tilapia 

specimens collected for this research were obtained from rivers and streams across 

North-West Africa, including both coastal and inlands areas with a focus on locations 

within Mauritania. Molecular phylogenetic analysis was used to help determine the 

species to which each of our samples was a member. Specifically, were conducted a 

phylogenetic analyses of collected specimens using mitochondrial DNA (16S and 

ND2) and nuclear DNA (nDNA) (1st intron of S7) sequence data. The results showed 

that Tilapia samples consisted of individuals from two tribes: Oreochromini and 

Coptodonini. Each tribe contained two genera: Sarotherodon (A and B lineages) and 

Coptodon (A and B lineages), with their distribution in coastal (A) and inland (B) 

waters.  Mauritania inland waters contained the members of Sarotherodon (B) and 

Coptodon (B) genera, while Sarotherodon B was predominant in mountains and 

lowlands. The population-level analyses were focused on the individuals of 

Sarotherodon A and B lineages, due to their close genetic relationship based on the 

nuclear locus used for phylogenetic analyses.  
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Thirteen novel microsatellite loci were developed to answer the main study 

question. Six statistically significant genetic groups (FST range: from 0.1209 to 

0.6413, P<0.005 after Bonferroni correction) were found, two of which were 

genetically differentiated populations: Morocco and coastal Mauritania. While the rest 

four groups were identified within Mauritania inland. Two groups out of four had 

broad and sympatric distribution, and were distinct from the rest of Mauritanian 

populations at different genetic levels.  

The main study finding was the Affolé mountain population isolation from the 

western Mauritania populations (FST 0.1209). The Affolé population did not exhibit 

any private alleles, which could be a signal of the recent bottleneck. Tilapia 

population dynamics appear to generally be related to the hydraulic network in each 

sub-basin but still sample size disallowed us to formerly test this hypotheses. 

Besides, in Karakoro sub-basin were found individuals from different populations. 

The results of this study help to understand the phylogenetic relationships among 

Tilapias in North and West Africa. The diversification of Tilapias appears to be 

related to their isolation in extreme environments. The isolation of lineages of Tilapia 

may be due to their dispersal abilities and patterns of connectivity in regions where 

they are found, which are sensitive to changes in precipitation on yearly and longer 

time scales.  
 
 

 

Key word: African cichlids; phylogenetics; population genetics; genetic structure; 

hydraulic networks. 
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1. Introduction  

1.1 Biodiversity patterns and processes 
 

Understanding the factors that generate and maintain biological diversity are 

fundamental pursuits in evolutionary and conservation biology. By identifying these 

factors we can better understand evolutionary processes such as ecological 

adaptation and speciation (Pimm 2008). Geographic patterns in organismal diversity 

can be shaped by both biotic and abiotic factors, which often interact and can 

operate on various temporal and spatial scales (Gaston 2000). Therefore, a multiple-

disciplinary research approach, including the use of the genetic and geographic 

information, is often necessary to understand how species evolve and diversify. 

An important step in understanding the factors that shape patterns of 

biological diversity is to identify an appropriate way in which to measure diversity 

itself. One of the simplest measures of diversity is species richness. Species 

richness is simply a count of the number of species in a given area without correcting 

for abundance of other factors (Gotelli & Colwell 2001). However, it is often difficult 

to identify species boundaries and measures of species richness do not take into 

account intraspecific variation. An alternative method for measuring biological 

variation is to measure “biodiversity”. The term biodiversity was first introduced by 

Lovejoy (1980) to describe the number of species in a given area, or species 

richness. Since then the definition of biodiversity has changed to accommodate 

genetic and morphological variation within species, as well as community-level 

processes (Swingland 2000). For example DeLong (1996) states that : ”Biodiversity 

is an attribute of an area and specifically refers to the variety within and among living 

organisms, assemblages of living organisms, biotic communities, and biotic 

processes, whether naturally occurring or modified by humans.” Biodiversity can be 

measured in units of genetic diversity, which helps to identify species boundaries 

and identifies significant variation within species. Measuring biodiversity in units of 

genetic diversity can be especially helpful for conservation purposes, as it may aid in 

the identification of divergent lineages within similar morphological characteristics 

(i.e., cryptic species; Dickman et al. 2007). Focusing on genetic diversity rather than 

species themselves can help to identify the factors that shape patterns of biodiversity 

in different regions and may promote speciation.  
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Geographic patterns of biodiversity can be influenced by physical factors. For 

example, plate tectonics and climate changes, including oscillations of temperatures, 

glaciations and changes in the sea level are all thought to have influenced patterns 

of global biodiversity (Brown & Lomolino 1998). Oscillations in environment factors 

are important because they can affect the distribution of species and their capacity to 

disperse (Dynesius & Jansson 2000). For example, during and after the Pleistocene, 

vicariant events such as habitat fragmentation due to climatic changes and changes 

in sea levels are thought to have occurred for many species that currently inhabit 

temperate areas. Such vicariant events often resulted in isolation of populations and 

species and divergence via allopatric processes (Brown & Lomolino 1998). 

Biological factors such as the dispersal ability of an organism can also be 

important for shaping patterns of biodiversity. The ability or propensity to disperse 

often differs within and among species and can have profound effect on the rates at 

which they diverge. Greater dispersal can increase gene flow among populations 

and constrain evolutionary divergence (Bohonak 1999). Alternatively, limited 

dispersal may restrict gene flow within a species and can promote population 

divergence via neutral or adaptive processes such as genetic drift or ecological 

adaptation. Species with limited dispersal abilities often exhibit stronger genetic 

differences among populations and within them (Blouin et al. 2010). Reduced gene 

flow may allow populations within a species to diverge in response to spatially 

varying selection pressures and increase rates of local adaptation (Kawecki & Ebert 

2004). 

A single climatic event may affect species living in the same region, but in 

different habitats (Collin & de Maintenon 2002), in unique ways due to specific 

interaction of biotic and abiotic factors. Vicariant events split continuous populations 

or species into multiple parts via geologic barriers that prevent gene flow among 

them. For example, climatic changes may make areas within the range of a species 

unsuitable for them to inhabit and isolate its populations in discrete habitat patches. 

Subsequent environmental changes may permit dispersal across such barriers and 

allow species to successfully colonize new areas (Avise 2000). The frequency and 

severity of an abiotic change that affects vicariance and dispersal may shape 

patterns of biodiversity within different groups of species in dissimilar ways. For 

example, organisms with reduced geographical range, high habitat specificity, or 

lower dispersal capacity may be more affected by vicariant events such as habitat 

loss and destruction (Frankham 2005).  
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1.2 Desert environment 
 

Species living in deserts, which fully depend on humid habitats and dispersal 

corridors, are likely to be negatively impacted by climatic changes and habitat 

fragmentation. Deserts are among the harshest ecosystems on Earth, characterized 

by very low precipitation, highly fluctuating temperatures and limited resources 

(Ezcurra et al. 2006). Organisms adapted to arid and semi-arid conditions are often 

highly specialized to inhabit the harsh desert climate (Ezcurra et al. 2006; Ward 

2009). Climate variation and human activity can often cause a desertification effect 

and each desert and (or) area of the desert can be affected differently according to 

their characteristics. Desertification often increases fragmentation in arid habitats 

with standing water. Species adapted to survive in what little water exists in desert 

environments may be at risk from climate change and increased habitat 

fragmentation (Ward 2009). Limited dispersal due to climatic change induced habitat 

fragmentation may be especially detrimental to species in inhabiting desert 

environments. 

In West Africa, climate fluctuations over the past seven million years may 

have had a major impact on rates of species diversification and overall levels of 

biodiversity in the region (Ward 2009). The Sahara is the largest and driest desert in 

the world, which is bordering with the semi-arid region, Sahel, in West Africa. Sahel 

characterized by variation of a few rainy seasons and the dryness for the rest of the 

year (Nicholson 1995; Ward 2009). The onset of desert-like conditions in the area 

that is now referred to as the Sahara started about seven million years ago (Ward 

2009), although in some areas, like Mauritania, it is estimated to be slightly younger 

(around 6 to 2.5 Mya). Since the Pliocene (5.3 to 2.5 Mya), the Sahara-Sahel has 

fluctuated between wet and dry climate (Figure 1) (Le Houérou 1997). The area of 

Sahara was much larger and climate much warmer at the Last Glacial Maximum 

(LGM; 18,000 yr) (Holmes 2008). The period when the Sahara was covered by 

vegetation, lakes and wetlands is called Green Sahara which occurred 7,000 years 

ago at the mid-Holocene and ended about 6,000 years ago, when humid climate was 

replaced by arid climates (Holmes 2008; Kröpelin et al. 2008). During the drier 

periods, many aquatic species were likely isolated in smaller residual lakes and 

ponds in the Sahara. As rivers formed and ponds and lakes grew in size during 

wetter periods, connectivity among populations probably increased. For example, 

periods of isolation may have facilitated intraspecific divergence and promoted 

speciation (Gonçalves et al. 2012).  At other times, gene flow may have increased 
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genetic diversity in isolated and potentially small and genetically depleted 

populations. The relatively high number of endemic species found in the Sahara-

Sahel may be due to the effect of such climate fluctuations on connectivity (Brito et 

al. 2014; Ezcurra et al. 2006).  

 

  
Figure 1. The Sahara climate fluctuations. Representation of climate fluctuation in Sahara since the Last Glacial 

Maximum until present time; adapted from (Adams & Faure 2004). 

 

Recent studies suggested high rates of endemism and the occurrence of	
  
“micro-hotspots” of speciation throughout the Sahara (Wagner et al. 2011). 

Compared to nearby areas such as Eurasia, little is known about biodiversity in the 

Sahara-Sahel, as it is generally a more difficult area to travel in and research there 

has been hampered by greater political instability. However, studies suggest the 

Sahara-Sahel suffered a catastrophic decline not only in hotspots but also in mega 

fauna, probably due to human alterations to sensitive habitats. Many species were 

adapted to harsh and highly variable desert environment (Brito et al. 2014; Durant et 

al. 2014). The mountains of Adrar Atar, Tagant, Afollé and Assaba in Mauritania, 

surrounded by the harsh Sahara desert, comprise isolated populations of several 

organisms, including mammals (Vale et al. 2012a), fishes (Trape 2009, 2013) and 
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reptiles (crocodiles (Brito et al. 2011; Velo-Antón et al. 2014), lizards (Vale et al. 

2012b).  The hotspots in the mountains (Brito et al. 2011; Trape 2009) are still under 

studied at phylogenetic, phylogeographic, and population genetic levels, where rich 

biological assembles are present (Brito et al. 2014).  
 

1.3 Water availability in Mauritania 
	
  

Changes in the geographic distribution of water resources in the Sahara likely 

had a major influence on how biodiversity has evolved in aquatic organisms in the 

region. Understanding the factors that have shaped patterns of gene flow within 

species among contemporary water bodies in the Sahara-Sahel will help to 

understand how past dispersal events may have affected rates of diversification. For 

many aquatic organisms the dispersal ability can be affected by their different 

habitats, which can be permanent, seasonally present due to rainfall or present only 

by flood events (ephemeral) (Fagan 2002). Ephemeral habitat may be important 

corridors for dispersal in arid and semi-arid regions, providing opportunities for 

connectivity (Haas et al. 2009). Different types of water resources can be identified 

by different levels of vegetation cover, inhabiting fauna and aerial measures of 

turbidity (Lacaux et al. 2007). Quantifying number, size, and distribution of water-

bodies in desert habitats are crucial for understanding connectivity patterns. 

The mountains of Mauritania are generally surrounded by two types of water-

bodies: gueltas and tâmoûrts. Gueltas are rock pools ranging between 0.001 ha and 

1.0 ha, located upstream of valleys at the base of mountains (Brito et al. 2011; 

Cooper et al. 2006). Tâmoûrts are seasonal wetlands, mostly arid during dry season, 

but during the wet season are normally large (more than 1000 ha), located on the 

foothills of mountains (Cooper et al. 2006). These water-bodies can be either 

permanent or seasonal. When they dry out local extinction of endemic aquatic 

species may occur if species are not able to find micro-habitats (to aestivate) or if 

corridors – connections to other areas – are lacking (Julian D. Olden et al. 2010). 

The existence of past water corridors may have decreased the extinction risk of 

some species by increasing dispersal rates between isolated populations (Simberloff 

et al. 1992). Corridors suitable for dispersal of fish species among water bodies are 

formed along raging streams. These temporary corridors usually flow to vast plains 

adjacent to the gueltas, during the rainy season (July to September). These 
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periodical and short time events can connect some of the isolated habitats for a 

limited period of time.  
 

  

Figure 2. Main mountains and rivers of southern Mauritania. The names of mountains are underlined, the major 

seasonal rivers and Senegal River in italic letter.  

