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Abstract
With the establishment of the immune surveillance mechanism since the 1950s, 
attempts have been made to activate the immune system for cancer treatment 
through the discovery of various cytokines or the development of antibodies up to 
now. The fruits of these efforts have contributed to the recognition of the 3rd 
generation of anticancer immunotherapy as the mainstream of cancer treatment. 
However, the limitations of cancer immunotherapy are also being recognized 
through the conceptual establishment of cold tumors recently, and colorectal 
cancer (CRC) has become a major issue from this therapeutic point of view. Here, 
it is emphasized that non-clinical strategies to overcome the immunosuppressive 
environment and clinical trials based on these basic investigations are being made 
on the journey to achieve better treatment outcomes for the treatment of cold 
CRC.

Key Words: Colorectal cancer; Immunotherapy; Cell therapy; Checkpoint inhibitor; Cancer 
vaccine; Cytokine therapy
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Core Tip: There have been continuing attempts to treat colorectal cancer (CRC) with 
immunotherapies, and various methods of converting cold into hot tumors have gone 
through trial and error up to now. Based on this background, this editorial introduces the 
concept of cold CRC and various strategies across non-clinical and clinical for 
enhancing immunotherapeutic efficacy and further encourages the journey to an 
advanced level of immunotherapies targeting cold CRC.
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INTRODUCTION
Cancer immunotherapy provides a basis for activating the components of the immune system of cancer 
patients. Recently spotlighted methods of cancer immunotherapy utilize antibodies and peptides that 
bind to and inhibit the proteins related to immune evasion (e.g., immune checkpoint inhibitors and 
cytokine therapies), DNA and RNA vaccines, and immune cell therapies such as chimeric antigen 
receptor natural killer (CAR-NK) and CAR-T cells (Figure 1)[1]. The idea of using immunotherapy for 
cancer treatment emerged with the first proposed theory of cancer immunosurveillance in the 1950s, 
which suggested that lymphocytes act as a monitoring system to identify and eliminate cells harboring 
somatic mutations[2]. However, due to a lack of non-clinical data to support these theories, it took a 
long time to establish a bridgehead for clinical applications[2]. Eventually, the identification of T-cell 
growth factor interleukin 2 (IL-2) in the 1970s allowed improved T-cell production through IL-2 
exposure and led to positive results in patients with metastatic cancer[2,3]. Milstein and Köhler 
pioneered the production of monoclonal antibodies by fusion of lymphocytes around the same time, 
and antibody-based therapies led to the development of rituximab, which targets immature B cells-
based NK cell activation[2,4]. After this discovery, development was stagnant because it was difficult to 
devise clinically effective cancer immunotherapy strategies until 2010. Ipilimumab [targeting cytotoxic T 
lymphocyte antigen 4 (CTLA-4)], nivolumab, and atezolizumab [targeting programmed cell death-1 
(PD-1) or its ligand (PD-L1), respectively] have been approved in the 2010s as a result of ongoing 
research for the discovery of immune checkpoint molecules[1,5]. More recently, six CAR-T cell therapies 
have been approved for the treatment of lymphoma, some forms of leukemia, and multiple myeloma
[6]. Such rapid development over the past decade established immunotherapy as the mainstream of 
cancer treatment as third-generation cancer treatment next to second-generation targeted therapies.

Meanwhile, it would be an erroneous attempt to follow in the footsteps of approaches focusing on 
only its potential while looking at the rapid development of immunotherapy. Given the extensive non-
clinical research and clinical investigation efforts dedicated to advancing different immunotherapy 
approaches, such efforts should be accompanied by those focusing on the various prominent issues that 
emerge. A discussion may be required on the optimal model that can accurately reflect the human 
immune system by replacing the immunodeficient mouse used in the non-clinical efficacy evaluation 
studies or on the concerns about synthetic rather than endogenous immunity. However, here I would 
like to highlight organ-specific tumor immunity, especially in colorectal cancer (CRC), as a key concern 
among the multiple issues involved in the resistance to immunotherapies. The widely accepted concept 
of ‘cold tumor’ focuses on tumors that are unlikely to elicit a strong immune response due to the hetero-
geneity of the tumor microenvironment (TME)[7].

CONCEPT OF COLD TUMOR AND IMMUNE SIGNATURE OF CRC
The advancements in the knowledge of the interactions among different types of cells in the TME have 
enabled the establishment of the basis of therapeutic strategies focused on the immune system. Patient 
stratification with an immune score can be performed according to the types or densities of immune 
cells within the tumor, and it could be possible to make a more accurate prediction of prognosis 
compared with TNM staging[8]. This concept is based on the quantification of CD3+ and CD8+ T-cells 
abundance in and around the TME. The immune score ranges from I0 (immune score 0) to I4, where I0 
denotes the absence of both CD3+ and CD8+ T-cell types, and I4 indicates a high density of immune 
cells positive for the expression of the T-cell types[9,10]. Such a system was proposed for immune-based 
tumor classification and allowed the discrimination between high-invasive immune score I4 (hot tumor) 
and non-invasive immune score I0 (cold tumor)[8-10]. The feasibility of the immune score has been 
proved in CRC and is recognized as having a greater relative prognostic value compared with 
pathological staging, lymphatic invasion, tumor differentiation, and microsatellite status[8,11]. 
Currently, the definition of cold tumor is routinely used to refer to tumors with little or no T-cell infilt-
ration, inflamed but non-T-cell infiltrated, or non-inflammatory tumors[12]. In addition to the analysis 
of tumor-infiltrating lymphocytes, it is characterized by the regulation of antigen-presenting machinery 
markers, such as low expression levels of PD-L1 or reduced presentation of neoantigens[13]. At this 
point, it is possible to characterize the immune signature in CRC represented by the propensity for cold 
tumors. A neoantigen is an abnormal peptide mainly generated by a genetic mutation or gene fusion 
and is encoded by mutant genes in tumor cells[14]. Tumor-associated antigens, a type of neoantigen, are 
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Figure 1 The basic categories of immunotherapy. Different forms of cancer immunotherapy, including immune checkpoint inhibitors, cytokine therapies, 
adoptive cell transfer, and oncolytic virus therapies, target the immunosuppressive tumor microenvironment. CAR: Chimeric antigen receptor; NK: Natural killer; TME: 
Tumor microenvironment.

proteins that are overexpressed in tumor cells but also expressed in normal cells, limiting specific 
immune responses[14]. For example, carcinoembryonic antigen (CEA) is an important tumor-associated 
antigen in CRC and is frequently found on the surfaces of most metastatic CRC cells, but it induces 
immune tolerance since CEA is also expressed at the embryonic stage[14,15]. Further, the presence of 
various mechanisms that interfere with antigen presentation is a hallmark of metastatic CRC, typically 
with low microsatellite instability (MSI)/DNA mismatch repair deficient molecular characteristics[16,
17]. Such mechanisms interfere with antigen presentation and proteasome processing of antigens, 
impede transporter functions involved in antigen processing and inhibit the expression of major 
histocompatibility complex (MHC) structural components through genetic mutations[16]. In particular, 
loss of β-2-microglobulin heterozygosity may affect antigen presentation of the MHC-I, which is known 
to induce resistance to T-cell invasion[18]. Furthermore, the immune signature of CRC indicates that it 
could interfere with the recruitment or activation of T-cells through various molecular biological 
changes as a result of the inter-communication between the constituents of the TME[19]. It has been 
reported that activation of Wnt/β-catenin signaling is associated with T-cell exclusion and inversely 
proportional to T-cell infiltration in CRC tissues[20]. Signal transducer and activator of transcription 3 
(STAT3) can reduce the expression of interferon-gamma (IFN-γ) in CD8-positive T-cells[21]. This, in 
turn, inhibits chemokine (C-X-C motif) ligand secretion by tumor-associated myeloid cells and interferes 
with T-cell recruitment[21,22]. The mitogen-activated protein kinase (MAPK) signaling cascade 
upregulates the expression levels of the immunosuppressive cytokines such as vascular endothelial 
growth factor (VEGF) and IL-8, suppressing T-cell function and its infiltration into the TME[23-25]. 
These immune signatures in cold CRC by their genetic and molecular complexity may be a major cause 
of resistance to cancer therapies (especially in immunotherapy). Therefore, a variety of attempts are 
currently being made to overcome these obstacles through non-clinical and clinical studies.

NON-CLINICAL STRATEGIES TO TARGET COLD CRC
Non-clinical strategies are being designed to overcome the obstacles in cancer immunotherapy, and 
these strategies can be classified into key categories as follows: Increasing the number of antigen-specific 
T-cells, T-cell priming, and promoting T-cell trafficking and infiltration[26-29]. First, the method of 
increasing the number of antigen-specific T-cells and T-cell priming includes the application of adoptive 
cell therapy[30,31], adjuvant immunotherapy[32,33], epigenetic modification inhibitors[34,35], cancer 
vaccines[36,37], oncolytic viruses[38,39], and their combination with conventional therapies[40-43] 
(Table 1). Adoptive cell therapy enhances the immune response through CAR-T or CAR-NK cells. 
Utilization of CAR-T or CAR-NK cells involves the genetic modification of T lymphocytes or NK cells to 
express specific antigens to target the tumor cells. The activities of CAR-T or CAR-NK cells are not 
limited by the presence or absence of MHC and can further enhance the immune response against 
tumor cells through the addition of costimulatory molecules such as CD28, OX40, or 4-1BB[30,44]. The 
strategy utilizes the direct recognition of tumor antigens by CARs and has the potential to treat cold 
CRC[30]. Adjuvant immunotherapy is based on innate immune responses through the activity of the 
pattern recognition receptor family[45]. The pattern recognition receptor family includes Toll-like 
receptors, nucleotide oligomerization domain-like receptors, retinoic acid-inducible gene-I-like 
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Table 1 Key categories for non-clinical strategies to overcome obstacles in cancer immunotherapy

Strategy Therapeutic approach Ref.

Adoptive cell therapy (CAR-T and -NK)

Adjuvant immunotherapy

Epigenetic modification inhibitors

Cancer vaccine

Oncolytic viruses

Increase in antigen-specific T-cells and T-cell priming

Combined with conventional therapies

[30-44,49]

TGF-β suppression

Oncogenic pathway inhibitors

Angiogenesis inhibitors

CXCR4 inhibitors

Promoting T-cell trafficking and infiltration

Immunocytokines

[50-58,60,61]

CAR: Chimeric antigen receptor; NK: Natural killer; TGF: Transforming growth factor; CXCR: C-X-C motif chemokine receptor.

receptors, and type C lectin receptors. Agonistic activation of these receptors can generate a variety of 
proinflammatory cytokines including type I IFNs to promote T-cell priming[45]. Targeting DNA 
methyltransferase and histone deacetylase activities to inhibit epigenetic modifications has been shown 
to enhance the expression levels of tumor antigens and other immune-related genes, as a specific 
therapy for tumors with low antigen expression[46]. Cancer vaccines enhance the treatment efficacy and 
overcome the limitations of immunotherapy by increasing the number of specific effector T-cells. They 
include molecular-based vaccines using peptides, protein, DNA and mRNA prepared with isolated 
cancer cells and adenovirus for the expression of cancer-specific antigens[47]. Oncolytic viruses capable 
of selectively targeting and destroying cancer cells contribute to the maturation of antigen-presenting 
cells that carry out the activation of antigen-specific CD4+ and CD8+ T-cell responses and activate both 
innate and adaptive immune responses to convert a cold tumor into a hot tumor[38]. Chemotherapy 
and radiotherapy can exert anti-tumor effects by directly killing tumor cells while contributing to 
immune system stimulation[41,42]. Radiotherapy promotes the activation of dendritic cells and the 
expression of cell adhesion molecules that promote the attraction of immune cells[42,45]. Chemotherapy 
regulates immunogenicity and increases T-cell infiltration. 5-fluorouracil and oxaliplatin-based 
chemotherapies and MAPK and epidermal growth factor receptor inhibitors are some examples[41,48,
49]. Methods for promoting T-cell trafficking and infiltration include the application of transforming 
growth factor (TGF)-β suppression[50,51], oncogenic pathway inhibitors[52,53], angiogenesis inhibitors, 
CXC chemokine receptors (CXCR) inhibitors[54,55], and immune cytokines[56] (Table 1). TGF-β is 
associated with a lack of immune responses in the noninflamed T-cell phenotype with a deterioration in 
the ability to produce type I IFNs in tumor-associated dendritic cells, leading to STAT3 up-regulation 
and an imbalance in T-cell infiltration. Non-clinical studies have shown that a combination of TGF-β 
blocking antibodies induces T-cell penetration into tumors, allowing for anti-tumor immunity and 
tumor regression[50,51]. Targeting oncogenic pathways helps to reverse intrinsic T cell exclusion in 
tumors. Inhibition of the WNT/β-catenin pathway by p21-activated kinase 4 inhibitors or the 
endogenous Dickkopf family binding to lipoprotein receptor-associated proteins may increase tumor 
invasion of cytotoxic T lymphocytes[52,53]. Inhibition of well-established biochemical pathways, 
CDK4/6, phosphoinositide 3-kinase (PI3K)/AKT, or MAPK, involved in tumor growth and differen-
tiation can lead to a significant upregulation of tumor-infiltrating T lymphocytes with the regulation of 
granzyme B and CC chemokine ligand 4/5[49,57,58]. Angiogenesis inhibitors play a role in the normal-
ization of the unregulated balance between angiogenesis-promoting and antiangiogenic signals by 
upregulation of the leukocyte adhesion molecules in tumor endothelial cells resulting in amelioration of 
tumor vascular abnormalities, improved tissue perfusion, and increased infiltration of immune effector 
cells[54,59]. CXCR4 is a receptor for CXC ligand (CXCL) 12 and is overexpressed in tumors, and it can 
reduce the infiltration of cytotoxic T lymphocytes into the TME and mediate the invasion of 
immunosuppressive cells, such as regulatory T-cells (Treg), into the tumor. Regulation of CXCL12 by 
inhibiting CXCR4 can promote the infiltration of T lymphocytes into the tumor and reverse immune 
resistance[60,61]. Finally, since immune cytokines mediate the influx and expansion of leukocytes at 
tumor sites, cognate receptor expression on tumor and immune cells may induce an antitumor effect. IL-
2, IFN, tumor necrosis factor, IL-12, granulocyte-macrophage colony-stimulating factor, promotion of 
MHC-I expression, and T-cell activation and infiltration enhance antitumor immunity[56,62].
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Table 2 A list of completed clinical trials to improve response to immunotherapies targeting colorectal cancer

Regimen NCT number Outcome Completion

T-cell bispecific antibody and CEA combined 
with atezolizumab

NCT02650713 20% PR and 50% SD January 2020

Copanlisib plus nivolumab NCT03711058 No results available January 2022

Fruquintinib plus geptanolimab NCT03977090 26.7% ORR, 80% DCR, and 7.33 mo 
median PFS

December 2021

Regorafenib plus toripalimab NCT03946917 15.2% ORR and the 36.4% DCR November 2021

Durvalumab plus tremelimumab NCT02870920 2% DCR, 1.8 mo PFS, and 6.6 mo OS December 2021

Anti-TGF-β antibody plus spartalizumab NCT02947165 Clinical proof of concept with 2 PR 
cases

June 2021

Pembrolizumab plus celebrex NCT03638297 83.3% ORR, 12.5% SD, and 4.2% PD August 2021

Durvalumab and tremelimumab plus FOLFOX NCT03202758 31.2% PR and CR, 25% SD, and 6 mo 
PFS

August 2020

CR: Colorectal; CEA: Carcinoembryonic antigen; PR: Partial response; SD: Stable disease; ORR: Objective response rate; DCR: Disease control rate; PFS: 
Progression-free survival; OS: Overall survival; PD: Progression disease; FOLFOX: Folinic acid, fluorouracil, and oxaliplatin; TGF: Transforming growth 
factor.

CLINICAL STRATEGIES TO TARGET COLD CRC
Over the past two decades, a multidisciplinary approach to graft novel therapeutic modalities onto the 
backbone of fluoropyrimidine-based chemotherapy in local and advanced CRC has achieved significant 
improvements in the therapeutic efficiency of immunotherapy[63]. However, the expected overall 
survival of patients with microsatellite stable (MSS) CRC is only about 30 mo, indicating an unmet 
medical need[64]. Therefore, several clinical trials evaluating immune checkpoint inhibitors have 
focused on designs that can overcome resistance and achieve clinically meaningful responses, but mono 
and combination therapies utilizing immune checkpoint inhibitors as the mainstay have not yet shown 
significant clinical success[65-68]. For example, studies using the single agent of pembrolizumab and 
nivolumab did not find any objective response rates (ORR)[65-67]. In a study of a combination of 
ipilimumab, nivolumab, and anti-CTLA-4 antibody in CRC patients with high MSI and MSS, the 
median progression-free survival (PFS) was only 1.4 mo, and no ORR was observed[68]. These results 
represent the limitations of approaches that do not target multiple molecular pathways involved in 
immune exclusion. Strategies for converting the cold CRC into hot CRC, which can enhance the 
responses to immune checkpoint inhibitors by promoting activation or recruitment of cytotoxic T 
lymphocytes in TME, should have been included in clinical trials. Recently, several trials have been 
conducted in favor of strategies to enhance immune activity and T lymphocyte infiltration into the TME 
to achieve substantial anti-tumor immune responses targeting CRC (Table 2). The list of completed 
clinical trials reflecting the non-clinical strategies includes the following: A phase I study 
(NCT02650713) in which a T-cell bispecific antibody and CEA combined with atezolizumab (targeting 
PD-L1) in CEA-positive solid tumors, indicating 20% partial response (PR) and 50% stable disease (SD)
[69]; a phase I/II study (NCT03711058) with a combination of copanlisib (PI3K inhibitor) and nivolumab 
(anti-PD-1 antibody) targeting relapsed/refractory MSS CRC, with a decreasing trend of CD4+ T-
lymphocytes mainly comprised of Treg and helper subsets[70]; a phase Ib study (NCT03977090) 
evaluating the safety and preliminary efficacy of fruquintinib (VEGF inhibitor) with geptanolimab (anti-
PD-1 antibody) targeting metastatic CRC, indicating 26.7% ORR, 80% disease control rate (DCR), and 
7.33 mo median PFS[71]; a phase Ib/II study (NCT03946917) of regorafenib plus toripalimab (anti-PD-1 
antibody) targeting CRC, with 15.2% ORR and the 36.4% DCR[72]; a phase II randomized study 
(NCT02870920) of durvalumab (anti-PD-L1 antibody) plus tremelimumab (anti-CTLA-4 antibody) in 
patients with refractory CRC, resulting in 22% DCR, 1.8 mo PFA, and 6.6 mo overall survival[73]; a 
phase Ib study (NCT02947165) of the anti-TGF-β monoclonal antibody combined with spartalizumab 
(anti-PD-1 antibody) in patients with MSS CRC, providing a clinical proof of concept with 2 PR cases
[74]; a phase II study (NCT03638297) to assess the efficacy of pembrolizumab (anti-PD-1 antibody) 
combined with celebrex (COX inhibitor) in patients with high MSI metastatic CRC, with 83.3% ORR, 
12.5% SD, and 4.2% progressive disease[75]; and a phase I/II study (NCT03202758) to determine the 
safety and efficacy of durvalumab (anti-PD-L1 antibody) and tremelimumab (anti-CTLA-4 antibody) in 
combination with folinic acid, fluorouracil, and oxaliplatin in patients with metastatic CRC, with 31.2% 
PR and CR, 25% SD, and 6 mo PFS[76]. In summary, positive results were obtained targeting cold CRC 
through a variety of strategies for increasing immune responses, therefore, follow-up studies continue 
to be performed for treatment found to show significant results. Further, many clinical trials with 
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Table 3 Ongoing clinical trials to improve response to immunotherapies targeting colorectal cancer

Strategy NCT number Intervention

NCT04764006 Surufatinib (VEGFR1, VEGFR2, VEGFR3, FGFR1, and CSF-1R inhibitor)

NCT04819516 High-intensity focused ultrasound therapy; toripalimab (anti-PD-1 
antibody)

Targeting tyrosine kinase

NCT04963283 Cabozantinib (anti-VEGFR2) plus nivolumab (anti-PD-1 antibody)

Targeting TGF-β NCT03724851 TEW-7197 (TGF-β receptor ALK4/ALK5 inhibitor)

Targeting Wnt signaling NCT02521844 ETC-159 (Porcupine inhibitor) plus Pembrolizumab (anti-PD-1 antibody)

NCT04301557 Pembrolizumab plus binimetinib (MEK 1/2 inhibitor) plus FOLFOX plus 
irinotecan

NCT04895137 FOLFOX6 plus bevacizumab (anti-VEGF A) plus anti-PD-1 antibody

Combination with chemotherapy

NCT03374254 Anti-PD-1 antibody plus oxaliplatin plus capecitabine plus radiotherapy 
then mesorectal excision

NCT04046445 ATP128 (chimeric recombinant protein vaccine) plus BI754091 (IgG4Pro 
antibody inhibitor) plus VSV-GP128 (recombinant vesicular stomatitis 
virus)

NCT04117087 KRAS peptide vaccine plus nivolumab (anti-PD-1 antibody) plus 
ipilimumab (anti-CTLA4 inhibitor)

Cancer vaccine

NCT04912765 Neoantigen dendritic cell vaccine plus nivolumab 

VEGFR: Vascular endothelial growth factor receptor; FGFR1: Fibroblast growth factor receptor 1; CSF-1R: Colony stimulating factor 1 receptor; PD-1: 
Programmed cell death 1; TGF-β: Transforming growth factor beta; MEK 1/2: Mitogen-activated protein kinase 1/2; FOLFOX: Folinic acid, fluorouracil, 
and oxaliplatin; VEGF A: Vascular endothelial growth factor A; CTLA4: Cytotoxic T lymphocyte antigen-4.

various combinatory strategies by tyrosine kinase inhibitors, TGF-β inhibitors, Wnt signaling inhibitors, 
chemotherapies, and cancer vaccines to enhance immunotherapeutic efficacy are also ongoing (Table 3).

CONCLUSION
Recently, several attempts have been made to conquer CRC with immunotherapies, but poor clinical 
outcomes were obtained due to the non-immunogenic characteristics of cold CRC. However, a variety 
of methods of converting cold into hot tumors were obtained through trial and error, and positive 
results have been drawn based on this background. We will have to carry our journey to a higher level 
to target cold CRC by discovering useful biomarkers through various efforts that span non-clinical and 
clinical studies in the future.
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Abstract
Colorectal cancer (CRC) is the second deadliest cancer and the third-most 
common malignancy in the world. Surgery, chemotherapy, and targeted therapy 
have been widely used to treat CRC, but some patients still develop resistance to 
these treatments. Ferroptosis is a novel non-apoptotic form of cell death. It is an 
iron-dependent non-apoptotic cell death characterized by the accumulation of 
lipid reactive oxygen species and has been suggested to play a role in reversing 
resistance to anticancer drugs. This review summarizes recent advances in the 
prognostic role of ferroptosis in CRC and the mechanism of action in CRC.
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−; Glutathione; Glutathione 
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Core Tip: The prognosis of patients with advanced colorectal cancer is still poor, largely due to resistance 
to anticancer drugs. Ferroptosis is a novel form of non-apoptotic cell death, mainly characterized by 
abnormal iron metabolism and the excessive accumulation of lipid peroxidation. Studies have shown that 
ferroptosis can participate in the process of colorectal cancer (CRC) through the accumulation of lipid 
peroxides, inhibition of the System Xc

−, disruption of the glutathione/glutathione peroxidase 4 balance, 
imbalance of iron homeostasis, and mediation of the P53 pathway. Induction of ferroptosis can reverse the 
resistance of anticancer drugs and improve the prognosis of CRC patients.

Citation: Song YQ, Yan XD, Wang Y, Wang ZZ, Mao XL, Ye LP, Li SW. Role of ferroptosis in colorectal cancer. 
World J Gastrointest Oncol 2023; 15(2): 225-239
URL: https://www.wjgnet.com/1948-5204/full/v15/i2/225.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i2.225

INTRODUCTION
Colorectal cancer (CRC) is a common gastrointestinal malignancy and the second-most common cause 
of cancer death. During the last decade (2010-2019), CRC mortality declined by about 2% per year but 
increased among those under 50 years old[1]. The oncogenesis and development of CRC involve 
multiple genes and steps, which is an extremely complex process.

Studies have shown that CRC cells have characteristics of strong proliferation, easy recurrence and 
easy metastasis[2], but there are few effective therapeutic targets for CRC patients[3]. At present, the 
comprehensive treatment of CRC includes surgical resection, neoadjuvant chemoradiotherapy, 
postoperative chemoradiotherapy, targeted therapy, immunotherapy and other methods, but the 
prognosis of patients with advanced CRC is still poor.

Cell death is a basic life process and can be divided into accidental cell death and regulated cell death 
(RCD). RCD can be further divided into the category of apoptosis, pyroptosis, necroptosis and 
ferroptosis[4]. Ferroptosis, first reported in 2012, is a newly defined form of RCD involving iron-
dependent, non-apoptotic cell death. The characterization methods included free iron and lipid reactive 
oxygen species (ROS), particularly lipid hydroperoxides[5], and by cytoplasmic and organelle swelling, 
chromatin condensation and mitochondrial disorder[6,7]. Studies have shown that the tumor cell 
survival is highly dependent on an abnormally activated antioxidant system.

Several therapeutic targets associated with ferroptosis have been identified in CRC (Figure 1). The 
induction of ferroptosis is also considered a promising research direction in cancer resistance.

FERROPTOSIS-RELATED INDICATORS CAN PREDICT THE PROGNOSIS OF CRC
Recently, a growing number of studies have shown that genes involved in ferroptosis are associated 
with the prognosis of CRC patients. CRC has a high recurrence rate and individual heterogeneity, so it 
is desirable to have good prognostic biomarkers that can be used to predict high-risk patients in order to 
help patients obtain appropriate treatment.

In an analytical study combining samples from eight CRC patients with the TCGA public database, 
changes in ferroptosis in CRC patients at various molecular levels, ranging from DNA, RNA and 
proteins to epigenetic modifications, were described, and four ferroptosis-related genes associated with 
the prognosis were identified: Cyclin-dependent kinase inhibitor 2A (CDKN2A), glutathione peroxidase 
4 (GPX4), arachidonic acid lipoxygenase 3 (ALOXE3) and LINC00336[8]. Another study constructed a 
clinical prediction model including GPX4, NOX1 and Acyl-CoA synthetase long-chain family member 4 
(ACSL4) that effectively reflected the prognosis, tumor progression and asthma control test respons-
iveness of CRC patients. It is also worth noting that tumors with low ferroptosis scores may infiltrate 
more CD4+ and CD8+ T cells and fewer M1 macrophages[9]. ALOX5 is considered a key ferroptosis-
related gene associated with a poor prognosis in CRC patients, and it regulates ferroptosis in cancer 
cells through lipid peroxidation[10,11]. CRC patients with an increased NOX1 expression and decreased 
BRAF status have a higher survival rate than others, and genes positively correlated with NOX1 are also 
significantly correlated with the CRC survival rate. The mechanism underlying NOX1 and BRAF 
mutations needs to be further explored[12]. A prognostic model combining genes related to oxidative 
stress and ferroptosis can distinguish CRC as hot and cold tumors. Patients in the low-risk group 
responded better to fluorouracil chemotherapy and immune checkpoint blocking therapy than those in 
the high-risk group[13].

Long non-coding RNA (lncRNA) is non-coding RNA longer than 200 nucleotides and refers to the 
major class of transcripts encoded by the genome but mostly not translated into proteins[14]. LncRNA 
plays a key role in regulating cancer proliferation, the cell cycle, metastasis and programmed death[15,

https://www.wjgnet.com/1948-5204/full/v15/i2/225.htm
https://dx.doi.org/10.4251/wjgo.v15.i2.225
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Figure 1 Mechanisms of ferroptosis in colorectal cancer. The diagram shows several potential regulatory pathways for ferroptosis. Including Xc-system, 
lipid peroxide accumulation, sulfur transfer pathway, glutathione/glutathione peroxidase 4 lipid repair system, Nrf2-H0-1, cellular iron homeostasis, p53, etc. TFR1: 
Transferrin receptor 1; TF: Transferrin; IREB2: Iron response element-binding protein 2; PUFA: Polyunsaturated fatty acid; ACSL4: Acyl-CoA synthetase long-chain 
family member 4; LPCAT3: Lysophosphatidylcholine acyltransferase 3; PE: Phosphatidylethanolamine; LOX: Lipoxygenase; NRF2: Nuclear factor erythroid 2-related 
factor; HO-1: Haem oxygenase 1; SLC7A11: Solute carrier family 7 member 11; IMCA: Benzopyran derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide; 
SAS: Sulphasalazine; GSH: Glutathione; GSSG: Oxidized glutathione; GPX4: Glutathione peroxidase 4; RSL3: Ras-selective lethal 3; CARS: Cysteinyl-tRNA 
synthetase; ATF3: Activating transcription factor 3; YAP1: Yes-associated protein 1.

16]. The abnormal expression of lncRNA is associated with the risk of CRC, imbuing it with clinical 
potential as a stratification marker, diagnostic index and therapeutic target of CRC[17-20]. A model 
containing only four lncRNAs was able to well predict the prognosis, vein invasion and lymphatic 
metastasis in CRC patients, and it was proven that AP003555.1 and AC005841.1 induced ferroptosis by 
regulating Erastin[21]. The lncRNA model including AC016027.1, AC099850.3, ELFN1-AS1 and 
VPS9D1-AS1 was able to accurately predict the prognosis of CRC patients and showed great potential to 
guide individualized treatment[22]. Cai et al[23] summarized the details of seven ferroptosis-related 
lncRNAs to predict the prognosis of CRC patients and found that these lncRNAs were mainly enriched 
in the mitogen-activated protein kinase (MAPK) signaling pathway, mammalian target of rapamycin 
(mTOR) signaling pathway and glutathione (GSH) metabolism pathway[23]. LINC00239 increased Nrf2 
protein stability by inhibiting Nrf2 ubiquitination and decreased the antitumor activity of erastin and 
Ras-selective lethal 3 (RSL3)[24]. Circular RNA also plays an important role in ferroptosis. CircABCB10 
serves as a sponge of Mir-326 and eventually regulates ferroptosis of CRC by regulating CCL5[25].

In addition to being an independent clinical prognostic factor for CRC patients, genes associated with 
ferroptosis can also accurately predict the clinical status, including tumor occurrence and progression, 
drug resistance, somatic mutations and the immune function[26,27], which provides a new research 
direction for targeted therapy or immunotherapy.

MECHANISM OF ACTION OF FERROPTOSIS IN CRC
The accumulation of lipid peroxides is the core process of ferroptosis
The process of lipid peroxide accumulation in cells is the crucial section of ferroptosis. Polyunsaturated 
fatty acids (PUFAs) containing diallyl matrigel are prone to hydrogen deprivation, causing the 
formation of lipid peroxides and inducing ferroptosis[28]. When PUFAs are replaced by monounsat-
urated fatty acids (MUFAs) in the plasma membrane, lipid ROS accumulation is hindered, and 
ferroptosis is prevented[29]. With the process of esterification into membrane phospholipids and 
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oxidation into ferroptosis signals, free PUFAs then can be joined into the lipid signaling mediator 
syntheses[30]. Several studies have shown that phosphatidylethanolamines, a key phospholipid 
containing arachidonic acid (AA) or its derivative epinephrine (AdA), are oxidized to oxophosphatidy-
lethanolamines to induce ferroptosis[31]. Elongation of very-long-chain fatty acid protein 5 (ELOVL5) 
and fatty acid desaturase 1 are can participate in AA and AdA synthesis, which can effectively inhibit 
ferroptosis[32]. Furthermore, regulatory enzymes involved in membrane phospholipid biosynthesis of 
PUFAs, such as ACSL4[33] and lysophosphatidylcholine acyltransferase 3 (LPCAT3)[34], can also 
trigger or prevent ferroptosis. However, the effect of LPCAT3 on ferroptosis was mild compared to that 
of ASCL4[34].

Bromelain, a pineapple stem extract, potently induces cell ferroptosis and inhibits the proliferation of 
Kras mutant CRC in Kras mutant cell lines by regulating ACSL-4 Levels compared to Kras wild-type 
cells[35]. The behavers of Emodin, inhibiting ACSL4 expression, which can inhibit the proliferation and 
invasion of CRC, bring new research directions for CRC[36].

Apatinib, also known as YN968D1, as a third-line therapy can effectively improve the prognosis of 
patients with metastatic CRC[37]. ELOVL6 is a target of apatinib. By orienting the ELOVL6, Apatinib 
can promote ferroptosis with result of ACSL4 regulation, which has been verified by a co-IP assay. This 
suggests that apatinib inhibits CRC cell viability, at least in part, by targeting ELOVL6/ACSL4 
signaling, thus providing novel mechanistic support for the use of apatinib in the clinical treatment of 
CRC patients[38].

Inhibition of System Xc
− induces ferroptosis

GSH has been known as a crucial antioxidant. It can bind toxic molecules, such as free radicals and 
heavy metals, and convert them into harmless substances that are excreted[39]. GSH is also the first line 
of defense in the body to scavenge free radicals, which can effectively inhibit ferroptosis, and has a 
strong protective effect on the body[40]. System Xc

− is a heterodimer, which was constructed by a heavy-
chain subunit and a light-chain subunit (SLC7A11) that assists in the transmembrane transport of 
cystine and glutamate. Upon entry into the cell, cystine is reduced to cysteine[41], and together with 
cysteine and glycine, GSH is synthesized intracellularly. Therefore, System Xc

− plays an important role in 
maintaining GSH homeostasis.

Studies have suggested that System Xc
− may mediate ferroptosis by affecting the glutamate uptake 

and GSH synthesis[42,43]. Erastin and sulfasalazine are inhibitors of System Xc- that can lead to 
intracellular GSH deficiency and ferroptosis by affecting intracellular GSH homeostasis[44,45]. By 
regulating the expression of SLC7A11, a functional subunit of Xc

−, it can affect the activity of System Xc
− 

and the susceptibility to ferroptosis in cancer cells[46-48].
Knockdown of SLC7A11 attenuates the viability of CRC stem cells by increasing ROS levels and 

decreasing cysteine and GSH levels[49]. Talaroconvolutin A is a natural product, and studies have 
shown that, in addition to inducing ferroptosis by increasing ROS levels in cancer cells, this compound 
can also promote ferroptosis by down-regulating the SLC7A11 expression and up-regulating the 
ALOXE3 expression, becoming a new potentially powerful drug candidate for CRC therapy[50]. Copper 
overload mediated by the copper chelator elesclomol inhibits CRC both in vitro and in vivo, and one of 
its pathways may induce ferroptosis by promoting the degradation of SLC7A11[51].

The benzopyran derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide (IMCA) is considered 
to significantly inhibit the viability of CRC cells. IMCA can downregulate the expression of SLC7A11 
and reduce cysteine and GSH glycine content, which leads to the accumulation of ROS and ferroptosis. 
In contrast, the overexpression of SLC7A11 was shown to attenuate ferroptosis induced by IMCA, 
which was confirmed to be involved in the activated protein kinase/mTOR/p70S6k signaling pathway
[52].

Petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-glucopyranoside) is a flavonoid 
compound. CRC cell proliferation can be inhibited by down-regulating SLC7A11 to reduce ferroptosis
[53].

Resveratrol (RSV) has been shown to promote ferroptosis by down-regulating the expression of 
SLC7A11 and GPX4. Combined with bionic nanocarriers, RSV's therapeutic potential as ferroptosis 
inducing anticancer agent has been developed. The bionic nanomaterial coated the RSV-supported poly 
(ε-caprolactone) poly (ethylene glycol) nanoparticles on the erythrocyte membrane to improve the 
transmission efficiency of RSV[54].

Several ferroptosis-related genes are concentrated on System Xc
−. Activating transcription factor 3 

(ATF3) promotes ferroptosis by inhibiting System Xc
−[55]. Deficiency of CDKN2A and growth differen-

tiation factor 15 downregulates SLC7A11 expression, thereby sensitizing cells to ferroptosis[56,57].
Radiotherapy and poly-ADP-ribose polymerase inhibitors have been used in clinical trials in the 

treatment of CRC, the mechanism of which may be ionizing radiation activation of dsDNA that 
modulates ferroptosis through activation of the ATF3-SLC7A11 pathway. Triggers cGAS signaling 
mediated tumor control in cancer cell lines and mouse xenograft models[58].

The transsulfuration pathway is a regulator of ferroptosis resistance
More than 40% of the source of cysteine came from diet, and transfer to GSH via a biochemical process 
in body, which can combat the excessive deposition of peroxide. In addition to being transported into 
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cells by System Xc
−, cysteine can also be converted intracellularly by methionine via the transsulfuration 

pathway[59].
Cystathionine-β-synthase (CBS), an enzymatic component of the transsulfuration pathway, is 

significantly increased in cells resistant to Erastin-induced ferroptosis[60]. CBS has also been shown to 
be an independent regulator of ferroptosis[61,62]. Endogenous H2S, a by-product of the transsulfuration 
pathway, is closely related to tumor cell physiology and is finely regulated in a variety of cancers[63,
64]. Xc(-) transporter-related protein (xCT), a functional subunit of system Xc

−, was shown to interfere 
with xCT in colon cancer cells, resulting in an increased expression of cystathionine-γ-lyase and CBS, 
which are majority of the transsulfuration pathway. Additionally, the endogenous H2S levels can be 
significantly decreased by interfering with xCT. The correlation of xCT and transsulfuration pathway 
has been investigated that is a makeable metabolic vulnerability.

Cysteinyl-tRNA synthetase, a genetic suppressor of ferroptosis, upturns the sulfur pathway and re-
sensitizes cells to erastin, demonstrating a new mechanism for resistance to ferroptosis[65]. This implies 
that the transsulfuration pathway is a regulator of ferroptosis resistance.

Zinc oxide has outstanding desulfurization ability, and VZnO can effectively reduce the content of H2

S in CRC, effectively deplete GSH in tumor cells and ultimately lead to ferroptosis in CRC cells, 
providing an effective strategy for CRC treatment[66].

Disruption of the GSH/GPX4 lipid repair system can promote the accumulation of lipid ROS
ROS levels in the body are regulated by the antioxidant defense system, and oxidant/antioxidant 
imbalance may also contribute to ferroptosis[67]. GPX4 is an important selenoprotein that belongs to the 
GPX antioxidant defense system and is a considerable enzyme to balance the concentration of GSH and 
GS-SG. GPX4 protects membrane lipid bilayers by transferring toxic lipid hydroperoxides to nontoxic 
lipid alcohols[68]. GPX4 has been literately proved as a factor of ferroptosis promotor and can be trigger 
by ferroptosis inducers, such as Erastin and RSL3. Likewise, direct knockdown of GPX4 Leading to the 
excessive accumulation of intracellular lipid peroxidation and cell death[69]. Thus, GPX4 is consider as a 
crucial target to trigger ferroptosis[70,71].