 

The southern mountains of Mauritania are connected to the Senegal river 

through seasonal rivers (Figure 2) (Cooper et al. 2006), which may allow aquatic 

organisms to intermittently disperse between them. Analyses of satellite imagery 

suggested that Gorgol el Abiod, Gorgol el Akhar and Garfa sub-basins in the Assaba 

mountain, assure temporary connections (Figure 3) between some isolated gueltas 

and also between gueltas and Senegal river basin (Campos et al. 2012). In Brito et 

al. (2011) it was shown that crocodiles (Crocodylus suchus) were dispersed among 

mountain gueltas, and also between gueltas and the Senegal river via these 

temporary rivers. The authors suggested that these temporary corridors for dispersal 

might be important in shaping patterns of genetic diversity within aquatic organisms 

in the region. 

Changes in water availability also appear to be an important determinant of 

dispersal and gene flow in aquatic organism in the Karakoro river basin. Water 

availability in Karakoro river basin near Afollé mountain in the eastern part of 

Mauritania is generally more limited than in the western areas near Assaba mountain 
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(Campos et al. 2012), probably due to the geomorphological characteristics of the 

area where the bend plateau of the mountain declines to the west (Toupet 1966). 

Aridity in the region, coupled with human activities that further deplete water sources, 

may form barriers to dispersal for several mammal species in the Karakoro basin 

(Vale 2010). Connectivity via these seasonal rivers may be disrupted by climate 

change and human disturbance such as water extraction for agriculture, domestic 

and cattle needs (Brito et al. 2014) and have significant impact on biota in the area. 

 

 
 
Figure 3. Seasonal rivers. Two rivers during the dry season flowing from the Assaba mountain (at the right) and 

joining together (at the left), and connecting with Senegal river, about 150 km the southwest. Photo: Zbyszek 

Boratyński. 

	
  
In this area, there is still a lack of knowledge concerning the distribution and 

dispersal patterns especially of small size animals, such as amphibians and fishes 

(Brito et al. 2014). Organisms, such as fishes, may present a good model to 

comprehend the hydrological connection between isolated water-bodies and basin 

due to their dependency on water. More specifically, the relict Tilapia fish populations 

may present a suitable biological model for studying the evolutionary processes and 

phylogeographical patterns in these particular areas due to their ability to adapt to 

different environments. 
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1.4 African Tilapias 
	
  

Tilapias (Tilapia Smith, 1840 and related species) are members of Cichlidea 

(cichlids) family, which is known as the most species rich family of vertebrates, 

including more than 3.000 species (Kocher 2004). Cichlids have a broad distribution 

in Central and South America, through Africa, Madagascar and southern India 

(Chakrabarty 2004) in coastal, brackish and freshwaters (Beveridge & McAndrew 

2000). The two great tribes, Tilapiini and Haplochromini, are broadly distributed in 

Africa. Tilapia is common name for many cichlid species (from the Tilapiini tribe), but 

especially for species of three genera: Coptodon (known before as Tilapia), 

Sarotherodon and Oreochromis. The last two genera are biparental/paternal and 

maternal mouthbreeders, respectively (Trewavas 1983). Tilapias hold complex 

systematics and taxonomy, attracting many scientists. Together with other cichlids 

they show complex behavior, great example of adaptive radiation (especial from 

East Africa cichlids) (Beveridge & McAndrew 2000; Kocher 2004) and are important 

for the aquaculture (Beveridge & McAndrew 2000). The East African cichlids 

endemic to Great Lakes (Tanganyika, Malawi and Victoria) were studied at 

morphological, behavioural and ecological diversity levels which lead cichlids to their 

evolutionary successes (Salzburger et al. 2005). 	
  
Many studies were carried out to improve the knowledge of the number of 

genera within Tilapias and the phylogenetic relation among them, using allozyme 

approaches with morphological or behavioural studies (Kornfield et al. 1979; 

McAndrew & Majumdar 1984; Sodsuk & McAndrew 1991) and later including the 

DNA sequencing approaches (Franck et al. 1992; Franck et al. 1994; Sültmann & 

Mayer 1997; Sultmann et al. 1995).  

Schwarzer et al. (2009) performed, for the first time, phylogenetic analyses of 

African Tilapias based on the multilocus DNA data (from nine mitochondrial and 

nuclear sequences of nine markers) with geographic distribution of each clades. 

They revealed Tilapias are paraphyletic groups, and the term “Tilapiini”, commonly 

used in previous studies, is incorrect in the phylogenetic context. Also, they 

described three new groups, one of which is Oreochromini tribe (the mouthbreeding 

genera) that includes the Sarotherodon and Oreochromis genera. Since earlier 

studies they are mentioned as very close genera.  Moreover, the most recent work of 

Dunz and Schliewen (2013), using the information from the previous studies 

including evidence of morphology, proposed a novel classification of 20 

haplotilapiine cichlid genera and nine tribes (Figure 4). The clade with Tilapia 

species was renamed to Coptodon species and the tribe was called as Coptodonini, 
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Figure 4. Phylogenetic relationship of Haplotilapiines (94 taxa), reported by Dunz & Schliewen (2013). This 

analyses were based on the consensus data of four mitochondrial DNA and five nuclear DNA g. The nodes of BS 

100 (ML) marked by black hexagon and by red arrows the nodes, which differ in the BI and ML analyses 

 

Fig. 3. Phylogenetic relationships of the haplotilapiines (94 taxa) based on the combined ‘‘dataset A’’ of nine independent mitochondrial and nuclear loci. The topology is a
50% majority-rule bootstrap consensus tree of 1000 pseudoreplicates obtained with RAxML. Black hexagons mark nodes of BS 100 (ML), lower values are shown. The two red 
arrows indicate nodes that differ in the BI and ML analyses.

70 A.R. Dunz, U.K. Schliewen / Molecular Phylogenetics and Evolution 68 (2013) 64–80
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while before Coptodon was known as subspecies of Tilapia. These studies give a 

better idea about phylogenetic relation among genera/species and highlight their 

complexity regarding systematics and taxonomy. Nevertheless, there are still non-

sampled cichlids in Africa, especially in North-West Africa, that may improve the 

knowledge of taxonomy and phylogenetic studies in African Tilapias. 

 

Figure 5. Tilapias and their distribution. (A) The 

pictures of Coptodon (Tilapia) zillii (Gervais 1848) 

and (B) Sarotherodon galilaeus (Artedi 1757) with 

maps of their distribution, adapted from Le Berre 

(1989). (C) The map with the distribution of Coptodon 

zillii, S. galilaeus galilaeus and S. galilaeus 

borkuanus (Lévêque 1990). 

 

Many fish fauna in the Sahara, which were first recognized during expeditions 

to Africa in the earlier 20th century (Dekeyser & Villiers 1956; Le Berre 1989; Monod 

1951; Villiers 1953), may have survived for thousands of years in isolated 

populations in water-bodies located at mountain massifs. Lévêque (1990) updated 

the taxonomic list of these relict tropical species and their distribution maps, with 

some remarkably broad distributions, and illustrated the presence of two species of 

cichlids in North and West Africa (Sarotherodon and Coptodon (Tilapia)) (Figure 5). 

Due to a short time period of isolation, speciation processes and endemism are 

unexpected, according to the author. However, Trape (2009) focused on studying 

the distribution of the recorded relict populations found some populations of Adrar 

(Mauritania) were extinct and recorded two new species from the northern Chad 

(Trape 2013). These studies highlight that our knowledge about the distribution of 

relict fauna is largely incomplete and old distribution maps (Figure 5) are clearly 

coarse. More studies on non-sampled areas and molecular approaches would 

improve our knowledge about distribution and evolutionary processes of fish taxa in 

A E .  spilargyreins 
D *A. defontainesi 

8 H .  bimaculatus 

41 

Fig. 1. Distribution of relict tropical fish species in Sahara and surrounding river basins. Data on Clarias from Teugels 
(1986) and on S. galilaeus from Trewavas (1983). 

List of species collected in Central Sahara 

OnFigure 1 allknownSaharanrecordsarerepor- 
ted. For surrounding river basins, scattered sym- 
bols give an idea of the distribution range for 
each species. Detailed distribution record for 
these basins are published by Lévêque et al. (in 
press), Paugy & Benech (in press) and Teugels et 
al. (1988). 

Cvprinidae 

Barbus ayleurogramma Boulenger, 1911 
(Fig. 1A) 

Reported by Daget (1968) from Aoué, on the 
western side of the Ennedi (MNHN no 1967-647). 
The specimens examined exhibit the following 
characters: mouth terminal, at the level of the 
middle of the eye; only one barbel on each side, 
its tip reaching the anterior margin of the eye; last 
simple dorsal ray bony and slightly denticulated 
behind (clearly marked only in large specimens); 

Ichthyol. Explor. Freshwaters, Vol. 1, No. 1 

A B 

C 
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Sahara. Tilapias as other relict fishes are located in restricted water bodies in which 

they survived since the beginning of the dry period (Lévêque 1990), and temporal 

rivers can potentially act as corridors between closely/distinct isolated habitats or 

connect these to basins, during the wet seasons.  

 

1.5 Molecular markers to address biodiversity patterns and 

processes 
 

The biodiversity patterns of species are a result of evolutionary processes 

leading to their existence and of their disability to disperse due to different barriers, 

(Avise 2000; Tokeshi 2009). The change of individual traits, as morphology, life 

history, physiology and behaviuor, are usually affected by the interaction of various 

genes and the environment (Allendorf & Luikart 2007). Genetic diversity within 

populations and genetic differentiation among populations are measurements 

commonly used (Allendorf & Luikart 2007), which can be explained by habitat 

fragmentation, climate changes or other dynamics in ecosystems. Neutral genetic 

variation can help to identify levels of structure, gene flow and extinction risk in 

biodiversity ecosystems (Etienne & Olff 2004).   

Molecular tools with different sensitivities to historical and demographic 

processes as mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) at different 

locus are good markers for phylogenetic and population genetic studies. Since 

mtDNA has higher mutation rates comparing with nDNA (Brown et al. 1979), and is 

nonrecombinant and maternally inherited, it can assist the identification of gene flow 

during the recent past divergence processes (Marsjan & Oldenbroek 2007). On 

another hand, microsatellite markers (nDNA) are commonly used for studying more 

recent molecular events in populations. Microsatellites are small fragments of DNA 

with repeat units in sequences located in non-coding nDNA (Marsjan & Oldenbroek 

2007). These markers exhibit high polymorphism, are sensitive to changes in 

effective population size and the processes as genetic drift and mutations can make 

rapid changes in allelic frequency (Cañón et al. 2001).  

It is important to use multiple, unlinked, neutral genetic loci to estimate 

divergence times between lineages or species. Regions of the nuclear genome may 

exhibit different rates of evolution, gene loss and duplication, and recombination 

(Mitchell & Gonder 2013). Consequently, estimates of divergence time between 

populations or species may vary due to some loci having different evolutionary 
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histories and coalescence times. Divergence times based on multi-locus data may 

be more accurate as they can be calculated using methods that correct for the 

different evolutionary histories of loci (Edwards & Beerli 2000), including those from 

both nDNA and mtDNA genomes of species. More accurate inferences about the 

evolutionary histories of different taxa may be possible using multi-locus datasets.  

 

1.6 Objectives 
	
  

The main objectives of this thesis are to describe population genetic structure 

in Tilapia fishes from Mauritania and attempt to identify barriers to dispersal and 

gene flow within them. This study may help to understand the evolutionary history of 

Tilapias in the Sahara, including the role that post-Pleistocene corridors for dispersal 

have shaped patterns of genetic diversity within and among species or subspecies in 

West Africa. 

In order to achieve the main goal of the study, we performed phylogenetic 

analyses to identify taxonomic groups present in Mauritanian mountains and water 

bodies, to clarify at which level further genetic population studies will be performed 

(at intra- or interspecific level). Also, including Tilapia specimens collected across 

North-West Africa we can get a better idea about the evolutionary processes of 

these species. The phylogenetic analyses were performed using two mtDNA loci and 

the nDNA fragment, chosen from the multi-locus data used in phylogenetic studies of 

other African cichlids. We developed specific microsatellite loci for the taxa present 

in Mauritania inland, to accomplish population genetic analyses. The results were 

combined with the information obtained from the sequencing data. Five main 

objectives were identified to answer the following five questions, at phylogenetic and 

population levels: 

1) What is the phylogenetic relationship among the Tilapia samples collected 

from North-West Africa and their relationship within African cichlids? 

2) What is the distribution of the obtained lineages? 

3) Are mountain populations isolated from lowland populations? 

4) How hydraulic network are related to gene flow? 

5) How is the genetic diversity distributed among the genetic groups? 
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2. Material and Methods 

2.1 Study area and samples  
 

This study is primarily focused on individuals collected from different areas 

from Morocco to Mauritania, including coastal and inland sites (Figure 6). A few 

specimens from Niger were also examined. The samples from Mauritania were 

collected from two mountains: Assaba and Afollé, and five seasonal sub-basins: 

Rkiz, Gorgol el Akhdar, Garfa, Niordé and Karakoro, represented by seasonal and 

permanent mountain water bodies (tâmoûrts and gueltas) connecting to the Senegal 

River (Campos et al. 2012). Connectivity between mountain and lowland areas in 

Mauritania occurs during the rainy seasons from July to October, with the highest 

precipitation occurring in August and September. The rest of the year, this area is 

dry and cool  (November to January) and hot (March to June) (Cooper et al. 2006).  

Tilapia samples were collected during multiple field trips to Africa, from 2007 

to 2014. One hundred and ninety-nine samples from 48 locations, 15 sub-basins and 

4 basins in the North-West Africa were used in this study (Table S1, Appendix). 

Samples included 174 fresh and 25 near-fresh tissues (from specimens found dead). 

Whole specimens or tissue samples were stored in 95% ethanol and maintained at 

room temperature. 

 

 
Figure 6. Study area. (A) Geographic distribution of samples collected in Morocco, Mauritania, Senegal and Niger, 

to be used in phylogenetic analyses. (B) The small inset map presents the main study area – Mauritania. Each dot is 

the coordinate where sample were collected, one dot can have more then one samples.  

 
	
  

AA B
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2.2 DNA extractions and sequencing  
	
  

Fish samples, from fin or muscle tissue, were extracted using the EasySpin® 

Genomic DNA Tissue Kit (Citomed) or the QIAamp® DNA Micro Kit (Qiagen), 

following the manufacture’s instructions. Some DNA extractions were diluted with 

ddH2O, to prevent inhibitors from interfering with the PCR reaction. Two 

mitochondrial and one nuclear fragments were PCR amplified: 16S (500bp; primers 

16SL and 16SH from Hillis et al. 1996), partial encoding ND2 gene (735bp; primers 

ND2Met and ND2Trp from Klett & Meyer 2002) and first intron of the S7 ribosomal 

protein gene (466bp; primers S7RPEX1F and S7RPEX2R from Chow & Hazama 

1998).  

PCR reactions for the mtDNA and S7 loci were performed in a final volume of 

10 µl, containing 5µl of MyTaqTM HS Mix (BioLine), 0.4 µM of each primer, 3.2µl 

ddH2O and approximately 10ng of genomic DNA. Both mtDNA genes were amplified 

under the following PCR conditions: an initial denaturation at 95 °C for 10 min, 

followed by 40 cycles of denaturation at 95 °C (30 s), annealing at 62 °C (45 s), 

extension at 72 °C (45 s) and a final extension for 10 min at 72 °C. A touchdown 

PCR cycling program was used to amplify S7 fragment, where annealing 

temperature were decrease 0.5 °C each cycle from 62 °C to 58 °C, totaling 40 

cycles. The PCR programs were modified in some cases for samples with low 

quantities of DNA. Specifically, the annealing temperature was decreased to 58 - 56 

°C. The re-amplification of PCR products was used in some cases.  

PCR products were purified using ExoSAP-IT® PCR clean-up Kit (GE 

Healthcare) and sequenced following the BigDye® Terminator v1.1 Cycle 

Sequencing Kit (Applied Biosystems) protocol in one direction. Sequencing products 

were electrophoresed on a 3130xl Genetic Analyzer (Applied Biosystems). 

Sequences of each gene were aligned and edited in software SeqScape v2.0 

(Applied Biosystems). Any resulting DNA sequences with ambiguous bases were 

sequenced in the reverse direction and re-edit. The resulting mtDNA and 1st intron 

of S7 data was aligned together with 52 sequences (Table S2, Appendix), chosen 

among the previously published in Dunz and Schliewen (2013), using Geneious 

v4.8.5 software (Drummond et al. 2009).    
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2.3 Microsatellite development, amplification and genotyping  
	
  

Microsatellites loci were developed for the Sarotherodon mitochondrial B 

lineage (see results for details), using thirteen individuals collected in different 

locations in Mauritania. Genomic DNA was extracted using EasySpin® Genomic 

DNA Tissue Kit (Citomed). The DNA in each sample was quantified in fluorometer, 

using Quant-iTTM PicoGreen®dsDNA Assay Kit (Invitrogen). Equimolar pooling of the 

13 samples totaling 3 µg of genomic DNA were sent to Genoscreen, France 

(www.genoscreen.fr), for microsatellite development at the 454 GS-FLX Titanium 

pyrosequencing platform (GS FLX®, Roche Diagnostics) through enriched DNA 

libraries (Malausa et al. 2011). Total DNA was enriched for 32 different repeat motifs. 

Briefly, GS-FLX libraries were constructed following manufacturer’s protocols (Roche 

Diagnostics) and sequenced on a GsFLX-PTP. The bioinformatics program QDD 

(Meglécz et al. 2010) was used to filter for redundancy, resulting in a final set of 

1549 sequences from which 261 primers pairs were designed. Thirty primer pairs 

were chosen for testing (see for details in Primer Note, Appendix), out of which 

thirteen (Table 1) were used for further population genetic analyses.  

A total of 132 individuals from mitochondrial lineages Sarotherodon A (n=12) 

and B, (n=120) were screened at 13 microsatellite loci. Loci were combined into two 

multiplex and one singleplex. Amplifications of multiplexes were performed in a final 

volume of 10 µl, containing 5µl of Qiagen© Multiplex PCR Kit Master Mix (Qiagen), 1 

µM of primer mix (Table 1), 3µl ddH2O and approximately 10 ng of gDNA. PCR 

cycles consisted of an initial denaturation at 95 °C for 15 min, following by 9 cycles 

of denaturation at 95 °C (30 s), annealing at 56 °C (1 min 30 s) with decrees in each 

following cycle by 0.5 °C, extension at 72 °C (45 s); 31 cycles at 95 °C (30 s), 

annealing at 52 °C (1 min), extension at 72 °C (45 s) and final extension step at 60 

°C (30 min). For some samples that did not amplify, the multiplex was splitted into 

halves or even until singleplex. For singleplex reactions primers were used in the 

following concentrations: 0.04 µM of forward primer, 0.4 µM of reverser primer and 

0.4 µM of a M13-tailed fluorescent labeled primer (Table 1; (Blacket et al. 2012)). 

Similar thermocycling conditions were used but final extension was shorted to 10 

min. PCR products were visualized in a 2% agarose gel and fragments were 

separated by size on a 3130xl Genetic Analyzer (AB), using GeneScanTM 500 LIZ® 

Size Standard (Applied Biosystems). Allele scores were determined using 

GeneMapper v4.1 (Applied Biosystems) and checked manually. Samples extracted 
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from near-fresh tissue were amplified at least for three PCR replicates to minimize 

amplification errors as allelic dropouts and false alleles.  
 
Table 1. List of 13 microsatellites developed in Sarotherodon mtDNA lineage B along with locus name, 

multiplex (Mix), repeat motif, fluorescent label M13-tail used, primer sequences, primer concentration (µM), allele 

size range (bp). 

Locus Repeat Fluor. Primer sequences (5´-3´) Primer Size  
  motif label   (µM) range (bp) 
Til6 (AC)13 VIC F: CCCTCCTGCTTAAGTCAACAC 0.4 115 - 151 
   R: TAAGGGTTCCCGACTCTCCT   
Mix1      
TIil1 (ATAG)12 6-FAM F: TGCTAAGAACAAAGTCTTGGGA 0.4 222 - 266 

  
 R: TCATCATGCTGCGGTAACAC 

 
 

Til2 (CA)14 6-FAM F: TGGAACACTTTGGAGGATCG 0.4 178 - 220 

  
 R: CGTTCCTGGATCAAACCG 

 
 

Til13 (CCAT)10 6-FAM F: GAGCTTGGCCATTTAGGAGA 0.8 120 - 188 

  
 R: TGTTGGAACATAAGGATAAGTGGA 

 
 

Til8 (CAA)15 NED F: CCCACAAAAGAATTAAAGCTAAAGA 1.7 110 - 158 

  
 R: TGAGTCTAACATTTGGTCTTTGAA 

 
 

Til19 (TCTA)15 PET F: ATCAGGGTCGTGACTTCTGC 1 164 - 268 

  
 R: CCAAATGAGCAGGATGATTG 

 
 

Til20 (CA)13 PET F: CAGCTTCCCGTGCTCATTAT 1.8 130 - 148 

  
 R: GCAGCACCTGGAAGATAAAA 

 
 

Mix2      
Til21 (TGGA)9 6-FAM F: GGTCCAAAGACATAATTAGTGGG 0.4 260 - 298 
   R: TGTGTTGGGTAAGTATCTTCTAGTTCA   
Til22 (GT)12 6-FAM F: AAACCAATAAATACAACCCACTG 0.4 154 - 182 

  
 R: TTAACACAGTTTCTTATACGACAGAGA 

 
 

Til23 (CA)10 6-FAM F: TTAGTCAGCAGCCAACACCC 0.35 104 - 114 

  
 R: GACCTCCTCGTGAAGTGCAT 

 
 

Til24 (AC)8 VIC F: TGAACGTGCAGCAGAGTCAC 0.4 230 - 234 

  
 R: GGAGCTCTTTAGGTGGTTGG 

 
 

Til25 (CA)14 VIC F: GGGGCCTCAGTCTAGGAAAG 0.5 164 - 216 

  
 R: GGAGTGGGGACGTGCATA 

 
 

Til30 (TG)11 PET F: CTGACAGCAAGAGCCTCAAA 0.6 111 - 121 

  
 R: GAAATAGGTTCTGGCTCAAAGTT 

 
 

 

2.4 mtDNA and nDNA analyses   
	
  

One hundred ninety-one samples were successfully amplified for both 

mitochondrial DNA markers. Forty-seven samples comprising at least one individual 

per location were selected to be PCR amplified for the nuclear intron. Partitioned 

Bayesian analyses were used to perform two phylogenetic trees, based on 

haplotypes of mtDNA (1239bp, 16S+ND2) and nDNA (492bp, 1st intron of S7) 

sequences, respectively. nDNA sequences were phased, and haplotypes of both 

genomic compartments were estimated using software DnaSP v5.0 (Rozas & Rozas 

1995). 10.64% of individuals with ambiguous genotypes remained unresolved with 

the confidence probability interval lower than 0.9, and those sites were marked as 

missing data (N). Recombination can mislead phylogenetic analyses in several ways 

leading to the overestimation of the number of mutations within a dataset and the 
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underestimation of the time to the most common recent ancestor (Schierup & Hein 

2000). We therefore checked the 1st intron of S7 haplotype data for evidence of 

recombination using DnaSP v5.0 software. The three codon positions of ND2 marker 

were approached as a separate data partition. The best partitions and molecular 

evolutionary models for each partition was identified using Partition Finder v1.1.1 

(Lanfear et al. 2012) (Table S5, Appendix). Bayesian analyses of the mtDNA genes 

with 4 partitions and separately of the nDNA gene were run in MrBayes v3.2.0 

(Ronquist et al. 2012). Both trees were obtained from three parallel runs, using for 

each 5.0 x 107 million generations, with sampling every 1.0 x 103 generations. 

Convergence and stationary of runs were confirmed in Tracer v1.5 (Rambaut & 

Drummond 2007). The final phylogenetic trees were performed with 10% of burn-in. 

In order to construct haplotype networks and to estimate the relationship among 

them, we used the median-joining algorithm (MJ) (Bandelt et al. 1999) in NETWORK 

v.4.6.1.1. Undefined sites of the sequence alignments (16S+ND2 and 1st intron of 

S7) were masked, while insertion/deletions sites were coded by single nucleotide. 

Also haplotype network was performed on samples used for population genetics, 

based on both genes and represented in detail for each cluster.  

 

2.5 Microsatellite data analyses  
	
  

The multi-locus data was checked for errors and mismatches in Microsatellite 

toolkit (Park 2001). Two identical samples were discarded from further analyses. 

Consensus genotypes were built for individuals amplified for several replicates. 

Bayesian clustering and admixture analyses were performed in STRUCTURE v2.3.4 

(Pritchard et al. 2000), using sub-basins as putative populations (Table S6, 

Appendix). Ten independent simulations were performed for each K (1 to 14), with 

1.0 x 106 MCMC interactions and a burn-in of 4.0 x 105 interactions. The results were 

uploaded to the STRUCTURE HARVESTER 0.6.94 (Earl 2012) in order to identify 

the most likely number of genetic clusters (K) according to the highest value of ΔK 

(Evanno et al. 2005). A separate analyses was performed to identify the most likely 

number of genetic groups at each hierarchical level, applying the method of Evanno 

et al. (2005), until no further structure was found (Blouin et al. 2010; Phillipsen & 

Lytle 2013) 

In order to visualize patterns of genetic differentiation among individual 

groups, a principal coordinate analyses (PCoA) was performed using GenALEx v6.5 
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(Peakall & Smouse 2006). Two different combinations of data were used: (1) with all 

individuals from both Sarotherodon A and B mtDNA lineages grouped by country 

and (2) within cluster including the majority individuals of Mauritania inland. Samples 

from each sub-basin were grouped by their topology in smaller groups, to examine 

the genetic structure pattern between lowland and mountains.  