In experiments with three different CRC cells (HCT116, LoVo and HT29), RSL3 was found to trigger 
cellular ferroptosis in a dose- and time-dependent manner due to increased ROS levels and destabil-
ization of the intracellular iron pool. In a further analysis, GPX4 inhibition was proven to be a key 
determinant of RSL3-induced ferroptosis, and overexpression of GPX4 rescued RSL3-induced 
ferroptosis[72]. Aspirin has been reported to have therapeutic benefits for CRC carrying carcinogenic 
PIK3CA. The mechanism may be that aspirin inhibits protein kinase B/mTOR signaling. The expression 
of downstream sterol regulatory elm-binding protein 1 was inhibited, and the production of MUFA fat 
by stearoyl-CoA desaturase-1 was reduced. Thus promoting RSL3-induced ferroptosis in CRC cells[73].

Serine- and arginine-rich splicing factor 9 (SRSF9) is frequently overexpressed in multiple tumor 
types and manifests as a proto-oncogene[74-76]. SFRS9 upregulates GPX4 protein, which is an obstacle 
to ferroptosis[77]. Knockdown of SFRS9 may be an effective treatment for CRC. In CRC tissues, the 
expression of SFRS9 mRNA and protein was significantly higher than that in adjacent tissues. 
Experiments in mice demonstrate that regulation of GPX4 by SRSF9 is an important mechanism driving 
CRC tumorigenesis and resistance to Erastin-induced ferroptosis. This molecular mechanism may 
provide a novel approach to improving the sensitivity of CRC to Erastin[78].

ACADSB is a member of the Acyl-CoA dehydrogenase family, and its overexpression inhibits the 
migration, invasion and proliferation of CRC cells. Studies have shown that ACADSB negatively 
regulates the expression of GSH reductase and GPX4 while increasing the concentrations of malondial-
dehyde, Fe ions and superoxide dismutase. This suggests that ACADSB may affect CRC cell migration, 
invasion and proliferation by regulating CRC cell ferroptosis[79].

ROS causes GSH accumulation through nuclear factor erythroid 2-related factor
Antioxidant proteins, such as Nrf2, are major antioxidant transcription factors that help prevent the 
accumulation of excess ROS and maintain redox homeostasis. Downregulation of Nrf2 enhances the 
sensitivity of cancer cells to ferroptosis promoters[80].

The Warburg effect is thought to be a characteristic of cancer cells, that is, cancer cells will undergo 
glycolysis beyond very high levels under aerobic conditions[81]. Inhibition of the Warburg effect 
reduces the ability of cells to proliferate. Therefore, inhibiting the Warburg effect may be a therapeutic 
strategy for cancer. In vivo and in vitro experiments in CRC showed that iron-induced ROS activated the 
expression of Nrf2 in the nucleus has the positive correlation with Warbury enzymes expression and 
CRC cell proliferation by enhancing the Warburg effect.

Heme oxygenase 1 (HO-1) is a downstream gene of Nrf2, and NGF2 protects against lipid 
peroxidation[80] and ferroptosis through the transcription of enzymes such as HO-1[82]. Ferroptosis can 
be effectively alleviated by the elimination of lipid oxidation through the Nrf2/HO-1 axis activation[83,
84].

Tagitin C, a sesquiterpene lactone[85], can induce ferroptosis in HCT116 cells and inhibit the growth 
of CRC cells. Mechanistically, Tagitinin C induces endoplasmic reticulum stress and oxidative stress as 
well as nuclear translocation of Nrf2. As a downstream gene of Nrf2, HO-1 was significantly increased 
with Tagitinin C treatment[86].
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Tagitinin C-induced ferroptosis was accompanied by a decrease in GSH levels and an increase in 
lipid peroxidation. Cetuximab combined with chemotherapy has made great progress in the treatment 
of metastatic CRC[87], but cetuximab is not effective in CRC patients with KRAS mutations[88,89].

Lysionotin (Lys), a flavonoid, has been demonstrated to successfully inhibit cell proliferation, 
migration and invasion of HCT116 and SW480 CRC cells in vitro. Lys treatment worked by increasing 
Nrf2 cells’ degradation rate to reduce the concentration of Nrf2 protein, inducing ferroptosis and ROS 
accumulation in CRC cells[90].

P38 MAPK has been investigated that participate in the regulation of Nrf2/HO-1[91,92]. It has been 
shown that cetuximab can significantly inhibit Nrf2/HO-1 signaling through p38 MAPK activation in 
KRAS-mutant CRC cell lines, thereby promoting RSL3-induced ferroptosis. This provides a research 
direction for cetuximab in the treatment of KRAS-mutant CRC[93].

Oxaliplatin is the first-line chemotherapy drug for CRC. By inhibiting the Nrf2 signaling pathway, the 
sensitivity of CRC cells to oxaliplatin can be enhanced[94,95]. Furthermore, the study found that 
oxaliplatin significantly inhibited the protein expression of Nrf2, HO-1 and NQ in the Nrf2 signaling 
pathway in a dose-dependent manner. Therefore, the anticancer effect of oxaliplatin may be enhanced 
by inhibiting the Nrf2 signaling pathway, leading to ferroptosis and oxidative stress in CRC cells[96].

Cellular iron homeostasis is a key factor in ferroptosis
The primary condition for the initiation of ferroptosis pathway is the need of iron ion. Dietary iron is 
absorbed primarily in the gut as ferric ion and delivered to the blood by transferrin (TF). In general, 
extracellular iron transport into the cell through the sequence of complexing with circulating TF, then 
binds to membrane TF receptor proten-1 (TFR1), finally to the cytoplasmic unstable iron pool. Excess 
cellular iron is stored as ferritin or transported extracellularly by ferritin[97,98]. Maintenance of cellular 
iron homeostasis prevents oxidative damage, cytotoxicity and death.

Lipid reactions can be divided into enzymatic and non-enzymatic reactions. Iron can promote the 
production of ROS through the Fenton reaction, leading to enzymatic lipid peroxidation[99,100], and 
also acts in a non-enzymatic manner as a cofactor for lipid-oxidizing lipoxygenase. Supplementation of 
exogenous iron ions can accelerate erastin-induced ferroptosis[5]. Knockout the gene encoding the TFR 
or upregulate the expression of iron storage proteins can inhibit iron overload and ferroptosis. Iron 
metabolism can be regulated by inhibition of the major transcription factors, like iron regulatory protein 
2, significantly upregulates the expression of iron metabolism-related genes, such as FTH1 and FTL, 
thereby inhibiting erastin-induced ferroptosis[101]. Iron chelators can prevent the transfer of electrons 
from iron to oxides, thus inhibiting the production of oxygen free radicals and inhibiting lipid 
peroxidation to prevent ferroptosis. Therefore, the regulation of iron metabolism and ferritin 
phagocytosis may become new targets and new pathways for regulating ferroptosis.

Hypoxia-inducible factor-2α (HIF-2α) is a master transcriptional regulator of cellular iron levels[102]. 
Activation of HIF-2α increases cellular iron in CRC, leading to an increase in lipid ROS and a decrease in 
GSH production, thus enhancing cellular sensitivity to ferroptosis[103].

There is a conserved miR-545 binding site in the 3' untranslated region of TF, and the overexpression 
of TF in CRC cells was found to induce increased levels of ROS, MDA and Fe2+, thereby promoting CRC 
cell death. This suggests that miR-545 may play an oncogenic role in CRC by regulating the iron 
accumulation in cells[104].

Dichloroacetate attenuates the stemness of CRC cells by chelating iron in lysosomes, leading to the 
up-regulation of iron concentrations and lipid peroxide levels, thus triggering ferroptosis[105].

OTUD1 is a deubiquitinase of iron-responsive element-binding protein 2 (IREB2), which is mainly 
expressed in intestinal epithelial cells. OTUD1 promotes TFR1-mediated iron transport through 
deubiquitination and stabilization of IREB2, leading to increased ROS production and ferroptosis, which 
is highly associated with a poor prognosis in CRC[106].

Dual role of p53 in mediating tumor ferroptosis
The tumor suppressor gene p53 plays a dual role in mediating ferroptosis in a variety of cancers[99]. 
Studies have found that p53 can enhance ROS-mediated ferroptosis by inhibiting SLC7A11 protein 
expression, resulting in decreased cystine import and thus reduced GSH production[46,107]. However, 
unlike in CRC, p53 can protect CRC cells from ferroptosis by stirring SLC7A11[108]. In addition, p53 can 
also inhibit CRC cell ferroptosis by blocking dipeptidyl peptidase 4 activity[97,109].

Cytoglobin (CYGB) is a regulator of ROS that plays an important role in oxygen homeostasis and acts 
as a tumor suppressor[110]. Yes-associated protein 1 (YAP1) is a key downstream target of CYGB. 
CYGB modulates cellular ferroptosis through p53-YAP1 signaling in CRC cells[111]. A novel antitumor 
compound optimized from the natural saponin biocide A has also been shown to trigger ferroptosis by 
activating p53[112].

Ginsenoside Rh4 can increase ROS accumulation, lead to the activation of ROS/p53 signaling 
pathway, and induce ferroptosis to inhibit the proliferation of cancer cells[113]. Cullin-9 can bind p53 to 
ubiquitinized heteroribo nucleoprotein C for degradation through whole genome sequencing and 
external differential expression analysis. Cullin-9 overexpression increases resistance to erastin-induced 
ferroptosis and is a novel and important regulator of CRC ferroptosis[114].
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INDUCTION OF FERROPTOSIS REVERSES RESISTANCE TO ANTICANCER DRUGS
Oxaliplatin prolongs the median disease-free survival and overall survival in patients with advanced 
CRC, but clinical data suggest that < 40% of patients with advanced CRC benefit from it[115,116]. This 
may be related to oxaliplatin resistance, and recent studies have shown that induction of ferroptosis can 
significantly reverse oxaliplatin resistance in CRC cells.

Ferroptosis in CRC cells may be inhibited through the KIF20A/NUAK1/PP1β/GPX4 pathway, which 
may underlie CRC resistance to oxaliplatin[117]. Deletion of cysteine desulfurase (NFS1) can 
significantly enhance the sensitivity of CRC cells to oxaliplatin. The mechanism may involve NFS1 
deficiency synergizing with oxaliplatin to induce PANoptosis (apoptosis, necroptosis, pyroptosis and 
ferroptosis), thus increasing the intracellular ROS levels. This also demonstrated that ferroptosis is 
involved in the oxaliplatin resistance pathway[118]. Obesity is strongly associated with a poor prognosis 
in patients with advanced CRC, and adipose-derived exosomes reduce susceptibility to ferroptosis in 
CRC, thereby promoting chemoresistance to oxaliplatin[119].

Combination with chemotherapy with monoclonal antibodies against anti-epidermal growth factor 
receptor or vascular endothelial growth factor has advanced in the treatment of metastatic CRC. 
However, inherent resistance to downstream KRAS mutations, so the effect of combination 
chemotherapy is often less optimistic. β-elemene has broad-spectrum anticancer effects, and it has been 
demonstrated that combined treatment of β-elemene and cetuximab can induce ferroptosis and inhibit 
epithelial-mesenchymal transition, thereby improving resistance to KRAS-mutated CRC cells[120].

FAM98A is a microtubule-associated protein involved in cell proliferation and migration. Increased 
expression of FAM98A can inhibit ferroptosis and promote CRC resistance to 5-fluorouracil (5-FU)
[121]. Similarly, PYCR is an oncogene that desensitizes CRC cells to 5-FU cytotoxicity by promoting 
ferroptosis in CRC cells[122].

In addition, Andrographis Paniculata may also exert a sensitizing effect on CRC treatment by 
activating ferroptosis[123,124]. Andrographis Paniculata-mediated sensitivity to 5-FU-based 
chemotherapy in CRC is primarily mediated through activation of ferroptosis and inhibition of the β-
catenin/Wnt signaling pathway[123].

NANOTECHNOLOGY PROMOTES FERROPTOSIS IN CRC CELLS
Although increasing iron concentration promotes ferroptosis in tumor cells has been demonstrated 
experimentally, direct administration of Fe2+ is not feasible in the clinic due to the protective effect of cell 
membranes and the defense mechanism of the tumor immune microenvironment (TME). Nano-drug 
delivery system (nano-DDSs) has unique physical and chemical properties of nanomaterials, which can 
not only enhance drug solubility and improve drug circulation time in the body, but also achieve 
targeted delivery and controlled release of drugs[125]. Therefore, the use of novel nanodelivery systems 
to improve the efficiency of iron release has great prospects in CRC targeted therapy.

Nano DDS can directly drive the death of iron in tumor cells, and iron-based nanoparticles can be 
catabolized by acid lysosomes of tumor cells to release Fe2+ and iron 3+[126]. Iron-based nanoparticles 
induce ferroptosis by catalyzing the Fenton reaction, but because of their low reactive oxygen 
production, they are often used in conjunction with other treatments. Liang et al[127] synthesized ultra-
small single crystal Fe nanoparticles (bcc-USINPs) that are highly active in the tumor microenvironment 
and can effectively induce tumor cell ferroptosis and immunogenetic cell death at very low concen-
trations[127].

In addition to acting directly on cancer cells, nanotechnology also works by acting on key 
components of TME. Due to TME's weak acidity, abundant angiogenesis and hypoxia conditions, the 
effectiveness of conventional cytotoxic therapy delivery is limited, while active targeting of 
nanoparticles may be more useful[128].

Sodium persulfate (NaSO) is a novel chemodynamic therapy (CDT) that can produce •SO and Na, 
which can cause ferroptosis in cells. Ir780-iodide (IR780) is a phototherapy agent that produces ROS in 
conjunction with NaSO's CDT to overcome CRC chemotherapeutic resistance. Co-assembly of NaSO 
and IR780 on the nano platform improved the stability of NaSO and solubility of IR780, significantly 
enhancing the anti-tumor effect on CRC cell lines[129]. A novel composite nanomaterial PPy@Fe3O4 has 
been demonstrated to regulate the nuclear factor-kappaB signaling pathway and then then inhibit the 
proliferation, migration and invasion of CRC cells in vitro. Interestingly, Fer-1, an ferroptosis inhibitor, 
reversed changes in transfer-related proteins induced by nanoparticle therapy[130].

CONCLUSION
Ferroptosis, a newly discovered type of RCD mediated by iron-dependent lipid ROS accumulation, 
plays a role in a variety of diseases of the gastrointestinal tract. Many ferroptosis-related genes have 
been confirmed to be associated with the prognosis of CRC, and various models have been confirmed to 
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Table 1 Key molecular targets and inducers involved in the regulation of colorectal cancer ferroptosis

Target Ferroptosis inducers Ref.

Bromelain [35]

Apatinib [37]

ACSL4

Emodin [36]

Erastin [42]

SAS [44,45]

Talaroconvolutin A [50]

Copper chelator elesclomol [51]

IMCA [52]

Pt3R5G [53]

SLC7A11

RSV [54]

CARS [65]Transsulfuration pathway

VZnO [66]

Erastin [67]

RSL3 [67]

GPX4

ACADSB [79]

Cetuximab [87]

Lys [90]

Nrf2/HO-1

Oxaliplatin [94,95]

HIF-2α [102]

miR-545 [104]

Dichloroacetate [105]

Cellular iron homeostasis

IREB2 [106]

Ginsenoside Rh4 [113]P53

Cullin-9 [114]

ACSL4: Acyl-CoA synthetase long-chain family member 4; SLC7A11: Solute carrier family 7 member 11; SAS: Sulphasalazine; IMCA: Benzopyran 
derivative 2-imino-6-methoxy-2H-chromene-3-carbothioamide; Pt3R5G: Petunidin 3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(β-D-
glucopyranoside); RSV: Resveratrol; CARS: Cysteinyl-tRNA synthetase; RSL3: Ras-selective lethal 3; Nrf2: Nuclear factor erythroid 2-related factor; HO-1: 
Haem oxygenase 1; Lys: Lysionotin; IREB2: Iron response element-binding protein 2; GPX4: Glutathione peroxidase 4; HIF-2α: Hypoxia-inducible factor-2α.

be able to stratify CRC patients well and facilitate the early identification of high-risk patients. Iron 
metabolism and the accumulation of lipid peroxides are the core processes in ferroptosis. As mentioned 
above, GPX4, SLC7A11, ACSL4 and p53 act as key regulators in ferroptosis-related CRC mediation 
(Table 1). Induction of ferroptosis can reverse the resistance of anticancer drugs or exert a synergistic 
effect with other anticancer drugs to enhance the sensitivity of antitumor drugs and improve the 
prognosis of CRC patients. Furthermore, in colon cancer, copper chelators have also been shown to 
facilitate CRC cell death by promoting the degradation of SLC7A11. The mechanism underlying 
ferroptosis and the relationship between key regulators and other RCDs, such as autophagy and 
apoptosis, should be explored in future research.

In animal studies, the underlying mechanism of ferroptosis is complex, involving multiple targeted 
enzyme systems and metabolic networks. However, the actual clinical situation is more complicated, 
which requires the combination of gene mutation, epigenetic modification, metabolomics, etc. The 
absorption, transport, storage and metabolism of iron in the body is a very complex process, and how to 
define the therapeutic iron concentration needs to be carefully considered. In practice, increasing iron 
concentration to promote ferroptosis in tumor cells seems difficult to achieve due to the presence of 
defense mechanisms in the TME. At present, many studies have mentioned the promotion of ferroptosis 
in CRC cells through nanotechnology, and nano-DDSs seems to be able to effectively help solve this 
problem due to the advantages of targeted delivery and controlled release. In fact, ferroptosis seems to 
be a double-edged sword in the treatment of gastrointestinal diseases. The role of ferroptosis in different 
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gastrointestinal diseases is different, and the pros and cons of ferroptosis treatment need to be evaluated 
more carefully.

At present, research on the mechanism underlying ferroptosis in the colorectum is still in its infancy, 
and other ferroptosis pathways or related targets, such as the ferroptosis suppressor protein 
1/CoQ/nicotinamide adenine dinucleotide phosphate pathway, still need to be further explored. In the 
future, ferroptosis genes related to the prognosis of CRC also need to be verified. The mechanism 
underlying ferroptosis and tumor escape in CRC is also worth further in-depth study in order to 
promote the development of new and effective therapeutic strategies.
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Abstract
The advent of immunotherapy and the development of immune checkpoint 
inhibitors (ICIs) are changing the way we think about cancer treatment. ICIs have 
shown clinical benefits in a variety of tumor types, and ICI-based immunotherapy 
has shown effective clinical outcomes in immunologically “hot” tumors. 
However, for immunologically “cold” tumors such as colorectal cancer (CRC), 
only a limited number of patients are currently benefiting from ICIs due to 
limitations such as individual differences and low response rates. In this review, 
we discuss the classification and differences between hot and cold CRC and the 
current status of research on cold CRC, and summarize the treatment strategies 
and challenges of immunotherapy for cold CRC. We also explain the mechanism, 
biology, and role of immunotherapy for cold CRC, which will help clarify the 
future development of immunotherapy for cold CRC and discovery of more 
emerging strategies for the treatment of cold CRC.
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Core Tip: Immune checkpoint inhibitors (ICIs) are usually produced by antibodies, and their effectiveness 
relies on the antitumor effects of immune cells (especially T cells). Colorectal cancer (CRC) is one of the 
most common forms of cancer worldwide. Only a limited number of patients are currently benefiting from 
ICIs due to limitations such as individual differences and low response rates. In this review, we discuss the 
classification and differences between hot and cold CRC and the current status of research on cold CRC, 
and summarize the treatment strategies and challenges of immunotherapy for cold CRC.
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INTRODUCTION
Colorectal cancer (CRC) is one of the most common forms of cancer worldwide[1]. Globally, CRC is the 
second most common cancer in women and the third most common in men[2]. More than half of the 
development of CRC can be attributed to modifiable risk factors such as smoking, unhealthy diet, heavy 
alcohol consumption, lack of physical activity, and overweight; therefore, the disease is preventable[3]. 
Despite some progress in the diagnosis and treatment of CRC, it remains a significant cause of cancer-
related deaths[2]. The global burden of CRC is expected to increase by 60% by 2030[4]. Therefore, there 
is an urgent need to develop new preventive and treatment strategies for this disease[1].

In contrast to traditional cancer therapies that affect the proliferation, survival, and metabolic 
activities of tumor cells[5], immunotherapy mainly works by modulating the tumor microenvironment 
(TME), restoring anticancer immunity, and stimulating or suppressing the immune system to play an 
antitumor role[6]. Immune checkpoint inhibitors (ICIs) are usually produced by antibodies, and their 
effectiveness relies on the antitumor effects of immune cells (especially T cells)[7].

However, most solid tumors have little T-cell infiltration and are defined as non-T-cell inflammatory 
or “cold” tumors[8]. In CRC, it has been shown that only patients with mismatch repair deficiency 
(dMMR) or microsatellite instability (MSI) high (dMMR/MSI-H) tumor subpopulations respond to 
treatment with ICIs[9-11]. Clinical trials related to ICIs have been conducted for the treatment of CRC 
(Table 1). In these patients, there is an urgent need to improve the efficacy of tumor immunotherapy by 
improving intratumoral T-cell infiltration and converting cold tumors into “hot” or T-cell inflammatory 
tumors.

In this review, we discuss the classification and differences between hot and cold CRC and the 
current state of research on cold CRC, the therapeutic strategies and challenges of immunotherapy, and 
the pathological mechanisms of cold CRC.

CLASSIFICATION AND DIFFERENCE BETWEEN COLD AND HOT CRC
Tumor-immune system interactions provide a basis for patient stratification and treatment strategies for 
various cancers, which can more accurately predict survival in CRC[12]. An immune scoring system for 
tumor classification was developed based on the quantification of two lymphocyte populations (cluster 
of differentiation 3 [CD3] and CD8)[13,14] at the tumor center and aggressive margins[15-19]. The 
scoring system has four levels (immune score 0 [i0], i1, i2, i3, and i4). The concepts of hot (highly 
invasive immune score i4) and cold (noninvasive immune score i0) tumors were introduced[15]. In 
colon cancer, the consensus immune scoring system has a greater relative prognostic value than 
pathological T staging, pathological N staging, lymphovascular infiltration, tumor differentiation, and 
MSI status[20].

Currently, hot and cold tumors are typically referred to as T-cell infiltrated, inflammatory but 
noninfiltrating, and noninflammatory tumors[15]. This immune classification has been validated in 
melanoma and breast cancer[21,22]. In addition to the presence of tumor-infiltrating lymphocytes (TILs), 
other features are the consensus molecular subtype (CMS) classification developed through a compre-
hensive reassessment and comparison of CRC molecular gene expression profiles: CMS1 and CMS4 are 
hot tumors (Figure 1); they are considered immunoreactive and highly infiltrated by immune cells. 
These tumors are immunoreactive and highly infiltrated by immune cells, as opposed to CMS2 and 
CMS3, which are cold tumors[23]. A small group of CRCs with dMMR/MSI-H benefits from immuno-
therapy. dMMR/MSI-H in solid tumors, including CRC, suggests a good tumor response to immuno-
therapy[7]; however, the majority of patients with skilled MMR (pMMR) or microsatellite stable (MSS) 
CRC do not respond well to this treatment[24]. However, immune scoring is a better predictor of 
prognosis in CRC patients than MSI testing alone[25], and MSI has been used to predict the response to 
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Table 1 Clinical trials for immune checkpoint inhibitors in colorectal cancer patients

Name Targets Phase Settings Trial identifier
Nivolumab and ipilimumab PD-1 and CTLA4 II dMMR and/or MSI mCRC NCT04730544

Camrelizumab and apatinib PD-L1 and VEGF II Locally advanced dMMR/MSI-H 
CRC

NCT04715633

Toripalimab with or without 
celecoxib

PD-1 and COX I and II Resectable non-metastatic 
dMMR/MSI-H CRC

NCT03926338

Cetuximab-avelumab PD-1 and EGFR II mCRC NCT04561336

Nivolumab + relatlimab PD-1 and LAG3 II MSS colorectal adenocarcinomas NCT03642067

Obinutuzumab + atezolizumab + 
cibisatamab + tocilizumab

CD20, PD-L1, CEA + CD3 
and IL-6R

Ib MSS mCRC NCT03866239

CEA: Carcinoembryonic antigen; COX: Cyclooxygenase; CTLA4: Cytotoxic T-lymphocyte-associated protein 4; dMMR: Deficient DNA mismatch repair; 
EGFR: Epidermal growth factor receptor; IL-6R: Interleukin 6 receptor; LAG3: Lymphocyte activation gene 3; PD-1: Programmed cell death protein 1; PD-
L1: Programmed cell death-ligand 1; mCRC: Metastatic colorectal cancer; MSI: Microsatellite instability; MSS: Microsatellite stability; VEGF: Vascular 
endothelial growth factor.

Figure 1 Difference between cold and hot colorectal cancer. Colorectal cancer (CRC) is divided into hot and cold subtypes. Hot CRC mainly includes the 
deficient DNA mismatch repair (dMMR)/high microsatellite instability (MSI-H), consensus molecular subtype (CMS)1, and CMS4 subtypes, while cold CRC includes 
the proficient mismatch repair (pMMR)/low microsatellite instability (MSI-L), CMS2, and CMS3 subtypes. NK: Natural killer; Tregs: Regulatory T cells.

anti-programmed cell death protein 1 therapy in cancer[26]. The expression of anti-programmed cell 
death ligand 1 (PD-L1) on tumor-associated immune cells, possible genomic instability, and the pre-
existing antitumor immune response are characteristics of hot tumors[27].

Currently, the most comprehensive approach to define hot and cold tumors remains the immune 
scoring system, but there are still some tumors with characteristics intermediate between hot and cold 
tumors, and the four main categories of tumor classification, namely hot, altered exclusion, altered 
immunosuppression, and cold, provide classification of the four major tumor categories[28]. This 
system provides a more comprehensive approach to classification and helps to suggest new ideas for 
immunotherapy strategies.

With the development of immunotherapy and its achievements, it is important to determine how to 
use immune scoring to classify tumors and help and guide the choice of treatment. A blanket use of 
parameters to score may produce bias, which reinforces the need to incorporate the details of each 
individual case and to adequately integrate clinical practice to develop a rational, standardized, and 
coordinated scoring approach to guide treatment decisions. For immunotherapy to overcome the 
bottleneck of cold CRC, a general consensus is still required.
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Immunotherapy has made significant progress in cancer treatment[29]. In particular, hot tumors with 
an immune microenvironment of highly TILs are highly responsive to most immunotherapies, a 
property that plays a key role in obtaining good antitumor responses to immunotherapy[30-33]. The 
discovery and development of ICs and IC-related drugs are of importance in cancer immunotherapy. 
This immunotherapy approach has excellent long-term regression efficacy in hot tumors; however, hot 
tumors have a low response rate to immunocooled tumors lacking predominant infiltration of tumor 
immune cells[34-40]. Therefore, the absence or low number of lymphocytes in the TME also serves as a 
biomarker for cold tumor unresponsiveness to ICIs[41].

Therefore, it is important to consider a proper treatment plan for cold CRC. Classifying tumors 
according to their immunophenotypes is too homogeneous; an emphasis on tumor heterogeneity can 
enable us to have a better understanding of individualized cancer treatment[6]. Most solid tumors are 
non-T-cell inflammatory or cold tumors[8,42], and CRC is no exception. Therefore, there is an urgent 
need to improve the TME to convert cold tumors into hot or T-cell inflammatory tumors to improve the 
efficacy of tumor immunotherapy.

It is important to elucidate the mechanisms involved in cold CRC that do not respond to immuno-
therapy to provide additional insights into the therapeutic strategies that can be developed. In this 
section, we outline the mechanisms and approaches related to the possible modulation of non-immune-
responsive cold CRC to improve the efficacy of treatment approaches against non-immune-responsive 
tumors.

Increasing tumor inflammation
Establishing an inflammatory response in the TME is a key goal of immunomodulatory approaches for 
all cold tumors, including CRC. Infection by pathogens can activate the immune system, thus 
stimulating a series of immune attacks[43]. The involvement of such pattern recognition receptors can 
activate immune cells and lead to an immune system-mediated antitumor response[44]. Interventional 
radiology has enabled the precision treatment of local tumors, and a variety of therapeutic substances, 
including pattern recognition receptor agonists, such as tumor lysing peptides or lysing viruses, 
cytokines, encoded nucleic acid sequences, bispecific T-cell participants, nanoparticles or particles, and 
immune cells, can be delivered locally[45]. The immunogenic cell death pathway induced by precise 
radiotherapy and cryoablation or radiofrequency ablation that produces massive tumor antigen release 
can convert tumors into in situ vaccines, which provides us with new insights and options[45,46].

Although a growing number of studies has demonstrated the effectiveness of radiotherapy[47-50], the 
benefits obtained in these trials cannot be attributed exclusively to radiotherapy. Explicit demonstration 
of the contribution of radiation to the immunotherapeutic response is challenging but crucial. The 
optimal integration of radiobiology and tumor immunology may lead to potentially significant clinical 
benefits.

Precision therapy is limited by several operational, clinical, and biological factors, in addition to the 
numerous complications that may arise from injecting drugs or biologics directly into the tumor. 
Therefore, a systemic approach to tumor-specific therapy remains attractive. Chemotherapeutic 
regimens as systemic treatments can induce immunogenic cell death by releasing damage-associated 
molecular patterns[51,52] and activating necrotic or apoptotic pathways[53]. Some studies have 
indicated that drugs such as 5-fluorouracil can induce apoptosis of myeloid-derived suppressor cells 
(MDSCs) and increase CD8 cell function to enhance inflammatory immunity[54].

Immune microenvironment analysis of patients with liver metastases from CRC has revealed that 
cytotoxicity and memory T-cell density are significantly higher in patients who received preoperative 
chemotherapy than in patients with untreated metastasis[55-57], suggesting that the use of 
chemotherapy can induce tumor inflammation to some extent, providing insight into the transformation 
of cold to hot CRC. Epidermal growth factor receptor (EGFR), vascular EGFR kinase, and mitogen-
activated protein kinase kinase (MEK) inhibitors are widely used in the clinical solid tumor routine, and 
the clinical effects and related mechanisms of EGFR (cetuximab and panitumumab) and angiogenesis 
(bevacizumab, afliximab, or ramucizumab) as first- and second-line targeted agents for metastatic CRC 
are being actively investigated[58-61]. Although there is a lack of knowledge regarding the detailed 
molecular mechanisms of action between targeted drugs and immunity, in vivo studies have shown that 
the activated mitogen-activated protein kinase (MAPK) signaling pathway can inhibit major histocom-
patibility class I components and antigen-presentation mechanisms. Use of MAPK inhibitors enhances 
T-cell-mediated killing of tumor cells[62].

MEK inhibitors may also be involved in the immune effects of tumors[63,64]. This effect promotes 
antigen presentation on the surface of tumor cells to activate the recognition of CD8 T lymphocytes, 
which then kills tumor cells. Additionally, it has been found that inhibition of the phosphoinositide 3-
kinase/AKT/mammalian target of rapamycin pathway can prevent the activation of immunosup-
pressive pathways[65], thereby affecting the immune microenvironment.

There is a large body of literature that strongly supports the idea that drugs targeting oncogenes and 
non-oncogenes can beneficially affect the TME in a wide range of tumors and thus enhance tumor 
immune responses. However, many therapeutic methods have not yet been used in the routine 
management of cancer patients, as their preclinical and clinical development has only recently begun.
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For example, toll-like receptors (TLRs) are highly expressed in immune cells in the TME, and in 
clinical development, the involvement of TLR agonists can activate antitumor immune responses[66]. 
However, the complexity of the TLR system challenges the selection of agonists. Different agonists may 
cause different types of inflammatory responses. TLR agonists are currently being used as monotherapy 
and in combination with ICIs[66,67].

Stimulator of interferon (IFN) genes is an endoplasmic reticulum transmembrane protein, whose 
mechanism of action is to sense cytosolic DNA, induce type I IFN gene transcription, and promote 
antigen cross-presentation[68]. IFN gene-stimulating factor agonists increase CD8 T cells in the TME[69] 
and, when combined with anti-PD-L1, reduce local immunosuppression to mediate a systemic 
antitumor response[70]. This combination may be used as a method of local immunosuppression, and 
the study of its agonist is in the clinical development stage.

Cytokines in the TME
Cytokines and chemokines are molecular messengers of the immune system, and many cytokines (e.g., 
interleukin 2 [IL-2], IL-7, IL-15, IL-21, granulocyte macrophage colony-stimulating factor, and IFN-α) in 
the immune TME[71-76] regulate the function of T cells, and studies have reported their use as single 
agents or in combination with other drugs[77]. Accumulation of MDSCs as a group of immature 
myeloid cells with immunosuppressive functions in tumors attenuates the regulation of immune 
responses. Regulatory T cells (Tregs) can promote tumor growth by suppressing cytotoxic immune 
responses. Therefore, therapeutic strategies that specifically eliminate MDSCs or Tregs have been 
proposed[78]. It has been suggested that monoclonal antibodies against immune checkpoints or agonists 
of the tumor necrosis factor receptor superfamily may have a modulatory effect on Tregs[79].

Immunosuppressive soluble ligands play an important role in the immune microenvironment. For 
example, prostaglandin E2 promotes tumor growth and exerts immunosuppressive effects[80]. The 
TME is also rich in adenosine. The TME is also enriched in adenosine, which is released owing to the 
death of tumor cells through CD73 and CD39 ectonucleases[81]. The increase in adenosine, a substance 
enriched in the TME, impairs the implantation and activation of immune cells in the TME. Antagonizing 
adenosine or its pathway can block CD39 to enhance T-cell proliferation and induce proinflammatory 
cytokines, which can control tumor growth[82].

Cell therapy
Since 1993, engineered T cells targeting artificial chimeric antigen receptors (CARs) on the surface 
molecules of tumor cells were first proposed[83], and in 2010, their nature as anticancer drugs was 
revealed[84]. CAR T-cell-based therapies have shown specific, rapid, high success rates, and long-lasting 
effects[85]. The principle of action is mainly through T cells with novel properties to induce a tumor 
rejection response. Patient-derived TILs that can be expanded in vitro with recombinant IL-2 have been 
demonstrated and have made important advances in the treatment of metastatic melanoma and other 
types of tumors[86-88].

To some extent, the efficacy of T-cell therapy depends on the potency of the T cells themselves; 
however, T cells can be influenced by the dose (absolute number of T cells injected) as well as the 
characteristics of the tumor-specific T cells administered. Controlling the dose of tumor-specific T cells is 
crucial for activation of the endothelial complement by IFN-γ to overcome the vascular endothelial 
barrier[89]. Therefore, the effect of pericyte therapy alone may be limited, and patients may benefit 
more from its combination with tumor-targeted interventions aimed at reprogramming the TME. A 
combination of many factors (intervention of tumor-intrinsic pathways, local inflammatory response, or 
intercellular messaging) to ensure proper engraftment and function of relayed metastatic T cells may be 
beneficial for cold tumors. Repeated stimulation of tumor-specific T cell expansion by cell lines 
established in lesions from patients with resected melanoma has been shown to be effective[90]. 
Melanoma is the best solid cancer type to respond to adoptive cell therapy[91].

In summary, peritoneal cellular immunotherapy is a promising treatment modality for CRC. The 
approach is based on the collection T cells from patients, which are expanded in vitro and then 
transfused back into the patient. These T cells are designed to express CARs, which can be designed to 
recognize not only tumor antigens but also to produce anticancer cytokines or ICIs. However, despite 
the results of CAR-T therapy in the treatment of hematological tumors such as B-cell malignancies, the 
effectiveness and applicability of the approach to convert cold tumors into hot tumors, and whether it 
can be successful in CRC and other solid tumors remains to be elucidated[7,92].

Other possible methods that can be used to make the tumor hotter
As a branch of hyperthermia, modulated electro-hyperthermia (mEHT) has been gradually applied in 
the treatment of various cancers in recent years[93,94]. The principle of mEHT is delivering locoregional 
clinical hyperthermia generated by 13.56 MHz amplitude-modulated radiofrequency[95]. A series of 
studies have shown the effect of mEHT in the treatment of CRC[96-99], and related mechanism studies 
have also shown its relevance in immunity[100,101]. This treatment may be a good candidate for 
transforming cold CRC.
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In addition, some experiments are being conducted to make tumors hotter, such as combining 
oncolytic bacteria or viruses or peptides, tumor, virus or dendritic cell antigens with various adjuvants, 
with the goal of improving CRC immunogenicity. Tumor-associated macrophages, as a key driver of 
inflammation that facilitates tumor progression, are attractive targets to complement current immuno-
therapy[102].

As a key target of tumor-associated macrophages, colony-stimulating factor 1 receptor (CSF1R) can 
bind to CSF1 or IL-34 to activate macrophage proliferation and function[103,104]. CSF1R-specific 
inhibitors and other macrophage modulators are currently being studied in clinical trials in solid tumors
[105].

THE CHALLENGES FOR IMMUNOTHERAPY TARGETING COLD CRC
Despite the widespread use of immunotherapy, poor clinical response to cold tumors is a current 
challenge[22]. Prior to immunotherapy, the resected tumor (primary or metastatic) should be classified 
as hot, altered, or cold. Although the tumor sample is valuable in providing information about the 
disease, it is limited in that it is not representative of the entire tumor landscape[28]. Recently, it was 
noted that, in addition to the CMS of CRC, the underlying epithelial cell diversity of CRC was 
summarized in a large transcriptome into two intrinsic subtypes, iCMS2 and iCMS3. This finding refines 
the CMS[106]. Because of genomic and immune heterogeneity, each sample can be considered an 
individual tumor[56]. Moreover, immune parameters change over the course of the disease[107].

The concept of personalized cancer immunotherapy is being increasingly promoted. A major 
challenge for immunotherapy of cold tumors is the need to identify key immune- or tumor-related 
features at the time of diagnosis to establish a reliable classification strategy to support immunotherapy 
for maximum efficiency[108].