Genetic diversity was examined for each cluster identified in STRUCTURE 

and PCoA analyses for K=6. Three out of 128 samples were discarded from these 

analyses: two samples from a distinct area (Niger) and one sample that exhibited low 

posterior probability of assignment to a cluster (P<0.7) and thus could not be 

included in a single population. Deviation from Hardy-Weinberg equilibrium (HWE) 

and linkage disequilibrium analyses were performed in FSTAT v2.9.3.2 (Goudet 

2001), for clusters with sample size > 6 (two clusters were excluded).  

Mean number of alleles (Na) per locus and number of private alleles was 

estimated for each of the six genetic clusters, while observed  (HO) and unbiased 

expected (HE) heterozygosities was calculated for four clusters using GenALEx v6.5 

(Peakall & Smouse 2006). The inbreeding coefficient (FIS), allelic richness (AR) per 

population and FST pairwise analyses between populations, were also calculated in 

FSTAT software. FST pairwise analyses were performed among the same four 

clusters with large sample size. Locus Til20, was excluded from this analyses 

because of high missing data exhibited for Sarotherodon mtDNA A lineage (Table 

S7, Appendix). Other comparisons within Mauritanian cluster were performed to test 

genetic differentiation among mountain and lowlands areas, although some 

interesting comparisons were not possible to perform due to small sample size, 

which could lead to over estimation of genetic differentiation or deviation from Hardy-

Weinberg expectations (Willing et al. 2012).  
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3. Results 

3.1 Phylogenetic mtDNA analyses  
 

Thirty haplotypes (Table S2, Appendix) were found among 191 samples 

sequenced in this study for two mtDNA fragments (1239bp; 16S+ND2). Phylogenetic 

analyses using these sequences together with published ones (Dunz & Schliewen 

2013) distinguished four mitochondrial lineages that were grouped in two different 

tribes Coptodonini and Oreochromini sensu Dunz and Schliewen (2013) and were 

named as Coptodon A and B and Sarotherodon A and B, respectively (Figure 7). 

These names are used for the entire study. 

High phylogenetic support was found for both Coptodon A and B lineages 

within Coptodon species. Coptodon A (henceforth represented in blue) exhibited 

three haplotypes in 20 samples collected from coastal areas in Southern Morocco, in 

Banc d´Arguin National Park (PNBA, Mauritania) and a few samples from Senegal 

River basin in Mauritania, that were grouped with Coptodon sp. aff. rheophila 

“Samou” ( sp. aff. unknown species which are close or similar) from Guinea and 

Coptodon cameruensis from Cameroon, with support values 0.94 and 1, 

respectively. Coptodon B (henceforth represented in green) presented five 

haplotypes in 38 samples collected from fresh waters in two sub-basins (Tassint and 

Zouwa) from Morocco and in three sub-basins (Touna, Bounoukolé and Karakoro), 

Senegal River from Mauritania (Figure 7). These haplotypes were grouped with all 

Coptodon zillii from Algeria, analyzed by Dunz and Schliewen (2013), with a high 

support value.  

Sarotherodon A and B lineages are grouped with Sarotherodon genera 

species, but with different support values. Sarotherodon A (henceforth represented 

in red) evidenced four haplotypes in 13 samples, 11 of which collected in coastal 

areas in Banc d´Arguin National Park (PNBA, Mauritania) and two in Senegal basin 

close to Mauritanian coast, were grouped in a well-supported sister species relation 

with Sarotherodon nigripinnis. On the other hand, Sarotherodon B (henceforth 

represented in yellow), showed 18 haplotypes in 120 samples collected form Tissint, 

Draa and El Mellah sub-basins in Morocco, several gueltas, tãmourts, lakes and 

rivers near Assaba, Afollé mountains and Senegal River in Mauritania and also from 

Karoma sub-basin in Niger, showing a monophyletic relationship. Two Mauritanian 

haplotypes (the most distinct from other samples) exhibited a close relationship with 
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Sarotherodon knauerea from Cameroon and Sarotherodon galilaeus from Central-

South Africa, with a support value of 0.72.  

 

 
Figure 7.  Phylogenetic relationship of four lineages based on two mtDNA markers (16S+ND2). A total of 30 

haplotypes obtained in this study and 52 taxa (Table S3, Appendix) are presented. Bayesian analyses were 

performed in MrBayes. Each color represents a different lineage. 
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3.2 Recombination  
	
  

Recombination was detected within two lineages at two separated locations 

within nDNA locus (1st intron of S7) (Figure S1, Appendix). One recombination 

event was detected in four haplotypes within the Sarotherodon B lineage that were 

found in one individual from Rkiz Lake (Rkiz sub-basin) and another individual from 

Bãfa (Gorgol el Akhdar sub-basin) in Mauritania. A second recombination event was 

detected between individuals that are part of two different lineages, Sarotherodon B 

and Coptodon B. Two haplotypes from Coptodon B lineage corresponding to 

samples from Senegal River and Karakoro sub-basin in Mauritania and the other two 

haplotypes from a lineage within several sub-basins in Morocco and Mauritania. 

Recombinant haplotypes were removed from all further analyses.  

 

 

3.3 Phylogenetic nDNA analyses  
	
  

Fourteen haplotypes (Table S4, Appendix) were observed on the analyses 

of 43 samples. Phylogenetic analyses based on the nDNA (492bp, 1st intron of S7) 

fragment resulted in a tree with similar topology for the two genera as the previously 

phylogenetic tree based on mtDNA. Nevertheless, within Sarotherodon and 

Coptodon we could not retrieve clades A and B as in mtDNA (Figure 8).  

Main differences were obtained within each tribe. Three haplotypes from 

distinct Coptodon mtDNA lineages were grouped in one clade on nDNA, close to 

each other, and a fourth haplotype (H4) was more distinct. None of the nDNA 

haplotypes for Coptodon was grouped with the same species as in mtDNA 

phylogenetic tree. Two mtDNA lineages of Sarotherodon were grouped in the same 

nDNA clade and are represented in several paraphyletic sub-clades within this clade. 

We disclosed a new relationship between a Sarotherodon haplotype (H8) and 

Oreochromis niloticus. Three haplotypes of Sarotherodon (H9, H10 and H14) were 

grouped with the same species as in mtDNA phylogenetic tree, Sarotherodon 

nigripinnis, Sarotherodon knauerea and Sarotherodon galilaeus, respectively (Figure 

8). 
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Figure 8. Phylogenetic tree representing relationships for Coptodon and Sarotherodon genera using a nDNA 
fragment (492bp, 1st intron of S7). A total of 14 haplotypes observed in our study and 50 taxa (Table S3, 

Appendix) are included. Tree is performed using Bayesian analyses in MrBayes. Each dot shows one haplotype 

form this study, each color represent lineage based on mtDNA. 
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Figure 9. Haplotype networks and respective distribution maps. (A) Maps with distribution of samples from the 

four mtDNA lineages (Sarotherodon A, B and Coptodon A, B). Colour corresponds to the haplogroups and the dot 

corresponds to the geographical coordinates of sampling sites. (B) and (C) haplotype networks based on mtDNA 

(16S+ND2) and nDNA (1st intron of S7), respectively.  
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3.4 Haplotype networks of mtDNA and nDNA 
 

As expected, the haplotype network based on mtDNA (16S+ND2) exhibited 

marked differences among four lineages (Figure 9B). The two putative genera, 

Sarotherodon and Coptodon, were separated by 96-point mutations. Sarotherodon B 

(yellow) showed the highest diversity and a part of its 19 haplotypes are distributed 

in a star-shaped arrangement. nDNA haplotype network, although based on a much 

smaller sample size, retrieve part of the differentiation exhibited by mtDNA within 

Coptodon, but Sarotherodon mtDNA lineages do not separate for the nDNA. 

Nevertheless, it is interesting that no nDNA haplotype sharing is observed among 

the different mtDNA lineages. 

  

3.5 Genetic structure of Sarotherodon lineages  
	
  

Genetic clustering analyses using STRUCTURE and all 128 Sarotherodon 

lineages samples showed the highest posterior probability ln Pr(X|K) associated with 

K=8 (Figure S2, Appendix). While following the ΔK method by Evanno et al. (2005), 

the most likely number of genetic groups (K) was two (Figure 10B). Structure results 

for K=2 evidenced a split between: (1) all individuals of Sarotherodon A with coastal 

distribution in Mauritania together with individuals of Sarotherodon B from Morocco 

plus eight individuals widely distributed within Mauritania inland, and (2) 

Sarotherodon B from Mauritania and Niger. The same clear pattern between two 

distinct genetic groups was obtained in PCoA analyses (Figure 11A), for which the 

first axis explains a high percentage of the total genetic variability (34.05%). 

Following Evanno’s method (Evanno et al. 2005), we tested for sub-clusters 

within each hierarchical genetic group (Figure 10B). The first major cluster, defined 

above as (1), was further subdivided into two clusters. One of the clusters was the 

final one, without any further subdivisions, which comprised samples from Morocco 

of Sarotherodon B (henceforth as cluster 1 and represented in light grey), the splits 

of the second cluster will be described next. The same division was supported by 

axis 2 (corresponding to 12.53% of genetic variability) in PCoA analyses (Figure 

11A). The two lineages, Sarotherodon A and B, from coastal and inland in 

Mauritania, were divided into sub-clusters (Figure 10B), from the previously one, 

cluster 2 (henceforth represented in dark grey) and second one, which was divided 
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Figure 10. Sample distribution of two lineages and bar plots based on the STRUCTURE based on Evanno’s 

method. (A) The large scale map shows West-North Africa (Morocco, Mauritania, Senegal and Niger). The smaller-

scale map of Mauritania shows sub-basins, Senegal River and water bodies from Assaba and Afollé mountains. The 

size of pie charts is proportional to the sample frequency of each location and each color corresponds to each 

genetic cluster. (B) Results for the analyses using all samples of Sarotherodon A and B are shown in the top bar. 

Each inferred cluster was analyzed separately, until no structure was found. Six possible clusters were inferred. 

Each vertical line represents an individual and each colour represents a cluster. Individuals are grouped by basins or 

sub-basins, delimited by black vertical lines, and named on the top of plot bar with the number of samples shown 

into brackets. Mauritanian sub-basins are divided by topology shape and are shown within braces.  

 

in the final two sub-cluster, cluster 3 (henceforth represented in purple) and 4 

(henceforth represented in orange). The last two groups contained small number of 

individuals with wild distribution within Mauritania inland and their presence together 

with individuals from other genetic distinct groups (Figure 10A).  

The second major cluster, defined above as (2), was sub-divided into two 

genetic clusters, and no further structure was found within each group (Figure 10B).  
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Figure 11. Principal coordinate analyses (PCoA) using the 13-microsatellite dataset for Sarotherodon A and 

B. (A) Plot of both lineages, grouping samples by countries, showing five genetically distinct groups. Each symbol 

represents individual and the colours correspond STRUCTURE clusters when K=5. (B) Analyses within Mauritanian 

cluster, showing sub-cluster of Karakoro sub-basin mountain – Afollé. Samples were grouped to sub-basins, which 

were divided to smaller groups due to topology. Colours represent the clusters found by STRUCTUTRE analyses.  

 

The cluster 5 (henceforth represented in olive) contained the majority of individuals 

distributed in Mauritania inland of Sarotherodon B lineage and two from Niger. The 

cluster 6 (henceforth represented in light yellow) composed by individuals from Affolé 

mountain and three from Karakoro sub-basin. Two individuals had admixture of both 
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clusters (Figure 10A) and one more sample form another genetic group (purple). 

These two sub-clusters were obtained in PCoA analyses, performing it separately on 

the second major cluster (2) (Figure 11B), looking for the structure pattern between 

mountains and lowlands. 

FST analyses showed the highest significant differences among obtained 

clusters, while all topological groups within Mauritanian cluster (cluster 5) exhibited 

not significant differences. Observed genetic differentiation varied between 0.1218 

and 0.6413. The greatest observed genetic differentiation (FST=0.6413) was between 

Morocco (cluster 1) and Karakoro sub-basin (cluster 6), which are also the most 

geographically distant, excluding Niger. Mauritanian cluster (in olive) exhibited a 

genetic differentiation less pronounced to coastal Sarotherodon A (FST= 0.4764) than 

to Sarotherodon B from Morocco (FST= 0.5099), which can be a result of low genetic 

diversity within this group (Table 3). The least differentiated groups in our dataset 

(FST= 0.1218) are cluster 5 (olive) and 6 (light yellow; Table 2A). 

FST values obtained between rivers and mountains including the combination 

of different sub-basins were low and not significant. The comparison for sub-basin 

gave higher FST values but still not significant (Table 2B). 

 
Table 2. Pairwise FST analysis based on 12 microsatellite 
markers. (A) Between four clusters obtained in STRUCTURE 

analyses. (B) between geographical features. The genetic differences 

of rivers vs mountains with indication of the number of individuals 

compared (in brackets), and comparison between two sub-basins.   

 

*Indicate significant values, after Bonferroni correction (P<0.005). 