CONCLUSION
With an increasing number of studies conducted on cold tumors, personalized cancer immunotherapy 
for individual patients is gaining ground. A major challenge hindering the development of therapeutic 
strategies may be the lack of mastery of the relationship between cancer and immunity. Even though a 
great deal of technological innovation and related research has been conducted to achieve some 
progress, the variability of cancer among individual patients cannot be generalized[108]. Identifying key 
phenotypic features is of interest when developing treatment strategies, and considerable progress has 
been made with ICIs approved by the United States Food and Drug Administration for the treatment of 
patients with dMMR/MSI-HmCRC. Notably, subtype dMMR/MSI-H CRC represents only a small 
fraction of all CRCs, and most pMMR/MSS mCRC patients do not benefit from ICI treatment alone. 
Therefore, further tumor states need to be identified, which has led to the continued reporting of new 
biomarkers, such as comprehensive immune scoring and complete CMS classification, and these results 
have led to a better understanding of the immune mechanisms of CRC and their relationship to tumor 
treatment strategies.
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Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly neoplasms 
worldwide. According to GLOBOCAN predictions, its incidence will increase 
from 1.15 million CRC cases in 2020 to 1.92 million cases in 2040. Therefore, a 
better understanding of the mechanisms involved in CRC development is 
necessary to improve strategies focused on reducing the incidence, prevalence, 
and mortality of this oncological pathology. Surgery, chemotherapy, and radio-
therapy are the main strategies for treating CRC. The conventional chemothera-
peutic agent utilized throughout the last four decades is 5-fluorouracil, notwith-
standing its low efficiency as a single therapy. In contrast, combining 5-
fluorouracil therapy with leucovorin and oxaliplatin or irinotecan increases its 
efficiency. However, these treatments have limited and temporary solutions and 
aggressive side effects. Additionally, most patients treated with these regimens 
develop drug resistance, which leads to disease progression. The immune 
response is considered a hallmark of cancer; thus, the use of new strategies and 
methodologies involving immune molecules, cells, and transcription factors has 
been suggested for CRC patients diagnosed in stages III and IV. Despite the 
critical advances in immunotherapy, the development and impact of immune 
checkpoint inhibitors on CRC is still under investigation because less than 25% of 
CRC patients display an increased 5-year survival. The causes of CRC are diverse 
and include modifiable environmental factors (smoking, diet, obesity, and 
alcoholism), individual genetic mutations, and inflammation-associated bowel 
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diseases. Due to these diverse causes, the solutions likely cannot be generalized. Interestingly, new 
strategies, such as single-cell multiomics, proteomics, genomics, flow cytometry, and massive 
sequencing for tumor microenvironment analysis, are beginning to clarify the way forward. Thus, 
the individual mechanisms involved in developing the CRC microenvironment, their causes, and 
their consequences need to be understood from a genetic and immunological perspective. This 
review highlighted the importance of altering the immune response in CRC. It focused on drugs 
that may modulate the immune response and show specific efficacy and contrasted with evidence 
that immunosuppression or the promotion of the immune response is the answer to generating 
effective treatments with combined chemotherapeutic drugs.

Key Words: Colorectal cancer; Immunotherapy checkpoint inhibitors; Chemotherapy; Immunotherapy; 
Immune response

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This review focused on the drugs that may modulate the immune response and show specific 
efficacy in the treatment of colorectal cancer. We then presented the evidence that immunosuppression or 
promotion of the immune response is the answer to generating effective treatments with combined 
chemotherapeutic drugs.
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INTRODUCTION
The origin of colorectal cancer (CRC) is heterogeneous. The general classification of CRC is divided into 
inherited, sporadic, and intestinal bowel diseases. Inherited CRC, which represents approximately 5% of 
all CRC cases, includes either the presence or absence of colonic polyps, such as Lynch syndrome and 
serrated polyposis syndrome[1]. Sporadic CRC (approximately 70% of CRC cases) is sustained by 
environmental and modifiable risk factors, including stress, diet, and age. Sporadic CRC has a 
monoclonal origin and is characterized by mutation accumulation in oncogenes and tumor suppressor 
genes. The second pathway of CRC includes the traditional APC-KRAS pathway and the microsatellite 
instability group, both having an essential role in clinical studies[2]. The third pathway includes 
intestinal chronic inflammatory diseases, such as Crohn’s disease and ulcerative colitis, which could 
result in colitis-associated colon cancer[3].

From a biological perspective, this evidence demonstrates that the origin of CRC is diverse. The 
response to therapies is not always homogeneous in patients. The best treatment should be based on the 
tumor’s unique characteristics. Effective treatments need to be broad and involve chemical and 
immunological molecules. The context of the broad causes of CRC development is highly involved in 
the low effectiveness of either single chemotherapeutics or classical immunotherapy by checkpoints 
inhibitor (ICI) administration during this oncological pathology. An in-depth and more precise 
description of the CRC origin and development, including a role for both immune response and inflam-
mation, can be found in[4,5].

CONVENTIONAL TREATMENTS FOR COLON CANCER AND MECHANISMS OF ACTION 
FROM A GENETIC PERSPECTIVE
CRC is one of the deadliest diseases in the world. Despite advances in diagnosis, treatment strategies 
remain an essential bottleneck affecting survival, in which the pathological stage represents the most 
important prognostic factor for patients with CRC. The accurate classification of lesions is the primary 
tool to decide the most appropriate treatment and therapy[6]. The treatment for early-stage CRC (stage I 
and stage II) currently consists of resecting the tumor area with regional lymph nodes, which has a 5-
year disease-free survival rate of 95%[7]. In the advanced stage of the disease (stages III and above), the 
rate of disease-free survival drops from 90% to 50% for surgery alone, requiring the administration of 
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chemotherapeutics, and only 17%-20% of these patients ultimately survive[8,9].
5-Fluorouracil (5-FU) has been central in treating advanced CRC since 1957. Unfortunately, the 

response rate to 5-FU as the first-line chemotherapy in advanced CRC is still only 10%-15%. In contrast, 
5-FU combined with other anticancer drugs as adjuvants, such as leucovorin and oxaliplatin (FOLFOX) 
or leucovorin calcium and irinotecan, increases the effectiveness of 5-FU by 50%[10,11].

5-FU is the third most commonly used chemotherapeutic agent for the treatment of solid 
malignancies worldwide[12]. Heidelberger synthesized it in the early 1950s as a derivate of fluoro-
pyrimidines. This drug was one of the first chemotherapeutics reported to have anticancer activity. It 
was tested in diverse tumors in rats and mice, where it significantly reduced tumor burden. 
Additionally, tumoral tissues incorporated this compound more rapidly than normal tissues, which 
pointed to its potential use as a chemotherapeutic drug[13,14]. In 1962, the Food and Drug Adminis-
tration approved the use of 5-FU for treating CRC.

In intravenous administration, 5-FU is incorporated rapidly into the cells through facilitated transport 
as uracil[15]. Subsequently, its metabolism can be driven in two ways, i.e., via anabolic and catabolic 
routes, which compete with each other. In sensitive cancerous cells, the anabolic pathway leads to the 
conversion of this drug into several active metabolites, such as fluorodeoxyuridine monophosphate, 
fluorodeoxyuridine triphosphate, and fluorouridine triphosphate[16]. The active metabolites interfere 
with nucleoside metabolism and can be incorporated into RNA and DNA, leading to cytotoxicity and 
cell death[17,18]. This mechanism is due to its similar structure to pyrimidine, molecules of DNA and 
RNA, an analog of uracil with a fluorine atom at the C-5 position in place of hydrogen[19]. Fluorodeoxy-
uridine monophosphate disrupts the function of thymidylate synthase, a key enzyme responsible for 
providing deoxynucleotide triphosphates, which are necessary for DNA replication and repair, 
catalyzing the reaction of deoxyuridine monophosphate to deoxythymidine monophosphate synthesis
[14,15]. An insufficiency in deoxythymidine monophosphate leads to the depletion of deoxythymidine 
triphosphate, which perturbs the levels of the other deoxynucleotide triphosphates[16-20] (Figure 1).

5-FU has primarily been used in the treatment of solid cancers of digestive origin, such as colorectal, 
anal, pancreatic, esophageal, gastric, and ampullary tumors, and less frequently in breast, cervical, and 
head and neck cancers[21-23]. CRC treatment includes various chemotherapeutic drugs. As the 
backbone of treatments, 5-FU has been used for more than five decades, and more recently, it has been 
combined with other chemotherapeutic drugs to potentiate its anticarcinogenic effect[22,24].

The use of alternative broad-spectrum chemotherapeutics in addition to 5-FU has been proposed for 
colon cancer treatment. Doxorubicin treatment combined with other drugs, such as metformin and 
sodium oxamate, reduces the proliferation rate of colon cancer cell lines in vitro[25]. However, the use of 
doxorubicin in patients is limited by the side effects frequently associated with this drug, such as 
hepatotoxicity, nephrotoxicity, pulmotoxicity, and cardiotoxicity[26,27]. Additionally, doxorubicin can 
lead to chemoresistance in tumor cells through nuclear factor kappa B translocation to the nucleus and 
DNA binding because of the damage induced by this drug, triggering the expression of antiapoptotic 
genes[28].

In CRC, nuclear factor kappa B nuclear translocation is a characteristic in more than 70% of patients, 
limiting the use of doxorubicin[29]. Another disadvantage of this drug is its anthracycline nature since it 
is extracted from Streptomyces spp. Cancer cells frequently show rapid resistance to naturally occurring 
cancer drugs, diminishing their effectiveness, whereas they are more sensitive to antimetabolites, such 
as 5-FU and cisplatin, among others[30]. The use of other chemotherapeutics, such as tamoxifen, which 
is highly effective and frequently used in breast cancer treatment, has an adverse effect in the treatment 
of CRC[31]. Due to the molecular characteristics of each type of cancer, the successful use of tamoxifen 
in breast cancer lies in its mechanism of action. Approximately 80% of all breast cancers are positive for 
the estrogen receptor, and tamoxifen inhibits the expression of estrogen-regulated genes by the 
competitive inhibition of this receptor. Different reports indicate that tamoxifen has the opposite effect 
on CRC, increasing the risk of developing this type of cancer[31,32].

MOLECULAR PERSPECTIVE FOR THE USE OF CHEMOTHERAPEUTIC STRATEGIES IN 
CRC TREATMENT: WHICH IS THE RIGHT DRUG?
CRC is a molecularly heterogeneous disease in which genetics and cellular events accumulate to endow 
tumor cells with aggressive characteristics, including chemotherapy resistance. Chromosomal 
instability, mismatch repair, and methylator phenotype are the three major pathways involved in 
acquiring tumorigenesis and a malignant phenotype and could be present in sporadic and inherited 
CRC[33,34]. The choice of better therapy is based on cancer-related features and patient-related factors, 
such as the number and localization of metastases, tumor progression, presence or absence of 
biochemical markers, and comorbidity[35-37]. Despite all these characteristics, treatment based on the 
antineoplastic effects of 5-FU is the cornerstone of therapy in advanced CRC stages.

Treatment with 5-FU in combination with other drugs, such as oxaliplatin (OXA), irinotecan, 
capecitabine, bevacizumab, cetuximab, panitumumab, ziv-aflibercept, regorafenib, and ramucirumab, 
increases its effectiveness and has been approved by the Food and Drug Administration for the 
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Figure 1 5-Fluorouracil mechanism of action. The 5-fluorouracil structure is analogous to that of the nucleotide uracil; its ability to disrupt standard RNA 
processing and function is mediated by three primary metabolites: fluorodeoxyuridine monophosphate, fluorodeoxyuridine diphosphate, and fluorouridine 
triphosphate. 1: 5-fluorouracil inhibits thymidylate synthase activity by fluorodeoxyuridine monophosphate metabolite binding, blocking the typical substrate 
deoxyuridine monophosphate that inhibits deoxythymidine monophosphate synthesis leading to deoxythymidine triphosphate imbalance. The consequent result is 
DNA damage due to a deficiency in its synthesis and its repair; 2: DNA replication and repair are regulated by deoxyuridine monophosphate transition to 
deoxythymidine monophosphate. This step is coordinated by thymidylate synthase; FUMP: Fluorodeoxyuridine monophosphate; FUDP: Fluorodeoxyuridine 
diphosphate; FUTP: Fluorouridine triphosphate; dUMP: Deoxyuridine monophosphate; dTMP: Deoxythymidine monophosphate; FUDR: Fluorodeoxyuridine; FdUMP: 
Fluorodeoxyuridine monophosphate; dTTP: Deoxythymidine triphosphate; FdUDP: Fluorodeoxyuridine diphosphate; FdUTP: Fluorodeoxyuridine triphosphate; 5-FU: 
5-Fluorouracil; TS: Thymidylate synthase.

management of CRC[38]. Thus, during stages III or IV in resected CRC patients, the use of combination 
treatment, such as FOLFOX or 5-FU, leucovorin calcium, and irinotecan, is common as a first-line 
treatment. This strategy significantly increases the survival rate of these patients[39]. The initial 
chemotherapy scheme and the decision on better combinatory drugs depends on multiple conditions in 
the patients. In metastatic CRC limited to the liver or lung, surgery and the rapid initiation of 
chemotherapy appears to be the best option. When CRC cure is not possible, three additional scenarios 
can arise: (1) Patients with advanced tumors and symptoms require rapid tumor shrinkage to provide 
palliation, which begins with chemotherapy; (2) Asymptomatic patients with bulky tumor and possible 
rapid progression are likely to become symptomatic in a short period; and (3) Patients without 
symptoms but disseminated disease who never had resectable disease but whose tumors remain non-
bulky are likely to remain asymptomatic for an extended period. In the last two scenarios, the initiation 
of chemotherapy can be discussed[22,40]. Previous work in the Nordic population demonstrated that 
early treatment with 5-FU plus leucovorin in asymptomatic patients with advanced CRC prolonged 
survival and delayed both disease progression and the onset of symptoms[41]. In another study in 
Australasian and Canadian populations of asymptomatic patients using the same chemotherapy 
regimen, no difference was reported between early or delayed chemotherapy use until symptoms 
appeared[42]. Thus, clinical treatment requires a medical discussion and the patient´s preference when 
cure is not possible. The spectrum of molecular alterations that offer alternative management for this 
disease could be explored.

Alterations in genes related to survival, angiogenesis, proliferation, and apoptosis incorporate 
additional strategies into CRC treatment. The RAS, KRAS, and NRAS genes play an essential role as 
prognostic and predictive indicators in CRC treatment[43-45]. Mutations in the DNA at position 12 in 
the KRAS protein are significantly associated with a poor prognosis: a 5-year survival rate of approx-
imately 3%[46]. Patients with this mutation are not candidates to receive treatment with monoclonal 
antibodies, such as cetuximab or panitumumab, which target the epidermal growth factor receptor 
(EGFR)[47-50]. Blocking EGFR represents the second line of treatment in patients with wild-type RAS 
together with the backbone 5-FU, leucovorin calcium, and irinotecan therapy. Therefore, the patient’s 
genetic and tumor-specific factors need to be considered when choosing chemotherapeutic and 
combination schemes to avoid resistance and undesired responses to these therapies.
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Drug resistance and consequent therapy failure are the main problems clinicians face in treating 
different neoplasms, which limit the quality of life and long-term remission rates as a consequence of 
tumor growth and spreading leading to 90% of patients dying[51,52]. Drug resistance is a highly 
complex process that is commonly classified into two types: intrinsic and acquired. Both types of drug 
resistance lead to the regulation of molecular mechanisms of chemoresistance, such as the activation of 
transporter pumps, oncogenes, tumor suppressor genes, mitochondrial alteration, DNA repair, 
autophagy, epithelial-mesenchymal transition, cancer stemness, and exosomes[53,54].

In the intrinsic phenotype, diverse alterations existing before drug administration in the patient 
complicate the selection of chemotherapy. The inherent genetic mutations in tumors, such as a KRAS 
mutation in exon 2 in codon 12 or 13, are the most frequent mutations associated with poor prognosis 
and drug resistance in CRC[55,56]. Therapies based on the first line of treatment using FOLFOX or 5-FU, 
leucovorin calcium, and irinotecan plus cetuximab or panitumumab (anti-EGFR) are ineffective in 
patients with KRAS mutations[57]. Recent studies indicate that mutations in genes related to the 
pathways that regulate tumor cell survival and proliferation and inhibit apoptosis in tumor cells, such 
as AKT1 and CTNNB1, contribute to 5-FU chemotherapeutic resistance in CRC. The CTNNB1 gene 
encodes the β-catenin protein, which plays a crucial role in cancer by activating the Wnt/β-catenin 
signaling pathway. This pathway is associated with tumorigenesis and CRC resistance, and it 
upregulates genes and proteins, such as multidrug resistance gene (MDR1) and inhibitor of apoptosis (
Bcl2), to induce epithelial-mesenchymal transition and regulate the tumor microenvironment (TME)[58-
60].

IS CHEMOTHERAPY AN INDUCER OF IMMUNOSUPPRESSION IN CRC?
The heterogeneity of tumors, including CRC, consists of heterogeneity in cancer and infiltrated resident 
host cells, extracellular matrix, and immune and inflammatory cells, such as macrophages, dendritic 
cells, myeloid-derived suppressor cells, T cells, mast cells, and natural killer cells. These components 
comprise the TME, which has a dynamic composition[61]. It is well known that one of the main 
functions of the TME is to provide a protective function for tumor cells, inducing crosstalk between 
immune and nonimmune cells that leads to tumor-mediated immunosuppression, supporting tumor 
growth and survival[62]. Recent reports indicate that the TME in CRC contributes to cancer progression 
and drug resistance through high interstitial pressure, fibrosis, and the degradation of the therapeutic 
agent by enzymatic activity and inducing immunosuppression[61,63,64]. These findings indicate that 
the regulation of immune cells surrounding the tumor has a critical role in the response to therapies for 
CRC. Thus, chemotherapy and immunotherapies targeting the recovery activity of immune cells are 
likely necessary to fight CRC.

The study of the effect of chemotherapeutic drugs on immune cells is controversial. The central 
concept here is that chemotherapy reduces the capacity of the immune system to function, but how 
could a drug affect the capacity and efficiency of the immune response to induce an efficient post-
treatment response? Perhaps the “original” concept has a flawed approach. Evidence suggests that after 
5-FU treatment in a mouse model, bone marrow cellularity decreases, but platelets and thrombopoietin, 
which are close to the immune response, rebound[64,65]. Similarly, the serum of patients diagnosed 
with stage III/IV CRC who had received FOLFOX chemotherapy showed increased levels of heat shock 
protein 70, which belongs to the damage-associated molecular patterns recognized by innate receptors
[66]. Later, in vitro studies showed that the supernatants of dying CRC cells treated with OXA and 5-FU 
induced a mature phenotype in dendritic cells coexpressing HLA-DR, CD80, and CD86 and producing 
interleukin-1β, tumor necrosis factor-α, and MIP-1α in a TLR-4-dependent manner[66]. These results 
strongly suggested that OXA/5-FU treatment induced the activation of the innate immune response 
during CRC. Additionally, increased numbers of myeloid-derived suppressor cells have been reported 
in a mouse model of thymoma, and treatment with 5-FU combined with gemcitabine selectively 
induced apoptosis in myeloid-derived suppressor cells. Consequently, increased antigen-specific CD8+ 
T cells produced more interferon-γ, generating a T cell antitumor response (Figure 2)[66].

Conversely, high levels of the chemokine CCL20 recruit regulatory T (Treg) cells in CRC patients 
resistant to FOLFOX[67]. However, in blood samples from metastatic FOLFOX-sensitive CRC patients, a 
reduced percentage of Foxp3+ Treg cells was recorded after treatment[68]. Therefore, the increase in 
Treg cells is associated with 5-FU chemoresistance. Thus, evidence of 5-FU chemotherapy suggests a 
role in the specific and direct reduction of suppressive immune cells during CRC. Additionally, the 
increased apoptosis-induced death of tumor cells by 5-FU could increase the ability of immune cells to 
recognize damage-associated molecular patterns released by these dying tumor cells, inducing 
protective inflammation. Evidence needs to be accumulated in this field to clarify whether 
chemotherapy may be an inducer of immune cell activation (Figure 3).
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Figure 2 Mechanism of action using either anti-programmed cell death ligand 1 or anti-nonclassical immune checkpoint inhibitor 
antibodies to increase the effector immune response in colorectal cancer. A: The programmed cell death ligand 1 molecule expressed on both tumor 
and myeloid suppressor cells interacts with programmed cell death 1 molecules expressed on exhausted CD8+ and CD4+ T cells, inducing a state of anergy. 
Additionally, other nonclassical immune checkpoint inhibitor molecules can induce anergy in T cells; B: Anti-programmed cell death ligand 1 antibodies block the 
interaction of the programmed cell death 1/programmed cell death ligand 1 axis, favoring the return from the state of anergy to exert the effector function of CD4+ and 
CD8+ T cells, favoring the reduction of the tumor burden. Most likely, nonclassical immune checkpoint inhibitor antibodies may have a similar effect; C: Once CD4+ T 
cells are activated, they produce cytokines for the efficient activation of CD8+ T cells, which in turn produce granzyme and perforin, inducing apoptosis in tumor cells. 
The addition of chemotherapeutic drugs increases the induction of neoantigens, favoring immune response activation. PDL1: Programmed cell death ligand 1; PD1: 
Programmed cell death 1; ICI: Immune checkpoint inhibitor.

CLASSICAL ICIS USED AS MONOTHERAPY DURING CRC
The effectiveness of ICI as an immunotherapy treatment has been evaluated in the last decade. The 
efficacy of these agents is evident in liquid tumors, such as melanoma, leukemia, and solid non-small 
cell lung carcinoma. Classical ICIs used to treat these oncological pathologies are anti-programmed cell 
death 1 (PD1), anti-programmed cell death ligand 1 (PDL1), and anti-cytotoxic T-lymphocyte-associated 
protein 4 (CTLA4) monoclonal antibodies, where anti-CTLA4 has a lower clinical efficacy[68,69] 
(Table 1).

Diverse reports suggest single or combined therapy using different antibodies targeted against the 
same or another molecule. In melanoma therapy, nivolumab, a human immunoglobulin G4 anti-PD1 
pathway monoclonal antibody, results in an overall survival (OS) rate of 72.9%, whereas the antineo-
plastic chemotherapeutic dacarbazine resulted in a survival rate of 42.1%[69]. In metastatic melanoma 
refractory to chemotherapy, treatment with ipilimumab, an anti-CTLA4 antibody, shows high efficacy 
when combined with anti-PD1 antibodies (either pembrolizumab or nivolumab)[70]. Additionally, 
nivolumab and ipilimumab combination treatment prolongs progression-free survival, mainly in 
patients with tumors testing positive for PDL1 expression[71]. Although in vitro studies suggested that 
atezolizumab, avelumab, and durvalumab, all anti-PDL1 antibodies, more effectively block PD1/PDL1 
signaling (Figure 2)[72], evidence of the use of an anti-PDL1 antibody as a single approved treatment 
without immunotherapy or chemotherapy combination is insufficient to conclude their role in inducing 
protection in metastatic melanoma[73]. Immunotherapy with the anti-PDL1 antibody atezolizumab has 
been approved to treat non-small cell lung carcinoma combined with chemotherapy, and anti-PDL1 has 
been approved to treat triple-negative breast cancer[74,75]. Therefore, increased PDL1 expression in the 
TME of melanoma patients is an efficient marker to predict response to anti-PD1 treatments, which 
must be applied in all types of cancer when this immunotherapy is suggested[76].

Notwithstanding the successful use of immunotherapy in the neoplasms mentioned above, few 
reports show an influential role for classical monoclonal ICI using anti-CTLA4 and anti-PD1/PDL1 axis 
antibodies in CRC. Most clinical assays were disappointing. For example, tremelimumab, a human 
immunoglobulin G2 anti-CTLA4 antibody, did not produce clinically meaningful results when it was 
used as a monotherapy in patients with refractory metastatic CRC[77] (Table 1).
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Table 1 Types of immune checkpoint inhibitor antibodies used as monotherapy, combined immune checkpoint inhibitor, and immune 
checkpoint inhibitor + chemotherapy in colorectal cancer

Antibody 
name Isotype Target 

molecule
Effectiveness1 as 
monotherapy

Effectiveness as 
combined ICI

Effectiveness as ICI + 
chemotherapy Ref.

Ipilimumab IgG1 CTLA4 Yes Well tolerated in 
combination with 
nivolumab

No Suzuki et al[80], 
2021; Lenz et al[86], 
2022; Cohen et al
[90], 2020

Tremelimumab IgG2 CTLA4 No Yes, durvalumab 
improved OS and 
increased lymphoid 
response

Combined with durvalumab + 
fluoropyrimidines, oxaliplatin, 
irinotecan, showed increased OS

Chung et al[77], 
2010; Kanikarla 
Marie et al[85], 2021; 
Chen et al[102], 2020

Nivolumab IgG4 PD1 Well tolerated Well tolerated in 
combination with low 
ipilimumab dose, with 
increased OS

Yes Overman et al[78], 
2017; Kawazoe et al
[79], 2021; Lenz et al
[86], 2022; Morse et 
al[87], 2019

Pembrolizumab IgG4 PD1 Well tolerated, 
increased OS

No There is no evidence Haag et al[82], 2022

Atezolizumab IgG1 PDL1 There is no evidence There is no evidence Safe when combined with cobimetinib, 
having no effect on OS. Combined with 
FOLFOX and bevacizumab showed 
increased progression-free survival, but 
adverse events were shown

Eng et al[91], 2019; 
Antoniotti et al[94], 
2022

Avelumab IgG1 PDL1 Increased OS but 
adverse events were 
shown

There is no evidence Combined with cetuximab showed 
increased T cell killing

Haag et al[82], 2022; 
Stein et al[97], 2021

Durvalumab IgG1 PDL1 Increased 
progression-free 
survival, but adverse 
events were shown

There is no evidence Safe when combined with MEKi, having 
no effect on OS

Oh et al[84], 2022

1Effectiveness was considered as increased survival, well tolerated treatment in patients, or simply a lack of side effects associated with the treatment.
IgG: Immunoglobulin G; OS: Overall survival; PDL1: Programmed cell death ligand 1; PD1: Programmed cell death 1; CTLA4: Cytotoxic T-lymphocyte-
associated protein 4; ICI: Immune checkpoint inhibitor; FOLFOX: 5-FU therapy with leucovorin and oxaliplatin; MEKi: Inhibitor of MAPK/ERK kinase.

Another monotherapy treatment using nivolumab in CRC patients with microsatellite instability and 
FOLFOX chemoresistance showed excellent control of the disease, and patients tolerated this treatment 
well[78]. CRC patients treated with nivolumab combined with an oral heat shock protein 90 inhibitor 
showed safety profiles and antitumor activity associated with reduced activity of Treg cells and better 
response of tumor-infiltrating lymphocytes[79]. Interestingly, a report of a woman treated with 
nivolumab for melanoma with no hereditary CRC background developed colon carcinoma after 7 years 
of anti-melanoma treatment. The medical service then decided to switch the treatment to ipilimumab, 
and after four cycles of monotherapy, the colon tumor was in complete remission[80]. Pembrolizumab 
used as monotherapy in either microsatellite instability-high or mismatch repair-deficient CRC patients 
produced improvements in health-related quality of life compared to patients treated with leucovorin, 
5-FU, and OXA[81]. In one study of refractory mismatch repair, CRC patients treated with pembrol-
izumab as monotherapy plus maraviroc, an agonist of CCR5 that promotes the activation and 
recruitment of macrophages inducing immune cell infiltrate in tumors, showed a beneficial toxicity 
pattern. The OS was higher than expected[82].

ICI with avelumab monotherapy in unresectable metastatic CRC patients who failed FOLFOX 
chemotherapy showed an OS of 72.2% at 8.1 mo, which was similar to the effect of ICI monotherapy 
using either pembrolizumab or nivolumab. However, some patients showed treatment-related adverse 
events[83]. Durvalumab used as monotherapy in microsatellite-instability high/mismatch repair-
deficient metastatic CRC patients whose disease had progressed after chemotherapy showed efficiency 
and a satisfactory progression-free survival of 58.2%; however, side effects were found in 36.4% of 
patients[84].

Taken together, these results suggest that contrary to anti-CTLA4, ICI monotherapy blocking the 
PD1/PDL1 axis has a better effect in high microsatellite instability/mismatch repair-deficient metastatic 
CRC patients who previously displayed chemoresistance. Additionally, combining ICI PD1/PDL1 
monotherapy with either antibodies or immune cell stimulators improves treatment efficacy. However, 
only a small number of clinical trials show increased OS (Table 1). Most likely, the TME reduces the 
access of ICI antibodies to the target molecules expressed in either immune or epithelial cells (Figure 3).
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Figure 3 The tumor microenvironment favors or does not allow the access of both classical and nonclassical immune checkpoint 
inhibitors to their targets in immune cells. A: The classical immune checkpoint inhibitor (ICI) antibody cannot access its target because immune cells are 
surrounded by tumor cells, although immune cells may express classical ICIs; B: On the other hand, classical ICIs probably have access to immune cells but may not 
express the targeting molecules; C: Chemotherapy can induce the death of tumoral cells, favoring the formation of neoantigens that may reactivate immune cells. 
Additional classical ICI antibodies target individual molecules such as cytotoxic T-lymphocyte-associated protein 4, programmed cell death 1, and programmed cell 
death ligand 1; D: Finally, immune cells expressing nonclassical ICIs could have effector profiles such as helper T type 1 cells, cytotoxic T cells, M1, or N1 when 
nonclassical antibodies target them. Additionally, tumor epithelial cells may likely express both classical and nonclassical ICIs. ICI: Immune checkpoint inhibitor.

DOES COMBINED IMMUNOTHERAPY INCREASE THE EFFECTIVENESS OF TREATMENT 
FOR CRC?
Little evidence of the apparent effect of ICI monotherapy on CRC development is available. Conversely, 
increasing evidence suggests a better outcome using combined ICI, i.e., the use of two monoclonal 
antibodies targeting CTLA4 or the PD1/PDL1 axis. To improve the immune response, combination 
treatment with tremelimumab and durmalumab was used in patients for the preoperative management 
of resectable CRC and liver metastases. These patients improved their OS to 24.5 mo; interestingly, their 
CD4+, CD8+, and B cells displayed an activated profile[85]. Additionally, first-line treatment consisting 
of nivolumab plus low-dose ipilimumab treatment in patients with microsatellite instability and 
metastatic CRC without previous chemotherapy showed that this combination was well tolerated at the 
primary endpoint, with robust and durable clinical benefit. However, the study is ongoing, and OS data 
are not yet available[86]. Previous ICI studies using similar inclusion criteria and antibody doses 
showed that follow-up over 12 mo of combined treatment resulted in an 85% OS[87]. Recently, the 
combined use of ipilimumab plus nivolumab before surgery in either mismatch repair-deficient or 
mismatch repair-proficient CRC patients induced an antitumoral response associated with a lack of 
signs of cancer after surgery with increased infiltration of CD8+PD1+ cells; the authors suggested that 
this combined ICI therapy may be the standard treatment for mismatch repair-deficient CRC patients
[21].

Additionally, circulating tumor DNA detection in the blood of patients with durable and ongoing 
responses to ipilimumab plus nivolumab could be used as a monitoring response and dynamic marker 
of this combined ICI treatment[88,89]. Finally, a study attempted to analyze whether pseudo 
progression was observed in mismatch repair-deficient CRC patients treated with nivolumab plus 
ipilimumab, showing that this treatment rarely induces and confirming a high disease control rate of 
86%[90]. Taken together, this evidence strongly suggests that the combined ICI blockade of CTLA4-
PD1/PDL1 in mismatch repair-deficient CRC patients is highly successful. However, these patients 
represent only a tiny fraction of all CRC-diagnosed patients. Therefore, more clinical trials must be 
developed to obtain sufficient evidence to conclude the positive effects of the classic ICI combination.
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USE OF EITHER MONOTHERAPY OR COMBINED IMMUNOTHERAPY PLUS 
CHEMOTHERAPY TO INCREASE THE EFFECTIVENESS OF TREATMENTS FOR CRC
The combined use of atezolizumab plus aobimetinib, a MAPK/ERK kinase 1 and 2 inhibitor that 
increases CD8+ cell infiltration in tumors of patients with microsatellite-stable metastatic CRC, showed 
no improvement in OS and was consistent with the safety of using both drugs[91] (Table 1). A similar 
effect showing only acceptable tolerance to this treatment was observed with durmalumab plus 
inhibitor of MAPK/ERK kinase in microsatellite-stable metastatic CRC patients[89]. No improved OS 
was observed using atezolizumab combined with cobimetinib in metastatic CRC patients[92]. A 
multicenter phase I/II study in June 2017 aimed to analyze the role of durmalumab plus tremelimumab 
combined with FOLFOX chemotherapy in patients with metastatic CRC, expecting a 6-mo progression-
free survival of over 70.7%; however, the authors do not have the final results to date[93].

Recently, the combination of atezolizumab with FOLFOX chemotherapy plus bevacizumab 
(monoclonal anti-vascular endothelial growth factor antibody) in mismatch repair metastatic CRC 
patients induced a median progression-free survival of 13 mo, while FOLFOX plus bevacizumab alone 
resulted in 11 mo of progression-free survival, suggesting that the addition of atezolizumab improves 
progression-free survival. However, 42% of patients showed neutropenia, and 27% displayed severe 
adverse events[94]. The same treatment consisting of atezolizumab combined with FOLFOX plus 
bevacizumab was used in patients with untreated unresectable metastatic CRC, showing no 
improvement in OS and safety signals[95]. The use of the anti-EGFR antibody cetuximab plus avelumab 
for treating wild-type RAS metastatic CRC patients was safe; the authors suggested that an analysis of 
circulating DNA in plasma could be an indicator of the positive effects of this treatment. However, the 
data are insufficient to show the impact on the OS rate[96].

Treatment with cetuximab plus the ICI avelumab in microsatellite stable metastatic CRC patients 
showed that subclones of tumors expressing PDL1 mutations mediated the resistance to direct 
avelumab antitumor effects but also increased T cell killing[97]. An analysis of the neutrophil-to-
lymphocyte ratio in the blood of chemorefractory metastatic CRC patients treated with cetuximab plus 
avelumab showed that a high neutrophil-to-lymphocyte ratio was a poor prognostic factor. Thus, the 
neutrophil-to-lymphocyte ratio could also be a predictor for the effectiveness of the combined ICI 
cetuximab plus avelumab[98].

Regorafenib, an inhibitor of protein kinases in tumor angiogenesis used in combination with 
avelumab in microsatellite stable CRC patients, showed increased infiltration of CD8+ T cells associated 
with better outcomes, with an OS of 10.8 mo[99]. Metastatic CRC patients who previously received two 
radiotherapies and who were treated with durvalumab plus tremelimumab before the third round of 
radiotherapy showed increased circulating, differentiated, and proliferating CD8+ T cells, but the 
authors concluded that this finding does not meet the prespecified endpoint criteria to consider this 
combined ICI plus radiotherapy worthwhile for further study; specifically, the authors suggested an 
objective response rate of at least 25%, but they only obtained a response rate of 8.3%[100].

The addition of FOLFOX-based chemotherapy to avelumab plus an adenovirus vector vaccine 
capable of inducing a CD4+/CD8+ T cell response in mismatch repair-deficient microsatellite instability-
high metastatic CRC patients showed no improvement in progression-free survival[101]. However, The 
Canadian Cancer Trials Group suggests that combining tremelimumab and durmalumab to treat 
patients with high microsatellite instability who had previously received chemotherapy (fluoro-
pyrimidines, OXA, irinotecan, and others) may prolong OS. They correlated the increased effectiveness 
of this immunotherapy combination with the tumor mutation burden elevated in plasma[102].

It is essential to mention that some research about the combination of chemotherapy and ICI is under 
development[93]. For example, a phase II trial in 2020 will show whether atezolizumab combined with 
OXA, radiotherapy, and bevacizumab may increase progression-free survival in microsatellite 
instability CRC patients[103]. Additionally, in microsatellite instability-high metastatic CRC patients 
with deficient mismatch repair, a study is currently underway to prove the improvement of disease-free 
survival by ICI with avelumab plus fluoropyrimidine; the authors suggested that this ICI plus 
chemotherapy treatment would improve the expected 3-year disease-free survival rate by 12%[104]. 
Evidence showing that combining ICI with chemotherapy improves treatment efficacy continues to 
accumulate.

Most clinical trials reported here are recent, and perhaps the evidence is insufficient to conclude that 
a treatment criterion has already been established. Consequently, evidence supports the hypothesis that 
the use of classical ICIs improves chemotherapy treatment, mainly in CRC patients with high 
microsatellite instability. It is crucial for patients who do not have a good prognosis with chemotherapy 
alone to have a better response with the combination of classical ICI antibodies.
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MULTIOMICS, INDIVIDUALIZED IMMUNOTHERAPY, ADOPTIVE TRANSFER OF 
“TRAINED” IMMUNE CELLS, AND NONCLASSICAL ICIS ARE A NEW HOPE FOR CRC
In recent years, mechanisms have begun to be developed to understand and explain why, in some cases, 
classical immunotherapy is sufficient to generate benefits in some patients. Multiple factors participate 
in the development of any pathology, such as the patient’s clinical history, genetics, and the ability of 
their immune cells to act during cancer. We emphasize the importance of the recruitment of immune 
cells to the TME; in the case of melanoma, non-small cell lung cancer, and leukemia, the capacity of the 
immune cells to access is greater, which together with ICIs increases the bioavailability of monoclonal 
antibodies to find the antigens expressed in the required enclosures to be detected and removed or 
blocked[105]. In contrast, other types of oncological pathologies are available when access to the tumor 
site is more difficult for both immune cells and classical ICI antibodies, such as CRC[106]. In addition, 
the causes of CRC are multiple, and we cannot attempt to generalize a unique treatment for all varieties 
of CRC to reduce the statistics of this oncological pathology on the rise.

The single-cell multiomics technique has shed light on the complexity of the individual immune 
response elicited against any agent. This approach facilitates the individual characterization of groups 
of cells by identifying the gene transcripts at a specific time[107]. This technique depends on the 
efficiency of flow cytometry to distinguish and separate individual cells, the equipment used to amplify 
mRNA transcripts and synthesize complementary strand DNA, and sequencing equipment, allowing 
for robust data with high precision and certainty[108]. The advancement of these latest-generation 
technologies allows not only the expression of the classic ICI (CTLA4, PD1/PDL1) to be distinguished 
but also the characterization of mRNA transcripts in specific immune or epithelial cell populations at a 
particular time. These transcripts, already expressed as proteins, can individually be proposed as new 
nonclassical ICIs in patients[109], generating a wide range of therapeutic targets that, as in the case of 
CRC, increase the efficiency of previous treatments.

Some surface molecules involved in suppressive functions for activated T cells, Treg cells, 
macrophages, neutrophils, and epithelial cells have been proposed as immunotherapy targets. 
Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR), T cell immunoglobulin 
and mucin domain 3 (TIM3), LAG3, CD39, CD73, CD47, and SIRP-1α (a do not eat me signal)[110] 
warrant evaluation as monotherapy or combined therapy in CRC.

TIM3 is an overexpressed inhibitory receptor in active immune cells, including myeloid and 
lymphoid cells, with suppressive and modulatory characteristics. It is relevant in reducing interferon-γ 
production by helper T type 1 cells after binding to its ligand, galectin-9[111]. TIM3 is also overex-
pressed by Treg cells in a colitis-associated colon cancer mouse model[112]. The combination of TIM3 
with anti-PD1 ICI antibodies is a good prospect in a murine breast cancer model[113]. Sabatolimab, an 
anti-TIM3 antibody, has already been used as a treatment in ovarian, CRC, and non-small cell lung 
cancer combined with an anti-PD1 antibody, being well tolerated and improving antitumor activity
[114]. GITR has a role in the immunomodulation of effector T cells and increases tumor resistance[113,
115]. Treatment with an anti-GITR antibody combined with pembrolizumab improves the disease 
control rate compared with anti-GITR used as monotherapy for treating CRC, melanoma, and adrenal 
carcinoma[116].

Lymphocyte activation gene-3 (LAG3 or CD223) has a structure similar to that of the CD4 molecule, 
joining major histocompatibility complex II in antigen-presenting cells. However, two of their immuno-
globulin-like domains can bind receptors in tumor cells[81]. Blockage of LAG3 induces increased 
interleukin-2 production and enhances T cell proliferation[117]. Therefore, LAG3 has been proposed as 
an ICI; the genes LAG3 and IDO1 were shown to be overexpressed in a phase II study of pembrol-
izumab use as ICI monotherapy in patients with esophageal squamous cell carcinoma. The authors 
suggested that a combination of ICIs is needed to induce immunity against this tumor[118]. CD73 is an 
extracellular adenosine receptor expressed in immunosuppressant cells (such as Treg cells), favoring 
tumor progression[119].

Recently, single-cell RNA sequencing in a colitis-associated CRC murine model showed that an anti-
CD73 antibody has a significant role in improving the anticancer functions of Treg cells, and exhausted 
CD8+ T cells became activated CD8+ T cells. In contrast, anti-PD1 antibodies in the same model depleted 
Treg cells and M2 macrophages[120], suggesting a synergistic role for the new ICI anti-CD73 that may 
improve the positive effects of anti-PD1 monotherapy. Ex vivo samples of blood and tumors from 
microsatellite instability CRC patients showed that atezolizumab alone could reactivate T cells.

Furthermore, adding tiragolumab, an anti-TIGIT antibody, restored intraepithelial CD4 T and CD8 T 
cell function by favoring interferon-γ and tumor necrosis factor-α production[120,121]. TIGIT is a 
receptor upregulated in natural killer and activated T cells when the modulation of their effector 
abilities is necessary for the microenvironment, such as cancer. It is also overexpressed in Treg cells
[122]. The use of avelumab plus the adoptive transfer of autologous dendritic cell vaccine in 
chemotherapy-treated mismatch repair-proficient metastatic CRC patients had a successful result 
because this treatment was well tolerated. Furthermore, treatment was terminated early because 11% of 
patients were disease free at 6 mo, and progression-free survival was increased by 40%[123]. This 
evidence also suggests that new ICI research could open other possibilities for specific and beneficial 
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treatment for CRC patients because either immune or epithelial cells may express nonclassical ICI 
molecules (Figure 2).

CONCLUSION
Chemotherapy using 5-FU remains the primary treatment for CRC, despite its high toxicity and low 
efficacy. New strategies targeting ICIs have been useful in some oncological pathologies; however, 
evidence showing the effectiveness of classical ICI monotherapy in CRC is scarce. A combination of 
classical ICI antibodies targeting CTLA4 and PD1/PDL1 molecules showed stronger efficacy for CRC 
treatment. Finally, classical ICI plus conventional chemotherapy is effective, as evidenced by increased 
OS, but these strategies are not yet well established, and some clinical studies are ongoing. Evidence 
suggests that chemotherapy produces neoantigens, increasing tumor immunogenicity that may activate 
immune responses[124]. This increased immunogenicity is likely the reason for a better response when 
classical ICI plus chemotherapy is used and may represent a pathway to design new therapeutic 
strategies aimed at improving the response in CRC patients based on immunological reactivation 
combined with conventional chemotherapy. Knowledge of the TME in CRC is essential to understand 
immunosuppression. New options for nonclassical ICIs obtained by single-cell sequencing are shedding 
light on this area and will probably improve the effectiveness of many treatments.

We are possibly on the verge of major findings in the study of CRC, where the immune response will 
continue playing a leading role and where new proposals with nonclassical ICIs may reduce the current 
statistics and poor prognoses for this oncological pathology.
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Abstract
Autoimmune pancreatitis (AIP), a chronic inflammation caused by the immune 
system attacking the pancreas, usually presents imaging and clinical features that 
overlap with those of pancreatic ductal adenocarcinoma (PDAC). Serum bio-
markers, substances that quantitatively change in sera during disease 
development, are a promising non-invasive tool with high utility for differen-
tiating between these diseases. In this way, the presence of AIP is currently 
suspected when serum concentrations of immunoglobulin G4 (IgG4) antibody are 
elevated. However, this approach has some drawbacks. Notably, IgG4 antibody 
concentrations are also elevated in sera from some patients with PDAC. This 
review focuses on the most recent and relevant serum biomarkers proposed to 
differentiate between AIP and PDAC, evaluating the usefulness of immuno-
globulins, autoantibodies, chemokines, and cytokines. The proposed serum 
biomarkers have proven useful, although most studies had a small sample size, 
did not examine their presence in patients with PDAC, or did not test them in 
humans. In addition, current evidence suggests that a single serum biomarker is 
unlikely to accurately differentiate these diseases and that a set of biomarkers will 
be needed to achieve adequate specificity and sensitivity, either alone or in 
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combination with clinical data and/or radiological images.

Key Words: Autoimmune pancreatitis; Pancreatic ductal adenocarcinoma; Serum; Biomarkers; 
Differentiation
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Core Tip: The imaging and clinical features of autoimmune pancreatitis commonly overlap with those of 
pancreatic ductal adenocarcinoma. This study reviews the most recent and relevant serum biomarkers 
proposed to differentiate between these diseases of the pancreas, including serum immunoglobulins, 
autoantibodies, chemokines, and cytokines, evaluating their usefulness for this purpose. One of the key 
conclusions is that a panel of various serum biomarkers appears to be necessary for an accurate differen-
tiation between these diseases, either alone or in combination with clinical data and/or radiological images. 
Importantly, further research is warranted to assess the usefulness of these promising serum biomarkers in 
clinical practice

Citation: Caba O, Diéguez-Castillo C, Martínez-Galán J, González-Cebrián I, Jiménez-Luna C. Serum biomarkers 
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INTRODUCTION
Autoimmune pancreatitis (AIP) is a rare entity that represents 2%-10% of chronic pancreatitis (CP) cases
[1]. Elevated serum concentrations of immunoglobulin (Ig), especially IgG4, have been observed in the 
majority of AIP patients[2], and Umehara et al[3] introduced the concept of IgG4-related disease in 2011, 
including AIP as one of these disorders. AIP can be classified into types 1 and 2, with more than 90% of 
cases corresponding to type 1[4]. Type 1 is associated with high serum IgG4 concentrations, unlike type 
2[5]. Given the large proportion of cases that are type 1, type 1 AIP is referred to as AIP in this review.

The clinical and radiological characteristics of AIP can mimic those of pancreatic ductal adenocar-
cinoma (PDAC), leading to misdiagnosis and therapeutic errors that increase the morbidity and 
mortality of patients. This difficulty in differentiating AIP from PDAC has been well documented, with 
up to 15% of neoplasms being classified as AIP and up to 36% of AIP cases diagnosed as cancer. It 
should also be borne in mind that AIP, like other forms of CP, increases the risk of PDAC and therefore 
requires close follow-up[6]. The similarity between AIP and PDAC means that invasive methods must 
be applied, when possible, to establish the differential diagnosis using histological criteria.

The current diagnostic criteria for AIP, displayed in Table 1, were established in 2011 by consensus 
among international experts[7], who recognized that AIP has two different histopathological and 
clinical subtypes, types 1 and 2, as noted above.

Although serum IgG4 antibodies are used for the diagnosis of AIP, elevated IgG4 concentrations are 
not AIP-specific and are observed in other diseases, including PDAC[8]. In a study of 510 patients, 
Ghazale et al[9] observed increased serum IgG4 in around 10 % of PDAC cases, yielding false positives. 
In addition, not all patients with AIP have elevated serum IgG4 Levels, resulting in false negatives and 
an inadequate diagnostic accuracy[10]. Hence, this serological biomarker alone does not define the 
disease, and its usefulness is more limited in type 2 AIP.

Radiological criteria should also not be used alone, because they can lead to an erroneous differential 
diagnosis between AIP and PDAC[11]. Current recommendations require an exhaustive study to 
establish the diagnosis, including histological and morphological criteria and the response of patients to 
corticosteroid treatment[8]. Although not included in recommendations, clinical characteristics can also 
help the differential diagnosis of PDAC and the two AIP subtypes. Weight loss and anorexia are more 
frequently observed in PDAC, while other organs are more commonly involved in AIP[12]. Ultrasound 
endoscopy plays a key role in the diagnosis, allowing the morphology to be assessed and a core needle 
biopsy to be obtained before the proposal of a percutaneous biopsy or videolaparoscopy[13].

Hence, new serological biomarkers other than IgG4 antibodies are needed for the differential 
diagnosis in order to rule out malignancy and establish the appropriate treatment, avoiding 
unnecessary surgical resection and the erroneous treatment of patients. Some authors have increased 
the diagnostic potential of IgG4 by combining it with other serum biomarkers. Chang et al[14] increased 
the diagnostic accuracy to differentiate between AIP and PDAC by combining IgG4 and carbohydrate 
antigen 19-9 (CA 19-9) levels, with cutoff values of > 140 mg/dL and < 37 U/mL, respectively, obtaining 
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Table 1 Diagnostic criteria for autoimmune pancreatitis

Radiology Serology Histology Response to steroid

Parenchyma:Diffuse enlargement with 
enhancement

IgG4 > 2 x upper 
limit of normal 
value

At least three < 2 wk radiologically demonstrable resolution or 
marked improvement pancreatic/extrapancreatic 
manifestations

Duct: > 1/3 length of the main 
pancreatic duct

Periductal lymphoplasmacytic 
infiltrate without granulocytic 
infiltration

Atypical: Segmental/focal narrowing 
with duct < 5 mm

Storiform fibrosis

Other organ involvement: Bile duct: 
Segmental/multiple proximal or distal 
stricture

Obliterative phlebitis

Retroperitoneal fibrosis > 10 IgG4-positive cells/high 
power field

Salivary/lachrymal glands: Symmet-
rically enlarged

Renal involvement

IgG4: Immunoglobulin G4.

a sensitivity of 64%, specificity of 92%, and diagnostic accuracy of 82 %. When the authors increased the 
cutoff to 280 mg/mL for IgG4 and 85 U/mL for CA 19-9, they reported a higher diagnostic accuracy of 
86.9%. These results differ from those described by van Heerde et al[15], who considered less strict 
cutoff levels (1 g/L for IgG4 and 74 U/mL for CA 19-9) and obtained a sensitivity of 94 % and specificity 
of 100 %. These discrepancies highlight the need to study large samples of patients with homogeneous 
clinical characteristics to ensure the reproducibility of data on diagnostic accuracy. However, the search 
for new biomarkers is hampered by the fact that AIP is a rare entity, limiting sample sizes. In this 
review, we summarize and discuss the progress made in the search for new serum biomarkers for the 
diagnosis of AIP.

CLASSIC SEROLOGICAL MARKERS IN AIP AND PDAC
IgG4
IgG4 is the only serological biomarker currently included in diagnostic criteria for AIP, specifically type 
1 AIP[7]. Values above 135-140 mg/dL were previously established as the cut-off point for the 
diagnosis, varying in sensitivity and specificity according to the population under study[16].

Absolute values are not taken into account in the diagnosis because of the interlaboratory variability 
in normal values, and patients are considered positive when their IgG4 concentrations are two-fold 
higher than the upper limit of normality[17]. European guidelines on IgG4 disease published in 2020 
describe the IgG4 concentration has having diagnostic value when concentrations are four-fold higher 
than the upper limit of normality, which is only observed in a minority of patients[18]. Indeed, when 
jaundice secondary to a pancreatic mass is present, only a value 92-fold higher than the upper limit of 
normality is considered strongly suggestive of AIP[7].

Besides its elevation in PDAC patients[8,19], the usefulness of this serum biomarker is also reduced 
by its lack of specificity and sensitivity to differentiate between primary sclerosing cholangitis and 
cholangiocarcinoma, which can increase the false positive rate by up to 40%[20]. Serum IgG4 is also not 
useful for the diagnosis of type 2 AIP associated with inflammatory bowel disease[16] and must be 
accompanied at least by suggestive radiological findings to have diagnostic value in AIP[21]. Finally, 
normal IgG4 concentrations have been reported in up to 20% of AIP patients, even in the active phase
[22].

CA 19-9
CA 19-9 is a tumor marker that is detectable in serum and widely used in the clinical management of 
PDAC[23]. CA 19-9 is elevated in the majority of PDAC patients and is useful for monitoring purposes; 
however, this biomarker is not useful for the early diagnosis of PDAC detection because of the 
substantial number of false positives and negatives[24].

Furthermore, CA 19-9 is commonly elevated in AIP patients, almost 40% of whom have concen-
trations above 100 U/mL[15]. In this way, individual measurements of either CA 19-9 or IgG4 are 
unable to distinguish AIP from PDAC[25].
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The numerous limitations of CA 19-9 include the influence on its concentrations of the presence of 
jaundice and cholangitis, among many other factors. Nevertheless, it is widely used because it is 
accessible and cheap, and the sensitivity and specificity can be improved by its combination with other 
clinical, serological, histological and/or morphological criteria[26].

Hence, the combination of various serological biomarkers appears necessary to distinguish between 
AIP and PDAC. In this line, Yan et al[27] proposed combining CA 19-9 with globulin, eosinophils, and 
hemoglobin for the differential diagnosis. Elevated concentrations of eosinophils and globulin together 
with reduced concentrations of Hb and CA 19-9 were found to identify patients with AIP with a 
sensitivity of 92% and specificity of 79%, a relatively high diagnostic value.

NOVEL SERUM BIOMARKERS PROPOSED FOR THE DIFFERENTIATION OF AIP FROM 
PDAC 
Igs
IgG1 and IgG2 have been studied in relation to AIP. IgG1 has been proposed as a diagnostic marker for 
AIP and IgG4-associated disease due to its involvement in the immunogenesis of the disease[28]. 
However, IgG2 concentrations were lowest in AIP and highest in IgG4-associated disease with orbital 
involvement[29].

There are different glycoforms of IgG subclasses, and different patterns of glycosylation have been 
described between patients with AIP and PDAC. Quantitative analysis of the IgG glycosylation profile 
may therefore allow the differential diagnosis between these entities to be established with high 
precision[30].

In addition, the proportion of different types of Igs has also shown some promise as a biomarker. An 
increase in IgG and inversely proportional reduction in IgA and IgM have been reported in AIP and 
IgG4-associated disease. In addition, elevated IgE has been described as having diagnostic and 
prognostic value for disease relapse in both entities[31].

Autoantibodies
Anti-annexin A11, anti-laminin 511-E8, and anti-galectin-3 autoantibodies have been implicated in the 
pathogenesis of AIP over recent years. Hubers et al[32], proposed annexin 11, a calcium-dependent 
phospholipid-binding protein, as an autoantigen in AIP. They showed that annexin A11-specific IgG4 
competitively inhibited the pathogenic binding of annexin A11-specific IgG1 to shared epitopes, 
suggesting that the IgG1-mediated pro-inflammatory response could be downregulated by IgG4. 
Laminin 511-E8 is a truncated form of laminin 511, which is part of the extracellular matrix of the 
pancreas. Shiokawa et al[33] detected laminin 511-E8 in 51% of AIP patients (n = 51) compared with 
1.6% of controls (n = 122) and suggested that it is an autoantigen in this disease. Galectin-3, which has 
been associated with fibrotic disorders, has also been proposed as a candidate biomarker[34]. In 
addition, anti-trypsinogen autoantibodies have been observed in sera from AIP patients and related to 
the loss of acinar cells[35].

Autoantibodies to amylase-2A and heat-shock protein 10 (HSP10) were previously found to be 
present not only in AIP but also in fulminant type 1 diabetes. Amylase-2A autoantibodies have not been 
detected in toxic CP or PDAC, while anti-HSP10 antibodies have been reported in a small percentage of 
patients[36,37].

Anti-plasminogen-binding protein autoantibodies have been observed in almost 95% of AIP patients (
n = 35). Interestingly, these antibodies were presented by IgG4-negative patients with AIP but not by 
IgG4-positive patients with type 2 AIP[38]. Anti-pancreatic secretory trypsin inhibitor has also been 
suggested as a potential AIP-specific antibody, although it was detected in serum from less than half of 
AIP patients[39].

Other proposed autoantibodies have been those against carbonic anhydrase II, but they are not AIP-
specific and are observed at high levels in other disorders such as Sjögren’s syndrome[40]. In the same 
way, high concentrations of anti-lactoferrin antibodies have been described in immune diseases other 
than AIP such as ulcerative colitis[41], and anti-prohibitin antibodies are detectable not only in AIP 
patients (73.5%, n = 34) but also in patients with Mikulicz’s disease (53%, n = 15%) or retroperitoneal 
fibrosis (54%, n = 11)[42].

Felix et al[43], studied the spectrum of autoantibodies in patients with AIP (n = 14 with type 1 and 11 
with type 2) or PDAC (n = 26) and healthy controls (n = 22), showing elevated titers of both novel and 
previously reported antibodies against a variety of autoantigens, including carboxypeptidase A1 
precursor, procarboxypeptidase A2, trypsin-1-preproprotein, and vimentin, among others. The authors 
found 68 autoantigens in AIP, 26 in PDAC and 21 in both diseases. The researchers selected 13 
autoantibodies with potential to discriminate between the two types of AIP and also proposed 
antitransaldolase antibody as a biomarker to differentiate between type 2 AIP and PDAC.
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Chemokines and cytokines
The Th2 immune response is a prominent feature of AIP, and some Th2 chemokines might therefore be 
useful as AIP biomarkers. Increased serum concentrations of C-C Motif Chemokine Ligand 17 have 
been reported in patients with IgG4-related disease, but this biomarker has not been explored in AIP
[44].

Increased expressions of C-X-C motif chemokine ligand (CXCL) 9 and CXCL10 were recently 
demonstrated in an experimental model of AIP, but data on their concentrations in patients are not yet 
available[45].

Th2 cytokines have also been proposed as AIP biomarkers. Thus, interleukin (IL)-5 was found to be 
upregulated in patients with IgG4-related sclerosing cholangitis and suggested as a biomarker of AIP
[46].

Serum concentrations of interferon (IFN)-alpha and IL-33 were found to be higher in patients with 
AIP than in those with chronic alcoholic pancreatitis or healthy controls. These concentrations were 
positively correlated with the serum concentrations of IgG4 antibodies. In addition, the observation of 
decreased IFN-alpha and IL-33 after treatment with corticosteroids, unlike IgG4 concentrations, 
suggests that they may be useful for following the response to treatment[47].

In a very interesting study, Ghassem-Zadeh et al[48] investigated the serum cytokine profile of 
patients with AIP (n = 29), CP (n = 17), and PDAC (n = 27) and its capacity to discriminate AIP from the 
other conditions. The authors found that serum levels of IL-1 beta, IL-7, IL-13, and granulocyte colony-
stimulating factor (G-CSF) were higher in patients with AIP vs PDAC. The best diagnostic utility to 
differentiate AIP from PDAC was shown by IL-7 alone [area under the curve (AUC) = 0.780], obtaining 
a marginal added value when it was combined with G-CSF (AUC = 0.782). In the same line, G-CSF 
alone evidenced a better capacity to identify patients with CP from those with AIP (AUC = 0.804). In 
addition, the expression of tumor necrosis factor was found to be higher in PDAC tissue lysates than in 
either type of AIP.

Other cytokines suggested as potential AIP biomarkers include B cell-activating factor and prolif-
eration-inducing ligand, which were found to be higher in patients with AIP than in healthy controls
[49]. A decrease in these cytokines has also been observed after treatment with corticosteroids[45].

CONCLUSION
AIP and PDAC often course with similar symptoms, and biomarkers that can differentiate between 
them are needed for early initiation of the appropriate clinical action protocol. If this milestone is 
reached, it will be possible to avoid pancreatic resection in patients with AIP and incorrect steroid 
treatment in patients with PDAC.

Serum markers may be useful in patients with the presence of compatible symptoms and radiological 
findings, which have a low positive predictive value. Thus, some symptoms, such as abdominal pain 
and diabetes, may be present in both entities.

In addition, radiological criteria for suspicion of AIP are frequently not all present to establish a given 
diagnosis. Given the improved safety and performance of histological sampling of the pancreas by 
endosonography, this procedure should be added in cases of diagnostic doubt. However, the absence of 
malignancy does not definitively rule out neoplasia and, in the absence of histological criteria for a 
definitive AIP diagnosis, active suspicion of neoplasia should be maintained. In this context, the 
combination of serum biomarkers with all these tests can have a high qualitative and quantitative value 
to achieve a reliable diagnosis in these patients. This review describes serological biomarkers proposed 
for this purpose.

Increased serum concentrations of IgG4 antibody are a feature of AIP, but there are two main 
drawbacks to its usefulness as optimal AIP biomarker: (1) It is elevated in PDAC patients; and (2) It is 
not increased in a fraction of AIP patients. These problems have been addressed by numerous studies of 
new biomarkers for AIP diagnostics. These include biomarkers related to AIP immunopathogenesis, 
such as certain cytokines and chemokines, which have shown usefulness in research involving a small 
number of patients, although most studies did not examine the presence of these biomarkers in patients 
with PDAC. Some potential biomarkers have also been identified in experimental models but need to be 
tested in humans.

Another aspect to highlight is that, given the nature of these diseases, the use of a single serum 
biomarker is unlikely to accurately differentiate between AIP and PDAC. As observed in this study, 
almost all authors propose the utilization of a set of biomarkers to achieve high specificity and 
sensitivity for their reliable differentiation.

Translational application in this field will be achieved over the medium term, but further research is 
required on the numerous biomarkers proposed to date, recruiting larger samples of patients with AIP 
and assessing their presence in patients with PDAC. This is needed to verify their true specificity and to 
analyze their possible application in combination with clinical symptoms and/or radiological tests to 
achieve accurate differentiation between AIP and PDAC.
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Abstract
Genetic variations are associated with individual susceptibility to gastric cancer. 
Recently, polygenic risk score (PRS) models have been established based on 
genetic variants to predict the risk of gastric cancer. To assess the accuracy of 
current PRS models in the risk prediction, a systematic review was conducted. A 
total of eight eligible studies consisted of 544842 participants were included for 
evaluation of the performance of PRS models. The overall accuracy was moderate 
with Area under the curve values ranging from 0.5600 to 0.7823. Incorporation of 
epidemiological factors or Helicobacter pylori (H. pylori) status increased the 
accuracy for risk prediction, while selection of single nucleotide polymorphism 
(SNP) and number of SNPs appeared to have little impact on the model 
performance. To further improve the accuracy of PRS models for risk prediction 
of gastric cancer, we summarized the association between gastric cancer risk and 
H. pylori genomic variations, cancer associated bacteria members in the gastric 
microbiome, discussed the potentials for performance improvement of PRS 
models with these microbial factors. Future studies on comprehensive PRS 
models established with human SNPs, epidemiological factors and microbial 
factors are indicated.
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Core Tip: A systematic review was conducted to evaluate current polygenic risk score (PRS) models in 
gastric cancer risk prediction. Our study showed that PRS models had the potential to predict the risk of 
gastric cancer with a moderate accuracy. The prediction models’ performance could be improved after 
incorporating epidemiological factors or Helicobacter pylori (H. pylori) status. The potential of H. pylori 
genomic variations and members of the gastric microbiome were discussed as candidates for gastric cancer 
prediction models.

Citation: Wang XY, Wang LL, Xu L, Liang SZ, Yu MC, Zhang QY, Dong QJ. Evaluation of polygenic risk score 
for risk prediction of gastric cancer. World J Gastrointest Oncol 2023; 15(2): 276-285
URL: https://www.wjgnet.com/1948-5204/full/v15/i2/276.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i2.276

INTRODUCTION
Gastric cancer (GC) is the fourth most commonly diagnosed type of cancer worldwide and the second 
leading cause of cancer-related death[1]. According to the latest cancer statistics, there were approx-
imately 26380 new gastric cancer cases and 11090 deaths in the United States in 2022[2]. The occurrence 
of gastric cancer results from a combination of risk factors, including host genetic factors and Helico-
bacter pylori (H. pylori) infection[3,4]. Genetic variations play an important role in the occurrence and 
progression of gastric cancer[5,6]. Genome-wide association studies have identified many single 
nucleotide polymorphisms (SNPs) in the human genome that are involved in the development of gastric 
cancer. H. pylori infection affects approximately half of the world’s population. The pathogen is 
considered a definite carcinogen of gastric cancer[7]. Epidemiological studies have revealed that age, 
sex, alcohol consumption and smoking are risk factors for gastric cancer[8].

To prevent the development of gastric cancer, it is important to identify individuals at high risk for 
cancer and apply intervention measures to impede the progression of the disease. Many studies have 
been conducted to explore the performance of biomarkers or models established with risk factors for 
predicting gastric cancer risk. Models based on epidemiological factors, including age, sex and H. pylori 
infection, have adequate performance in the prediction of gastric cancer risk[9,10]. Genetic variations of 
H. pylori show great potential for use in the prediction of gastric cancer risk[11]. Cancer-associated SNPs 
have been reported to be valuable in stratifying gastric cancer risk based on the genetic background[12,
13].

Polygenic risk score (PRS) models are established with a number of SNPs or genetic variants to 
explore the combined effect of multiple genetic variations in the risk prediction of disease[14]. They 
show improved performance in the prediction of the risk of breast, prostate, and colorectal cancer and 
diseases involving multiple genetic factors[15-17]. Calculations of PRS vary among different models. 
The simplest way to calculate the PRS is summing the number of all risk alleles[18]. Considering 
variations in the cancer risk associated with different SNPs, each risk allele is weighted by its odds ratio 
(OR) value for cancer. PRS is then calculated as a sum of weighted risk alleles[14]. To date, studies have 
been conducted employing PRS models to predict gastric cancer risk. Different sets of cancer-associated 
SNPs have been used in the PRS models. In certain studies, epidemiological factors have been included 
in the establishment of the models. To assess the performance of PRS models in the prediction of gastric 
cancer risk, this article aimed to comprehensively analyze the accuracy of PRS models for risk prediction 
through a systematic review of related studies and discuss potentials in the performance improvement 
of PRS models with the inclusion of H. pylori genetic variations and bacterial members of the gastric 
microbiome for use in the future.

PERFORMANCE OF CURRENT PRS MODELS
To assess the performance of PRS models for the prediction of gastric cancer risk, a systematic review 
was conducted. The details of the methods for the systematic review can be found in Supplementary 
material. The PRISMA flow chart (Figure 1) shows the article retrieval and filtering process. A total of 
165 articles were retrieved from PubMed, Web of Science, and Embase electronic database using the 
search strategies in the Methods (Supplementary material). After removing duplicates, a total of 96 
articles were further screened. According to the topics and abstracts, 37 articles were selected and 
analysed for eligibility. Of them, 8 studies were eligible and included in our systematic review in 
accordance with the inclusion and exclusion criteria[19-26]. The reasons for exclusion are shown in the 
PRISMA flow diagram.

https://www.wjgnet.com/1948-5204/full/v15/i2/276.htm
https://dx.doi.org/10.4251/wjgo.v15.i2.276
https://f6publishing.blob.core.windows.net/d33671c3-df66-4e6b-8eb4-aa48efcfce36/WJGO-15-276-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/d33671c3-df66-4e6b-8eb4-aa48efcfce36/WJGO-15-276-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/d33671c3-df66-4e6b-8eb4-aa48efcfce36/WJGO-15-276-supplementary-material.pdf
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Figure 1 PRISMA flow diagram. PRISMA flow diagram showed the process of the study selection. SNP: Single nucleotide polymorphism; PRS: Polygenic risk 
score.

The characteristics of the included studies are shown in Table 1. All of the studies were published in 
the last five years. Six of them were case-control studies, and two were cohort studies. The study areas 
included China (5), Korea (1), Japan (1) and Europe (1). The sample sizes in the included studies ranged 
from 1088 to 400807. A total of 544842 participants were included. All the studies established a PRS 
model to predict the risk of gastric cancer.

Details regarding the establishment and evaluation of PRS models in these studies are described in 
Table 2. The accuracy of the PRS models was assessed with the Area under the curve (AUC) in five 
included studies. The performance of the models was moderate, with AUC values ranging from 0.5600 
to 0.7823. The highest performance has been reported by Ishikura et al[25] from Japan, with an AUC of 
0.7677 in the training set and 0.7823 in the validation set. Two studies from China have used ORs to 
evaluate the performance of PRS models[19,23]. OR values for the highest quartile with respect to the 
lowest are 1.14 and 1.19, indicating that the performance of the models was unsatisfactory. The hazard 
ratio (HR) was used in the remaining study with a value of 2.08 for the highest quantile with respect to 
the lowest. Overall, the performance of the current PRS models varies considerably among the included 
studies and appears to have a moderate predictive power for gastric cancer. Factors affecting the 
performance are indicated.

Pearson correlation analysis of sample sizes and AUC values demonstrated that there was no 
significant correlation between them (r = -0.51, P = 0.380). This result suggested that the variations in the 
sample size of the included studies had minimal influence on the predictive power of the PRS model. 
The number of genetic variants in the models ranged from 3 to 112 SNPs. Pearson correlation analyses 
were performed to explore whether the number of SNPs was related to the predictive power of the 
model. The results showed that there was no significant correlation between the number of SNPs and 
AUC (r = 0.85, P = 0.067). Our results are consistent with previous systematic reviews of breast cancer
[27]. This suggests that the inclusion of more SNPs in the PRS model would not improve the 
performance in the prediction of gastric cancer risk.

All of the included studies used the weighted PRS method instead of the simple counting method. 
The weight of risk alleles is crucial for the performance of the PRS models[14,28]. Of note, the same SNP, 
such as rs2294008, has been used in different models, but the weights varied greatly (Table 1). 
Accordingly, the predictive power varied among studies (Table 2). Generally, the weight of a risk allele 
derives from the OR of risk alleles for the development of gastric cancer. In the included studies, the 
ORs mostly came directly from the results of case-control comparisons. They have not been, however, 
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Table 1 Main characteristics of the included studies

Ref. Population Design Group Sample size Sex, (%) Age, (%) SNPs (RA, OR)

Mao et al
[19], 
2017

Chinese Case-
control

GC, 
HC

2631, 4373 Male: 5100 
(72.8%); female: 
1904 (27.2%)

< 60 yr 3299 
(52.9%); ≥ 60 yr 
3705 (47.1%)

rs1514175 (A, 1.01), rs2815752 (A, 1.07), rs574367 (T, 
1.11), rs12463617 (C, 1.05), rs1861411 (A, 1.02), 
rs6545814 (G, 1.05), rs10513801 (T, 1.17), rs2535633 (G, 
0.98), rs16858082 (T, 0.96), rs261967 (C, 1.02), rs888789 
(A, 0.99), rs6890814 (C, 0.99), rs4713766 (A, 1.05), 
rs9356744 (T, 1.03), rs9473924 (T, 0.98), rs17150703 (G, 
1), rs4735692 (A, 1.02), rs11142387 (C, 1.06), rs1211166 
(A, 1.02), rs11191580 (C, 0.92), rs10160804 (A, 0.99), 
rs11030104 (A, 1.02), rs11604680 (G, 0.97), rs2237892 
(T, 1), rs671 (G, 1.12), rs897057 (C, 1.04), rs7989336 (A, 
1.03), rs9568867 (A, 1.03), rs4776970 (A, 1.05), 
rs1558902 (A, 1.04), rs2531995 (T, 1.05), rs4788102 (A, 
1.08), rs7503807 (A, 1), rs9299 (T, 0.9), rs591166 (A, 
1.08), rs11671664 (G, 0.97), rs3810291 (A, 1.02)

Choi et 
al[20], 
2020

European Cohort GC 272 cases in 
400807 
individuals

Male: 186372 
(46.5%); female: 
214435 (53.5%)

NR rs2990223 (G, 1.27), rs10036575 (T, 1.23), rs2294008 (T, 
1.21)

Jin et al
[21], 
2020

Chinese Cohort GC Training set: 
10254 cases and 
10914 controls; 
validation set: 
692 cases in 
100220 
individuals

Training set: 
NR; validation 
set: Male: 42862 
(42.8%); female: 
57358 (57.2%)

Training set: NR; 
validation set: < 
60 yr 69805 
(69.7%); ≥ 60 yr 
30415 (30.3%); 
mean in case: 
60.82 ± 9.33; 
mean in controls: 
53.64 ± 11.00

NR

Qiu et al
[22], 
2020

Chinese Case-
control

GC, 
HC

1115, 1172 Male: 1615 
(70.6%); female: 
672 (29.4%)

< 60 yr 1162 
(50.8%); ≥ 60 yr 
1125 (49.2%)

rs13361707 (C, 1.47), rs2294008 (T, 1.19), rs4072037 (T, 
1.38), rs3762272 (T, 1.21), rs2274223 (G, 1.35), 
rs80142782 (T, 1.36)

Wang et 
al[23], 
2020

Chinese Case-
control

GC, 
HC

2631, 4373 Male: 5100 
(72.8%); female: 
1904 (27.2%)

< 60 yr 3299 
(52.9%); ≥ 60 yr 
3705 (47.1%)

rs1801133 (A, 1.02), rs2275565 (G, 1.01), rs4660306 (T, 
1), rs1047891 (A, 1), rs9369898 (A, 1), rs548987 (C, 
0.98), rs42648 (G, 1.01), rs1801222 (A, 0.99), rs12780845 
(A, 1.01), rs7130284 (C, 1.01), rs2251468 (C, 1.03), 
rs154657 (A, 1.01), rs12921383 (C, 1.01), rs838133 (A, 
1.02), rs234709 (C, 0.99)

Duan et 
al[24], 
2021

Chinese Case-
control

GC, 
HC

544, 544 Male: 825 
(75.8%); female: 
263 (24.2%)

Mean in case: 
57.80 ± 12.06; 
mean in controls: 
57.02 ± 11.97

rs1859168 (C, 1.09), rs3815254 (A, 0.98), rs4784659 (C, 
0.55), rs579501 (A, 0.71), rs77628730 (A, 1.26), 
rs6989575 (C, 1.03), rs7816475 (A, 1.19), rs6470502 (T, 
0.51), rs1518338 (C, 1.08), rs2867837 (G, 0.95), 
rs12494960 (A, 2.62), rs74798803 (T, 0.97), rs7818137 (T, 
1.2), rs550894 (T, 1.13), rs3825071 (A, 1.48), rs580933 
(G, 0.98), rs7943779 (A, 1.54), rs911157 (T, 1.74), 
rs16981280 (C, 0.76), rs2273534 (C, 0.92), rs957313 (T, 
1.04)

Ishikura 
et al[25], 
2021

Japanese Case-
control

GC, 
HC

Training set: 
696 cases and 
1392 controls; 
validation set: 
795 cases and 
795 controls

Training set: 
Male: 1560 
(74.7%); female: 
528 (25.3%); 
validation set: 
Male: 1180 
(74.2%); female: 
410 (25.8%)

Training set: < 60 
yr 1034 (49.5%); 
≥ 60 yr 1054 
(50.5%); 
validation set: < 
60 yr 621 (39.1%); 
≥ 60 yr 969 
(60.9%)

rs4072037 (G, 1.35), rs2294008 (T, 0.62), rs7849280 (G, 
0.24)

Park et al
[26], 
2021

Korean Case-
control

GC, 
HC

450, 1136 Male: 836 
(52.7%); female: 
750 (47.3%)

Mean in case: 
55.4 ± 10.7; mean 
in control: 52.1 ± 
8.5

rs2294008 (T, 1.2), rs6656150 (C, 0.8), rs8280142782 (C, 
0.6), rs760077 (A, 0.8), rs140081212 (A, 0.8), rs4460629 
(T, 0.8)

SNP: Single nucleotide polymorphism included in studies; GC: Gastric cancer group; HC: Healthy controls; NR: Not reported/Not retrieved; RA: Allele 
associated with gastric cancer; OR: Odds ratio.

confirmed in a validation set. This might account for the different weights that have been used among 
studies. It appears that a validation of the OR is required to eliminate the bias of weights among studies, 
improving the consistency in the performance of PRS models.

To improve the accuracy of the PRS model in the prediction of cancer risk, certain epidemiological 
factors implicated in cancer development have been considered[29,30]. A number of epidemiological 
factors are associated with the occurrence of gastric cancer. Individuals of male sex and older age are at 
increased risk for gastric cancer[9,31]. Previous studies have revealed environmental factors in gastric 
cancer development. A family history has been considered to be significantly associated with the 
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Table 2 Development and evaluation of Polygenetic risk scores for predicting gastric cancer

Ref.
No. of 
SNPs 
included

SNP selection

PRS and 
related 
methods 
used to 
calculate it

AUC or OR (95%CI) 
of model with PRS

AUC or OR (95%CI) of 
model with PRS and 
Clinical risk factors

Difference Clinical risk 
factors included

Mao et al
[19], 2017

37 Significance level 
and linkage 
disequilibrium

Weighted 
PRS using 
weights 
derived from 
the same 
study

OR for the highest 
quartile respect to the 
lower quartile: 1.14 
(1.01-1.29)

- - -

Choi et al
[20], 2020

3 Significance level Weighted 
PRS using 
weights 
derived from 
literature

AUC: 0.56 (0.53- 0.60); 
HR for the highest 
quintiles respect to 
the lower quintiles: 
1.75 (1.18-2.59)

- - -

Jin et al
[21], 2020

112 Significance level Weighted 
PRS using 
weights 
derived from 
the same 
study

HR for the highest 
quintiles respect to 
the lower quintiles: 
2.08 (1.61-2.69)

HR for participants with a 
high genetic risk and an 
unfavorable lifestyle 
respect to those with a low 
genetic risk and a 
favorable lifestyle 5.14 
(2.04–12.93)

- Smoking, alcohol 
consumption, 
consumption of 
preserved foods, 
intake of fresh fruit 
and vegetables

Qiu et al
[22], 2020

6 Significance level 
and validated to be 
associated with 
gastric cancer risk

Weighted 
PRS using 
weights 
derived from 
the same 
study

AUC 0.653 AUC 0.684 0.031 BMI

Wang et 
al[23], 
2020

15 Significance level Weighted 
PRS using 
weights 
derived from 
literature

OR for the highest 
quartile respect to the 
lower quartile: 1.19 
(1.04–1.37) 

- - -

Duan et 
al[24], 
2021

21 Prediction 
functions through 
bioinformatics 
tools

Weighted 
PRS using 
weights 
derived from 
the same 
study

AUC 0.737 (0.71-0.76); 
OR for the highest 
10% respect to the 40-
60%: 5.75 (3.09-10.70) 

AUC for PRS + Hp 
infection: 0.752 (0.690-
0.814); AUC for PRS + 
family history of tumor: 
0.773 (0.702-0.843)

PRS + Hp 
infection: 0.014; 
PRS + family 
history of 
tumor: 0.036

Hp infection, family 
history, smoking, 
alcohol consumption

Ishikura 
et al[25], 
2021

3 Significance level Weighted 
PRS using 
weights 
derived from 
the same 
study

AUC for training set: 
0.6287 (0.6039–0.6530); 
AUC for validation 
set: 0.5673 
(0.5391–0.5960) 

AUC for training set: 
0.7677 (0.7465–0.7890); 
AUC for validation set: 
0.7823 (0.7694–0.8140)

Training set: 
0.139; 
validation set: 
0.215

Smoking, alcohol 
consumption, fruit 
and vegetable 
intake, and ABCD 
classification

Park et al
[26], 2021

6 Significance level Weighted 
PRS using 
weights 
derived from 
literature

AUC: 0.565 
(0.535–0.596); OR for 
the highest tertile 
respect to the lower 
tertile: 2.03 (1.51–2.72)

AUC: 0.607 (0.576–0.638); 
OR for the highest tertile 
respect to the lower tertile: 
2.53 (1.92–3.34)

0.042 A sex-specific 
prediction model

SNP: Single nucleotide polymorphism; PRS: Polygenic risk score; AUC: Area under the curve; OR: Odds ratio; HR: Hazard ratio; CI: Confidence interval; 
BMI: Body mass index; Hp: Helicobacter pylori; ABCD classification: Helicobacter pylori infection-related factor.

occurrence of gastric cancer, with OR of more than 2[32]. Studies have revealed a close association 
between alcohol consumption and the risk of gastric cancer. A meta-analysis showed that heavy alcohol 
consumption increases the risk of gastric cancer[33,34]. Smokers have been reported to be at high risk of 
gastric cancer[35]. In this study, epidemiological factors were included in five studies in addition to 
genetic variations (Table 2). After taking into account the epidemiological factors, the AUC achieved 
using each model increased by 0.014 to 0.215. To explore whether the predictive performance of the PRS 
model was improved after epidemiological factors were included, the Mann-Whitney test was 
performed. The results showed that the AUC values were significantly increased from 0.56-0.74 to 0.61-
0.78 after epidemiological factors were considered (P = 0.047).