 

B          River vs mountain  FST 
Gorgol el Akhdar and Garfa (38; 7) 0.0178 
Gorgol el Akhdar, Garfa and Niordé (40; 10) 0.0131 
Gorgol el Akhdar vs Garfa (38; 7) 0.0415 
	
  
	
  

3.6 Genetic diversity 
 

The four genetic clusters (1, 2, 5 and 6) showed no deviation from Hardy-

Weinberg equilibrium and no evidence for linkage disequilibrium in any pair of loci, 

after Bonferroni correction. The lowest genetic diversity was exhibited by the 

A Cluster 2 Cluster 5 Cluster 6 
Cluster 1 0.6181* 0.5099* 0.6413* 
Cluster 2  0.4764* 0.6292* 
Cluster 5   0.1209* 
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Morocco cluster (light grey, Table 3) for all statistical measures analyzed (private 

alleles, AR, HO and HE), and that was monomorphic for 7 out of 13 loci (Table S7, 

Appendix). The highest diversity values were found for clusters 5 and 4. It is 

interesting to observe that clusters 3 and 4 have a very low sample size (n=5 and 

n=3) and notwithstanding showed very high number of alleles and also private 

alleles, both probably evidencing an old separation of this clusters. Affolé mountain 

cluster (Karakoro sub-basin, light yellow) did not show the presence of any private 

allele.  

 
Table 3. Genetic diversity among six clusters based on 13 microsatellite loci. The number of genotyped 

individuals (n), total number of alleles per locus (Na), number of private alleles, allelic richness (AR) based on 13 and 

11 microsatellite loci, observed (HO) and unbiased expected (HE) heterozygosities and inbreeding coefficient (FIS).  

* marks clusters with low sample size for which some statistics were not calculated.  

Cluster n Na Private AR AR HO HE FIS 
   alleles (13 loci) (11 loci)    
1 (light grey) 28 32 4 1.76 1.65 0.242 0.269 0.102 
2 (dark grey) 12 40 15 - 2.19 0.308 0.317 0.03 
3 (purple)* 5 39 14 - - - - - 
4 (orange)* 3 42 10 - - - - - 
5 (olive) 59 100 31 2.971 2.87 0.548 0.573 0.045 
6 (light yellow) 19 41 - 2.145 1.98 0.408 0.395 -0.034 

 

 

3.7 The comparison between cluster and haplotypes  
	
  

Two unique genetic groups were identified based on different molecular 

markers. The cluster 2 (dark grey) and 3 (purple) obtained in the STRUCTURE 

analysis, were also identified as unique haplogroups in both haplotype networks, 

based on mtDNA (16S+ND2) and nDNA (1st intron of S7) (Figure 12).  

All other clusters/groups are represented by shared haplotypes, having also 

some private haplotypes. The orange cluster grouped with purple for microsatellite 

data, here exhibit different relationship. Orange haplotypes were shared with 

Mauritanian (in olive) and Morocco (light grey) clusters (with one haplotype closest to 

the olive group) in mtDNA and nDNA networks, respectively. Haplotypes found at 

Karakoro sub-basin (light yellow) were shared with Mauritania and also with 

Morocco, according nDNA. These comparisons can, nevertheless, be biased by 

different sample size used in both haplotype networks (with much lower number of 

individuals for nDNA approach).  
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Figure 12. Haplotype networks of the samples analyzed for microsatellites. On the top, two networks based on 

combined mtDNA and nDNA, in the right and left, respectively. The colours represent different lineages. Below, 

haplotype networks are represented cluster identified by STRUCTURE analyses (K=6). The colour corresponds to 

each of those clusters. Circle size is proportional to sample frequency, black dots represent inferred missing 

haplotypes and bars/ numbers correspond to the observed mutations. 
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4. Discussion 

4.1 Phylogenetic relationship between Tilapia lineages within 

African cichlids   
	
  

The phylogenetic analysis based on both, mtDNA and nDNA genes, showed 

that the sampled Tilapias from North and West Africa are members of two tribes, 

Oreochromini and Coptodonini. The differentiation within each tribe was observed 

using mtDNA markers, as these are more sensitive to recent evolutionary events 

than nuclear ones (Fugure 7 and 8). 

Oreochromini and Coptodonini are known to be morphologically and 

behaviorally divergent (Beveridge & McAndrew 2000). For example, the 

Oreochromini tribe species are known to exhibit biparental/parental or maternal 

mouthbreeder care for their offspring. Such differences may help to reinforce 

reproductive isolation between the two tribes. We detected parallel distribution 

between species from two genera. Sarotherodon A and Coptodon A with distribution 

in coastal areas, estuaries, while Sarotherodon B and Coptodon B are distributed in 

inland water bodies, with some salinity tolerances within Sarotherodon genera. The 

geographical distribution of Oreochromini and Coptodonini are overlapping, but not 

identical, suggesting that allopatric processes may have been important in their 

diversification. 

Some lineages were identified at species level, combining the phylogenetic 

and published/ unpublished information, while others lineages were unresolved, as 

complex species. The lineage Sarotherodon A the most probably is Sarotherodon 

melanotheron (Rüppell, 1852) species, which is sister species to Sarotherodon 

nigripinis (Falk et al. 2003), as were obtained in phylogenetic analyses based on 

both, mtDNA and nDNA, molecular approaches (Figure 7 and 8). S. melanotheron 

and S. nigripinis are coastal lineages with distribution from Senegal to Benin and 

from the mouth of the Congo to the Lower Kouilou, respectively. With probable 

divergence of lineages in early Pleistocene (Falk et al. 2003). The black-chinned 

tilapias, S. melanotheron, are known as marine species tolerant to wide range of 

salinity (Lemarié et al. 2004). Moreover, Kide et al. (unpublished) described Tilapias 

from PNBA Mauritania (common samples with our study), as S. melanotheron based 

on morphometric parameters, meristic counts and phylogenetic analyses, using four 

genetic markers.  
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While another lineage Sarotherodon B is more complex, where two 

haplotypes, in both phylogenetic analyses, are grouped with Sarotherodon knauerae 

and Sarotherodon galilaeus. The rest of the haplotypes exhibited monophyletic sub-

clade according to mtDNA data, while due to nDNA phylogenetic data haplotypes 

were grouped with a several different species. There are records of the subspecies 

Sarotherodon galilaeus galilaeus distribution in Adrar (Mauritania) (Figure 5) 

(Lévêque 1990) and in the lowlands of Morocco (Le Berre 1989), close to our study 

area. Moreover, according to the nDNA data, the haplotype H10 grouped with 

Oreochromis niloticus with a high support value (Figure 8). According to species 

distribution collected by Trewavas (1983) the Oreochromis niloticus was recognized 

in Senegal River. Besides the species was introduced in the expansion of Senegal 

River (M.M.J. Vincke, per. Comm. to Pullin (1988)). 

Coptodon A, which was a coastal lineage based on mtDNA analyses, has 

been described as the Coptodon guineensis species complex in Kide et al. 

(unpublished). Coptodon guineensis appears to exist in sympatry with other genera, 

including Sarotherodon melanotheron (in our study named as Sarotherodon A), in 

Mauritanian coastal areas. Understanding the genetic relationships among A and B 

lineages in Sarotherodon genera, on which are focus our study, may require 

determining the relationships between parallels lineages such as lineages A and B 

(in our study) in Coptodon genera.  

Individuals that were found to be part of the inland mtDNA lineage, Coptodon 

B, did not form a monophyletic clade in our phylogenetic analyses based on nDNA 

data. The lack of concordance between the results of mtDNA and nDNA 

phylogenetic analyses may have been due to using too few unlinked nuclear loci in 

the latter. However, one haplotype (H27, Figure 7) are grouped with Coptodon zillii. 

Furthermore, there are some records about Tilapia (Coptodon) zillii distribution in 

locations close to our study area (up to Atlas mountains and West Africa) (Le Berre 

1989; Lévêque 1990). In addition, it was recently mentioned about that redbelly 

tilapia, Coptodon zillii, occurrs in the Draa basin (Morocco) together with 

Oreochromis aureus commonly named as blue tilapia (Clavero et al. 2014). These 

reports conflict with the results of our mtDNA phylogenetic analyses, which do not 

indicate Sarotherodon B as Oreochromis (found in the same locations), while based 

on one nuclear locus one of the haplotypes (H8 in Figure 8) is grouped with 

Oreochromis niloticus. However, these conclusions based on two mtDNA and one 

nDNA loci requires further testing. We therefore tentatively conclude that both 

genera are closely related and are from the same tribe. It is important to highlight, 
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that recent phylogenetic studies of African cichlids were based on multi-gene data 

and most of the samples are from the West, center and South of Africa. Therefore, it 

is possible that some new species within the identified tribes are in our samples that 

have not yet been described or are not included in the previous phylogenetic 

analyses.  

Our main goal of the phylogenetic analyses was to detect the species 

occurrence in Mauritania water bodies and to perform further population genetic 

analyses. We detected two lineages of different genera, Sarotherodon B and 

Coptodon B, distributed in these areas. While the majority of species presented in 

lowland and mountains was from Sarotherodon B lineage (Figure 9A). Coptodon B 

were present in lowland of Karakoro sub-basin, but majority of samples were from 

Senegal River and a few from downstream of the sub-basins. The lineages 

Sarotherodon A and Coptodon B are present in sympatry in some locations, 

according to our sample distribution map (Figure 9). But any fishes from Coptodon B 

were found in mountain water bodies. Perhaps they might occur together in more 

areas, our results can be biased due to lack of sampling, which is correlated with 

climate conditions. These lineages belong to different genera and tribe, so we can 

reject the possibility of interaction between them.  

In any case our results showed that the broadest distribution in Mauritanian 

lowlands and mountains is represented by fishes from Sarotherodon B lineage. The 

further population studies were performed on this lineage and for this reason the 

novel microsatellites were developed. According to the close genetic relationship 

between Sarotherodon A and B, based on nDNA sequences (Figure 9C), the second 

lineage also was included to the further analyses.  

 

4.2 Inferring historical events 
	
  

The detection of the recombination can give the idea about the gene flow 

event before the species diverged, to adapt to environmental conditions. The 

recombination was detected in samples from two lineages, Sarotherodon B and 

Coptodon B (Figure S1, Appendix). Samples were collected in Mauritania. Likely, 

Mauritania acted as secondary contact zone to those individuals; it could be related 

with the beginning of dry period, which pushed individuals in restricted patches.  

The haplotype network based on mtDNA represented the same four lineages 

as in phylogenetic analyses. The two genera Sarotherodon and Coptodon were 

distinct by highest mutation number 98 (Figure 9). The star-shaped haplotype 
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network of Sarotherodon B (yellow) lineage distributed in Mauritania, suggested it 

may have experienced a recent range expansion. This range expansion may have 

been the result of climate and habitat changes and that opened up the waterways 

and allowed for dispersal to occur. It is possible that similar patterns exist in 

Coptodon B distributed in Mauritania body water, but our limited sample size did not 

allow us to test this hypothesis.   

Some of the relationships among the individuals we studied were found to be 

different based on the mtDNA and nDNA sequence phylogenetic analyses (Figure 9 

B, C). Sarotherodon A exhibited the intermediate relation within Sarotherodon B 

haplotypes based on nDNA data, separating H14 and H10 from the rest (Figure 9C). 

In the phylogenetic analyses Sarotherodon A (coastal) was grouped with 

Sarotherodon nigripinis (Figure 8), which diverged about 10 Mya (see Figure 3 in 

Schwarzer et al. (2009)). The sister lineage diverged into two species (Sarotherodon 

sp. aff. galilaeus (recently corrected to Sarotherodon knauerae) and Stomatepatia 

mariae) about 2.5 Mya. One group of the inland lineage Sarotherodon B (H14 in 

Figure 8) is grouped with Sarotherodon knauerae. Because of the lower mutation 

and slower fixation rates of nuclear loci compared to mtDNA, they can sometime 

provide information about older evolutionary events. We therefore hypothesize that 

some inland groups (from Sarotherodon B lineage) diverged from coastal lineages.  

	
  

4.3 Population structure and genetic diversity in West Africa 
 

The genetic differences may be due to allopatric divergence or selection 

among biogeographic regions. The final number (K=6) of the genetic groups 

obtained within Sarotherodon A and B, across the North-West Africa using 13 

microsatellite loci were six, supported by structure analyses based on Evanno’s 

method and PCoA, as well inferring their differences by FST statistics. Two clusters, 

Morocco (light grey) and coastal of Mauritania (dark grey), of different lineages 

(based on mtDNA), showed high (FST) significant genetic differences. The same two 

groups highly differ from other two genetic groups, Mauritania (olive) and Karakoro 

sub-basin (light yellow). The barrier between coastal and fresh waters can be the 

concentration of salinity. However, FST is sensitive to low heterozigosity. The high 

FST values obtained on Morocco population, was also due to monomorphic loci. The 

coastal group of Sarotherodon A showed missing data for one locus. Perhaps due to 

some mismatch in the flanking sequences, because the primers were designed for 
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the close related (Wang et al. 2012) lineage, Sarotherodon B which is from the same 

tribe.  