H. pylori is a major cause of gastric cancer. The risk of non-cardia gastric cancer in H. pylori-infected 
individuals is 6 times higher than that in uninfected individuals[36]. Only one of the included studies 
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took H. pylori into account in the establishment of the PRS model. The performance of the model for the 
prediction of gastric cancer risk increased with an AUC value increasing from 0.737 to 0.752. H. pylori 
infection serves as a biomarker for gastric cancer and has been combined with other epidemiological 
factors to predict gastric cancer risk. Tan et al[37] found that H. pylori infection alone had moderate 
power for predicting gastric cancer risk with an AUC of 0.66. The accuracy of prediction was improved 
after other clinical factors were incorporated. A study consisting of 14929 participants demonstrated that 
H. pylori infection combined with seven epidemiological factors has a high predictive power with an 
AUC value of 0.76[38]. These findings suggest that incorporating H. pylori status into PRS models boosts 
the predictive power for gastric cancer risk.

In many types of cancer, PRS models have shown great power for risk prediction[39,40]. Our analyses 
demonstrated that the performance of current PRS models is promising in predicting the risk of gastric 
cancer. Nonetheless, the predictive power is not as satisfying as expected. Inclusion of epidemiological 
factors and H. pylori infections likely enhances the performance of the PRS model for the prediction of 
gastric cancer risk.

RISK PREDICATION WITH MICROBIAL FACTORS
In the reported PRS models, the risk of gastric cancer has been predicted mainly based on the genetic 
susceptibility resulting from genetic variations and common cancer risk factors, including age, sex, 
smoking status, and alcohol consumption. Previous studies have reported serum pepsinogen status 
could reflect the extent of atrophic change in gastric mucosa[41]. The combination of serum pepsinogen 
status and H. pylori status serves as a valuable marker for stratifying the risk of gastric cancer[42]. 
Individuals with decrease status of pepsinogen and H. pylori infection had a higher risk of gastric cancer 
compared with healthy control, with a HR value of 6.0[43]. Furthermore, recent studies have 
demonstrated that many microbial factors play roles in gastric carcinogenesis. Infection with H. pylori 
causes gastric cancer in only a minority of individuals[44]. Genetic differences between strains of H. 
pylori account in part for the differential outcomes of the infection among individuals[45]. The dysbiotic 
gastric microbiome plays an important role in the development of gastric cancer[46,47]. In addition, 
studies have shown that other bacteria may play an important role in promoting cancer, following the 
structural imbalance of the stomach microbiome induced by H. pylori[48,49]. As we mentioned, multiple 
studies have reported other bacteria that are associated with gastric cancer[50,51]. We believe that the 
gastric microbiome can be used as a valuable candidate to establish a prediction model for the 
occurrence of gastric cancer.

Gastric cancer-associated SNPs of H. pylori 
The genome of H. pylori is substantially diverse[45]. There is a high level of differences in the gene 
contents, deletion/insertion, genetic inversion, sequence variations and SNPs[52]. Genetic variations in 
virulence genes, including cagA, vacA, and babA, are closely associated with gastric cancer risk[53,54]. 
Genome-wide association studies have identified a number of gastric cancer-associated SNPs in the H. 
pylori genome[55,56]. These cancer-associated genetic variations of H. pylori can be used in the risk 
prediction of gastric cancer. During the process of screening the studies (Figure 1), we observed that 
studies used gastric cancer-associated SNPs of the H. pylori genome to predict gastric cancer risk. Using 
a model comprising six validated loci in the cag pathogenicity island, a study on 1220 subjects 
demonstrated a sound predictive power for gastric cancer with an AUC of 0.65[57]. Berthenet et al[55] 
generated a risk score model with 12 gastric cancer-associated SNPs identified by a GWAS study of H. 
pylori. The results of this study have shown that the model is capable of predicting gastric cancer risk. A 
recent report established a PRS model with gastric cancer-associated SNPs selected from previous 
studies[11]. The model based on H. pylori SNPs achieved good predictive performance. These results 
convincingly support that the incorporation of H. pylori genomic variations into current PRS models 
would considerably enhance the accuracy in the prediction of gastric cancer risk.

Cancer-associated bacteria in the gastric microbiome 
Dysbiosis of the gastric microbiome promotes the development of gastric cancer[46,47]. Many bacteria 
in the gastric microbiome possess carcinogenic potential[50,51,58].

An observational study of 1043 patients demonstrated a significant enrichment of Streptococcus 
anginosus (S. anginosus) and Streptococcus constellatus (S. constellatus) in gastric cancer[58,59]. The 
abundances of S. anginosus and S. constellatus serve as novel faecal signatures of early gastric cancer. 
Coker et al demonstrated an association between S. anginosus, Peptostreptococcus stomatis, Parvimonas 
micra, Slackia exigua, Dialister pneumosintes and gastric cancer[60]. These bacteria could form a synergistic 
network, leading to additional contributions to the disease. They could be used as potential tissue 
markers for gastric cancer with AUC values of 0.82 and 0.81 in the discovery and validation cohorts, 
respectively. Png et al[61] conducted a cohort study involving 43 participants to identify potential 
carcinogenic bacteria. The study demonstrates that the Moryella genus, Vibro genus, Comamonadaceae 
family, Paludibacter genus, Agrobacterium genus, and Clostridiales order in the gastric microbiome are 
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associated with gastric cancer. The model containing analyses of these bacteria is capable of predicting 
early gastric cancer with an AUC of 0.82. It has been shown that a random forest model generated with 
bacterial members of the gastric microbiome has a high performance in risk prediction[62,63]. These 
findings collectively support that bacterial members of the gastric microbiome have potential in the risk 
stratification of gastric cancer. Despite the requirement of further validation, the inclusion of the 
analysis of these bacteria in PRS models most likely enhances the accuracy in the prediction of gastric 
cancer.

CONCLUSION
Our systematic review showed that PRS models have great potential in the prediction of gastric cancer. 
Incorporation of other risk factors for gastric cancer could increase the accuracy of the models. To 
further increase the predictive performance of PRS models for gastric cancer, a comprehensive PRS 
model generated with the analysis of epidemiological risk factors, genetic variations of H. pylori, and 
bacterial members of the gastric microbiome in addition to human genetic variations requires further 
evaluation. PRS models with high accuracy would benefit the development of individual risk scores, 
facilitating the prevention of gastric cancer.
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Abstract
BACKGROUND 
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a newly discovered 
oncogene. It is an active cell proliferation regulatory factor that inhibits tumor 
apoptosis in gastric cancer (GC) cells. CIP2A is functionally related to chemores-
istance in various types of tumors according to recent studies. The underlying 
mechanism, however, is unknown. Further, the primary treatment regimen for 
GC is oxaliplatin-based chemotherapy. Nonetheless, it often fails due to chem-
oresistance of GC cells to oxaliplatin.

AIM 
The goal of this study was to examine CIP2A expression and its association with 
oxaliplatin resistance in human GC cells.

METHODS 
Immunohistochemistry was used to examine CIP2A expression in GC tissues and 
adjacent normal tissues. CIP2A expression in GC cell lines was reduced using 
small interfering RNA. After confirming the silencing efficiency, 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium and flow cytometry 
assays were used to evaluate cell proliferation and apoptosis caused by oxaliplatin 
treatment. Further, the key genes and protein changes were verified using real-
time quantitative reverse transcription PCR and Western blotting, respectively, 
before and after intervention. For bioinformatics analysis, we used the R software 
and Bioconductor project. For statistical analysis, we used GraphPad Prism 6.0 
and the Statistical Package for the Social Sciences software version 20.0 (IBM, 
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Armonk, United States).

RESULTS 
A high level of CIP2A expression was associated with tumor size, T stage, lymph node metastasis, 
Tumor Node Metastasis stage, and a poor prognosis. Further, CIP2A expression was higher in GC 
cells than in normal human gastric epithelial cells. Using small interfering RNA against CIP2A, we 
discovered that CIP2A knockdown inhibited cell proliferation and significantly increased GC cell 
sensitivity to oxaliplatin. Moreover, CIP2A knockdown enhanced oxaliplatin-induced apoptosis in 
GC cells. Hence, high CIP2A levels in GC may be a factor in chemoresistance to oxaliplatin. In 
human GC cells, CIP2A regulated protein kinase B phosphorylation, and chemical inhibition of the 
protein kinase B signaling pathway was significantly associated with increased sensitivity to 
oxaliplatin. Therefore, the protein kinase B signaling pathway was correlated with CIP2A-
enhanced chemoresistance of human GC cells to oxaliplatin.

CONCLUSION 
CIP2A expression could be a novel therapeutic strategy for chemoresistance in GC.

Key Words: Cancerous inhibitor of protein phosphatase 2A; Gastric cancer; Oxaliplatin; Chemoresistance; 
Akt

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastric cancer (GC) is primarily treated with oxaliplatin-based chemotherapy. Patients who 
receive chemotherapy often develop resistance. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is 
a novel oncogene. Recent studies suggested that CIP2A is linked to chemoresistance in various cancers. 
The purpose of this study was to look into the relationship between CIP2A expression and oxaliplatin 
resistance in GC. The findings revealed that GC tissues have higher CIP2A expression than matched 
adjacent normal gastric tissues, and CIP2A expression plays an important role in the chemoresistance of 
GC, suggesting a new treatment strategy for GC.

Citation: Zhao YX, Ma LB, Yang Z, Wang F, Wang HY, Dang JY. Cancerous inhibitor of protein phosphatase 2A 
enhances chemoresistance of gastric cancer cells to oxaliplatin. World J Gastrointest Oncol 2023; 15(2): 286-302
URL: https://www.wjgnet.com/1948-5204/full/v15/i2/286.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i2.286

INTRODUCTION
Gastric cancer (GC) is the most common solid tumor originating from the digestive system and is one of 
the most severe and fatal malignancies worldwide[1]. GC has a high mortality rate of 75.0% and 
accounts for 8.8% of all cancer-related deaths[2]. Advanced-stage GC is associated with rapid metastatic 
growth, relapse, and a poor prognosis with a 5-year survival rate of 30%-50%. Clinically, GC is treated 
via surgical resection and chemotherapy, which is a viable option[3]. The primary treatment for GC is 
neoadjuvant or adjuvant therapy. Chemoresistance is a major challenge with few benefits. Further, the 
aggressiveness of GC is attributed in part to intrinsic and extrinsic chemoresistance[4]. As a result, 
identifying the molecular mechanism of chemoresistance in GC is critical.

S-1 (tegafur, gimeracil, and oteracil potassium capsules) or capecitabine in combination with 
oxaliplatin is currently used as adjuvant therapy for GC in various East Asian institutions[5,6]. 
Oxaliplatin is a third-generation platinum analog commonly used to treat GC, resulting in a large amo-
unt of platinum-DNA adducts that are poorly identified by the mismatch repair system[7]. Although 
oxaliplatin initially has a high responsiveness rate, patients eventually develop resistance[8]. Protein 
kinase B (Akt), also known as protein kinase B, is involved in a variety of critical cellular processes such 
as cell proliferation and migration, metastasis, and cancer progression[9]. Drug resistance in various 
types of human cancers is influenced by changes in Akt expression or activity[10-12]. Moreover, 
trastuzumab resistance is primarily determined by Akt signaling activation in breast cancer[12,13]. The 
aberrant Akt signaling pathway activation-mediated epithelial-mesenchymal transition is important in 
the development of doxorubicin resistance in GC cells[14]. Akt signaling has been linked to oxaliplatin 
resistance in GC cells in several studies[15-17].

Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncogene that inhibits c-Myc 
degradation. CIP2A has been shown to facilitate the proliferation of various cancer cells[18]. Moreover, 
CIP2A is overexpressed in a variety of cancers, including breast, head and neck, prostate, lung, and 
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digestive system cancers[18-20]. In human GC, cancer tissues had higher CIP2A levels than noncan-
cerous tissues. As a result, CIP2A may play an oncogenic role in human GC progression and is 
correlated with a poor prognosis[21-23]. Recent studies have linked increased CIP2A expression to 
doxorubicin resistance in human breast and colon cancer cells[24]. Moreover, CIP2A overexpression is 
associated with cisplatin chemoresistance in human non–small cell lung carcinoma, and Akt 
phosphorylation may play a role in this process[25]. The effect of CIP2A on oxaliplatin resistance in 
human GC is unknown.

The current study sought to investigate CIP2A expression in tumor tissue and its relationship to 
clinicopathological features and prognosis in GC patients. We investigated the expression of CIP2A and 
its relationship with oxaliplatin resistance in human GC cells as well as the possible mechanisms 
involved.

MATERIALS AND METHODS
Patients and their clinicopathological characteristics
Between January 2012 and December 2015, 108 paired primary gastric carcinoma tissue and adjacent 
normal tissue (> 5 cm from the tumor margin and noncancerous tissues determined by the pathologist) 
specimens were collected from patients undergoing D2 radical resection at the Department of Gastroen-
terological and Oncological Surgery of the First Hospital of Lanzhou University. Prior to surgery, none 
of the patients received chemotherapy, radiotherapy, targeted therapy, or immunotherapy. Patients 
with GC ranged in age from 26-years-old to 78-years-old (mean: 57.3 ± 6.8 years). Table 1 shows the 
clinicopathological characteristics of patients. The Tumor Node Metastasis stage of the tumor was 
determined using the 8th edition of the American Joint Committee on Cancer staging manual[26]. All 
patients were followed up for at least 5 years after surgery. Further, following surgery, all patients 
received six cycles of S-1 (tegafur, gimeracil, and oteracil potassium capsules) combined with 
oxaliplatin. To detect the mRNA and protein expression of CIP2A, 18 frozen GC tissue and paired 
normal tissue specimens were selected. All pathological results were evaluated independently by two 
specialized pathologists who were blinded. The ethics review board of the First Hospital of Lanzhou 
University approved this study, and each participant provided written informed consent. All 
experiments were performed in accordance with the principles of the Declaration of Helsinki.

Immunohistochemistry analysis
The expression of CIP2A in 108 pairs of GC tissue and matched adjacent normal tissue samples was 
evaluated via immunohistochemistry (IHC) using the SP method. Formaldehyde-fixed and paraffin-
embedded 4-μm-thick samples were deparaffinized with xylene and rehydrated with graded ethanol. 
Antigen retrieval was performed by boiling in a pressure cooker. The endogenous peroxidase activity 
was blocked with H2O2. Primary antibodies (CIP2A antibody 1:500, Santa Cruz Biotechnology, United 
States) were added to the sections and incubated for 1 h at 37 °C in the dark. The secondary antibodies 
were then added at 37 °C for 30 min. Next, DAB (3,3′-Diaminobenzidine) chromogenic reagent was 
added to develop, and hematoxylin was added for staining. In the negative control group, phosphate-
buffered solution (PBS) was used instead of the primary antibody. The IHC score of each slide was 
calculated by multiplying the intensity of staining by the average percentage of positive cells[27]. The 
staining intensity scores were classified as follows: colorless (no staining), 0; light yellow (weak 
staining), 1; yellow-brown (moderate staining), 2; and brown (strong staining), 3. The average 
percentages of positive cells were as follows: 1 = 1%-25%, 2 = 26%-50%, 3 = 51%-75%, and 4 = 76%-100%. 
Based on the Statistical Package for Social Sciences software version 20.0, the optimal cutoff IHC score 
was set as 6. In the final analysis, samples with a score of ≥ 6 were classified as CIP2Ahigh expression, 
whereas those with a score of < 6 were classified as CIP2Alow expression.

Bioinformatics analysis
The Cancer Genome Atlas (TCGA) and The National Center for Biotechnology Information Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) were used to obtain data on CIP2A mRNA 
expression. Moreover, R software and the Bioconductor project were used to analyze and process data 
on CIP2A mRNA expression. Data on the mRNA expression of CIP2A were processed with log2 and 
standardized with R software. For the survival analysis of CIP2A, the online tool Kaplan–Meier plotter (
http://www.kmplot.com/gastric) was used to assess the prognostic value of CIP2A in GC patients. The 
Kaplan–Meier plotter database contains 875 patients with clinicopathologic information about GC from 
the National Center for Biotechnology Information Gene Expression Omnibus 208853 dataset. 
Moreover, the survival data were analyzed online. The Kaplan–Meier survival curves were drawn using 
GraphPad (GraphPad Prism 6.0, La Jolla, CA, United States).

Cell culture, reagents, and small interference RNA
Human GC cell lines MKN-45 and AGS, as well as normal human gastric epithelial cells (GES-1) 

http://www.ncbi.nlm.nih.gov/geo/
http://www.kmplot.com/gastric
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Table 1 Association between the expression of cancerous inhibitor of protein phosphatase 2A and clinicopathological features in 
patients with gastric cancer

Expression of CIP2A
Prognostic variables Number

Low High
χ2 P value

Sex 1.766 0.184

  Male 71 27 44

  Female 37 19 18

Age, yr 0.175 0.676

  < 60 68 30 38

  ≥ 60 40 16 24

Tumor location 0.097 0.756

  Proximal + middle 37 15 22

  Distal 71 31 40

Histological grade 0.001 0.973

  G1 + G2 26 11 15

  G3 82 35 47

Tumor size in cm 5.975 0.015a

  < 5 84 41 43

  ≥ 5 24 5 19

T stage 5.472 0.019a

  T1–T2 36 21 15

  T3–T4 72 25 47

N stage 12.428 0.000a

  N0 47 29 18

  N1–N3 61 17 44

TNM stage 5.168 0.023a

  I + II 69 35 34

  III + IV 39 11 28

aP < 0.05.
CIP2A: Cancerous inhibitor of protein phosphatase 2A; G: Grade; N: Node; T: Tumor; TNM: Tumor Node Metastasis.

(Chinese Academy of Sciences, China), were cultured in RPMI-1640 (Hyclone Laboratories Inc., United 
States) supplemented with 1% penicillin and streptomycin (North China Pharmaceutical Company, Inc., 
China) and 10% fetal bovine serum (Hyclone Laboratories Inc., United States). Oxaliplatin was 
purchased from the Hengrui Medicine Co., Ltd. (Jiangsu, China). Further, Invitrogen Inc. (Carlsbad, CA, 
United States) provided the unique CIP2A small interfering RNA (siRNA) and negative control. The 
CIP2A siRNA sequence is 5’-GACAACUGUCAAGUGUACCACUCUU-3’[28]. To deliver the siRNA 
into the MKN-45 and AGS cells, LipofectamineTM 2000 (Invitrogen Inc., Carlsbad, CA, United States) 
was used based on the manufacturer’s instructions. In addition, MK-2206 was acquired from Cell 
Signaling Inc. (InvivoGen, San Diego, CA, United States).

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay
Cell proliferation was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
tetrazolium (MTT) assay. Cultured cells were separated in 96-well plates for 12 h (5000 cells/well). 
Moreover, 20 μL/well of the MTT reagent was added to each sample after treatment. The sample was 
then incubated at 37 °C for 4 h before being washed with PBS. Following that, 200 μL of dimethyl 
sulfoxide was added. The 490-nm optical density was evaluated. The rate of cell proliferation was 
calculated as the score of surviving cells. Cell viability was measured as a percentage of survival 
(control group: 100%).
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Real-time quantitative reverse transcription PCR
Total RNA was extracted in an RNase-free environment using TRIzol reagent (Invitrogen, United 
States), and cDNA was obtained using PrimeScript™ RT Master Mix (Takara Biotechnology Co., China) 
according to the manufacturer’s instructions. Real-time quantitative reverse transcription (RT-q) PCR 
was performed using the 7500 Fast PCR System (Applied Biosystems, CA, United States) with SYBR® 
Premix Ex Taq™ II (Takara Biotechnology Co., China). The reactions were carried out using the 20-μL 
reaction system per the manufacturer’s instructions. Moreover, glyceraldehyde-3-phosphate dehydro-
genase was used as the housekeeping gene. The primer sequences were as follows: CIP2A (accession no. 
NM020890) sense 5’-GGCACTTGGAGGTAATTTCT-3’, anti-sense 5’-CTGGTTTCAATGTCTACTG-
CTAG-3’, glyceraldehyde-3-phosphate dehydrogenase (accession no. NM002046) sense 5’-AAGGCT-
GGGGCTCATTTG-3’, and anti-sense 5’-AGGAGGCATTGCTGATGATC-3’. All primers were provided 
by Takara Biotechnology Co. The expression of the reference gene glyceraldehyde-3-phosphate 
dehydrogenase was used to normalize the mRNA expression.

Immunoblotting assay
PBS and radio immunoprecipitation assay lysis buffer (Beyotime Biotechnology, China) was used to 
treat the cells, which were supplemented with 1 mmol/L phenylmethanesulfonyl fluoride. They were 
centrifuged for 15 min at 12000 × g at 4 °C. The supernatant was then collected, and the protein concen-
tration was determined using the BCA protein assay (Beyotime Biotechnology, China). Using 10% 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis, an equal amount of sample (50 μg) was 
isolated and moved into the polyvinylidene uoride membrane. The samples were then blocked with 
5% nonfat milk and incubated with the following primary antibodies: CIP2A (2G10-3B5, Santa Cruz 
Biotechnology, United States), phospho-Akt (Ser473, Santa Cruz Biotechnology, United States), Akt (Cell 
Signaling Technology, Inc., United States), and β-actin (Zhongshan Golden Bridge Biotech, China). β-
actin was used as an internal control. After that, samples were incubated with secondary antibodies 
(Zhongshan Golden Bridge Biotech, China) (1:5000). The SuperSignal West Pico Chemiluminescent 
Substrate (Thermo Fisher Scientific Inc., United States) was used to obtain the results. Moreover, data 
were analyzed using Quantity One (Bio-Rad Inc.).

Annexin V assay of apoptosis
After 48 h of siRNA treatment, the GC cells were treated with a specific dose of oxaliplatin (2 μg/mL) 
for 24 h. They were then collected, washed with PBS, and suspended with propidium iodide annexin V-
fluorescein 5-isothiocyanate (BD Pharmingen, United States) in the binding buffer of annexin V. 
Fluorescence was detected using a flow cytometer (BD Biosciences, San Jose, CA, United States) after 20 
min in the dark at room temperature. The cells were then counted using Flow Cytometry Cell Quest, 
and data were analyzed using Magnetic Cell Sorting Quant.

Statistical analysis
All examinations were performed in triplicate, and the results were presented as mean ± standard 
deviation. To compare absorbance values and percentages of apoptotic and viable cells, the two-tailed 
Student’s t test was used. The Pearson’s χ2 test was used to examine the relationship between CIP2A and 
clinicopathological features. Moreover, survival analysis was conducted using the Kaplan–Meier 
method, and the difference in survival curves was examined using the log-rank test. We also ran 
univariate and multivariate Cox proportional hazards regression analyses. All statistical analyses were 
performed using GraphPad Prism 6.0 and the Statistical Package for the Social Sciences software version 
20.0 (IBM, Armonk, United States). SigmaPlot 10.0 (Systat Software Inc., United States) was utilized to 
display the results. Further, P values of < 0.05 (aP < 0.05, bP < 0.01, cP < 0.001) were considered 
significant.

RESULTS
High CIP2A expression in GC tissues and its correlation with clinicopathological features
To investigate the clinical value of CIP2A in GC, we assessed the expression of CIP2A in 108 pairs of GC 
tissue and matched normal tissue samples using IHC and hematoxylin and eosin staining (Figure 1A). 
CIP2A was found in the nucleus and, more specifically, the cytoplasm of GC cells (Figure 1A). CIP2A 
expression was found to be significantly higher in tumor tissues. Meanwhile, CIP2A expression was 
absent or significantly reduced in adjacent normal gastric tissues (Figure 1A). CIP2A expression in GC 
tissues was significantly higher than that in adjacent normal gastric tissues (Figure 1B). RT-qPCR and 
Western blot analysis were performed to detect the expression of CIP2A in 18 pairs of fresh GC tissue 
and adjacent normal gastric tissue samples. Results showed that the expression of CIP2A in GC tissues 
was significantly higher than that in adjacent normal gastric tissues (Figure 1C and D). This finding 
supported the IHC analysis results of paraffin-embedded tissues (Figure 1A). The mRNA expression of 
CIP2A was then assessed using The Cancer Genome Atlas data from paired (n = 27, P < 0.05, Figure 1E) 
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Figure 1 Cancerous inhibitor of protein phosphatase 2A was highly expressed in gastric cancer tissues. A: Representative 
immunohistochemistry images of cancerous inhibitor of protein phosphatase 2A (CIP2A) in the adjacent normal gastric tissues and gastric cancer (GC) tissues (scale 
bar = 50 μm); B: The percentage of CIP2Ahigh expression was significantly higher in GC tissues than in adjacent normal gastric tissues; C: The mRNA expression 
levels of CIP2A were higher in 18 fresh frozen GC tissues than in matched adjacent normal gastric tissues; D: Western blot analysis showed that CIP2A expression 
level in tumor tissues (T) was significantly higher than that in adjacent normal tissues (N). Representative images were displayed in paired fresh surgical GC tissues; 
E and F: Based on data in The Cancer Genome Atlas (TCGA), including paired sample data and unpaired sample data (F), GC tissues had a higher CIP2A 
expression than adjacent normal gastric tissues. bP < 0.01. cP < 0.001.

and unpaired databases (n = 210, normal samples; n = 414, tumor samples, P < 0.05, Figure 1F). CIP2A 
expression was significantly higher in GC tissues than in adjacent normal gastric tissues (Figure 1).

We further investigated the relationship between CIP2A expression and clinicopathological features 
in 108 patients with GC. As shown in Table 1, high CIP2A expression was associated with tumor size (P 
= 0.015), T stage (P = 0.019), N stage (P = 0.000), and Tumor Node Metastasis stage (P = 0.023) but not 
with sex (P = 0.184), age (P = 0.676), tumor location (P = 0.756), and histological grade (P = 0.973).

According to these findings, CIP2A expression was significantly higher in GC tissues. CIP2A could 
thus be an oncogene that promotes tumor development in GC.

Association between the overexpression of CIP2A and poor prognosis in patients with GC
We investigated the prognostic value of CIP2A expression in GC patients. In 108 GC patients followed 
up for a median of 58 mo (range: 3–74 mo), 61 (56.48%) died and 47 (43.52%) survived. According to the 
Kaplan–Meier survival analysis, patients with high CIP2A expression had a shorter overall survival 
(hazard ratio: = 1.814, 95% confidence interval = 1.038–3.032, P = 0.0375, Figure 2A) and progression-free 
survival (hazard ratio = 1.805, 95% confidence interval = 1.039–3.043, P = 0.0383, Figure 2B) than those 
with low CIP2A expression. Based on the National Center for Biotechnology Information Gene 
Expression Omnibus 208853 dataset, a similar trend was discovered, confirming the prognostic 
significance of CIP2A expression in patients with GC (Figure 2C and D).
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Figure 2 High expression of cancerous inhibitor of protein phosphatase 2A was associated with poor overall survival rate and 
progression-free survival rate in patients with gastric cancer. A: Based on the Kaplan–Meier analysis, a high cancerous inhibitor of protein phosphatase 
2A (CIP2A) expression was associated with overall survival (P = 0.0375) in 108 patients with gastric cancer; B: Based on the Kaplan–Meier analysis, a high CIP2A 
expression was associated with progression-free survival (P = 0.0383) in 108 patients with gastric cancer; C and D: According to the Kaplan–Meier analysis of data 
on gastric cancer from the 208853_s_at dataset, patients with CIP2Ahigh expression tumors had a significantly lower overall survival rate (P = 0.0040) (C) and 
progression-free survival rate (P < 0.0001) (D) than those with CIP2Alow expression tumors. CI: Confidence interval; HR: Hazard ratio.

The Cox proportional risk regression model was used to evaluate CIP2A expression and the 
prognostic factors in GC patients. Univariate analysis showed that tumor size, T stage, N stage, Tumor 
Node Metastasis stage, and CIP2A expression (Tables 2 and 3) were significantly correlated with 
prognosis in patients with GC. According to the multivariate analysis, a significant increase in CIP2A 
expression was associated with lower overall survival and progression-free survival rates in patients 
with GC. Further, the expression of CIP2A was an independent prognostic factor in patients with GC (P 
= 0.046 and 0.042, Tables 2 and 3). As a result, CIP2A could be an important oncoprotein in the deve-
lopment of GC.

High expression of CIP2A in human GC cell lines
CIP2A has been shown to promote the proliferation of the human GC cell lines AGS and MKN-45. 
However, its molecular mechanism remains unknown. To determine the expression of CIP2A in AGS, 
MKN-45, and GES-1, RT-qPCR and immunoblotting were performed. The mRNA expression of CIP2A 
in human GC cell lines AGS and MKN-45 was higher than in the human GC cell line GES-1 (Figure 3A). 
According to the protein expression analysis, CIP2A expression was higher in the human GC cell lines 
AGS and MKN-45 (Figure 3B and C). Due to their high expression of CIP2A, AGS and MKN-45 were 
selected.

Proliferation of human GC cells decreased after knockdown of CIP2A
To assess the role of CIP2A in the growth of human GC cell lines, siRNA targeting CIP2A was 
transfected into AGS and MKN-45. RT-qPCR revealed that the mRNA expression of CIP2A knockdown 
in MKN-45 cells was 90% lower than that of scrambled siRNA and mock cells (P < 0.01). Meanwhile, the 
mRNA expression of CIP2A knockdown in AGS cells was 88% lower than that of scrambled siRNA and 
mock cells (P < 0.01). There was no statistically significant difference between the last two samples 
(Figure 4A and B). These findings were confirmed by immunoblotting (Figure 4C-F). Based on the MTT 
assay, the downregulation of CIP2A expression significantly reduced the proliferation of AGS and 
MKN-45 cells. When compared to scrambled siRNA and mock cells, CIP2A siRNA significantly reduced 
the rate of AGS and MKN-45 cell proliferation (P < 0.05) (Figure 4G and H).
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Table 2 Univariate and multivariate analyses of overall survival in patients with gastric cancer

Univariate analysis Multivariate analysis
Prognostic variables

Hazard ratio 95% confidence interval P value Hazard ratio 95% confidence interval P value

Sex 0.99 0.584–1.679 0.97 - - -

Age 1.372 0.820–2.296 0.229 - - -

Tumor location 0.925 0.545–1.569 0.772 - - -

Histological grade 0.736 0.420–1.288 0.283 - - -

Tumor size 2.417 1.399–4.176 0.004a 0.87 0.504–1.504 0.619

T stage 3.184 1.687–6.007 0.000a 2.651 1.295–5.423 0.008a

N stage 2.034 1.196–3.457 0.009a 1.414 0.709–2.818 0.325

TNM stage 1.946 1.168–3.243 0.011a 0.912 0.469–1.774 0.786

CIP2A expression 2.319 1.288–3.927 0.003a 1. 802 1.012–3.210 0.046a

aP < 0.05.
T: Tumor; N: Node; TNM: Tumor Node Metastasis; CIP2A: Cancerous inhibitor of protein phosphatase 2A.

Table 3 Univariate and multivariate analyses of progression-free survival in patients with gastric cancer

Univariate analysis Multivariate analysis
Prognostic variables

Hazard ratio 95% confidence interval P value Hazard ratio 95% confidence interval P value

Sex 0.973 0.574–1.650 0.919 - - -

Age 1.363 0.814–2.281 0.239 - - -

Tumor location 0.913 0.538–1.548 0.735 - - -

Histological grade 0.73 0.417–1.278 0.27 - - -

Tumor size 2.43 1.407–4.197 0.004a 0.869 0.504–1.499 0.614

T stage 3.15 1.669–5.943 0.000a 2.644 1.294–5.420 0.009a

N stage 2.044 1.202–3.476 0.008a 1.451 0.728–2.891 0.29

TNM stage 1.917 1.150–3.194 0.013a 0.88 0.452–1.713 0.88

CIP2A expression 2.309 1.282–3.911 0.003a 1.821 1.021–3.247 0.042a

aP < 0.05.
T: Tumor; N: Node; TNM: Tumor Node Metastasis; CIP2A: Cancerous inhibitor of protein phosphatase 2A.

Increased sensitivity to oxaliplatin in human GC cells induced by the knockdown of CIP2A
CIP2A may be overexpressed in human GC cells. Thus, there could be a correlation between CIP2A 
expression and oxaliplatin sensitivity. To test this theory, CIP2A knockdown cells were treated with 
oxaliplatin at various concentrations. CIP2A knockdown increased susceptibility to oxaliplatin 
significantly (Figure 5A and B). The half maximal inhibitory concentrations of oxaliplatin in CIP2A-
downregulated MKN-45 and AGS cells were 2.9 μg/mL and 3.6 μg/mL, respectively. In the control 
sample, the concentrations were 5.3 μg/mL and 6.2 μg/mL, respectively (P < 0.05). The susceptibility of 
MKN-45 and AGS cells to oxaliplatin were strengthened by 45% and 42%, respectively. Thus, cells with 
downregulated CIP2A expression were more sensitive to oxaliplatin treatment.

Oxaliplatin-induced apoptosis in human GC cells induced by the knockdown of CIP2A
Flow cytometric analysis was used to determine whether CIP2A knockdown promoted cell apoptosis. 
Following oxaliplatin treatment, propidium iodide and annexin V staining were performed. 
Interestingly, CIP2A knockdown significantly enhanced apoptosis caused by oxaliplatin (2 μg/mL). The 
apoptosis rates of CIP2A-downregulated MKN-45 and AGS cells added to oxaliplatin exhibited 33.5% 
and 23.6%, respectively. Control rates in oxaliplatin-treated cells were 16.3% and 11.6%, respectively (P 
< 0.05). In addition, siRNA transfection of CIP2A did not increase the apoptosis rate (Figure 6A-C). As a 
result, CIP2A knockdown caused cell apoptosis. Hence, high CIP2A expression could be a factor of 
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Figure 3 Expression of cancerous inhibitor of protein phosphatase 2A in human gastric cancer cells. A: The mRNA expression of cancerous 
inhibitor of protein phosphatase 2A (CIP2A) in human gastric cancer cell lines (MKN-45 and AGS) and normal gastric epithelial cells (GES-1); B: The expression of 
cancerous inhibitor of protein phosphatase 2A was examined via immunoblotting; C: Immunoblotting was quantified using a spectrophotometer. The results consisted 
of three independent tests. Gastric cancer cell lines vs GES-1. bP < 0.01. RT: Reverse transcription.

oxaliplatin resistance in GC cells.

Akt phosphorylation of human GC cells regulated by CIP2A
To validate the potential mechanisms by which CIP2A promoted the chemoresistance of human GC 
cells, the protein expression and phosphorylation level of Akt signaling in CIP2A knockdown AGS and 
MKN-45 cells were evaluated. According to the findings, CIP2A knockdown significantly reduced Akt 
phosphorylation levels (Ser473). However, it had no effect on the level of Akt protein expression 
(Figure 7A-C). Based on these findings, CIP2A influenced Akt activity in human GC cells, and CIP2A 
knockdown decreased cell proliferation and increased sensitivity to oxaliplatin in human GC cells by 
decreasing the Akt activity.

Increased sensitivity to oxaliplatin in human GC cells caused by chemical inhibition of Akt signaling
Moreover, to validate the effects of Akt signaling in CIP2A with respect to sensitivity to oxaliplatin, MK-
2206, an allosteric Akt inhibitor, was used to pretreat the high expression CIP2A human GC cell line. 
The expression of the indicated proteins and sensitivity to oxaliplatin were assessed using 
immunoblotting and the MTT assay, respectively. Pretreatment with MK-2206 reduced p-Akt levels 
(Figure 8A and B) while increasing sensitivity to oxaliplatin (Figure 8C and D) in MKN-45 and AGS 
cells. Thus, Akt signaling may play a role in sensitizing CIP2A overexpression in human GC cells 
exposed to oxaliplatin.

DISCUSSION
When first diagnosed, most patients have middle- and late-stage GC. The only curative treatment option 
for gastric tumors is surgical resection. However, patients frequently relapse after resection. Therefore, 
after 1B resection, combination therapy has become the standard treatment for advanced-stage disease
[29]. As the first-line chemotherapy regimen, a platinum–fluoropyrimidine-based treatment is often 
used[30]. Oxaliplatin, as the third-generation platinum derivative, has been used successfully to treat 
GC[31,32]. According to the CLASSIC trial, XELOX (capecitabine and oxaliplatin) is superior to 
observation alone after D2 radical gastrectomy. Hence, chemotherapy is effective[33]. Although patients 
initially respond well to oxaliplatin, they eventually develop resistance[34,35]. Tumor cells can gain 
resistance to the cytotoxic effects of oxaliplatin, similar to other anticancer drugs[36]. However, its 
specific molecular mechanism remains unknown, and it must be investigated further.

CIP2A promotes cell proliferation and tumorigenesis in numerous types of tumors by maintaining c-
Myc[18,22,37]. In addition, CIP2A overexpression is correlated with a poor prognosis[21,37]. Interes-
tingly, recent studies on breast, colon, and lung cancer cells have revealed that overexpression of CIP2A 
may induce chemoresistance in cancer cells[24,25]. The current study sought to determine the 
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Figure 4 Small interference RNA targeting cancerous inhibitor of protein phosphatase 2A effectively downregulated expression and 
decreased cell proliferation in human gastric cancer cells. MKN-45 and AGS cells were transfected with negative control small interference RNA (siRNA) 
or cancerous inhibitor of protein phosphatase 2A (CIP2A) siRNA for 48 h. A: CIP2A expression in MKN-45 cells was determined via real-time quantitative reverse 
transcription (RT) PCR; B: CIP2A expression in AGS cells was determined via real-time quantitative RT PCR; C and D: CIP2A expression was determined via 
immunoblotting; E and F: Data were quantified using a spectrophotometer. The CIP2A siRNA group vs the control siRNA group. G and H: The downregulation of 
CIP2A expression could decrease cell proliferation in MKN-45 and AGS cells based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium 
assay. Data showed a significant reduction in the proliferation of CIP2A siRNA-treated cells. The results were three independent tests. bP < 0.01.

association between CIP2A expression and oxaliplatin sensitivity.
Using The Cancer Genome Atlas data analysis, we discovered that the expression of CIP2A in GC 

tissues was significantly higher than that in adjacent normal gastric tissues. We also confirmed 
consistent results in GC tissue specimens. Survival analysis revealed that CIP2A expression was 
significantly correlated with overall survival and progression-free survival in patients with GC. 
Moreover, CIP2A expression in GC cells was significantly higher compared to GES-1 cells. CIP2A 
overexpression has previously been observed in several GC cells[38], and this finding is similar to the 
current study. As a result, MKN-45 and AGS were studied further because they have high CIP2A 
expression[18,39-41].

We performed siRNA knockdown of CIP2A expression to investigate its biological function in GC 
cells. Results showed that CIP2A silencing reduced the growth rate of MKN-45 and AGS cells, 
indicating that CIP2A plays an important role in GC cell proliferation. A similar finding has been 
reported in our previous studies[42]. To investigate the association between CIP2A expression and drug 
sensitivity, we knocked down CIP2A in GC cells and tested their sensitivity to oxaliplatin treatment. 
Previous studies have shown that the knockdown of CIP2A significantly increased the susceptibility of 
GC cells to oxaliplatin. Based on some reports, CIP2A can promote the proliferation of colon cancer 
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Figure 5 Downregulation of cancerous inhibitor of protein phosphatase 2A significantly increased sensitivity to oxaliplatin in human 
gastric cancer cells. A: MKN-45 cells were transfected with cancerous inhibitor of protein phosphatase 2A (CIP2A) small interfering RNA (siRNA) for 48 h and 
were added with oxaliplatin at different concentrations for 24 h; B: AGS cells were transfected with cancerous inhibitor of protein phosphatase 2A siRNA for 48 h and 
were added with oxaliplatin at different concentrations for 24 h. The cell viability was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
tetrazolium assay. The results consisted of three independent tests. The siRNA group vs the control siRNA group. bP < 0.01.

Figure 6 Downregulation of cancerous inhibitor of protein phosphatase 2A promoted oxaliplatin-related apoptosis in human gastric 
cancer cells. Control small interference RNA (siRNA) and cancerous inhibitor of protein phosphatase 2A (CIP2A) siRNA-transfected human gastric cancer cells 
were exposed to oxaliplatin (2 μg/mL). A: At 24 h after treatment, apoptosis was examined via annexin V/propidium iodide staining and flow cytometry; B and C: The 
percentage of apoptotic cells was quantitatively presented in MKN-45 (B) and AGS (C) cells. The results consisted of three independent tests. The cancerous inhibitor 
of protein phosphatase 2A siRNA group vs the control siRNA group. aP < 0.05. V-FITC: V-fluorescein 5-isothiocyanate.
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Figure 7 Cancerous inhibitor of protein phosphatase 2A affected protein kinase B phosphorylation in human gastric cancer cells. MKN-45 
and AGS cells were transfected with the control small interfering RNA (siRNA) or cancerous inhibitor of protein phosphatase 2A (CIP2A) siRNA for 48 h. A: 
Immunoblotting was used to analyze the indicated protein expression; B and C: The CIP2A (B) and phosphorylated protein kinase B (p-Akt) (C) protein levels were 
quantified using a spectrophotometer. The results consisted of three independent tests. bP < 0.01. Akt: Protein kinase B.

cells, and CIP2A knockdown significantly increased sensitivity to oxaliplatin in colon cancer cells[43,
44]. As a result, GC cells with CIP2A expression downregulation were more sensitive to oxaliplatin 
treatment.

Oxaliplatin has the ability to cause apoptosis in GC cells[45,46]. Nevertheless, the underlying 
mechanism is unknown. Previous studies have shown that CIP2A plays an important role in lung 
cancer cell apoptosis when treated with cisplatin[47]. The biological impact of CIP2A is a common 
phenomenon in tumor cells. According to a recent study, the downregulation of CIP2A expression in 
MKN-45 and AGS cells increased apoptosis and oxaliplatin sensitivity, which could be a cause of 
oxaliplatin resistance in GC. Therefore, CIP2A knockdown made GC cells more susceptible to 
oxaliplatin-induced apoptosis, enhancing the cytotoxic effect of oxaliplatin.

According to a previous study, inhibiting the Akt pathway sensitizes GC cells to apoptosis caused by 
cisplatin[48]. Therefore, we discovered that signaling was correlated with the biological behaviors of 
CIP2A. Since the phosphorylation of Akt is a critical step in phosphoinositide 3-kinase/Akt signaling 
activation[49], we confirmed its association with CIP2A expression. CIP2A knockdown caused the 
phosphorylation of Akt in both MKN-45 and AGS cells, according to the findings. Moreover, the 
chemical inhibition of the Akt signaling pathway increased oxaliplatin sensitivity in human GC cells. 
Several studies have found that the downregulation of CIP2A expression can improve the efficacy of 
chemotherapeutic drugs and inhibit Akt signaling in colorectal and lung cancers[26,38]. As a result, the 
association between CIP2A and the Akt signaling pathway might be involved in the biological functions 
of GC cells. This interaction could be correlated with oxaliplatin resistance in GC.

CONCLUSION
A high expression of CIP2A can promote chemoresistance to oxaliplatin in GC, and Akt signaling may 
play a role in this mechanism. The inhibition of CIP2A significantly improved sensitivity to oxaliplatin 
in human GC cells. As a result, suppressing CIP2A expression may be an indirect strategy for more 
effectively treating patients with GC. Nevertheless, further clinical trials on the role of this signaling 
pathway should be conducted.



Zhao YX et al. CIP2A regulates chemoresistance of GC cells

WJGO https://www.wjgnet.com 298 February 15, 2023 Volume 15 Issue 2

Figure 8 Chemical inhibition of protein kinase B signaling significantly increased sensitivity to oxaliplatin in human gastric cancer cells. 
MKN-45 and AGS cells were added to inhibitor of protein kinase B (MK-2206; 20 μM) for 2 h. A: Immunoblotting was performed to evaluate the corresponding protein 
expression; B: The phosphorylated protein kinase B (P-Akt) protein levels were quantified via densitometry; C and D: The pretreated cells were exposed to oxaliplatin 
at different concentrations for 24 h, and the viability was examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay. The 
results consisted of three independent tests. The MK-2206-treated group vs the control group. aP < 0.05. bP < 0.01. Akt: Protein kinase B.

ARTICLE HIGHLIGHTS
Research background
Cancerous inhibitor of protein phosphatase 2A (CIP2A) plays a key role in various types of tumors, 
which may be related to the resistance of gastric cancer (GC) cells to oxaliplatin.

Research motivation
The mechanism of drug resistance in gastric cancer needs to be further studied, and CIP2A expression 
in GC cells and the mechanism of oxaliplatin resistance may be a breakthrough.

Research objectives
To explore the expression of the CIP2A in human GC cells and its correlation with oxaliplatin resistance.

Research methods
Immunohistochemistry was used to examine CIP2A expression in GC tissues and adjacent normal 
tissues. CIP2A gene expression in GC cell lines was reduced using small interfering RNA. After 
confirming the silencing efficiency, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
tetrazolium and flow cytometry assays were used to evaluate cell proliferation and apoptosis, 
respectively, caused by oxaliplatin treatment. Further, the key genes and protein changes were verified 
using real-time quantitative reverse transcription PCR and Western blotting, respectively, before and 
after intervention. For bioinformatics analysis, we used the R software and Bioconductor project. For 
statistical analysis, we used GraphPad Prism 6.0 and the Statistical Package for the Social Sciences 
software version 20.0.

Research results
High CIP2A expression was associated with tumor size, T stage, lymph node metastasis, Tumor Node 
Metastasis stage, and poor prognosis. CIP2A knockdown inhibited cell proliferation and significantly 
increased the susceptibility of GC cells to oxaliplatin. CIP2A regulated the phosphorylation of protein 
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kinase B, and chemical inhibition of the protein kinase B signaling pathway was significantly associated 
with increased sensitivity to oxaliplatin.

Research conclusions
CIP2A expression was closely related to chemotherapy resistance of GC cells. The protein kinase B 
signaling pathway was correlated with CIP2A-enhanced chemoresistance of human GC cells to 
oxaliplatin.

Research perspectives
Regulation of CIP2A expression may be one of the key points in the treatment of GC chemotherapy 
resistance.
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Abstract
BACKGROUND 
Despite optimal neoadjuvant chemotherapy only 40% of gastric cancer tumours 
achieve complete or partial treatment response. In the absence of treatment 
response, neoadjuvant chemotherapy in gastric cancer contributes to adverse 
events without additional survival benefit compared to adjuvant treatment or 
surgery alone. Additional strategies and methods are required to optimize the 
allocation of existing treatment regimens such as FLOT chemotherapy (5-
Fluorouracil, Leucovorin, Oxaliplatin and Docetaxel). Predictive biomarkers 
detected using immunohistochemistry (IHC) methods may provide useful data 
regarding treatment response.

AIM 
To investigate the utility of CD4, CD8, Galectin-3 and E-cadherin in predicting 
neoadjuvant FLOT chemotherapy tumour response in gastric adenocarcinoma.

METHODS 
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Forty-three adult patients with gastric adenocarcinoma, of which 18 underwent neoadjuvant 
chemotherapy, were included in a prospective clinical cohort. Endoscopic biopsies were obtained 
from gastric cancer and normal adjacent gastric mucosa. Differences in expression of Galectin-3, E-
cadherin, CD4+ and CD8+ molecules between tumours with and without treatment response to 
neoadjuvant chemotherapy were assessed with IHC. Treatment response was graded by clinical 
pathologists using the Tumour Regression Score according to the College of American Pathologists 
criteria. Treatment response was defined as complete or near complete tumour response, whereas 
partial or poor/no response was defined as incomplete. Digital IHC images were annotated and 
quantitatively assessed using QuPath 0.3.1. Biomarker expression between responsive and 
incomplete response tumours was assessed using a two-sided Wilcoxon test. Biomarker expression 
was also compared between normal and cancer tissue and between 15 paired tumour samples 
before and after chemotherapy. We performed a preliminary multivariate analysis and power 
analysis to guide future study. Statistical analyses were completed using R 4.1.2.

RESULTS 
The ratio between CD4+ and CD8+ lymphocytes was significantly greater in treatment responsive 
tumours (Wilcoxon, P = 0.03). In univariate models, CD4+/CD8+ ratio was the only biomarker that 
significantly predicted favourable treatment response (Accuracy 86%, P < 0.001). Using a glmnet 
multivariate model, high CD4+/CD8+ ratio and low Galectin-3 expression were the most influential 
variables in predicting a favourable treatment response. Analyses of paired samples found that 
FLOT chemotherapy also results in increased expression of CD4+ and CD8+ tumour infiltrating 
lymphocytes (Paired Wilcoxon, P = 0.002 and P = 0.008, respectively). Our power analysis suggests 
future study requires at least 35 patients in each treatment response group for CD8 and Galectin-3 
molecules, whereas 80 patients in each treatment response group are required to assess CD4 and 
E-cadherin biomarkers.

CONCLUSION 
We demonstrate that an elevated CD4+/CD8+ Ratio is a promising IHC-based biomarker to predict 
favourable treatment response to FLOT neoadjuvant chemotherapy in locally advanced gastric 
cancer.

Key Words: CD4; CD8; Galectin-3; Neoadjuvant chemotherapy; Treatment response; Gastric cancer

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In the absence of treatment response, neoadjuvant chemotherapy for gastric cancer may 
contribute to adverse events without additional survival benefit compared to adjuvant treatment or surgery 
alone. Identifying patients that are likely to achieve favourable tumour response following neoadjuvant 
chemotherapy is of critical importance. In this pilot study, we investigate the utility of CD4, CD8, 
Galectin-3 and E-cadherin molecules in predicting which patients will benefit from neoadjuvant therapy 
using immunohistochemistry in pre-treatment biopsies. We demonstrate that an elevated ratio between 
CD4+ and CD8+ lymphocytes is a promising biomarker to predict treatment response to neoadjuvant 
chemotherapy in locally advanced gastric cancer.
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INTRODUCTION
Gastric cancer is the fifth most common cancer and the third most common cause of cancer death 
worldwide[1-3]. The poor prognosis associated with gastric cancer is in part related to significant 
tumour molecular heterogeneity[4-6]. Despite insight gained from extensive genomic and transcrip-
tomic profiling, molecular classification systems such as those proposed by The Cancer Genome Atlas 
and Asian Cancer Research Group have yet to manifest improvement in the clinical management of 
gastric cancer.
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In North America, the standard of care for locally advanced gastric cancer is neoadjuvant chemo-
therapy with 5-fluorouracil, leucovorin, oxaliplatin and docetaxel (FLOT4)[7]. Advantages of neo-
adjuvant chemotherapy include improved survival compared to surgery alone, greater R0 resection and 
reduction in nodal stage[8-11]. Previous research has demonstrated that pathologic complete response 
(pCR) or treatment response defined as Tumour Regression Grade 1-3 is significantly associated with 
improved prognosis[12,13]. However, pCR occurs in only 3-15% of cases and complete or partial 
response in approximately 40% of patients[9,12,14]. Irrespective of efficacy, cytotoxicity of chemo-
therapy is associated with adverse events including peripheral neuropathy, neutropenia, infection or 
death[7]. Prior evidence suggests that, in the absence of treatment response, neoadjuvant chemotherapy 
in gastric cancer contributes to adverse events without additional benefit compared to adjuvant 
treatment or surgery alone[9,15]. Specific treatment response may be related to underlying tumour 
biology as exposure to neoadjuvant chemotherapy in microsatellite instability in gastric cancer has been 
demonstrated to relate to worse survival outcomes[16-18]. Thus, in order to improve outcomes, it is of 
paramount importance to identify clinicopathologic or molecular biomarkers to identify treatment 
responders.

Immunohistochemistry (IHC) is a proven molecular pathology technique with a record of providing 
prognostic and therapeutic biomarkers in oncology. In gastric cancer, prominent IHC-based biomarkers 
may be prognostic or therapeutic as in the case of E-cadherin and human epidermal growth factor 
receptor 2, respectively[19,20]. However, there is a lack of predictive biomarkers to inform treatment 
response to more common regimens such as neoadjuvant chemotherapy.

Here we investigate a panel of biomarkers that we hypothesize may provide value in predicting 
tumour response. Galectin-3 is a lectin protein that facilitates cancer tumorigenesis and prognosis[21-
24]. Pre-clinical models suggest that increased Galectin-3 expression is associated with chemotherapy 
resistance[25,26]. Recent work has implicated cell-surface expression of Galectin-3 with chemoresistance 
in gastrointestinal cancer stem cells[27]. E-cadherin is a cell-cell adhesion molecule that plays an 
important role in gastric cancer development, classification and prognosis[4,5,28]. In-vitro study has 
previously suggested that germline mutations in E-cadherin related to Hereditary Diffuse Gastric 
Cancer increases chemoresistance to taxol based agents[29]. However, study of breast cancer cell lines 
have identified heterogenous effects of E-cadherin expression on chemotherapy response[30,31]. We 
also assess whether CD4+ and CD8+ tumour infiltrating lymphocytes (TILs) and the relative proportion 
of these cells influence neoadjuvant chemotherapy response. The CD4/CD8 ratio is a marker of immune 
effector function and is associated with multiple disease states. A normal circulating CD4/CD8 ratio 
ranges from 1.5-2.5, and lower ratios in resident tissues or circulation are related to worse HIV related 
outcomes, cardiovascular disease and cancer[32]. Both CD4+ and CD8+ T cells are essential components 
to the tumour microenvironment and their composition in relationship to other immune cells such as 
macrophages, antigen presenting cells and natural killer cells influence the effectiveness of the host 
response to cancer[33]. Increasing evidence recognises the association of greater TILs to favourable 
cancer prognosis and chemotherapy response in colon and gastric cancer[34-39]. To date, no studies 
have investigated the role CD4+ or CD8+ TILs in neoadjuvant chemotherapy response for gastric cancer.

To guide future studies, we performed a prospective pilot study to evaluate if these selected 
biomarkers provide predictive value in evaluating treatment response following neoadjuvant FLOT 
chemotherapy.

MATERIALS AND METHODS
Study design
We performed this single-center, prospective pilot study at the University of Alberta in Edmonton, 
Alberta, Canada from January 2018 to January 2022. All human clinical participants consented 
according to the approved ethics protocol granted by the Health Research Ethics Board of Alberta 
(Study ID: HREBA.CC-17-0228_REN5). Treatment naïve Stage I-IV sporadic gastric adenocarcinoma 
patients aged greater than 18 years were included. A subset of patients enrolled was allocated to a 
second cohort on the basis of receiving curative intent neoadjuvant FLOT chemotherapy (Figure 1). 
Patients with a known inherited oncogenic germline mutation or hereditary syndrome (i.e., Familial 
Adenomatous Polyposis) were excluded.

Specimens were retrieved via endoscopic biopsy at the time of diagnosis, screening laparoscopy or at 
the time of surgical resection at the Walter C Mackenzie Health Sciences Centre or Royal Alexandra 
Hospital. Normal biopsies were obtained from gastric mucosa greater than 5 cm away from the 
cancerous lesion or associated gastritis. The initial study protocol retrieved two tissue biopsies for 
permanent pathology, however, following interim review four biopsies were retrieved thereafter. The 
presence of cancer in specimens was confirmed by a gastrointestinal pathologist. In the absence of 
cancer, clinical formalin-fixed paraffin-embedded pathology blocks were retrieved when available. In 
clinical samples with treatment effect, residual cancer cells were detected using anti-pan cytokeratin 
(Abcam, clone C-11, ab7753) IHC staining followed by the manual assembly of tissue microarray (TMA) 
blocks with 4mm cores of regions containing residual tumour.
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Figure 1 Study overview. Flow chart outlining study design and patient allocation.

Our primary outcome for all patients was the difference in expression of selected biomarkers between 
normal and cancer tissue. In the subgroup of patients receiving neoadjuvant chemotherapy, our primary 
outcome was the difference in expression between tumour treatment response and incomplete 
treatment response. We also evaluated the difference in expression of biomarkers in paired samples 
before and after chemotherapy treatment.

Treatment response was retrieved from clinical pathology reports. The Tumour Regression Score was 
graded according to the College of American Pathologists and National Comprehensive Cancer 
Network protocol on a 4-point scale (0 = Complete response, 1 = near complete response, 2 = partial 
response, 3 = poor or no response)[40]. In accordance with prior studies, treatment response was 
expressed as a binary variable consisting of response and incomplete response categories[12]. 
Responsive tumours included complete and near-complete responses, whereas incomplete responses 
included partial, and poor no response. Patients who progressed to metastasis while receiving 
neoadjuvant treatment were classified as an incomplete response.

IHC
Tissue specimens of normal and cancer tissue were fixed in zinc-formalin (Z-Fixx, Sigma-Aldrich) for 24 
h, washed three times and stored in 70% ethanol prior to preservation in paraffin. Briefly, 4 µm tissue 
sections were deparaffinized in Histoclear (National Diagnostics) and rehydrated. Endogenous 
peroxidases were quenched using 3% hydrogen peroxide in methanol for 5 min. Microwave heat 
induced epitope retrieval was performed using Sodium Citrate (pH 6, heated to 94 degrees Celsius in 1-
min intervals followed by 9 min continuous heat) for E-cadherin and Tris-ethylenediaminetetraacetic 
acid (pH 9, heated to 94 degrees Celsius in 1-min intervals followed by 8 min 30 s continuous heat) for 
CD4 and CD8. Non-specific staining was blocked using 20% normal goat serum (Jackson Laboratories) 
for E-cadherin, CD4 and CD8 or 2% Fetal Bovine Serum (Gibco) in 1X phosphate buffered saline for 
Galectin-3 for 20 min followed by avidin and biotin blocking (Vector Laboratory, SP-2001) per 
manufacturer’s protocol. Tissue sections were stained with primary antibodies anti-E-cadherin (1:25, 1.5 
h room temperature, ThermoFisher Scientific, clone 4A2C7, 33-4000), anti-Galectin-3 (1:200, 30 min room 
temperature, Cedarlane, clone M3/38, CL8942AP), anti-CD4 (1:200, overnight at 4 degrees, Abcam, 
clone EPR6855, ab133616) or anti-CD8 alpha (1:200, overnight at 4 degrees Celsius, Abcam, ab4055). All 
biotinylated immunoglobulin G secondary antibodies were incubated at 1:200 for 30 min at room 
temperature, including rabbit anti-rat for Galectin-3 (Vector Laboratories, BA-4001), goat-anti-rabbit for 
CD4 (Vector Laboratories, BA-1000) and goat-anti-mouse for E-cadherin and CD8 (Jackson ImmunoRe-
search, 115-065-003). Antibody detection was performed using avidin-biotin complex/horseradish 
peroxidase (Vector Laboratories) and 3,3-diaminobenzidine tetrahydrochloride (DAB, Abcam, ab64238) 
per manufacturer’s protocol. Stained tissue sections for E-Cadherin, CD4 and CD8 were counterstained 
with Harris’ hematoxylin (Fisher Scientific) and Harris’ hematoxylin and eosin (Fisher Scientific) for 
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Galectin-3.

Histology imaging and quantification
Histology images were captured at 20 times magnification using a Leica Aperio CS2 digital slide 
scanner. Digital pathology quantification of antibody expression was performed using QuPath version 
0.3.1 (Figure 2A)[41]. Briefly, digital images were uploaded and the tumour and immediate tumour-host 
interface were annotated as a single region of interest. Stain vectors were estimated using default 
settings for each sample. For CD4, CD8 and Galectin-3, positive cells were detected using default 
nucleus DAB optical density settings. The CD4/CD8 ratio was calculated as the proportion of positively 
stained CD4 cells divided by the proportion of positively stained CD8 cells. For E-cadherin, both the 
proportion of positive cells and H-score was calculated. Annotated cell regions were assessed for 
accuracy and in the event of background or non-specific staining positive cell threshold values were 
adjusted to reflect true positive staining. The H-score provides a consensus scoring method for 
evaluating immunostaining across a gradient of intensity (Equation 1). As defined in McClelland et al
[42], H, M and L denotes high, medium and low intensity staining. Cells without staining are denoted N 
for negative staining.

Statistical analysis
Statistical analyses were completed using R version 4.1.2[43]. The statistical methods of this study were 
reviewed by Dr. Ghosh and Dr. Skubleny from the University of Alberta. Differences between groups 
were assessed with a Wilcoxon two-sample test for independent samples and two-tailed paired 
Wilcoxon test for paired samples. Statistical significance was defined at alpha = 0.05. Multiple 
comparisons corrections were not made for our main outcomes given our prespecified analyses, but the 
possibility of false positive results is noted. Summary of continuous variables is expressed as median 
with interquartile range. Categorical variables are expressed as absolute number of cases and percent 
proportions.

The ability of biomarkers to predict treatment response was assessed using the caret package in R
[44]. Briefly, out-of-sample resampling accuracy was estimated for each biomarker as well as the 
combination of all biomarkers using 1000 bootstraps with replacement. Continuous variables were 
centered and scaled. Logistic regression models were used for single biomarker estimates and a 
regularized ElasticNet model implemented in glmnet was used for estimates containing all biomarkers
[45]. Model significance was tested using a one-sided binomial test comparing the estimated model 
accuracy to the No Information Rate (NIR). The NIR is defined as the largest proportion of observed 
classes, or the maximum accuracy of a classifier if it predicted the majority class every time.

Sample size calculations were performed using the MKpower package in R. Two-sample Wilcoxon 
distributions were generated using the mean and standard deviation from our pilot study sample. The 
normality of the distribution for each biomarker’s expression levels were confirmed with a Shapiro-Wilk 
test. Random sampling from a truncated normal distribution constrained between 0 and 100 was 
performed for a series of samples sizes ranging from 10 to 120, in intervals of 10. The empirical power 
(beta) for each sample size was calculated using Monte-Carlo simulations with 1000 iterations for a 
specified type-I error rate (alpha = 0.05).

RESULTS
Patient demographics
Fifty-three patients were consented for this pilot study. Ten patients were excluded: One patient was 
diagnosed with Familial Adenomatous Polyposis, one was found to have neuroendocrine tumour 
pathology, one gastroesophageal junction tumour received alternative neoadjuvant therapy and seven 
patients were excluded due to inadequate tissue biopsies. Of note, an interim analysis of our protocol 
after enrolling the first 20 patients determined a biopsy accuracy rate of 60% for treatment naïve 
specimens and 25% for biopsy following neoadjuvant treatment. This prompted a change in study 
protocol to retrieve 4-8 tissue biopsies per sample.

A total of 43 patients were available for analysis, of which 18 (42%) underwent neoadjuvant 
chemotherapy during our study period. Baseline demographics are included in Table 1. Median age was 
65 (60, 75) and the majority of patients were male (70%). Tumour pathology was represented by all 
TNM stages but a preponderance of high grade (72%), proximal stomach (60%) and diffuse type (63%) 
tumours were present. H. pylori status was available for 32 patients, of which the majority were negative 
(69%) and one was previously treated. Total gastrectomy was performed in nearly half of all patients 
and comprised 59% of all surgical resections.

Expression of biomarkers in normal and cancer tissues
Representative images of each IHC stain within the 75th and 25th percentile of expression is presented in 
Figure 2B. Staining for E-cadherin was only identified on cell membranes of gastric epithelium. 
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Table 1 Baseline demographics

Characteristic N = 431 n/N (missing %)

Age (yr) 65 (60, 75) 43 / 43 (0%)

Sex 43 / 43 (0%)

Female 13 (30%)

Male 30 (70%)

Stage 43 / 43 (0%)

I 11 (26%)

II 10 (23%)

III 8 (19%)

IV 14 (33%)

Grade 43 / 43 (0%)

G1 1 (2.3%)

G2 10 (23%)

G3 31 (72%)

Gx 1 (2.3%)

Tumour location 43 / 43 (0%)

Distal 14 (33%)

Proximal 26 (60%)

Whole stomach 3 (7.0%)

Lauren classification 41 / 43 (4.7%)

Diffuse 26 (63%)

Intestinal 13 (32%)

Mixed 2 (4.9%)

Signet ring cell (present) 26 (63%) 41 / 43 (4.7%)

H. pylori history 32 / 43 (26%)

Negative 22 (69%)

Positive 9 (28%)

Treated 1 (3.1%)

Smoker 40 / 43 (7.0%)

Yes 9 (22%)

No 14 (35%)

Ex 17 (42%)

Smoker (pack years) 7 (0, 32) 39 / 43 (9.3%)

Surgery 43 / 43 (0%)

Total gastrectomy 20 (47%)

Distal gastrectomy 14 (33%)

No resection 9 (21%)

Neoadjuvant chemotherapy 18 (42%) 43 / 43 (0%)

CD4/CD8 ratio (% positive) 1.7 (1.2, 2.8) 42 / 43 (2.3%)

CD4 (% positive) 14 (7, 24) 43 / 43 (0%)

CD8 (% positive) 8 (5, 11) 42 / 43 (2.3%)

Galectin-3 (% positive) 46 (30, 57) 43 / 43 (0%)
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E-cadherin (% positive) 18 (6, 28) 43 / 43 (0%)

E-cadherin H-score 22 (7, 40) 43 / 43 (0%)

1Median (IQR); n (%).

Figure 2 Immunohistochemistry stains and expression of biomarkers in treatment naïve normal and cancer tissue. A: Representative images 
of QuPath digital pathology annotation using CD4 immunohistochemistry (IHC) at 10X magnification. Raw images (left) are processed and regions of interest are 
identified according to our methods. The annotated image (right) demonstrates the calculation of positive stained cells (red) and negative cells (blue); B: 
Representative IHC images taken at 10X magnification for each respective biomarker identified on the y-axis. Images of expression values within the 75th and 25th 
percentile are presented in the left and right columns, respectively. Arrows demonstrate positive staining in low expression specimens; C: Boxplot comparison of 
expression for each respective biomarker in treatment naive normal and cancer tissue. The IHC biomarker is labeled on the heading of each graph. The y-axis 
represents IHC score, which is the percent of positive stained cells for Galectin-3, CD4, CD8 and E-cadherin and the H-score for E-cadherin H-score plot. The x-axis 
labels the distribution corresponding to normal (blue) and cancer (red) tissue. The raw P value for Wilcoxon tests is annotated in each panel.

Galectin-3 exhibited heterogeneous staining and was identified in nuclei, cytoplasm, and surrounding 
tumour stroma. The presence of Galectin-3 was often sporadic with distinct regions representing intense 
positive stain followed by fairly abrupt transition to moderate positivity. CD4 and CD8 positive staining 
was identified on the cell membrane of lymphocytes.

Galectin-3 was the most abundant molecule with a median expression of 46% (30, 57), followed by E-
cadherin, CD4 and CD8 (Table 1). The E-cadherin H-score (median 22 (7, 40)) closely approximated the 
proportion of E-cadherin positive cells (median 18 (6, 28)). Greater H-score values in the upper quartile 
reflected the presence of high staining intensity in positive cells.

Significantly increased expression of CD4, Galectin-3 and CD4/CD8 Ratio was identified in cancer 
tissue relative to normal adjacent tissue controls (Wilcoxon, P = 0.035, P = 0.020 and P = 0.018 
respectively) (Figure 2C). The distribution of IHC scores between normal and cancer tissue for CD4 and 
Galectin-3 was relatively uniform, whereas differences in CD4/CD8 Ratios were dominated by sample 
outliers with large cancer IHC scores. In agreement with historical study, E-cadherin positivity and H-
score was significant decreased in cancer tissue relative to normal. (Wilcoxon, P < 0.0001 and P < 0.001, 
respectively).
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There were no statistically significant associations between relevant clinicopathologic factors and the 
expression of any biomarker for stage, lymphovascular invasion, perineural invasion, carcinomatosis, 
tumour grade or location (Supplementary material). The proportion of E-cadherin positive cells was 
significantly different according to Lauren Class, with relatively fewer positive cells present in diffuse 
and mixed type cancers (Kruskal-Wallis, P = 0.043).

Association of biomarker expression with exposure to neoadjuvant chemotherapy
We compared the expression of biomarkers in 15 paired tumour samples from the same patient before 
and after neoadjuvant FLOT to evaluate the effect of treatment on biomarker expression. All pre-
treatment specimens were obtained by endoscopic biopsy and thus were restricted mainly to the 
mucosa and lamina propria. The majority of post-treatment samples were analyzed as TMA cores from 
surgical resection specimens (TMA cores = 87% vs biopsy = 13%) in which residual tumour was present 
in mucosa, submucosa and muscularis.

We found significantly increased association of tumour cells with CD4+ and CD8+ TILs following 
neoadjuvant chemotherapy (Paired Wilcoxon, P = 0.002 and P = 0.008, respectively) (Figure 3A). In 
contrast, E-cadherin positivity and H-score significantly decreased in post-treatment samples (Paired 
Wilcoxon, P = 0.035 and P = 0.04, respectively). This was likely in part due to differences in tumour cell 
depth of invasion between pre-treatment biopsy and post-treatment TMA cores. CD4/CD8 Ratio 
expression remained relatively stable within samples except for one patient (Figure 3A).

High CD4/CD8 ratio is associated with treatment response
Figure 3B outlines the relationship of biomarker expression to treatment response between pre- and 
post-treatment cancer specimens. For all analyses, we observed incomplete response in 14 patients 
(Partial = 9, Poor or No = 4, Progression to metastasis = 1) and response in 4 patients (Complete = 1, 
Near Complete = 3). Statistically greater CD4/CD8 Ratios were observed in pre-treatment cancer 
biopsies compared to incomplete responders (Wilcoxon, P = 0.025). Clinicopathologic characteristics 
were similar between treatment response groups (Table 2).

Next, we explored the utility of individual biomarkers (Models 1-6) and the combination of all 
biomarkers (Model 7) in predicting treatment response scores (Figure 3C). Given the small sample size 
and events per variable, we used out-of-sample estimates from 1000 bootstraps to limit bias by favouring 
pessimistic estimates of model accuracy. In this dataset, all biomarkers were effective at predicting 
incomplete tumour response (Sensitivity range 88-98%) but suffered from poor specificity (range 0-44%). 
CD4/CD8 Ratio was the only variable that provided significant model performance (Accuracy > NIR, 
one-sided binomial, P < 0.001). The ElasticNet model using CD4/CD8 Ratio, CD4, CD8, Galectin-3 and 
ECAD H-score as independent variables provided a mean accuracy greater than the NIR but failed to 
achieve statistical significance (P = 0.26).

The optimal glmnet model provided coefficients for all variables despite tuning parameters allowing 
for L2 regularization (alpha = 0). To guide future studies, we evaluated the contribution of all biomarker 
variables to the predictive model using the final regularized ElasticNet coefficients (Figure 3D). The 
absolute value of coefficients found CD4 /CD8 Ratio and Galectin-3 to provide the greatest influence in 
predicting favourable tumour response. Specifically, tumour response was associated with increasing 
CD4/CD8 Ratio and decreasing Galectin-3, respectively.

Sample size calculations
To inform future studies we performed sample size calculations using our pilot study sample distri-
butions. In particular, we were interested in identifying the sample sizes required to evaluate the utility 
of biomarkers in explaining tumour response using a two-sample Wilcoxon test. In Figure 3E, we 
observe that CD8 and Galectin-3 require similar sample sizes of 30 and ~35 in each treatment response 
group to achieve adequate power. The relationship between sample size and empirical power was 
nearly identical for CD4 and E-cadherin, which were calculated to require ~70 and 80 samples in each 
group, respectively.

DISCUSSION
In this pilot study, we present the utility of IHC-based expression of Galectin-3, E-cadherin, CD4 and 
CD8 in predicting treatment response to the neoadjuvant chemotherapy regimen FLOT4. First, we 
establish that Galectin-3, CD4, E-cadherin and the CD4/CD8 Ratio expression are significantly different 
between cancer and normal adjacent tissue. These findings suggest that these markers are intrinsic to 
the tumour or tumour microenvironment and thus may provide prognostic or predictive yield. Next, we 
establish that the CD4/CD8 Ratio is significantly greater in tumours with complete or partial response 
to neoadjuvant chemotherapy. In preliminary univariate and multivariate machine learning models, the 
CD4/CD8 Ratio was the only significant predictive marker of treatment response with an accuracy of 
86%. Finally, we demonstrate that the tumour-specific expression of CD4, CD8 and E-cadherin is 
significantly modified in paired tumour samples before and after chemotherapy.

https://f6publishing.blob.core.windows.net/986be719-3409-4778-a41d-78f982b0a7df/WJGO-15-303-supplementary-material.pdf


Skubleny D et al. CD4/CD8 ratio predicts GC neoadjuvant response

WJGO https://www.wjgnet.com 311 February 15, 2023 Volume 15 Issue 2

Table 2 Clinicopathologic factors according to treatment response

Characteristic Incomplete response, N = 141 Response, N = 41 P value2

Age (yr) 60 (57, 63) 60 (52, 67) > 0.9

Sex 0.3

F 5 (36%) 0 (0%)

M 9 (64%) 4 (100%)

Stage 0.6

I 2 (14%) 2 (50%)

II 5 (36%) 1 (25%)

III 6 (43%) 1 (25%)

IV 1 (7.1%) 0 (0%)

Grade 0.6

G1 1 (7.1%) 0 (0%)

G2 2 (14%) 2 (50%)

G3 10 (71%) 2 (50%)

Gx 1 (7.1%) 0 (0%)

Tumour location > 0.9

Distal 3 (21%) 1 (25%)

Proximal 10 (71%) 3 (75%)

Whole stomach 1 (7.1%) 0 (0%)

Lauren classification 0.5

Diffuse 10 (71%) 1 (33%)

Intestinal 4 (29%) 2 (67%)

Signet ring cell (present) 9 (64%) 1 (33%) 0.5

H. pylori history > 0.9

Negative 8 (57%) 2 (50%)

Positive 3 (21%) 1 (25%)

Unknown 3 (21%) 1 (25%)

Smoker > 0.9

Yes 4 (33%) 2 (50%)

No 4 (33%) 1 (25%)

Ex 4 (33%) 1 (25%)

Smoker (pack years) 13 (0, 40) 36 (25, 42) 0.5

Surgery > 0.9

Total gastrectomy 10 (71%) 3 (75%)

Distal gastrectomy 3 (21%) 1 (25%)

No resection 1 (7.1%) 0 (0%)

1Median (IQR); n (%).
2Wilcoxon rank sum test; Fisher's exact test.

Several potentially useful approaches for determining treatment response have previously been 
recognized. Clinical or pathologic factors including age, tumour grade, signet cell pathology, serum 
carcinoembryonic antigen, various circulating lymphocyte populations and tumour size are significant 
predictors of tumour response[46-48]. The majority of predictive tumour biomarker research in gastric 
cancer has focused on identifying molecules associated with adjuvant chemotherapy response. For 
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Figure 3 Association between biomarker expression and neoadjuvant 5-fluorouracil, leucovorin, oxaliplatin and docetaxel chemotherapy. 
A: Paired boxplots for biomarker expression pre- and post-neoadjuvant chemotherapy. Each coloured point and line correspond to a single patient. Boxplots in grey 
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represent the distribution of expression for all patients before and after chemotherapy. Paired Wilcoxon P value is present in each plot; B: Boxplot comparison of 
expression for each respective biomarker between treatment response (purple) and incomplete response (green). The immunohistochemistry (IHC) biomarker is 
labeled on the heading of each graph. The y-axis represents IHC score, which is the percent of positive stained cells for Galectin-3, CD4, CD8 and E-cadherin and 
the H-score for ECAD H-score plot; C: Forest plot for metrics of ElasticNet models. Models were constructed using the treatment response as the dependent variable 
and the corresponding independent variable(s) identified in the variable column. The plot represents the out-of-sample accuracy (blue square) and 95% confidence 
intervals (whiskers) for models estimated from 1000 bootstraps with replacement. The no information rate, defined as the maximum accuracy of a classifier if it 
predicted the majority class every time, is shown by the solid and dotted vertical lines for univariable and multivariable models, respectively; D: Barplot of model 
coefficients from multivariable glmnet model. The y-axis represents model covariates and the x-axis the coefficient value. Treatment response is related to increasing 
covariate values or decreasing covariate values for positive and negative coefficients, respectively. The absolute importance of the coefficient is shown in blue 
according to the scale legend; E: Lineplot illustrating monte-carlo simulations for two-sample Wilcoxon sample size calculations. The y-axis is the empirical power and 
the x-axis is the sample size in each group. Each coloured line corresponds to a biomarker labelled according to the legend.

example, a multivariable model utilizing the measurement of several TIL populations in 879 patients 
provided 3-year survival prediction accuracies of 79 and 84% for surgery alone and adjuvant 
chemotherapy populations, respectively[34]. In the neoadjuvant setting, a post-hoc analysis of 83 
patients in the COMPASS trial identified several candidate gene expression based-biomarkers such as 
TIMP1 and DSG2 using quantitative real-time polymerase chain reaction[49]. Other studies to identify 
treatment response have used microRNAs, exosomes, inflammatory markers or medical imaging data
[50]. Although predictive and prognostic factors identified in these studies show promise, there is 
limited external validity of these studies and clinical implementation is yet to be achieved.