The Eastern Mauritanian mountain population of Sarotherodon B appears to 

be the most recent isolated. The population of Sarotherodon B fishes from Affolé 

mountain (in Karakoro sub-basin) exhibited population genetic structure isolated 

from Western Mauritania. Two genetic clusters obtained in Mauritania, olive and light 

yellow, had a high FST value (0.1209), common at population level (Cornuet et al. 

1999).  The same population isolation results was obtained by Velo-Antón et al. 

(2014) in Crocodylus suchus population from Affolé mountain. This area has minimal 

water availability comparing with the west-ward (Campos et al. 2012). However, 

some individuals were found in Karakoro sub-basin, with admixture of both 

populations. Unfortunately, we couldn’t get any samples from Karakoro sub-basin in 

downstream from Afollé mountain, to get better idea about population dynamics. 

Besides, any private alleles were observed in this population. This may have been 

the result of a recent bottleneck, which can decrease the number of alleles and 

heterozygosity in a population, and increase the rate at which rare alleles are lost, 

especially in small isolated populations (Maruyama & Fuerst 1985; Nei et al. 1975). 

We did not test for population bottlenecks in this case due to small sample size and 

the lack of polymorphism in the population. However, our results from analyses of 

three types of genetic data (microsatellites, nDNA and mtDNA), suggest that it is an 

isolated population.  

No evidence for genetic sub-structure within the Sarotherodon B from 

Mauritania (olive cluster) was found. Genetic differentiation analyses were performed 

on many different combinations of groups, to detect gene flow or weak structure and 

their relation with hydraulic networks. The coastal group exhibited very distinct 

genetic relation to lowland and mountain putative populations, according to FST 

analyses (Table 2A). Either, coastal population is considered as other lineage, 

Sarotherodon A based on mtDNA data. While FST analyses performed within 

Mauritanian cluster (olive) on rivers versus mountains, including one up to three sub-

basins and between two sub-basins, any significant differences were observed. The 

highest value of FST was obtained between Gorgol el Akhdar vs Garfa sub-basins. 

Moreover, the metapopulations of C. suchus crocodiles were isolated between sub-

basins of Mauritania, with hydraulic connections within. On the contrary, the fish 

samples of two clusters, olive and light yellow, were found in Karakoro sub-basin. 

Topology is specifically important by constraining their ability to disperse (Fagan 

2002) and also is very important to know about traits of species (Leibold et al. 2004). 

While these two taxa, fishes and crocodiles have different dispersal abilities, 
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reproduction and lifespan. Our obtained data can be better interpreted by increasing 

the number of individuals, to obtain statistically significant values and to cover the 

sampling gaps, especially from downstream of Karakoro, to have better sense about 

population dynamics.   

Moreover, two genetic distinct groups (purple and orange; Figure 10 and 11) 

were identified within Mauritania and each was found to be genetically isolated from 

the rest of the Mauritanian populations with which they are sympatric. The genetic 

differentiation wasn’t obtained among these groups, due to small sample size (5 and 

3). However, within these two groups were obtained high genetic diversity values. 

The orange population exhibited the highest value of allelic richness and purple as 

well, after Mauritanian cluster (in olive). The 3 individuals of orange cluster are 

distributed in coastal area of Senegal River and in the downstream of Gorgol sub-

basin. While individuals from purple cluster are distributed in mountains, in Karakoro 

sub-basin and in downstream of Gorgol and Garfa sub-basins. These two clusters 

were found in sympatry, as well as with individuals from other clusters (Figure 10). 

The individuals of the purple cluster, as a different group, were also obtained based 

on other molecular markers. While orange group was identified, based only on 

microsatellite data. Perhaps, these groups should be separated by assortative 

mating, due to divergence in feeding apparatus, or colour preference common in 

cichlids from Lake Malawi (Kocher 2004). It is important to increase the sample size, 

because it seems that these individuals was caught by chance. The morphology data 

analyses on these specimens could be helpful.   

 

4.4 Historical and contemporary structure of Tilapias 
	
  

We can see some pattern of sympatry in Mauritania, which have been 

involved at time. The purple cluster defined based on microsatellites data, distinct 

from the Mauritania (olive and light yellow), showed similar pattern based on mtDNA 

and nDNA sequences. The factors acting as barriers, should to be involved long time 

ago, according the resolution of markers. Besides, close relation was detected 

between purple and dark grey (coastal) based on the both nDNA marks, 1st intron of 

S7 and microsatellite loci, without FST support. Perhaps it is possible some 

interaction between coastal and fresh waters fishes from the same genera, knowing 

that Sarotherodon melanotheron exhibit tolerance to a wide range of salinity 

(Lemarié et al. 2004). Moreover, the salinity of water can decrease by increased 
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water fluidity during rainy seasons (Panfili et al. 2004; Panfili et al. 2006). However, 

the mating traits, as body size, colour, behavior, is high variable in cichlid species 

(Kocher 2004), can drive to early divergence in closely related species. 

There is probability of subspecies/ close species relationship within 

Sarotherodon B lineage. The previous mentioned purple group with two haplotypes 

H19 and H20 (phylogenetic tree of the mtDNA) are grouped with Sarotherodon sp., 

in the paraphyletic relation to the rest haplotypes of Sarotherodon B lineage. Two 

haplotypes H10 and H14 (phylogenetic tree of the nDNA) are grouped with the same 

species. Furthermore, both haplotypes networks showed that purple group exhibited 

an unique haplogroup and no shared haplotypes. This could be evidence of closely 

related species/ subspecies.    

While orange cluster perhaps exhibit more recent stage of sympatry, 

comparing with purple cluster. The orange cluster was grouped with purple and dark 

grey (coastal) clusters, based on STRUCTURE and PCoA analyses. While based on 

other markers, shared haplotypes with Mauritania or Morocco. Any different pattern 

was detected in phylogenetic analyses. This differentiation involves markers with 

sensibility to more recent events – microsatellites. It might be more recent divergent 

events, comparing with purple cluster. However, the orange group is more distinct 

than light yellow due to high number of private allele. Since individuals of orange 

cluster occur in the same areas, one of the main driver of divergence might be 

assortative mating (Stelkens & Seehausen 2009).  

The rest clusters of Sarotherodon B (light grey, olive and light yellow) have 

shared alleles in both haplotype networks. And in microsatellites they are divided in 

three clusters, with the most distinct Morocco group and differentiation between 

groups of Mauritania (olive) and Karakoro sub-basin (light yellow). The haplotype 

network didn’t show any pattern of hydraulic network biogeography (data not shown), 

the same as based on microsatellite data.  

The most of the hypothesis are not supported due to small sample size, 

which is a barrier to perform analyses, by increasing the bias to interpretation of 

data. Also is important to get samples from more locations, and more markers, get 

better idea about phylogenetic data and exhibit the fishes population dynamics 

populations within hydraulic network. More markers, as nuclear gene and high 

polymorphic microsatellite loci, could to increase the power of data.   
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5. Conclusions 
 

Mitochondrial and nuclear data in Tilapia fishes, together with sequences of 

other African cichlids, allowed us to study them at phylogenetic level. Inferring the 

phylogenetic relation between Tilapias in West and North of Africa, especially within 

Mauritania inland, and comparing with other cichlids. One of our findings was a 

strong phylogenetic structure in West-North Africa Tilapias of two groups, 

corresponding to two tribes, Oreochromini and Coptodonini, which were divided into 

two further groups to give a total of four mitochondrial lineages, Sarotherodon A and 

B, and Coptodon A and B. Each genera contains the lineage with coastal (A) and 

inland (B) distribution, with some salinity tolerance within Sarotherodon genera. 

Sarotherodon B was over distributed in Mauritania mountains and lowlands, while 

Coptodon B mainly appear in Senegal River or in some downstream of sub-basins. 

Nuclear data seem to indicate a closer relation within and among lineages, and 

some intermediate relation of Sarotherodon A within Sarotherodon B lineage, was 

detected from haplotype network. Some haplotypes from two lineages were 

hypothesized to belong to known species according to phylogenetic and published 

data, where Sarotherodon A is close to Sarotherodon melanotheron and Coptodon B 

is close to Coptodon zillii. While another two lineages are more complex. Also, the 

recombination events were detected in samples collected from Mauritania, 

encompassing Sarotherodon B and Coptodon B haplotypes, which might be the 

result of secondary contact zone. More data will be necessary to confirm the relation 

among lineages at phylogenetic level and recombination events.    

Thirteen microsatellite loci data, allowed us to identify two genetic groups in 

Mauritania fresh waters. Afollé mountain exhibited isolated fish population of 

Sarotherodon B (with a minimal water availability) from the Western Mauritania, with 

some admixture of both clusters in Karakoro sub-basin. None of the significant 

statistical support was obtained by examining the differentiation between hydraulic 

networks in Mauritania, at smaller geographical scale. It seems that Tilapias 

population dynamics could be related with hydraulic network within each sub-basin, 

except Karakoro sub-basin. More sample will be needed to improve the study, and 

especially from some locations. The inclusion of landscape genetics studies and the 

use of species behavior knowledge may help as well. 

More four lineages were identified of Sarotherodon A and B. Two clusters 

represented biogeographic differentiation to Mauritania inland populations: (1) North 
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Africa, Morocco of Sarotherodon B and (2) Coastal, Mauritania Sarotherodon A. 

While the most surprising results were two clusters of Sarotherodon B, with very low 

sample size, widely distributed within Mauritania inland with some cases of 

sympatry. Both clusters were distinct from the rest of Mauritanian Tilapias, according 

to different genetic data, which could be the result of different stages in divergences. 

In this case is important samples size; since it was used a minimum number and 

morphological studies could give a better sense. 
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Appendix  
 
 
Table S1. Information of the individuals used for the phylogenetic analyses. Each sub-basin encompasses the 

number of locations; belonging to basin and country, the number of individuals collected from each sub-basin and the 

lineage they belong to Coptodon A (CA), Coptodon B (CB), Sarotherodon A (SA) and Sarotherdon B (SB), with 

number of individuals (in brackets). 

 

 
 

 

 

 

 

 
 

 

 

 

 
 
 

 

Sub-basin Location Basin Country  Indiv. Lineage 

 (n)   (n)  

Tissint 3 Draa Morocco 29 CA (7), SB (22)  

El Mellah 1 Draa Morocco 2 SB (2) 

Zouwa 1 Draa Morocco 7 CA (7) 

Draa 2 Draa Morocco 5 SB (5) 

Coastal 1 Coastal Southern Morocco 5 CB (5) 

Coastal 2 Coastal Mauritania  24 CB (13), SA (11) 

Senegal 14 Senegal Mauritania  30 CA (14), CB (2), 

     SA (2), SB (12) 

Rkiz 1 Senegal Mauritania  1 SB (1) 

Gorgol el Akhdar 9 Senegal Mauritania  48 SB (48) 

Garfa 3 Senegal Mauritania  7 SB (7) 

Niordé 2 Senegal Mauritania  5 SB (5) 

Touna 1 Senegal Mauritania  1 CA (1) 

Bounoukolé 1 Senegal Mauritania  5 CA (5) 

Karakoro 6 Senegal Mauritania  28 CA (4), SB (24) 
Niger 2 Korama Niger 2 SB (2) 
 49   199  
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Table S2. List of the haplotypes based on mtDNA (16S+ND2) data. The number of haplotype (H), the number of 

samples (n), the lineage, sub-basin, country and clusters based on microsatellite data, the number of sample 

(between brackets). 