This is the first study to evaluate the role of tumour-associated CD4/CD8 Ratio in gastric cancer 
neoadjuvant chemotherapy response. Increasing evidence has demonstrated the coordinated role of 
CD4+ and CD8+ T-cells in mediating tumour immune surveillance, immunotherapy response and cancer 
prognosis[51]. Sustained and effective tumour immune response requires CD4+ T-cells, which potentiate 
effector CD8+ response via secretion of cytokines such as interleukin-2, participate in direct anti-tumour 
effects via interferon-gamma and tumour necrosis factor, or facilitate antibody mediated humoral 
response from B-cells via CD40 Ligand binding[52]. Indeed, research evaluating chimeric antigen 
receptor (CAR) T-cell immune populations demonstrate increased anti-tumour activity with increasing 
CD4/CD8 ratio[53]. Yang et al[54] also demonstrated that CD4+ CAR T cells are more effective at 
maintaining anti-tumour activity in vivo compared to CD8+ CAR T cells that are prone to exhaustion 
and apoptosis. Furthermore, in native tumour microenvironments increasing CD4/CD8 Ratio of the 
tumour-host interface in triple negative breast cancer is associated with improved overall and 
recurrence-free survival[51].

The dynamic increase in TIL expression following neoadjuvant chemotherapy in our pilot study also 
replicates previous findings. Significant work in breast cancer has implicated the pattern of TIL changes 
following chemotherapy to treatment response. In particular, greater CD4+ T-cell expression is 
associated with pathologic complete response[55]. Also, decreased immune infiltration is a notable 
characteristic of residual tumours following neoadjuvant chemotherapy relative to pre-treatment biopsy
[55]. Continued evaluation of the relationship of dynamic changes in CD4 and CD8 populations in 
gastric cancer are required to fully leverage these biomarkers.

Our study design is intended to provide a reproducible and externally valid method of biomarker 
analysis. Using IHC allows for easier clinical implementation given that common pathology workflows 
already include IHC analysis. Our use of open-source digital pathology software such as QuPath also 
provides a standardized basis to internally and externally validate our method in future studies. Digital 
pathology allows annotation and measurement of regions of interest within the software and thus 
eliminates the need for complex physical microdissection utilized in other biomarker studies.

The main limitation of this study is the low enrollment of curative intent patients. This is likely due to 
low disease incidence in our population but also may be related to the severe acute respiratory 
syndrome coronavirus 2 pandemic. Given our rate of patient enrollment, future study should prioritize 
increasing sample size by using a retrospective design in order to provide more accurate estimates for 
future multi-centre prospective study. Our sample size calculation suggests that a limited retrospective 
study with approximately eighty-five patients in each group will provide adequate power to assess 
these relationships.

CONCLUSION
The CD4/CD8 Ratio is a promising IHC-based biomarker with therapeutic implications for response to 
neoadjuvant chemotherapy in locally advanced gastric cancer. Future inquiry should focus on 
evaluating the prognostic value of these markers and the generation of a sufficient sample size to 
establish a predictive model for potential future clinical use.
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ARTICLE HIGHLIGHTS
Research background
Neoadjuvant chemotherapy for gastric cancer is standard of care in western nations. Despite optimal 
therapy, only 40% of patients achieve complete or near complete treatment response. Treatment 
response following neoadjuvant chemotherapy is associated with overall survival. Thus, it is of critical 
importance to identify biomarkers capable of predicting which patients will achieve a favourable 
response to neoadjuvant chemotherapy in order to optimize survival outcomes.

Research motivation
Personalized medicine is predicated on providing the right treatment for the right patient at the right 
time. To achieve optimal outcomes treatment regimens now include complex decision-making processes 
surrounding the timing of chemotherapy and surgery. Recent research has demonstrated that some 
gastric cancer patients, such as those with tumours harbouring microsatellite instability, may be harmed 
by neoadjuvant chemotherapy. However, patients that achieve a good treatment response achieve 
superior clinical outcomes compared to adjuvant chemotherapy. Identifying specific subpopulations 
using tumour-based biomarkers is of critical importance to maximize outcomes.

Research objectives
We sought to characterize the expression of tumour immunohistochemistry (IHC)-based biomarkers 
CD4, CD8, Galectin-3 and E-cadherin in our Canadian population. Specifically, we evaluated these 
markers in comparison to their expression in normal gastric mucosa, as well as their relationship to 
neoadjuvant chemotherapy tumour response scores and expression in tumour biopsies before and after 
treatment. We successfully identified a biomarker, namely the CD4/CD8 T-cell ratio, with the potential 
to predict favourable treatment response. This pilot study serves as a foundation for future study to 
validate our preliminary findings.

Research methods
In this study, we evaluated IHC -based biomarkers in human gastric cancer specimens. Informed 
consent according to an approved ethics protocol was obtained for all patients. Samples were retrieved 
from endoscopic biopsy prior to treatment with neoadjuvant, adjuvant or palliative chemotherapy, as 
well as from pathology specimens following surgical resection. Using IHC, we quantified the expression 
of CD4, CD8, Galectin-3 and E-cadherin in gastric cancer tumours and adjacent normal mucosa. Quanti-
fication was performed on digitally scanned images using QuPath, which is an open-source and 
artificial intelligence-based digital pathology program. Statistical analysis was completed using R. 
Sample size calculations were performed using the MKpower package in R.

Research results
We demonstrate that an elevated CD4/CD8 ratio in gastric cancer tumours is significantly associated 
with complete or near complete response following FLOT chemotherapy. We identify that neoadjuvant 
chemotherapy is associated with increased infiltration of CD4 and CD8 T-cells in 15 paired samples 
assessed before and after exposure to chemotherapy. However, the dynamic increase in these 
lymphocyte populations does not associate with an increased CD4/CD8 ratio. To expand on the 
findings of this study, we performed a sample size calculation and identified that CD4, CD8, Galectin-3 
and E-cadherin expression may be adequately evaluated with a future study population of 85 patients.

Research conclusions
For the first time, we identify that a high CD4/CD8 ratio within gastric cancer tumours is a promising 
biomarker that predicts favourable tumour response scores following neoadjuvant FLOT chemotherapy. 
To achieve this result, we use digital pathology technology and artificial intelligence-based quanti-
fication of biomarker staining.

Research perspectives
This study serves as a foundation for future research in validating the CD4/CD8 ratio as a reliable 
biomarker that is capable of predicting neoadjuvant treatment response. Our sample size calculations 
provide a framework for future study design.
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Abstract
BACKGROUND 
microRNA-627-5p (miR-627-5p) dysregulation has been observed in several 
cancer types, such as hepatocellular carcinoma, oral squamous cell carcinoma, 
glioblastoma multiforme, and gastric cancer. The biological function of miR-627-
5p in colorectal cancer (CRC) growth and metastasis is yet unclear.

AIM 
To investigate the effects of miR-627-5p on the malignant biological properties of 
colorectal malignant tumour cells by targeting Wnt2.

METHODS 
The levels of miR-627-5p in colorectal tumour tissues were assessed in Gene 
Expression Omnibus datasets. In order to identify Wnt2 transcript expression in 
CRC tissues, quantitative real-time polymerase chain reaction (qRT-PCR) analysis 
was used. Luciferase reporter tests were used to explore whether miR-627-5p 
might potentially target Wnt2. Wnt2 transcript and protein levels were detected in 
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CRC cells with high miR-627-5p expression. To learn more about how miR-627-5p affects CRC 
development, migration, apoptosis, and invasion, functional experiments were conducted. 
Cotransfection with the overexpression vector of Wnt2 and miR-627-5p mimics was utilized to 
verify whether overexpression of Wnt2 could cancel the impact of miR-627-5p in CRC. Western 
blot and qRT-PCR were conducted to investigate the effects of miR-627-5p on the Wnt/β-catenin 
signalling pathway.

RESULTS 
miR-627-5p was notably decreased in colorectal tumour tissues, while the gene level of Wnt2 was 
notably upregulated. A dual luciferase reporter assay revealed that miR-627-5p specifically targets 
the 3’-untranslated regions of Wnt2 and miR-627-5p upregulation markedly reduced the protein 
and gene expression of Wnt2 in CRC cells. In vitro gain-of-function assays displayed that miR-627-
5p overexpression decreased CRC cells’ capabilities to invade, move, and remain viable while 
increasing apoptosis. Wnt2 overexpression could reverse the suppressive functions of miR-627-5p. 
Moreover, upregulation of miR-627-5p suppressed the transcript and protein levels of the 
downstream target factors in the canonical Wnt/β-catenin signalling, such as c-myc, CD44, β-
catenin, and cyclinD1.

CONCLUSION 
miR-627-5p acts as a critical inhibitory factor in CRC, possibly by directly targeting Wnt2 and 
negatively modulating the Wnt/β-catenin signalling, revealing that miR-627-5p could be a possible 
treatment target for CRC.

Key Words: miR-627-5p; Wnt2; Colorectal cancer; β-catenin; Progression

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: It has been well established that miRNAs play vital roles in modulating cancer-related pathways, 
thereby regulating colorectal cancer (CRC) growth and metastasis. The study comprehensively explored 
the function of microRNA-627-5p (miR-627-5p), a rarely reported miRNA in CRC. miR-627-5p mimics 
restrained CRC cells invasion, migration, proliferation, and promoted cell apoptosis, indicated its 
suppressive effects on CRC development. A dual luciferase reporter test showed miR-627-5p directly 
binds with the 3’-untranslated region of Wnt2. Furthermore, miR-627-5p prevented the aggressive 
behaviours of cancer cells via inhibiting the activation of the canonical Wnt signalling. Strategies targeting 
the miR-627-5p/Wnt2/β-catenin signalling might be a new treatment option for CRC.

Citation: Zhao DY, Yin TF, Sun XZ, Zhou YC, Wang QQ, Zhou GY, Yao SK. microRNA-627-5p inhibits 
colorectal cancer cell proliferation, migration and invasion by targeting Wnt2. World J Gastrointest Oncol 2023; 
15(2): 318-331
URL: https://www.wjgnet.com/1948-5204/full/v15/i2/318.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i2.318

INTRODUCTION
Colorectal cancer (CRC) is one of the most prevalent malignant tumours and has high incidence and 
mortality rates globally, posing a great threat to the health of human beings[1]. Despite great advances 
in the diagnosis and treatment of CRC over the span of a few decades, CRC is still incurable and often 
has a poor prognosis, especially in patients with advanced tumours, which necessities clarification of 
the underlying mechanisms of CRC[2,3]. Generally, a vast number of genetic and molecular changes, 
such as epigenetic aberrations, genetic alterations, microsatellite instability, and chromosomal 
instability, have been shown to be correlated with colorectal carcinogenesis and tumour metastasis[4,5]. 
All of these genomic events can contribute to the activation of important signalling pathways (Wnt/β-
catenin, MAPK/PI3K, and SMAD/TGF-β) and the initiation of colorectal tumorigenesis[6]. Since the 
human genome has been extensively characterized, miRNAs have become a hot spot and have offered 
fresh understanding of the molecular mechanisms underpinning CRC progression[7].

microRNA (miRNA) is an endogenously derived non-coding RNA sequence composed of 19-25 
nucleotides that can modulate the levels of downstream genes through direct binding to their 3’-
untranslated regions (3’-UTRs) via cleavage or translational arrest[8]. Many published papers have 
implicated the role of microRNA-627-5p (miR-627-5p) in controlling the emergence and development of 
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a number of tumours[9-12]. For instance, Wang et al[9] reported that miR-627-5p acted as a inhibitory 
factor by reducing the expression of Bcl3 in hepatocellular carcinoma. miR-627-5p was also identified to 
be involved in suppressing the malignant behaviors of glioma cells by binding to the 3’-UTR of NR2C2 
and downregulating its expression in glioblastoma multiforme[10]. These studies indicated the tumour 
inhibitory function of miR-627-5p. Furthermore, Shin et al[11] found miR-627-5p was observably 
upregulated in gastric cancer tissues than in normal controls, suggesting that miR-627-5p might 
stimulate gastric cancer progression. In other words, miR-627-5p may play different roles in different 
cancer types. A growing body of evidence has emphasized that abnormally expressed miRNAs play 
vital roles in promoting or suppressing the progression from normal to hyperproliferative epithelium, 
then to precancerous advanced adenoma (AA), and later invasive adenocarcinoma[13-15]. Nevertheless, 
the functions of miR-627-5p are largely unknown in colorectal carcinogen.

In the present study, TargetScan website speculated that miR-627-5p could be complementary with 
the 3’-UTR of Wnt2. Wnt2, an evolutionarily conserved secreted-type glycoprotein secreted by the Wnt 
signalling, performs a crucial role in promoting the malignant progression of gastrointestinal cancers 
through activation of the Wnt/β-catenin signalling[16-18]. Consequently, the current study’s goal was to 
investigate how miR-627-5p and Wnt2 contribute to the emergence of CRC, and to assess the 
relationship between them.

MATERIALS AND METHODS
Bioinformation analysis
From the Gene Expression Omnibus (GEO) database, the original series matrix files of the miRNAs of 
patients with colorectal tumours and healthy controls (HCs) were gathered. GSE41655 and GSE18392 
were employed to analyze the differential expression of miR-627 between CRC tissues and control 
tissues. GSE41655 contained 33 tumour tissues and 15 normal control tissues while GSE18392 included 
116 tumour tissues and 29 control tissues.

Human tissue collection
A total of 30 patients with colorectal tumours, 33 AA and 20 HCs aged between 18 and 80 years were 
employed to explore the tissue levels of Wnt2 in the study. All patients diagnosed by histology as AA 
and colorectal adenocarcinoma were enrolled as case group. All healthy participants were recruited 
through advertisements and screened by careful history taking, physical examinations, essential 
laboratory examinations and colonoscopy. Individuals with negative colonoscopy results were selected 
as HC group. During the endoscopies, biopsy samples were taken from the rectosigmoid colon in the 
HCs. The excluding protocol for all subjects were indicated below: (1) Subjects with a history of other 
major organic diseases, malignant tumours in other organs, and psychiatric disorders; (2) pregnant or 
lactating female subjects; (3) patients with hereditary CRC or hereditary intestinal polyposis syndromes; 
(4) participants with a history of radiotherapy, chemotherapy, and major abdominal surgery; and (5) 
patients who presented with inflammatory or infective diseases. The clinicopathological characteristics 
of HCs and colorectal neoplasm patients are described in Supplementary Table 1. China-Japan 
Friendship Hospital’s ethics committee gave the study’s protocol approval under the number 2018-116-
K85-1, and all participants gave their written informed permission.

Cell culture
The American Type Culture Collection was used to obtain a colonic epithelial cell line (FHC), human 
colonic malignant tumor cell lines (HCT116, RKO, and SW480), and a human embryonic kidney cell line 
(HEK-293T). For the purpose of investigating Wnt2 mRNA expression, FHC and three CRC cell lines 
were used. Gain of function tests were carried out using HCT116 and SW480 cells. Dual luciferase 
reporter tests were performed using HEK-293T cells because of their high transfection efficiency[19]. 
Incubation conditions included 5% CO2 in the air and a minimum relative humidity of 95%, for the 
RPMI 1640 medium or Dulbecco’s Modified Eagle’s Medium in which cells were placed.

Cell transfection
miR-627-5p mimics, mimics negative control oligonucleotides (NC mimics), Wnt2 overexpressing 
plasmids (pcDNA-Wnt2) and matched negative controls (pcDNA-NC) were designed by GenePharma 
(Shanghai Province, China). In 6-well culture plates, SW480 and HCT116 cells were plated for 24 h. 
Following the manufacturer’s instructions, LipofectamineTM 3000 Transfection Reagent (Invitrogen, 
Carlsbad, CA, United States) was used to transfect a mixture of miR-627-5p mimics or NC mimics 
(150pmol) with pcDNA-Wnt2 or pcDNA-NC (3 g). In Supplementary Table 2, the oligonucleotide 
sequences are displayed.

Quantitative real-time polymerase chain reaction
Total RNA that included miRNA from tissues or cells was isolated by the RNAprep Pure Cell Kit 

https://f6publishing.blob.core.windows.net/9302dc16-f79a-47ff-a5e6-7b0d61a3ab48/WJGO-15-318-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9302dc16-f79a-47ff-a5e6-7b0d61a3ab48/WJGO-15-318-supplementary-material.pdf
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(Solarbio, Beijing, China). cDNA was obtained using the Hifair®II 1st Strand cDNA Synthesis Kit 
(YESEN, Shanghai, China). PCR amplification was conducted in a LineGene 9600 Plus Real-Time PCR 
system (Bioer Technology, Hangzhou, China) by using Hieff® qPCR SYBR® Green Master Mix (No Rox) 
(YESEN, Shanghai, China). The comparative threshold method was used to quantify the relative 
expression of miRNAs and mRNAs. In Supplementary Table 3, the primer sequences used in the study 
are displayed.

Western blotting
RIPA lysis buffer (Beyotime, Shanghai, China) was used for protein extraction, and the BCA Protein 
Assay Kit was used to measure the amount of protein (Solarbio, Beijing, China). Total proteins were 
then subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis and electrotransferred to 
PVDF membranes (Bio-Rad, Hercules, CA, United States). Nonspecific binding sites were blocked using 
5% nonfat milk for 2 h and the membranes were incubated at 4 °C overnight with rabbit anti-Wnt2 
antibody (1:1000; Affinity, Melbourne, United States), rabbit anti-c-myc antibody (1:1000; Bioss, Beijing, 
China), rabbit anti-CD44 antibody (1:1000; Affinity, Melbourne, United States), rabbit anti-cyclin D1 
antibody (1:1000; Abcam, Cambridge, United Kingdom), and rabbit anti-β-tubulin antibody (1:4000; 
Proteintech, Chicago, United States). The PVDF membranes were then treated for 1 hour with a goat 
anti-rabbit secondary antibody that was HRP conjugated (1:5000; Bioss, Beijing, China). Enhanced 
chemiluminescence reagents (Beyotime, Shanghai, China) were used to visualize the bands. Image J was 
utilized to quantify the chemiluminescent signals of protein bands using β-tubulin as an internal control.

Cholecystokinin octapeptide assay
Cell viability was monitored using cholecystokinin octapeptide (CCK-8) reagents (Solarbio, Beijing, 
China). After transfection, CRC cells plated in 96-well plates were added to CCK-8 solution and 
incubated for 1 h. The number of viable cells was determined at a 24 h interval for four consecutive days 
following the manufacturer’s instructions.

Matrigel invasion assay
Corning Transwell insert chambers (Corning Incorporated, New York, NY, United States) with a 6.5-µm 
pore size were used to assess invasive capability. Cancer cells were planted in the upper chamber, 
cultured with foetal bovine serum (FBS) free medium, and allowed to invade for 72 h. The lower 
chamber was added to culture medium comprising 10% FBS to attract the invaded cells. The invading 
cells that broke through the Matrigel were then fixed in paraformaldehyde, stained in crystal violet, and 
counted in five randomly selected high-power fields.

Scratch assay
Homogeneous single cell suspensions were plated in 6-well plates until a single layer formed before 
being wounded by scraping a straight line with a yellow micropipette tip. The plates were incubated 
with complete medium after 3 PBS solution washes. All lengthy wounds were captured on camera at 0 
and 24 h after the wound.

Flow cytometry analysis
An Annexin V-fluorescein isothiocyanate/propidium iodide (PI) apoptosis kit (7seabiotech, Shanghai, 
China) was utilized to detect the proportion of apoptotic cells after transfection. All processes were 
performed following the manufacturer’s protocols. Flow cytometry (BeckMan, United States) and 
FlowJoTM (Becton, New York, NY, United States) software were used to determine the cell apoptosis 
rates. Detailed experimental procedures are described in our previous study[20].

Dual luciferase reporter assay
The human Wnt2 3’-UTR comprising the expected complementary site of miR-627-5p (wild type), and 
its identical sequence with the mutant sequences of specific complementary sites of miR-627-5p 
(mutant) were inserted into the pmirGLO luciferase vector. HEK-293T cells were cotransfected with 
pmirGlo-Wnt2 3’-UTR wild type or pmirGLO-Wnt2 3’-UTR mutant and miR-627-5p mimics. The 
luciferase activity was measured using the Dual-Luciferase Reporter Assay System (Promega, Madison, 
WI, United States).

Statistical analysis
All data are shown as mean ± SD or median (interquartile range). The Shapiro-wilk test was used to 
verify the normal distribution. Student’s t test or Wilcoxon rank-sum test were employed to decide 
significant differences between two groups where appropriate. Spearman correlation analysis was used 
to calculate the relationship between Wnt2 gene expression and miR-627-5p expression in colorectal 
neoplasm tissues. All calculations were conducted with IBM SPSS (Chicago, IL, United States) and 
diagrams were described using GraphPad Prism (La Jolla, CA, United States). A P value of 0.05 or lower 
was considered significant.

https://f6publishing.blob.core.windows.net/9302dc16-f79a-47ff-a5e6-7b0d61a3ab48/WJGO-15-318-supplementary-material.pdf
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RESULTS
The expression levels of miR-627 in CRC tissues
The miR-627 levels were contrasted between the CRC subgroup and the normal subgroup in two GEO 
datasets, GSE41655 (33 CRCs vs 15 HCs) and GSE18392 (116 CRCs vs 29 HCs), and the findings showed 
that CRC tissues had noticeably lower levels of miR-627 (Figure 1A and B). The AUCs of miR-627 in the 
GSE41655 and GSE18392 datasets were 0.90 (P < 0.001) and 0.67 (P = 0.006), respectively, according to 
receiver operating characteristic analysis (Figure 1C and D).

Relationship between miR-627-5p and Wnt2 expression in colorectal neoplasm tissues
The mRNA levels of Wnt2 in clinical tissues or in the colonic epithelial cells and cancer cells were 
determined by quantitative real-time polymerase chain reaction (qRT-PCR). The findings indicated 
Wnt2 expression were sequentially upregulated from HC tissues and AA tissues to CRC tissues 
(Figure 2A). This observation was supported by the fact that Wnt2 expression in cancer cells was 
observably higher than it was in epithelial cell line (FHC) cells (Figure 2B). Our previous study 
examined miR-627-5p expression in the same clinical tissues[20] and we next analyzed the relationship 
among the expressions of miR-627-5p and Wnt2 in colorectal neoplasm tissues and found an inverse 
relationship between miR-627-5p and Wnt2 gene levels (r = -0.61, P < 0.001, Figure 2C).

Direct binding relationship between miR-627-5p and Wnt2
First, the possible miR-627-5p downstream genes were speculatively identified using the TargetScan 
website. As a result, a sequence located at bases 1287-1293 of the Wnt2 3’-UTR was binding to the seed 
sequence of miR-627-5p (Figure 3A). To verify that miR-627-5p and Wnt2 have a direct complimentary 
interaction, we conducted dual luciferase reporter assays. Then, the Wnt2 pmirGLO vector comprising 
wild type or mutant miR-627-5p target sites was constructed (Figure 3A). Then, the constructed vectors 
were transfected into 293T cells with the cotransfection of miR-627-5p mimics or scrambled controls. 
miR-627-5p overexpression reduced the luciferase levels of the reporter vector carrying the wild type 
sequence of Wnt2 3’-UTR (0.58 ± 0.04 vs 1.00 ± 0.05, P < 0.001), but not those of the reporter vector 
comprising the mutant target sequence in 293T cells (1.12 ± 0.09 vs 1.03 ± 0.11, P = 0.35, Figure 3B). 
Moreover, gain-of-function experiments were performed by transfection of miR-627-5p mimics in 
SW480 and HCT116 cells to verify whether miR-627-5p could influence the expression levels of Wnt2 in 
CRC cells. RT-PCR analysis demonstrated that miR-627-5p mimics markedly increased miR-627-5p level 
in SW480 (35.90 ± 3.09 vs 1.02 ± 0.20, P < 0.001) and HCT116 cells (31.30 ± 5.14 vs 1.02 ± 0.23, P < 0.001, 
Figure 3C). As depicted in Figure 3D-E, upregulation of miR-627-5p directly reduced the transcript 
expression (SW480, 0.09 ± 0.03 vs 1.01 ± 0.16, P < 0.001; HCT116, 0.02 (0.01-0.31) vs 0.93 (0.91-1.16), P < 
0.001) and protein expression (SW480, 0.81 ± 0.01 vs 1.17 ± 0.10, P = 0.004; HCT116, 1.03 ± 0.01 vs 1.26 ± 
0.03, P < 0.001) of Wnt2 in SW480 and HCT116 cells. In summary, miR-627-5p functions as a specific 
complement to Wnt2.

Role of miR-627-5p in CRC cells
Then, we investigated the biological function of miR-627-5p through gain-of-function tests in SW480 
and HCT116 cells. As depicted in Figure 4A and D, wound healing assays showed that miR-627-5p 
overexpression contributed to a weakened ability of migrating cells (SW480, 23.63% ± 9.62% vs 139.11% 
± 29.36%, P < 0.001; HCT116, 36.03% ± 15.15% vs 168.69% ± 31.75%, P < 0.001). Matrigel invasion assays 
demonstrated that exogenetic upregulation of miR-627-5p markedly blocked cancer cells’ ability to 
invade (SW480, 112.00 ± 39.77 vs 236.20 ± 33.10, P = 0.001; HCT116, 144.60 ± 35.78 vs 335.20 ± 14.02, P < 
0.001; Figure 4B and E). Next, we used flow cytometry analysis to verify whether miR-627-5p overex-
pression could influence cell apoptosis and the findings showed that miR-627-5p upregulation 
accelerated cell apoptosis (SW480, 33.91% ± 5.61% vs 17.08% ± 1.40%, P = 0.007; HCT116, 42.15% ± 1.00% 
vs 21.35% ± 0.61%, P < 0.001, Figure 4C and F). Furthermore, according to CCK-8 experiments, miR-627-
5p overexpression attenuated cell growth (Figure 4G). Collectively, miR-627-5p inhibits CRC cells 
migration, invasion, and proliferation but promotes cell apoptosis.

Impact of the miR-627-5p/Wnt2 axis on the malignant behaviours of CRC cells
To explore the functional effects of the miR-627-5p/Wnt2 axis in CRC cells, we generated a Wnt2 
overexpression vector (pcDNA-Wnt2) and designed rescue assays. As presented in Figure 5, pcDNA-
Wnt2 effectively increased the gene [SW480, 44.84 ± 5.98 vs 1.00 ± 0.08, P < 0.001; HCT116, 51.39 (45.06-
56.67) vs 1.15 (0.63-1.39), P < 0.001] and protein (SW480, 3.73 ± 0.16 vs 2.70 ± 0.10, P = 0.001; HCT116, 1.32 
± 0.01 vs 1.04 ± 0.05, P = 0.001) expression of Wnt2 in SW480 and HCT116 cells, proving that the 
construction of this vector was successful. Then, we used it to transfect CRC cells overexpression miR-
627-5p. The results of wound healing and Matrigel invasion assays revealed that upregulation of Wnt 
partially canceled the suppressive functions of miR-627-5p on cell migration [SW480, 102.95% (96.05%-
132.64%) vs 22.22% (15.48%-32.49%), P = 0.008; HCT116, 116.23% ± 20.46% vs 36.03% ± 15.15%, P < 0.001] 
and invasion (SW480, 265.80 ± 36.89 vs 112.00 ± 39.77, P < 0.001; HCT116, 322.00 ± 28.61 vs 144.60 ± 35.78, 
P < 0.001, Figure 4A, B, D, and E). Besides, flow cytometry analysis demonstrated that cell apoptosis 
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Figure 1 Evaluation of the tissue expression and diagnostic utility of microRNA-627 in the GSE41655 and GSE18392 datasets. A: Tissue 
expression of microRNA-627 (miR-627) in the healthy controls (HCs) and colorectal cancer (CRC) patients in the GSE41655 dataset; B: Tissue expression of miR-
627 in the HCs and CRC patients in the GSE18392 dataset; C: Receiver operating characteristic analysis of miR-627 to distinguish CRC patients from HCs in the 
GSE41655 dataset; D: Receiver operating characteristic analysis of miR-627 to distinguish CRC patients from HCs in the GSE18392 dataset. HCs: Healthy controls; 
CRC: Colorectal cancer. bP < 0.01; cP < 0.001.

Figure 2 Inverse correlation between Wnt2 and microRNA-627-5p expression in colorectal neoplasm tissues. A: The mRNA expression levels 
of Wnt2 in healthy control tissues, advanced adenoma tissues and colorectal cancer (CRC) tissues; B: The mRNA expression levels of Wnt2 in CRC cell lines 
(SW480, HCT116, and RKO cells) and epithelial cell line cell line; C: The relationship between miR-627-5p and Wnt2 mRNA expression in colorectal neoplasm 
tissues. HCs: Healthy controls; CRC: Colorectal cancer; AA: Advanced adenoma; FHC: Colonic epithelial cell line. cP < 0.001.
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Figure 3 The direct binding relationship between microRNA-627-5p and Wnt2. A: Schematic illustration of the predicted binding sites between 
microRNA-627-5p (miR-627-5p) and Wnt2 mRNA; B: Dual luciferase reporter assays in HEK-293T cells. Experimental group: NC mimics + pcDNA-Wnt2-WT, miR-
627-5p mimics + pcDNA-Wnt2-WT, NC mimics + pcDNA-Wnt2-MUT, miR-627-5p mimics + pcDNA-Wnt2-MUT; C: The transfection efficiency of miR-627-5p mimics 
in SW480 and HCT116 cells; D: The effects of miR-627-5p overexpression on the transcript expression levels of Wnt2 in SW480 and HCT116 cells; E: The effects of 
miR-627-5p overexpression on the protein expression levels of Wnt2 in SW480 and HCT116 cells. 3’ UTR: 3’-untranslated region; NS: Not significant; bP < 0.01; cP < 
0.001.
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Figure 4 Cellular behaviours induced by microRNA-627-5p mimics and Wnt2 overexpression plasmids in SW480 and HCT116 cells. 
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Experimental group: NC mimics, microRNA-627-5p (miR-627-5p) mimics, miR-627-5p mimics + pcDNA-Wnt2. A and D: Scratch assay was used to detect the 
migration of colorectal cancer (CRC) cells in each group; B and E: Matrigel invasion assay was used to detect the invasive capability of CRC cells in each group; C 
and F: Flow cytometry analysis was used to evaluate the apoptosis of CRC cells in each group; G: Cholecystokinin octapeptide (CCK-8) assay was used to detect the 
viability of CRC cells in each group. NS: Not significant; CRC: Colorectal cancer. aP < 0.05; bP < 0.01; cP < 0.001.

induced by miR-627-5p could be attenuated by Wnt2 overexpression (SW480, 17.69% ± 1.35% vs 33.91% 
± 5.61%, P = 0.008; HCT116, 24.17% ± 1.00% vs 42.15% ± 1.00%, P < 0.001, Figure 4C and F). CCK-8 
assays demonstrated that the decreased in cell viability caused by miR-627-5p could be attenuated by 
Wnt2 overexpression (Figure 4G).

Function of miR-627-5p in the Wnt/β-catenin signalling pathway
To clarify the signalling pathways influenced by the miR627-5p/Wnt2 axis in CRC cells, we conducted 
qRT-PCR and western blot analysis to evaluate dysregulated genes in the classical Wnt signalling. In 
Figures 6 and 7, miR-627-5p overexpression in SW480 and HCT116 cells led to a sharp decline in the 
transcript and protein levels of β-catenin, c-myc, CD44, and cyclin D1. Next, we monitored the 
expression of β-catenin, c-myc, CD44, and cyclin D1 by treating miR-627-5p overexpressing CRC cells 
with pcDNA-Wnt2 or scramble vector. The findings illustrated that the transcript and protein levels of β
-catenin, c-myc, CD44, and cyclin D1 were rescued at least partly by the overexpression of Wnt2. 
Consequently, it was suggested miR-627-5p reduces the gene and protein levels of downstream Wnt/β-
catenin signalling components via Wnt2.

DISCUSSION
In our study, we concentrated on whether miR-627-5p, a rarely reported miRNA in CRC, could exert a 
suppressive effect on CRC development. First, we selected two GEO datasets to compare the expression 
of miR-627 in colorectal tumour patients and HCs, and the findings showed the decreased levels of miR-
627 in cancer tissues in both GEO datasets. Consistent with our results, a study published in 2013 found 
the expression of miR-627 were observably downregulated in CRC tissues when compared to those in 
control tissues[21]. Unfortunately, this study did not distinguish the 5p and 3p forms of miR-627. In our 
previous study, we collected CRC and AA tissues to assess the expression of miR-627-5p and showed 
significantly decreased expression in CRC and AA tissues compared to HC tissues. Besides, miR-627-5p 
was found to be deceased in CRC cell lines in comparison with those in FHC cells[20]. According to 
these results, miR-627-5p expression was reduced in CRC.

Next, we conducted functional experiments using SW480 and HCT116 cells by transfecting miR-627-
5p mimics or NC mimics to clarify the biological function of miR-627-5p in colorectal tumour. 
According to the findings, miR-627-5p greatly reduced cancer cells’ ability to migrate, invade, and 
proliferate while also accelerating apoptosis, which was in accordance with past researches in other 
cancer types. For instance, miR-627-5p is markedly reduced in hepatocellular carcinoma and negatively 
correlated with the prognosis of cancer patients. miR-627-5p silencing promotes cell multiplication and 
cell cycle progression of hepatocellular carcinoma cells[9]. In oral squamous cell carcinoma, LINC00958 
promotes tumour cell growth, delays apoptosis, and accelerates cell migration and epithelial-
mesenchymal transition by suppressing the expression of miR-627-5p[12]. Thus, miR-627-5p is regarded 
as a tumour suppressor and could serve as a target for the treatment of cancer in the future.

A variety of literature have elucidated that the loss or enhancement of miRNA function is mainly 
involved in cancer carcinogenesis and progression by targeting the expression of cancer-causing or 
cancer-suppressing genes[22]. To clarify the key mechanism of miR-627-5p in suppressing CRC growth, 
we used an online tool to excavate the possible downstream genes of miR-627-5p. We subsequently 
discovered that miR-627-5p might have a complementary site within the Wnt2 3′-UTR. A series of 
studies have claimed that Wnt2 contributes to the development of numerous malignant malignancies
[17,23-26]. For example, the Wnt2 gene is almost undetectable in the normal gastrointestinal tract but is 
highly upregulated in precancerous adenomas, primary colorectal tumours and liver metastases[27]. 
High expression of Wnt2 is implicated as a critical factor in promoting the invasive and metastatic 
potential of CRC cells[26]. In concordance with past researches, the current study confirmed that Wnt2 
mRNA levels were considerably elevated in colorectal neoplasm tissues and inversely related to miR-
627-5p levels, suggesting that miR-627-5p might participate in intestinal carcinogenesis by regulating 
the expression of Wnt2.

To explore whether miR-627-5p is directly complementary to Wnt2, we conducted a series of 
experiments in vitro. According to the results of luciferase reporter tests, miR-627-5p upregulation 
inhibited the luciferase level of the reporter vector comprising the wild type sequence of Wnt2 3’-UTR, 
but no obvious change on the reporter vector comprising the mutation sequence. In addition, ectopic 
expression of miR-627-5p significantly reduced the gene and protein expression of Wnt2 in CRC cell 
lines. The above findings suggested that Wnt2 is a specific target of miR-627-5p. However, whether 
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Figure 5 Identification of the transfected efficiency of Wnt2 overexpression plasmids. A: The mRNA expressions of Wnt2 in SW480 and HCT116 
cells after the transfection of Wnt2 overexpression plasmids; B: The protein expressions of Wnt2 in SW480 and HCT116 cells after the transfection of Wnt2 
overexpression plasmids. bP < 0.01; cP < 0.001.

Figure 6 The mRNA expression alterations of downstream target genes in the Wnt/β-catenin signalling induced by miR-627-5p mimics 
and Wnt2 overexpression plasmids in SW480 and HCT116 cells. A: SW480 cells; B: HCT116 cells. Experimental group: NC mimics, miR-627-5p mimics, 
miR-627-5p mimics + pcDNA-Wnt2. NS: Not significant; bP < 0.01; cP < 0.001.

miR-627-5p exerts its tumour inhibitory effect through directly regulating the expression of Wnt2 
remains unknown. To answer this question, we conducted rescue experiments and cotransfected miR-
672-5p mimics and Wnt2 overexpression plasmids into CRC cells. Rescue experiments showed that the 
cells’ survival, motility, and invasion were enhanced and the proportion of apoptotic cells were 
decreased when compared to transfection of miR-627-5p mimics alone. Thus, miR-627-5p decreased 
CRC cell proliferation, motility, and invasion while promoting death via Wnt2.

As is well-known, Wnt2 is one of the critical ligands that regulates the activity of the Wnt/β-catenin 
signalling, while aberrant activation of the classical Wnt signalling is a major driver of colorectal 
carcinogenesis[28,29]. Herein, we hypothesized that miR-627-5p might regulate Wnt2 expression, 
thereby modulating the Wnt/β-catenin signalling, and exerting its tumour suppressive function on CRC 
in vitro. Normally, β-catenin, the essential element of the canonical Wnt pathway, is continually 
eliminated by the destruction complex (AXIN, GSK3β, CK1, and APC) without canonical Wnt ligands. 
The constant degradation of β-catenin leads to low level of free β-catenin in the cytoplasm and the 
repression of Wnt target genes. Conversely, the Wnt pathway is activated when canonical Wnt ligands 
bind to their receptors on the cell surface and subsequently cause the aggregation of the degradation 
complex, resulting in the accumulation of β-catenin in the cytoplasm. Then, β-catenin gradually 
migrates to the nucleus, where it serves as a co-activator for T-cell specific factor/lymphoid enhancer-
binding factor to activate Wnt target genes such as cyclinD1[30], CD44[31], and c-myc[32], which are 
identified to be involved in the malignant tendency of cancer cells, including stemness, tumorigenicity, 
metastasis, and chemoresistance[33-35]. To verify this hypothesis, we investigated how miR-627-5p 
affected the expression of the Wnt/β-catenin signalling like β-catenin, cyclinD1, c-myc, and CD44. Our 
current study revealed that upregulation of miR-627-5p could effectively decrease the mRNA and 
protein expression of β-catenin, cyclinD1, c-myc and CD44, whereas the suppressive effects of miR-627-
5p could be partially canceled by Wnt2 overexpression. These results suggested that miR-627-5p/Wnt2 
regulates the canonical Wnt pathway in CRC cells.