 

H n Lineage Sub-basin Country Cluster (n) 

H1 7 Sarotherodon B Gorgol el Akhdar, Grafa, Senegal  Mauritania olive (6) 
H2 1 Sarotherodon A Senegal coastal Mauritania dark grey (1) 

H3 2
8 Sarotherodon B Senegal, Gorgol el Akhdar, Garfa, 

Niordé, Karakoro Mauritania 
olive (23), light 
yellow (3), 
orange (2) 

H4 2
4 Sarotherodon B Senegal, Gorgol el Akhdar, Garfa, 

Karakoro Mauritania olive (7), light 
yellow (15) 

H5 5 Sarotherodon B Senegal, Gorgol el Akhdar el Akhdar Mauritania olive (3) 
H6 1 Sarotherodon B Gorgol el Akhdar el Akhdar Mauritania olive (1) 
H7 2 Sarotherodon B Gorgol el Akhdar el Akhdar Mauritania olive (2) 
H8 2 Sarotherodon B Gorgol el Akhdar el Akhdar Mauritania olive (1) 

H9 3
2 Sarotherodon B Gorgol el Akhdar, Draa, Tissint, El 

Mellah 
Mauritania, 
Morocco 

olive (3), light 
grey (28) 

H10 9 Sarotherodon A Coastal, Senegal coastal Mauritania dark grey (8) 
H11 2 Sarotherodon A Coastal Mauritania dark grey (2) 
H12 1 Sarotherodon A Coastal Mauritania dark grey (1) 
H13 1 Sarotherodon B Niordé Mauritania olive (1) 
H14 2 Sarotherodon B Niordé Mauritania olive (2) 
H15 4 Sarotherodon B Gorgol el Akhdar Mauritania olive (4) 
H16 1 Sarotherodon B Senegal Mauritania olive (1) 
H17 2 Sarotherodon B Korama Niger olive (1), mix (1) 
H18 1 Sarotherodon B Senegal Mauritania orange (1) 
H19 2 Sarotherodon B Senegal, Gorgol el Akhdar  Mauritania purple (2) 
H20 4 Sarotherodon B Senegal, Karakoro Mauritania purple (3) 
H21 1 Sarotherodon B Gorgol el Akhdar el Akhdar Mauritania olive (1) 
H22 1 Sarotherodon B Gorgol el Akhdar el Akhdar Mauritania olive (1) 
H23 1 Coptodon A Senegal coastal Mauritania - 

H24 1
6 Coptodon A Coastal, Senegal coastal 

Mauritania, 
Southern 
Morocco 

- 

H25 3 Coptodon A Coastal Mauritania - 

H26 1
2 Coptodon B Senegal, Bounoukolé Mauritania - 

H27 9 Coptodon B Senegal, Karakoro, Touna Mauritania - 

H28 1
3 Coptodon B Tissint, Zouwa Morocco - 

H29 1 Coptodon B Zouwa Morocco - 
H30 1 Coptodon B Bounoukolé Mauritania - 
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Table S3. List of taxa used for the phylogenetic analyses. Names of the species with GenBank accession 

number for each gene included in databases Figure 7 and 8. 

Species 16SrRNA  ND2   1st Intron  of S7 

Etia nguti GQ167966 GQ167777 GQ168091 
Gobiocichla wonderi GQ167967 GQ167778 GQ168092 
Heterochromis multidens GQ167968 GQ167779 GQ168093 
Oreochromis niloticus GQ167969 GQ167780 GQ168094 
Alcolapia alcalica GQ167970 GQ167781 GQ168095 
Oreochromis tanganicae GQ167971 GQ167782 GQ168096 
Pelmatochromis buettikoferi GQ167972 GQ167783 GQ168097 
Pelmatochromis nigrofasciatus GQ167973 GQ167784 GQ168098 
Pterochromis congicus GQ167974 GQ167785 GQ168099 
Sarotherodon nigripinnis GQ167976 GQ167787 GQ168101 
Sarotherodon sp. aff. galilaeus "mudfeeder" GQ167977 GQ167788 GQ168102 
Stomatepia mariae GQ167985 GQ167796 GQ168110 
Tilapia discolor GQ167990 GQ167801 GQ168115 
Tilapia tholloni GQ167993 GQ167804 GQ168118 
Oreochromis andersoni GQ167994 GQ167805 GQ168119 
Tylochromis sp. GQ167998 GQ167809 GQ168123 
Sarotherodon mvogoi GQ168000 GQ167811 GQ168125 
Tristramella simonis GQ168002 GQ167813 GQ168127 
Steatocranus tinanti GQ168006 GQ167817 GQ168131 
Sarotherodon caudomarginatus GQ168008 GQ167819 GQ168133 
Tilapia dageti GQ168010 GQ167821 GQ168135 
Tilapia louka GQ168011 GQ167822 GQ168136 
Tilapia mariae GQ168012 GQ167823 GQ168137 
Tilapia ap. aff. rheophila "Samou" GQ168014 GQ167825 GQ168139 
Tilapia cf. nyongana "Dja" GQ168016 GQ167827 GQ168141 
Tilapia sp. aff. zillii "Kisangani" GQ168018 GQ167829 GQ168143 
Iranocichla hormuzensis GQ168019 GQ167830 GQ168144 
Tilapia zilli GQ168025 GQ167836 GQ168150 
Tilapia guineensis GQ168026 GQ167837 GQ168151 
Tilapia ruweti JX910608 JX910825 JX910788 
Coptodon zillii JX910610 JX910881 JX910790 
Sarotherodon galilaeus JX910613 JX910869 JX910793 
Orthochromis kalungwishiensis JX910617 JX910861 JX910797 
Coptodon cameruensis JX910618 JX910877 JX910798 
Pelmatolapia mariae JX910620 JX910876 JX910800 
Coptodon rendalli JX910623 JX910889 JX910803 
Coptodon zillii JX910624 JX910878 JX910804 
Sarotherodon sanagaensis JX910625 JX910868 JX910805 
Coptodon bakossiorum JX910627 JX910885 JX910807 
Heterotilapia buttikoferi JX910628 JX910892 JX910808 
Coelotilapia joka JX910629 JX910895 JX910809 
Coptodon zillii JX910630 JX910879 JX910810 
Coptodon bemini JX910631 JX910888 JX910811 
Coptodon bythobathes JX910632 JX910886 JX910812 
Coptodon zillii JX910633 JX910882 JX910813 
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Table S4. List of the haplotypes based on nDNA sequencing data. The number of haplotype (H) and haplotype 

with detected recombination (HR*), the number of phased sequences (n), the lineage, sub-basin, country and clusters 

based on microsatellite, the number of sample is between brackets. 

* The haplotypes have been excluded from further analyses. 

 

 
 

 

Coptodon rendalli JX910634 JX910890 JX910814 
Coptodon deckerti JX910635 JX910883 JX910815 
Coptodon snyderae JX910636 JX910887 JX910816 
Coptodon sp. "Cross" JX910637 JX910884 JX910817 
Sarotherodon lohbergeri JX910638 JX910870 JX910818 
Konia eisentrauti JX910639 JX910871 JX910819 
Coptodon zillii JX910640 JX910880 JX910820 

H n Lineage Sub-basin Country Cluster (n) 
H1 2 Coptodon B Zouwa Morocco - 

H2 1 Coptodon A Coastal Southern 
Morocco - 

H3 10 Coptodon A Coastal, Senegal 
Southern 
Morocco, 
Mauritania 

- 

H4 3 Coptodon A Coastal 
Mauritania, 
Southern 
Morocco 

- 

H5 12 Sarotherodon B Draa, Tissint, El Mellah, 
Senegal, Gorgol 

Morocco, 
Mauritania orange (3) light grey (9) 

H6 8 Sarotherodon B Tissint, Senegal, 
Karakoro 

Morocco, 
Mauritania 

light yellow (1), orange 
(2), light grey (5) 

H7 22 Sarotherodon B 

Senegal coastal, 
Senegal, Gorgol el 
Akhdar,  Garfa, Niordé, 
Karakoro, Korama 

Mauritania, Niger olive (20) , light 
yellow(1) 

H8 13 Sarotherodon B 
Senegal, Gorgol el 
Akhdar, Karakoro, 
Korama 

Mauritania, Niger olive (11), light yellow 
(2) 

H9 8 Sarotherodon A Coastal, Senegal  Mauritania dark grey (9) 

H10 3 Sarotherodon B Senegal, Gorgol el 
Akhdar Mauritania purple (3) 

H11 1 Sarotherodon A Senegal coastal Senegal dark grey (1) 

H12 1 Sarotherodon A Senegal coastal Senegal dark grey (1) 

H13 1 Sarotherodon B Gorgol el Akhdar Mauritania orange (1) 

H14 1 Sarotherodon B Gorgol el Akhdar Mauritania purple (1) 

HR1* 3 Coptodon B Senegal, Karakoro Mauritania HR1* 

HR2* 1 Coptodon B Senegal Mauritania HR2* 

HR3* 1 Sarotherodon B Gorgol el Akhdar Mauritania HR3* 

HR4* 1 Sarotherodon B Gorgol el Akhdar Mauritania HR4* 

HR5* 1 Sarotherodon B Rkiz Mauritania HR5* 

HR6* 1 Sarotherodon B Rkiz Mauritania HR6* 
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Table S5.  Partitions used for phylogenetic analyses. The partitions and the best evolutionary models identified 

using Partition Finder. 

     

	
  
 
Table S6. Distribution of two lineages, Sarotherodon A and B, used in microsatellite analyses. Each sub-basin 

encompasses the number of locations; belonging to basin and country, and the number of individuals collected from 

each sub-basin. 

Subset Best Model Subset partitions Subset sites (bp) 

1 GTR+I+G 16S 1-504 

2 GTR+I+G ND2_1 505-1239/3 

3 HKY+I ND2_2 506-1239/3 

4 GTR+G ND2_3 507-1239/3 

5 HKY+G S7 1-492 

Sub-basin Location (n) Basin Country Individuals (n) 
Sarotherodon A     
Coastal 2 Coastal Mauritania 10 
Senegal 2 Senegal Mauritania 2 
Sarotherodon B     
Tissint 3 Draa Morocco 21 
El Mellah 1 Draa Morocco 2 
Draa 2 Draa Morocco 5 
Senegal 5 Senegal Mauritania 12 
Gorgol el Akhdar 9 Senegal Mauritania 40 
Garfa 3 Senegal Mauritania 7 
Niordé 2 Senegal Mauritania 5 
Karakoro 5 Senegal Mauritania 22 
Korama 2 Niger Niger 2 

 36   128 
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Table S7. Characteristics and genetic diversity of all microsatellite loci for 6 clusters (K=6) of both lineages Sarotherodon A and B. The allele size range (bp), number of alleles (Na), observed (HO) and expected (HE) 

heterozygous. 

 

 

 Sarotherodon B Sarotherodon A Sarotherodon B	
  

 Cluster 1 (n=28) Cluster 2 (n=12) Cluster 3 (n=5) Cluster 4 (n=3) Cluster 5 (n=59) Cluster 6 (n=19) 

 Light grey Dark grey Purple Orange Olive Light yellow 

Locus Size  Na HO HE Size  Na HO HE Size  Na HO HE Size  Na HO HE Size  Na HO HE Size  Na HO HE 

 range     range     range     range     range     range     

Til1 227-226 4 0.536 0.662 230-250 4 0.750 0.659 230-250 5 0.800 0.844 222-246 3 0.333 0.600 234-266 6 0.695 0.671 242-258 4 0.421 0.368 

Til2 192 1 - - 180-182 2 0.091 0.091 188-190 2 0.200 0.200 208-220 5 0.667 0.933 178-212 13 0.847 0.856 190-212 5 0.722 0.684 

Til13 148-176 4 0.571 0.627 178-180 2 0.083 0.083 140-156 2 1.000 1.000 140-148 3 0.000 0.800 120-188 17 0.780 0.897 120-172 6 0.737 0.735 

Til8 128 1 - - 116 1 - - 110-158 7 1.000 0.964 116-140 4 1.000 0.867 125-155 11 0.860 0.847 140-146 3 0.316 0.317 

Til19 196-216 6 0.786 0.729 208-268 11 0.909 0.922 192-216 6 1.000 0.889 188-236 5 0.667 0.933 164-224 12 0.881 0.853 184-212 5 0.684 0.674 

Til20 138-140 2 0.357 0.468 - - - - 130 1 - - 138-140 2 0.333 0.333 142-148 3 0.368 0.508 142-148 3 0.526 0.649 

Til6 131-151 5 0.571 0.643 105-135 7 0.917 0.830 105-111 4 0.600 0.711 125-139 4 0.667 0.867 115-149 14 0.825 0.815 133-139 4 0.684 0.539 

Til21 286 1 - - 268-304 5 0.750 0.703 260-270 3 0.600 0.644 274-298 4 0.667 0.867 268-294 9 0.576 0.746 272-294 4 0.737 0.738 

Til22 160 1 - - 150-156 3 0.333 0.540 164-168 2 0.200 0.200 154-182 4 0.667 0.867 1601-64 3 0.390 0.357 1601-64 2 0.263 0.235 

Til23 104 1 - - 104 1 - - 104 1 - - 104 1 - - 110-114 3 0.068 0.067 112 1 - - 

Til24 230 1 - - 230-232 2 0.167 0.290 232-234 2 0.200 0.200 230 1 - - 230-234 3 0.254 0.312 232 1 - - 

Til25 206-216 4 0.321 0.366 166 1 - - 164-166 2 0.600 0.467 194-216 5 1.000 0.933 174-200 2 0.017 0.017 174 1 - - 

Til30 111 1 - - 111 1 - - 111-113 2 0.200 0.200 111 1 - - 111-121 4 0.559 0.509 117-119 2 0.211 0.193 
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Figure S1. Recombination events and haplotype network. Recombination detected within Sarotherodon B (in 

yellow) in site (120, 184) and within (B) Coptodon B (in green) in site (264, 287). The colours near haplotypes 

represent the lineage: blue – Coptodon A, green – Coptodon B, red – Sarotherodon A and yellow – Sarotherodon B.  
The recombinant sequences are highlighted by black boxes and haplotype marked by *. (C) Haplotype network 

representing with all haplotypes. Circle size is proportional to sample frequency, black dots represent inferred 

missing haplotypes and bars/ numbers correspond to the observed mutations. 

 

 
 
 
 
 
 
 

n 120 121 ............. 143 ............. 149 ............. 157 ............. 184 n 264 265 266 ............. 284 285 286 287
H1 2 G A ............. A ............. G ............. G ............. A H2 1 C A A ............. G C C G
HR1* 3 G A ............. A ............. G ............. G ............. A H3 10 C A A ............. G C C G
HR2* 1 G A ............. A ............. G ............. G ............. A H4 3 C A A ............. G C C G
H2 3 G A ............. G ............. C ............. G ............. A H1 2 C A A ............. G C C G
H3 10 G A ............. A ............. G ............. G ............. A HR1* 3 C A A ............. G C C A
H4 1 G A ............. A ............. G ............. G ............. A HR2* 1 C A A ............. G C C A
H5 12 G A ............. G ............. C ............. A ............. A H5 12 A A A ............. G C C A
H6 8 G A ............. G ............. C ............. A ............. A H6 8 A A A ............. G C C A
H7 22 G A ............. G ............. C ............. A ............. A H7 22 A A A ............. G C C G
H8 13 G A ............. G ............. C ............. A ............. A H8 13 A A A ............. G C C G
H10 3 G A ............. G ............. C ............. A ............. A H10 3 A A A ............. G C C G
HR3* 1 G A ............. G ............. C ............. A ............. G H9/11 8 A A A ............. G C C G
HR5* 1 A A ............. G ............. C ............. A ............. A H12 1 A A A ............. G C C G
HR4* 1 A T ............. G ............. C ............. A ............. G HR3* 1 A A A ............. G C C G
HR6* 1 A T ............. G ............. C ............. A ............. G HR4* 1 A A A ............. G C C G
H9/11 8 G A ............. A ............. C ............. A ............. A HR5* 1 A A A ............. G C C G
H12 1 G A ............. N ............. C ............. A ............. A HR6* 1 A A A ............. G C C G
H13 1 G A ............. G ............. C ............. A ............. A H13 1 A A A ............. G C C G
H14 1 G A ............. G ............. C ............. A ............. A H14 1 A A A ............. G C C G

HR2*#
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Figure S2. Population structure analyses of Sarotherodon A and B lineages across Morocco, Mauritania and 
Niger. The bar plots are presented since K=2, which is the best K according to Evanno’s method, until K=8, which is 

the best according ln Pr(X|K) method. With one more bar plot with K=9, to visualize the further clustering. Each 

vertical line represents an individual and each colour represents a cluster. Individuals are grouped by basins or sub-

basins, which are divided by black vertical lines, and with their names in the bottom of plot bar, with the number of 

samples shown into brackets. Each Mauritanian sub-basin is divided by topology shape using braces.  
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Primer Note 

Development and characterization of 13 
microsatellite loci of Sarotherodon genera 
from Mauritanian inland  
 
Abstract 

Thirteen polymorphic microsatellite loci were developed for Tilapias from 

Mauritania inland, using 454 GS-FLX Titanium pyrosequencing platform. These 

markers were characterized in 38 individuals from Gorgol el Akhdar sub-basin in 

Mauritania, ranging from 2 to 17 alleles per loci, with an average of 7. The expected 

heterozygosity ranged from 2.6% to 84.8% with an average of 56.5%. The newly 

developed microsatellite loci can be used to describe the population structure in 

Sarotherodon genera in Mauritania.  

 

Sarotherodon species belong to African Tilapias, which are also distributed in 

Levant (Beveridge & McAndrew 2000) . Tilapia name hold many species, but is more 

commonly used for three genera Sarotherodon, Tilapia (Coptodon) and Oreochromis 

(Trewavas 1983). They belong to the most reach vertebrate family, including until 3, 

000 species, Cichlidea (cichlids) family (Kocher 2004). Tilapias together with other 

cichlids are important as food for human, aquaculture and have big interest of 

scientist of their complex in systematics, taxonomy, ecology, morphological variation 

and behavour. The East African cichlids are known as impressive example of 

adaptive radiation (Beveridge & McAndrew 2000). While the expeditions to Sahara 

since the beginning of the 20th century increase the knowledge about relict fish 

species in isolated water patches in those areas, including cichlid species (Lévêque 

1990), but still leaving a gap of knowledge about not sampled areas and not 

described species. These relict taxa are interesting to study to understand better the 

evolutionary processes and mechanism, which prevent them to exhibit small habitat 

spots and survive per harsh climatic conditions. Here, our interest was to develop 

and characterize a set of microsatellite markers useful for studying Sarotherodon 

genera fishes at a population structure level, mainly across Mauritanian fresh water 

bodies.  
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Thirteen individuals, from the Sarotherodon genera (Lineage Sarotherodn A, 

see for details in Results), were collected at different locations in Mauritania, 

including water bodies from rocky and lowland areas, and Senegal River. The 

genomic DNA (gDNA) was extracted from fins or muscle tissue using EasySpin® 

Genomic DNA Tissue Kit (Citomed), and was quantified in a fluorometer (Perkin-

Elmer) using Quant-iTTM PicoGreen®dsDNA Assay Kit (Invitrogen). The microsatellite 

loci were isolated for the Sarotherodon lineage at the 454 GS-FLX Titanium 

pyrosequencing platform (GS FLX®, Roche Diagnostics) of Genoscreen, France 

(www.genoscreen.fr). Libraries were built from pooled samples of 13 individuals, 

totaling 3 µg of genomic DNA, and enriched for 32 motifs and compliments of motifs. 

Individuals were collected microsatellite library contained 261 markers with 32 

different motifs, recommended primer sets and multiple FASTA file with sequences. 

Thirty primer sets were selected and distributed in three multiplexes, based on the 

following criteria: nucleotide motif up to tetra, number repeats higher than 10, higher 

primer quality (given by Genoscreen), lower PCR product size and lower difference 

in primer melting temperature. Each group of primers was checked in AUTODIMER 

software to avoid primer-dimer and hairpin interaction in short DNA oligomers 

(Vallone & Butler 2004). Forward primers were tagged with tails to attach the 

fluorescence dyes (FAM, VIC, PET and NED; Applied Biosystems), whereas reverse 

primers were tagged with “pig-tails” (GTTT-sequence tag), to avoid problems caused 

by plus-A artefacts (Brownstein et al. 1996). Thirty-eight samples were collected at 

the Gorgol el Akhdar sub-basin, Mauritania. First, PCR reactions were performed for 

each primer pair set in order to confirm the expected PCR product size and 

polymorphism. PCR products were visualized in a 2% agarose gel and were 

screened on a 3130xl Genetic Analyzer (Applied Biosystems). Amplifications were 

performed on a final reaction volume of 10 µl, containing 5 µl of Qiagen© Multiplex 

PCR Kit Master Mix (Qiagen), 0.04 µM of forward primer, 0.4 µM of reverser primer, 

0.4 µM indicated florescence label (Table 1) 3.16 µl ddH2O and approximately 10 ng 

of gDNA. PCR cycles consisted of an initial denaturation at 95 °C for 15 min, 

following by 9 cycles of denaturation at 95 °C (30 s), annealing at 56 °C (1 min 30 s) 

with decrees in each following cycle by 0.5 °C, extension at 72 °C (45 s); 31 cycles at 

95 °C (30 s), annealing at 52 °C (1 min), extension at 72 °C (45 s) and final extension 

step at 60 °C (10 min). Markers showing stutter bands and no polymorphism were 

discarded. Thirteen, of the 30 microsatellite loci tested, were grouped into two 

multiplexes and one singleplex (Til6). The marker Til6 was amplified using previously 

described PCR reaction conditions. The two multiplexes were amplified in a final 

reaction volume of 10 µl, containing 5 µl of Qiagen© Multiplex PCR Kit Master Mix, 1
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Table 1. Characteristics and genetic variation of 13 microsatellites in Sarotherodon B: locus name, singleplex/ multiplex, repeat motif, primer sequences, fluorescent label M13-tail, multiplex, primer 

concentration (µM), number of individuals analysed (n), allele size range (bp), number of alleles (Na), observed (HO) and expected (HE) heterozygosity, Hardy-Weinberg P-value and GenBank 

accession number. 

Locus Repeat Fluor. Primer sequences (5´-3´) Primer n Size  Na  HO HE H-W  GenBank 

  motif label   (µM)   range (bp)      (P-value) 
accession 
no. 

Til6 (AC)13 VIC F: CCCTCCTGCTTAAGTCAACAC 0.4 37 115 - 149 13 0.838 0.817 0.392  
   R: TAAGGGTTCCCGACTCTCCT         
Mix1            
TIil1 (ATAG)12 6-FAM F: TGCTAAGAACAAAGTCTTGGGA 0.4 38 242 - 266 5 0.763 0.691 0.851  

  
 R: TCATCATGCTGCGGTAACAC 

 
       

Til2 (CA)14 6-FAM F: TGGAACACTTTGGAGGATCG 0.4 38 178 - 212 11 0.816 0.833 0.235  

  
 R: CGTTCCTGGATCAAACCG 

 
       

Til13 (CCAT)10 6-FAM F: GAGCTTGGCCATTTAGGAGA 0.8 38 120 - 188 17 0.816 0.888 0.014  

  
 R: TGTTGGAACATAAGGATAAGTGGA 

 
       

Til8 (CAA)15 NED F: CCCACAAAAGAATTAAAGCTAAAGA 1.7 36 125 - 152 9 0.833 0.802 0.952  

  
 R: TGAGTCTAACATTTGGTCTTTGAA 

 
       

Til19 (TCTA)15 PET F: ATCAGGGTCGTGACTTCTGC 1 38 176 - 216 9 0.921 0.838 0.183  

  
 R: CCAAATGAGCAGGATGATTG 

 
       

Til20 (CA)13 PET F: CAGCTTCCCGTGCTCATTAT 1.8 36 142 - 148 3 0.306 0.406 0.039  

  
 R: GCAGCACCTGGAAGATAAAA 

 
       

Mix2            
Til21 (TGGA)9 6-FAM F: GGTCCAAAGACATAATTAGTGGG 0.4 38 268 - 294 9 0.553 0.713 0.076  
   R: TGTGTTGGGTAAGTATCTTCTAGTTCA         
Til22 (GT)12 6-FAM F: AAACCAATAAATACAACCCACTG 0.4 38 160 - 164 3 0.447 0.400 0.404  

  
 R: TTAACACAGTTTCTTATACGACAGAGA 

 
       

Til23 (CA)10 6-FAM F: TTAGTCAGCAGCCAACACCC 0.35 38 110 - 114 3 0.053 0.052 1  

  
 R: GACCTCCTCGTGAAGTGCAT 

 
       

Til24 (AC)8 VIC F: TGAACGTGCAGCAGAGTCAC 0.4 38 230 - 234 3 0.316 0.326 0.372  

  
 R: GGAGCTCTTTAGGTGGTTGG 

 
       

Til25 (CA)14 VIC F: GGGGCCTCAGTCTAGGAAAG 0.5 38 174, 200 2 0.026 0.026 -  

  
 R: GGAGTGGGGACGTGCATA 

 
       

Til30 (TG)11 PET F: CTGACAGCAAGAGCCTCAAA 0.6 38 111 - 121 4 0.658 0.545 0.587  

  
 R: GAAATAGGTTCTGGCTCAAAGTT 
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µM of primer Mix (see Table 1 for details), 3 µl ddH2O and approximately 1 µl of 

genomic DNA. Similar thermocycling conditions were used with the final extinction 

increased to 30 min. PCRs were performed on a BioRad C1000 Thermocycler. PCR 

products were visualized in a 2% of agarose gel and fragment sizes were determined 

on a 3130xl Genetic Analyzer (AB), using using GeneScanTM 500 LIZ® Size Standard 

(Applied Biosystems). The allele calling was performed in GeneMapper v4.1 (Applied 

Biosystems). Microsatellite toolkit was used for error and duplication detection in data 

(Park 2001). The estimates of allelic diversity, observed and expected 

heterozygosities, were calculated using GenALEx (Peakall & Smouse 2006). Tests 

for deviation from Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium 

were performed in GENEPOP (Raymond & Rousset 1995) and the statistically 

significance for multiple test was established using the Bonferroni correction. 

The observed number of alleles ranged from two (Til25) to 17 (Til13), with an 

average of seven alleles per locus (Table 1). The expected heterozygosity ranged 

from 2.6% (Til25) to 88.8% (Til13), and the observed heterozygosity ranged from 

2.6% (Til25) to 92,1% (Til19), with the average of 56.5% and 56.4%, respectively. All 

loci showed no deviation from Hardy-Weinberg equilibrium and any evidence of 

linkage disequilibrium were found, after Bonferroni correction. Although only six of 

the 13 loci (Til2, Til3, Til8, Til19, Til6, Til21) were found to be highly polymorphic, 

however all maker set was found to have enough power to distinguish more 

genetically distant populations (see the results of population genetics). These 

markers will be used to study the genetic structure and gene flow among Mauritanian 

populations of the Sarotherodon lineage.   
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