There are some limitations in the study. First, we performed transient transfection to increase the 
levels of miRNAs in CRC cell lines. Since miRNAs do not integrate into the cellular genome, the typical 
effects can only last for several days, and we could not assess the long-term effects of miRNAs. Stable 
transfection of miRNAs is required to achieve the long-term effects of miR-627-5p on tumour 
progression. Second, the translocation of cytoplasmic β-catenin to the nucleus is a crucial step in the 
activation of Wnt signaling. However, the current study only detected alterations in β-catenin in whole 
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Figure 7 The protein expression alterations of downstream target genes in the Wnt/β-catenin signalling induced by microRNA-627-5p 
mimics and Wnt2 overexpression plasmids in SW480 and HCT116 cells. A: SW480 cells; B: HCT116 cells. Experimental group: NC mimics, miR-627-
5p mimics, miR-627-5p mimics + pcDNA-Wnt2. NS: Not significant. aP < 0.05; bP < 0.01; cP < 0.001.

cells, not nuclear alterations. Finally, to learn more about the impact of miR-627-5p on the development 
of tumors in vivo, nude mouse carcinogenesis tests are necessary.

CONCLUSION
In summary, miR-627-5p could inhibit the malignant tendencies of CRC cells by directly inhibiting Wnt2 
expression. The tumour suppressive effects were mainly achieved by inhibiting the activation of the 
classical Wnt/β-catenin signalling and the levels of its downstream target factors. These findings not 
only advance our understanding of the pathogenesis of CRC, but also provide evidence for an 
exploitable therapeutic target for CRC patients.

ARTICLE HIGHLIGHTS
Research background
Population aging has given rise to the incidence rate of colorectal cancer (CRC) worldwide. Better 
elucidation of the mechanisms underlying the formation and growth of CRC is very helpful for the 
development of new therapy.

Research motivation
Latest studies have shown that miRNAs generally regulate the expression of oncogenes or tumour 
suppressor genes and exert integral roles in modulating cancer-related pathways and mediating the 
formation and progression of CRC. However, whether miR-627-5p is involved in the tumorigenesis of 
colorectal tumours or not is largely unexplored.
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Research objectives
This current study is designed to verify the function of miR-627-5p in colorectal tumorigenesis by 
targeting Wnt2/β-catenin signalling pathway.

Research methods
The levels of miR-627-5p and Wnt2 were detected in CRC tissues. Functional experiments, including 
CCK-8, flow cytometry, Matrigel invasion, and scratch assays, were conducted to elucidate the function 
of miR-627-5p and wnt2 in colorectal tumour cells. Dual luciferase reporter tests were carried out to 
investigate how miR-627-5p and Wnt2 interact. The critical signalling pathway modulated by miR-627-
5p was further identified.

Research results
Wnt2 transcript expression was markedly increased in colorectal tumour tissues and negatively 
correlated with miR-627-5p level. Upregualtion of miR-627-5p inhibited cancer cells’ abilities to invade 
growth and migrate by directly restraining Wnt2 expressions. Furthermore, miR-627-5p exerted the 
suppressive role in CRC via inactivating the Wnt2/β-catenin signalling.

Research conclusions
miR-627-5p restrained the malignant biological properties of CRC cells via directly inhibiting Wnt2 
expression to modulate the classical Wnt/β-catenin signalling.

Research perspectives
miRNA-627-5p/Wnt2/β-catenin may have potential therapeutic application for CRC.
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Abstract
BACKGROUND 
The overexpression of the MYC gene plays an important role in the occurrence, 
development and evolution of colorectal cancer (CRC). Bromodomain and 
extraterminal domain (BET) inhibitors can decrease the function BET by 
recognizing acetylated lysine residues, thereby downregulating the expression of 
MYC.

AIM 
To investigate the inhibitory effect and mechanism of a BET inhibitor on CRC 
cells.

METHODS 
The effect of the BET inhibitor JAB-8263 on the proliferation of various CRC cell 
lines was studied by CellTiter-Glo method and colony formation assay. The effect 
of JAB-8263 on the cell cycle and apoptosis of CRC cells was studied by 
propidium iodide staining and Annexin V/propidium iodide flow assay, 
respectively. The effect of JAB-8263 on the expression of c-MYC, p21 and p16 in 
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CRC cells was detected by western blotting assay. The anti-tumor effect of JAB-8263 on CRC cells 
in vivo and evaluation of the safety of the compound was predicted by constructing a CRC cell 
animal tumor model.

RESULTS 
JAB-8263 dose-dependently suppressed CRC cell proliferation and colony formation in vitro. The 
MYC signaling pathway was dose-dependently inhibited by JAB-8263 in human CRC cell lines. 
JAB-8263 dose-dependently induced cell cycle arrest and apoptosis in the MC38 cell line. SW837 
xenograft model was treated with JAB-8263 (0.3 mg/kg for 29 d), and the average tumor volume 
was significantly decreased compared to the vehicle control group (P < 0.001). The MC38 
syngeneic murine model was treated with JAB-8263 (0.2 mg/kg for 29 d), and the average tumor 
volume was significantly decreased compared to the vehicle control group (P = 0.003).

CONCLUSION 
BET could be a potential effective drug target for suppressing CRC growth, and the BET inhibitor 
JAB-8263 can effectively suppress c-MYC expression and exert anti-tumor activity in CRC models.

Key Words: Bromodomain; Bromodomain and extraterminal domain inhibitor; Colorectal cancer; JAB-8263; 
MYC; p21

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: After treating colorectal cancer (CRC) cells with the bromodomain and extraterminal domain 
(BET) inhibitor JAB-8263, we found that MC38 cells undergo cell cycle arrest and apoptosis. In multiple 
human CRC cell lines, we found that JAB-8263 downregulated c-MYC expression and upregulated p21 
and p16 expression, which is associated with the highly potent antiproliferative effects of JAB-8263. JAB-
8263 effectively inhibited CRC growth with acceptable tolerance in tumor mouse models. Our studies 
suggested that BET can be a potential effective drug target for suppressing CRC growth, and JAB-8263 
can effectively suppress c-MYC expression and exert anti-tumor activity in CRC models.

Citation: Liu XM, Xia SY, Long W, Li HJ, Yang GQ, Sun W, Li SY, Du XH. Potent bromodomain and 
extraterminal domain inhibitor JAB-8263 suppresses MYC expression and exerts anti-tumor activity in colorectal 
cancer models. World J Gastrointest Oncol 2023; 15(2): 332-342
URL: https://www.wjgnet.com/1948-5204/full/v15/i2/332.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i2.332

INTRODUCTION
Colorectal cancer (CRC) is one of the most common malignant tumors, and its morbidity and mortality 
ranks third among all tumor patients[1], which seriously threatens human health. Traditional treatment 
methods include surgery, chemotherapy and radiotherapy. However, these treatments are invasive and 
are often accompanied by side effects[2]. In recent years, targeted therapy and immunotherapy have 
also developed rapidly as new treatment methods. With the deepening of tumor research, it has been 
found that the occurrence and development of colorectal tumors are related to the dysregulation of the 
epigenome[3], and one of the major areas of interest in epigenetic targets is the bromodomain and 
extraterminal domain (BET).

BET proteins belong to the acetyl-lysine-binding bromodomain (BRD) protein family and have four 
members, BRD2, BRD3, BRD4 and BRDT[4,5]. BET proteins have two N-terminal bromodomains (BD1 
and BD2) that interact with acetylated lysine residues in histones. Then, it binds to transcription factor 
P-TEFb and RNA polymerase II and induces transcription[6]. BET protein acts as an epigenetic regulator 
and transcriptional cofactor, and it is closely associated with gene transcription, cell cycle and apoptosis, 
invasion and metastasis. BET proteins promote aberrant expression of many oncogenes such as MYC, 
CCND1 and BCL2L1[7,8].

MYC is a proto-oncogene that is activated by amplification and chromosomal translocation 
rearrangement. The overexpression of MYC plays an important role in the occurrence, development and 
evolution of CRC[9,10]. Overexpression of MYC and dysregulation of MYC target genes can be found in 
most CRC cells[11]. BET inhibitors bind to the BET protein, occupying the space where it binds to 
acetylated lysines, thus inhibiting the transcription of its downstream MYC oncogenes and MYC-
dependent genes[12,13]. A study showed the small molecule BET inhibitor JQ1 occupies the 
bromodomain pocket of BRD4, resulting in downregulation of MYC mRNA and MYC protein[14]. This 
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provides a rationale for the idea that BET inhibitors may exert anti-tumor activity in CRC cells.
The BET inhibitor JAB-8263 used in this study is a new type of BET inhibitor, which has a strong 

affinity with BET proteins and can significantly inhibit BET downstream signals c-MYC and N-MYC at a 
concentration of less than 1 nmol/L. It can significantly inhibit the proliferation of various tumor cells 
and induce the expression of cleaved PARP and the activation of caspase3/7, thereby inhibiting the 
proliferation of tumor cells and inducing apoptosis. Previous in vivo studies have shown that JAB-8263 
has strong anti-tumor effects in various tumor models such as hematological tumors and small cell lung 
cancer through the MYC pathway. The pharmacology tests on safety show that JAB-8263 has no adverse 
effects on the cardiovascular system, respiratory system and central nervous system.

We predicted that JAB-8263 can suppress CRC cells in vitro and in vivo, and the purpose of this study 
was to explore the mechanism of its inhibitory effect on CRC cells.

MATERIALS AND METHODS
Cell proliferation
All CRC cell lines (HT29, DLD1, Colo205, H716, SW837, H508 and MC38) used in this study were 
purchased from ATCC and kept in our laboratory. The CellTiter-Glo method was used in this 
experiment. CRC cells were plated in cell culture plates and cultured in a cell culture incubator at 37 °C, 
5% CO2 or 100% air and 95% humidity. Compounds were added the next day and incubated for 5 d, and 
cell viability was detected with the CellTiter-Glo kit. The data were analyzed using GraphPad Prism 
software, and a four-parameter equation was used to fit a concentration-response curve, from which the 
IC50 of the compound concentration corresponding to 50% cell viability on the curve was calculated. Cell 
viability (%) = (Lumitest compound-Lumiblank control)/(Lumisolvent control-Lumiblank control) × 100%. Compound 
information: BET inhibitor JAB-8263 (Jacobio Pharmaceuticals, Beijing, China), purity: 99.10%, storage 
condition: 4 °C.

Colony formation assay
The cell suspension was serially diluted, and 1000 cells were inoculated in each group of cells per dish, 
cultured in a cell incubator at 37 °C, 5% CO2 or 100% air and 95% humidity and stained with crystal 
violet solution after 5 d. Cells exposed to the drug were compared to controls (treated with DMSO) 
assayed in triplicate.

Cell cycle analysis
Six-well plates were seeded with MC38 cells in logarithmic growth phase, 5 × 105 cells per well. Diluted 
JAB-8263 compound was added to each well, and 0.1% DMSO was added to the control group; the 
incubation time was 3 d and 5 d, respectively. Cells were then trypsinized, washed with PBS and 
stained with propidium iodide (PI) solution for 30 min in a dark room. Cell DNA content was analyzed 
by flow cytometry in triplicate.

Apoptosis assay
Six-well plates were seeded with MC38 cells in logarithmic growth phase, 5 × 105 cells per well. Diluted 
JAB-8263 compound was added to each well, and 0.1% DMSO was added to the control group; the 
incubation time was 3 d and 5 d, respectively. Cells were then trypsinized and washed with PBS. Cells 
were stained (Thermo Annexin V Apoptosis Detection Kit, APC) and incubated for 30 min at room 
temperature in a dark room. Analysis was performed in triplicate using a drain cytometer in triplicate.

Western blotting
Cells were harvested, and cellular protein collection was performed after addition of lysate. The protein 
concentration was detected according to the BCA instructions. The samples added to loading buffer 
were electrophoresed by discontinuous SDS-PAGE denaturing gel. The protein was transferred to PVDF 
membrane and detected by ECL exposure. Antibodies information: Anti-c-MYC antibody (ab32072, 
Abcam, United Kingdom); p21 Waf1/Cip1 (12D1) Rabbit mAb (#2947, GST, United States); p16 INK4A 
(E6N8P) Rabbit mAb (#18769, GST, United States); GAPDH (D16H11) XP® Rabbit mAb (#18769, GST, 
United States).

In vivo studies
All animal care and use-related experimental protocols and changes to the experimental protocols of 
animals in this experiment were reviewed, approved and guided by the Jacobio Animal Care and Use 
Management Committee.

SW837 xenograft mouse model: 12 female NOD-SCID mice were subcutaneously inoculated with 1 × 
107 SW837 cells on the right back. When the tumor grew to an average of 121 mm3, the mice were 
randomly divided into two groups according to tumor size and body weight. The experiment was 
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divided into a vehicle control group and a JAB-8263 0.3 mg/kg treatment group. The JAB-8263 0.3 
mg/kg treatment group and vehicle control group were administered by gavage once every 2 d. The 
anti-tumor activity was evaluated according to the relative tumor growth inhibition (TGI) rate. TGI (%) 
= (1-TRTV))/CRTV × 100% (TRTV: mean RTV of the treatment group; CRTV: mean RTV of the vehicle control 
group; RTV = Vt-V0, V0 is the volume of the subcutaneous transplanted tumor of the mouse at the time 
of grouping, and Vt is the volume of the subcutaneous tumor of the mouse after treatment). The safety 
was evaluated according to the changes in animal body weight, drug withdrawal and death.

MC38 syngeneic murine model: 16 female C57BL/6 mice were subcutaneously inoculated with 1 × 106 
MC38 cells on the right back. When the tumors grew to an average of 103 mm3, they were randomly 
divided into two groups according to the tumor size and the weight of the mice. The experiment was 
divided into a vehicle control group and a JAB-8263 0.2 mg /kg treatment group. JAB-8263 0.2 mg/kg 
treatment group and vehicle control group were administered by gavage once every 2 d. The anti-tumor 
activity was evaluated according to the relative TGI rate, and the safety was evaluated according to the 
changes in animal body weight, drug withdrawal and death.

A single-dose MC38 model: In addition, we used the above method to establish a single-dose MC38 
model. Nine female C57BL/6 mice were randomly divided into two groups according to the tumor size 
and the weight of the mice. The experiment was divided into a vehicle control group, a JAB-8263 0.1 
mg/kg treatment group and a JAB-8263 0.2 mg/kg treatment group. One hour after the treatments were 
administered, the experiment was terminated, all mice were euthanized, and tumor tissues were 
collected.

Statistical analysis
All experimental results were expressed as mean ± SD. The t-test method was used to compare the data 
of the treatment group and the control group for statistical differences. All data were analyzed with 
SPSS 22.0, and P < 0.05 was considered statistically significant.

RESULTS
JAB-8263 dose-dependently suppressed CRC cell proliferation and colony formation in vitro
We found seven CRC cell lines that were sensitive to JAB-8263 in cell proliferation assays, including 
human CRC cell lines (HT29, DLD1, Colo205, H716, SW837 and H508, Figure 1A) and murine CRC cell 
line (MC38, Figure 1B). The IC50 values of six human CRC cell lines including HT-29, DLD-1, Colo205, 
H716, SW837 and H508 were 0.09-1.24 nmol/L, and the IC50 of the murine CRC cell line MC38 was 1.25 
nmol/L.

In the colony formation assay, five groups of CRC cell lines were sensitive to the JAB-8263 compound. 
Compared with the control group (DMSO), the colony formation of the cell lines in each group was 
significantly reduced with increasing drug concentration (Figure 1C). Taken together, these data suggest 
that JAB-8263 dose-dependently suppressed CRC cell proliferation and colony formation in vitro.

JAB-8263 suppressed CRC cell MYC expression and promoted p21 and p16 expression
Western blot assays on MYC, p21 and p16 levels were performed in human CRC cell lines with JAB-
8263 treatment. Compared with the control group (DMSO), the expression of MYC was downregulated 
in all cell lines with the treatment of different concentrations of JAB-8263 (1 nmol/L, 10 nmol/L and 100 
nmol/L). The p21 expression of MC38, DLD-1, H508, HT29, SW837 and Colo205 was upregulated, and 
the expression of p16 in H716, HT29 and colo205 was upregulated (Figure 2A-C). This data suggest that 
JAB-8263 dose-dependently downregulated the expression of c-MYC in CRC cells and upregulated the 
expression of p21 and p16 in some of the CRC cell lines.

JAB-8263 dose-dependently induced cell cycle arrest and apoptosis in the MC38 cell line
We conducted further cell cycle and apoptosis assays on the murine CRC cell line MC38 to explore the 
mechanism of JAB-8263 suppressed CRC cell proliferation. In the cell cycle assay, the MC38 cell cycle 
was arrested in the subG0 phase compared with the control group after 3 d and 5 d of treatment with 
JAB-8263 in different concentrations. JAB-8263 dose-dependently decreased the G2/M phase ratio and 
increased the subG0 prophase ratio in MC38 cells, indicating that JAB-8263 induced cell cycle arrest in 
the G0 phase. (Figure 3A and B). In the apoptosis assay, the apoptotic ratio of MC38 was increased 
compared with the control group after 3 d and 5 d of treatment with JAB-8263. Furthermore, the 
apoptotic ratio increased with the compound concentration (Figure 3C and D). This data indicates that 
JAB-2485 suppressed tumor cell activity in two ways by inducing MC38 cell cycle arrest and apoptosis.

JAB-8263 suppressed in vivo CRC growth
After 29 d of treatment in the SW837 xenograft model, the average tumor volume in the vehicle control 



Liu XM et al. BET inhibitor JAB-8263 in CRC models

WJGO https://www.wjgnet.com 336 February 15, 2023 Volume 15 Issue 2

Figure 1 JAB-8263 dose-dependently suppressed colorectal cancer cell proliferation and colony formation in vitro. A: Human colorectal 
cancer cell lines including HT29, DLD1, Colo205, H716, SW837 and H508 were treated with JAB-8263 for 6 d, and the proliferation was dose-dependently 
suppressed; B: The MC38 mouse cell line was treated with JAB-8263 for 6 d, and the proliferation was dose-dependently suppressed; C: The IC50 values of HT-29, 
DLD-1, Colo205, H716, SW837, H508 and MC38 were 0.15, 1.24, 0.19, 0.09, 0.57, 0.14 and 1.25 μmol/L. Colony formation assays for six colorectal cancer cell lines 
including MC38, HT29, H508, SW837 and DLD1 were treated with various concentrations of JAB-8263 for 5 d. Cell proliferation in all cell lines was dose-dependently 
suppressed. All experiments were performed in triplicate. Conc.: Concentration.

group was 895 mm3, and the average tumor volume in the JAB-8263 0.3 mg/kg treatment group was 283 
mm3, which was statistically significant compared to the vehicle control group. The relative tumor 
inhibition rate TGI (%) was 79.0% (Figure 4A). Only one animal in the JAB-8263 treatment group lost 
16.6% of body weight at the end of the trial, and animals in the other groups tolerated it well without 
discontinuation or death (Figure 4B). After 18 d of treatment in the MC38 syngeneic model, the average 
tumor volume in the vehicle control group was 2580 mm3, and the average tumor volume in the JAB-
8263 0.2 mg/kg treatment group was 686 mm3. Compared with the vehicle control group, there was a 
significant statistical difference (P = 0.003) (Figure 4C), and the relative tumor inhibition rate TGI (%) 
was 76.5%. The body weight change of each treatment group was controlled within 15%, no drug 
discontinuation or death occurred, and the animals tolerated the treatment well (Figure 4D).

The tumor tissue of the single-dose MC38 model was further subjected to the western blot assay to 
evaluate the underlying mechanism, and it was found that the expression of c-MYC was significantly 
decreased by a single dose of JAB-8263 administration (P = 0.013 and P = 0.011) (Figure 4G and H). All 
data showed that JAB-8263 downregulated the expression of c-MYC in tumor tissue from the single-
dose MC38 model.

DISCUSSION
In recent years, BET protein inhibitors have received extensive attention in the application of tumors, 
and many BET inhibitors have been used in clinical trials, but most are focused on hematological tumors 
and some solid tumors such as lung cancer and prostate cancer[15-19]. Some previous studies have used 
JQ1 and other compounds in the study of CRC cells[20,21], but due to the short half-life of most 
compounds, they are quite challenging for further clinical application. JAB-8263 used in this study has 
stronger protein affinity, high affinity for BET protein in vitro, and the IC50 is less than 1 nmol/L.

In the in vitro cell proliferation and colony formation experiments, we found that JAB-8263 had an 
inhibitory effect on CRC cells. To further study its mechanism of action, we performed cell cycle and 
apoptosis experiments. However, only the mouse CRC cell line MC38 obtained ideal positive results, 
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Figure 2 MYC signaling pathway was dose-dependently inhibited by JAB-8263 in human colorectal cancer cell lines. A-C: Multiple colorectal 
cancer cell lines were treated with different concentrations of JAB-8263 (1 nmol/L, 10 nmol/L and 100 nmol/L) for 16 h. Western blotting assay was performed to 
detect levels of MYC, p21 and p16. The expression of MYC were downregulated (A), and the expression of p21 (B) and p16 (C) were upregulated in multiple 
colorectal cancer cell lines.

and the human CRC cell lines did not have a significant difference from the control group. We 
conducted the western blot experiments to further explore this result.

MYC plays an important role in the cell cycle, cell death, cellular senescence, and tumorigenesis of 
CRC cells[9]. Myc-related lnc-RNAs such as MYCLo-2 are overexpressed in CRC cells and have 
oncogenic functions[14]. Through the in vitro and in vivo studies of this study, we found that JAB-8263 
can effectively suppress the expression of c-MYC and finally suppress CRC cells.

The tumor suppressor genes p21 and p16 are regulated by the MYC gene[14]. Therefore, we further 
investigated whether the expression of these two genes was affected by BET inhibitors. p21 (CDKN1A) 
is involved in the regulation of cell cycle and cellular senescence[22]. In 1993, it was reported that p21 
can suppress multiple tumors such as CRC by activating wild-type p53[23]. Moreover, studies have 
shown that p21 can also suppress tumor growth by inhibiting cyclin kinase complexes and proliferating 
cell nuclear antigen[24]. JAB-8263 achieves an anti-tumor effect by inducing CRC cell cycle arrest by 
upregulating p21. However, at the same time, some studies have suggested that p21 has an anti-
apoptotic effect, and the apoptosis of hCT116 colon cancer cells can be inhibited by inhibiting p21[25,
26]. This might be one reason why JAB-8263 did not have ideal results in the apoptosis experiments, 
which also requires further study.

p16 (CDKN2A) can inhibit the function of CDK4, and the combination of CDk4 and cyclin D1 plays a 
key regulatory role in the G1→S phase of the cell cycle, thereby suppressing the malignant proliferation 
of cells[27]. The inactivation or decreased expression of the p16 gene can lead to the malignant prolif-
eration of cells and lead to tumorigenesis[28,29]. JAB-8263 inhibits CDK4 function by upregulation of 
p16, thereby suppressing CRC cells.



Liu XM et al. BET inhibitor JAB-8263 in CRC models

WJGO https://www.wjgnet.com 338 February 15, 2023 Volume 15 Issue 2

Figure 3 JAB-8263 dose-dependently induced cell cycle arrest and apoptosis in the MC38 cell line. After incubation with different concentrations of 
JAB-8263 (0, 0.032, 0.16, 0.8, 4, 20 and 100 nmol/L) for 3 d and 5 d, MC38 cells were collected and analyzed for cell cycle and apoptosis assays by flow cytometry. A 
and B: JAB-8263 dose-dependently decreased the G2/M phase ratio and increased the G0 prophase ratio in MC38 cells, indicating that JAB-8263 induced cells to 
arrest in the G0 phase; C and D: JAB-8263 dose-dependently induced apoptosis in MC38 after treatment for 3 d and 5 d. All experiments were performed in triplicate. 
aP < 0.05, bP < 0.01, cP < 0.001 vs DMSO control. PI: Propidium iodide.

Finally, we verified that JAB-8263 has a significant tumor inhibitory effect compared with the control 
group in the SW837 and MC38 animal models. The animals in the treatment group tolerated the drug 
well. Since c-MYC expression is disturbed in long-term dosing models, we established a single-dose 
model. The detection of tumor tissue in single-dose MC38 model also showed that c-MYC was 
downregulated. This is consistent with the conclusions we obtained in the in vitro studies.

According to the conclusion of this study, the BET inhibitor JAB-8263 can inhibit CRC cells mainly by 
inhibiting the expression of c-MYC. But at the same time, we found that the inhibition of BET inhibitors 
on CRC has many mechanisms other than the MYC gene. Further directions include whether the BET 
inhibitors still have an anti-tumor effect in cells that do not overexpress MYC, which will provide a 
theoretical basis for the indications of CRC treatment in future clinical applications.

CONCLUSION
The JAB-8263 compound inhibited the BET target. The expression of BET downstream signaling protein 
MYC was repressed by JAB-8263, resulting in downregulation of c-MYC and upregulation of p21 and 
p16. It induced cell cycle arrest, promoted apoptosis of CRC cells and displayed anti-tumor activity. In 
vivo, JAB-8263 was effective in CRC models.
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Figure 4 JAB-8263 suppressed tumor growth in colorectal cancer murine xenograft models. A and E: The SW837 xenograft model (6 mice for 
each group) was treated with JAB-8263 0.3 mg/kg for 29 d. The average tumor volume was significantly decreased compared to the vehicle control group, P < 0.001; 
B: There was no significant difference in body weight change between groups; C and F: The MC38 syngeneic murine model (8 mice for each group) was treated with 
JAB-8263 0.2 mg/kg for 29 d. The average tumor volume was significantly decreased compared to the vehicle control group, P = 0.003; D: There was no significant 
difference in body weight change between groups; G and H: The tumor tissue of the MC38 syngeneic murine model (3 mice for each group) after a single dose of 
JAB-8263 treatment was collected for the Western blotting assay. Compared with the control group, the expression of c-MYC in the treatment group was 
downregulated, aP < 0.05.

ARTICLE HIGHLIGHTS
Research background
The overexpression of the MYC gene plays an important role in the occurrence, development and 
evolution of colorectal cancer (CRC). Bromodomain and extraterminal domain (BET) inhibitors decrease 
the function of BET, which is the recognition of acetylated lysine residues, thereby downregulating the 
expression of MYC.

Research motivation
BET proteins are an important target in solid tumors, hematologic tumors and myelofibrosis. The 
development of BET small-molecule inhibitors has promising therapeutic value.

Research objectives
The study aimed to investigate the inhibitory effect and mechanism of a BET inhibitor on CRC cells.

Research methods
The effect of the BET inhibitor JAB-8263 on the proliferation of various CRC cell lines was studied by the 
CellTiter-Glo method and colony formation assay. The effect of JAB-8263 on the cell cycle and apoptosis 
of CRC cells was studied by propidium iodide staining and Annexin V/propidium iodide flow assay, 
respectively. The effect of JAB-8263 on the expression of c-MYC, p21 and p16 in CRC cells was detected 
by western blot. To predict the anti-tumor effect of JAB-8263 on CRC cells in vivo and to evaluate the 
safety of the compound, a CRC cell animal tumor model was developed.

Research results
JAB-8263 dose-dependently suppressed CRC cell proliferation and colony formation in vitro. The MYC 
signaling pathway was dose-dependently inhibited by JAB-8263 in human CRC cell lines. JAB-8263 
dose-dependently induced cell cycle arrest and apoptosis in the MC38 cell line. The SW837 xenograft 
model was treated with JAB-8263 0.3 mg/kg for 29 d. The average tumor volume was significantly 
decreased compared to the vehicle control group, P < 0.001. The MC38 syngeneic murine model was 
treated with JAB-8263 0.2 mg/kg for 29 d. The average tumor volume was significantly decreased 
compared to the vehicle control group, P = 0.003.

Research conclusions
BET can be a potential effective drug target for suppressing CRC growth, and the BET inhibitor JAB-
8263 can effectively suppress c-MYC expression and exert anti-tumor activity in CRC models.

Research perspectives
BET proteins are an important target in solid tumors, hematologic tumors and myelofibrosis. The 
development of BET small-molecule inhibitors has promising therapeutic value. Our study results are 
encouraging and will motivate further clinical evolution.
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Abstract
BACKGROUND 
Claudin 18.2 (CLDN18.2) is a cell surface protein expressed by gastric cancer cells. 
The monoclonal antibody zolbetuximab binds CLDN18.2-positive cancer cells and 
causes cancer cell death. A few studies researched the prognostic effect of 
CLDN18.2 expression in metastatic gastric adenocarcinoma.

AIM 
To identify the prognostic value of CLDN18.2 expression in patients with 
metastatic gastric adenocarcinoma.

METHODS 
This study was conducted with 65 patients over the age of 18 who were diagnosed 
with metastatic gastric adenocarcinoma. We investigated the effect of CLDN18.2 
expression on clinicopathological characteristics (age, sex, histological grade, 
Lauren classification, family history, metastatic site, HER2 expression) and 
prognosis for patients with metastatic gastric adenocarcinoma.

RESULTS 
CLDN18.2 expression was positive in 73.8% (48) of the patients. During the 
median 17.7-mo follow-up period, 89.2% (58) of the patients died. Median 
progression-free survival and overall survival (OS) were 6 mo (95% confidence 
interval: 1.6-10.4) and 12 mo (95% confidence interval: 7.5-16.5). There was no 
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statistically significant correlation between CLDN18.2 expression and clinicopathological charac-
teristics of the patients. In univariate and multivariate Cox regression analysis, there was no 
correlation between clinicopathological characteristics of patients and progression-free survival or 
OS.

CONCLUSION 
CLDN18.2 expression was quite high in patients with gastric adenocarcinoma, identifying the 
proportion of the patients in whom zolbetuximab would be efficacious. There is no statistically 
significant correlation with clinicopathological characteristics and OS. CLDN18.2 is not a 
prognostic marker in patients with gastric adenocarcinoma, although it is predictive.

Key Words: Gastric adenocarcinoma; Claudin 18.2; Overall survival; Clinicopathological characteristics

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Zolbetuximab is a new antibody drug targeting the cell surface protein claudin 18.2 (CLDN18.2) 
expressed by gastric cancer cells. CLDN18.2 expression, identifying the patient population who are 
susceptible to zolbetuximab, is discordant in different studies. The present study aimed to research the 
expression ratio of CLDN18.2 and its prognostic value for overall survival in patients with gastric 
adenocarcinoma in a single center located in Turkey.

Citation: Kayikcioglu E, Yüceer RO, Cetin B, Yüceer K, Karahan N. Prognostic value of claudin 18.2 expression 
in gastric adenocarcinoma. World J Gastrointest Oncol 2023; 15(2): 343-351
URL: https://www.wjgnet.com/1948-5204/full/v15/i2/343.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i2.343

INTRODUCTION
Stomach cancer represents the third most common cause of cancer-related mortality globally and caused 
768793 deaths in 2020 (7.7% of all cancer deaths)[1]. Most people with stomach cancer in its early stages 
show no symptoms. The majority of patients (60%) receive diagnosis at the advanced stage following 
the emergence of symptoms[2]. In light of phase 2 and 3 studies from Europe, perioperative 
chemotherapy (ChT) has become standard for patients with stage 2 and 3 gastric cancer, but the 5-year 
overall survival (OS) is still approximately 36%[3,4]. The prognosis for locally advanced, unresectable, 
or metastatic gastric cancer is poor; in clinical trials evaluating the effectiveness of ChT, the median 
survival time was typically less than 1 year[5].

Claudin (CLDN) 18, a member of the cell surface protein claudin family, has two isoforms: CLDN18.1 
expressed in lung tissue and CLDN18.2 expressed specifically in gastric tissue. CLDN18.2 is also 
expressed by gastric cancer cells, showing that it is not lost during malignant transformation[6]. The 
monoclonal antibody zolbetuximab binds CLDN18.2-positive cancer cells and causes cancer cell death 
by antibody-dependent cellular toxicity and complement-dependent cytotoxicity. In MONO phase 2a 
study of zolbetuximab as a single agent, CLDN18.2-positive patients with metastatic gastric and 
gastroesophageal junction (G/GEJ) adenocarcinoma received a minimum of one line of ChT and 
showed a 23% response rate[7]. The phase 2 FAST study of zolbetuximab plus ChT (epirubicin, 
oxaliplatin, capecitabine) vs ChT (epirubicin, oxaliplatin, capecitabine) showed superior OS and 
progression-free survival (PFS), defining CLDN18.2 as a new target for cancer therapy[8].

We investigated the effect of CLDN18.2 expression on clinicopathological characteristics and 
prognosis of patients with metastatic gastric adenocarcinoma undergoing ChT.

MATERIALS AND METHODS
Patients admitted to the medical oncology clinic of Suleyman Demirel University hospital between 
January 2013 and December 2021 with metastatic gastric adenocarcinoma were enrolled in this study. 
All cases were histopathologically confirmed according to the 5th edition of the World Health 
Organization classification of digestive system tumors[9]. The Protocol for the Examination of 
Specimens from Patients with Cancers of the Stomach 2022 of the College of American Pathologists was 
used to identify histopathologic subtype, tumor location, tumor grade, and HER2 for gastric adenocar-
cinoma[10]. From the hospital database, the following clinical data were obtained: age, sex, histological 
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type and grade, family history of gastric cancer, metastatic site, HER2 expression, PFS, and OS. The 
ethics committee of Suleyman Demirel University approved the study with date and number 
01/04/2022-102. Patients who accepted participation in the study, who were older than 18-years-old, 
followed up in the medical oncology clinic of Suleyman Demirel University hospital, and whose 
paraffin blocks for diagnosis of gastric adenocarcinoma could be reached were enrolled in the study.

Immunohistochemistry
Hematoxylin and eosin sections representing the tumor of patients diagnosed with gastric adenocar-
cinoma were re-examined. The best paraffin block was selected for immunohistochemistry staining. 
Sections with 4-micron thickness were taken from paraffin blocks and transferred onto an adhesive 
coated slide system. The following method was used for immunohistochemical staining with 
streptavidin-biotin. Sections were incubated at 56 °C for 12 h for deparaffinization. Three percent 
hydrogen peroxide was used to block endogenous peroxidase. Antigen retrieval was performed in a 
microwave oven for 20 min using 0.01 mol/L Tris/EDTA buffer pH 9.0. Sections were coated with 
primary antibodies including CLDN18.2 (rabbit monoclonal antibody, Clone EPR19202, at 1:500 
dilution, Abcam, United Kingdom) and incubated at room temperature for 2 h. Sections were incubated 
for another 20 min at room temperature after the addition of binding (secondary) antibody (Goat Anti-
Rabbit IgG H&L (HRP) kit, Abcam, United Kingdom). The streptavidin-biotin complex was added. 3,3′-
Diaminobenzidine was used as chromogen for visualization. CLDN18.2 non-tumor gastric tissues were 
used as positive controls for each staining session.

Evaluation of immunohistochemical staining
Pathology slides were reviewed by two expert pathologists (ROY and NK) who did not know patient 
treatments and outcomes. Tumor cells were scored positive for CLDN18.2 if they showed definite 
membranous staining and negative if tumor nuclei and cell membrane did not have immunoreactivity. 
Staining intensity was scored between 0 and 3 (absent: 0, weak: 1, moderate: 2, strong: 3).

Statistical analysis
Data analysis was performed using the Statistical Package for the Social Sciences 26.0 (SPSS Inc., 
Chicago, IL, United States). Age and clinical characteristics were compared between patients with 
expression of CLDN18.2 using the Mann-Whitney U-test for individual samples. In patient tumor 
samples with expression of CLDN18.2, sex, localization, family history, Lauren classification, grade, 
sites of metastasis, liver and lung metastases, and history of adjuvant and neoadjuvant ChT were 
compared using Pearson’s χ2 test. The correlation between CLDN18.2 and HER2 was determined with 
the Spearman correlation test. OS and PFS were estimated using the Kaplan-Meier method, and a log-
rank test was used to compare study groups in terms of survival. Multivariate analyses were performed 
using Cox regression analysis. A P value of < 0.05 was considered statistically significant.

RESULTS
Sixty-nine patients were screened, and sixty-five were included in the study. The mean age was 64.6 
years ± 12.9 years. Among the patients, 49 (75.4%) were male, and 16 (24.6%) were female. Table 1 
shows the demographic and clinicopathologic characteristics of the patients according to CLDN18.2 
expression. Immunohistochemical staining was used to screen 65 metastatic gastric adenocarcinoma 
cases for the pathological significance of CLDN18.2 expression (Figure 1). CLDN18.2 expression was 
positive in 73.8% (48) of the patients.

During the median 17.7-mo follow-up period, 89.2% (58) of the patients died. Median PFS and OS 
were 6 mo (95% confidence interval: 1.6-10.4) and 12 mo (95% confidence interval: 7.5-16.5). There was 
no statistically significant correlation between CLDN18.2 expression and clinicopathological character-
istics of the patients (Figure 2). In univariate and multivariate Cox regression analysis for PFS, there was 
no correlation between clinicopathological characteristics of patients and PFS (Table 2). In univariate 
and multivariate Cox regression analysis for OS, older age was an independent risk factor for poor OS 
(Table 3).

DISCUSSION
Gastric cancer is common and fatal. With targeted agents and immunotherapy, the median OS of 
patients with metastatic gastric cancer has reached 13.8-14.4 mo[11,12]. Novel therapies are critical for 
extending the survival of gastric adenocarcinoma patients. CLDN18.2 is a tight junction molecule found 
on the surface of gastric mucosa epithelium and gastric cancer cells[6]. In metastatic gastric cancer 
patients, the monoclonal antibody zolbetuximab targeting CLDN18.2 contributes to OS alone and when 
combined with ChT. It had tolerable side effects such as nausea and vomiting[7,8]. Worldwide clinical 
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Table 1 Clinicopathological characteristics of patients with gastric adenocarcinoma based on claudin 18.2 expression

CLDN18.2 score
Parameter Number of cases

0 1 2 3
P value

n % n % n % n % n %

Age in yr

< 65 30 46.2 4 13.3 10 33.3 9 30.0 7 23.3

≥ 65 35 53.8 13 37.1 10 28.6 5 14.3 7 20.0

0.091

Sex 

Male 49 75.4 14 28.6 15 30.6 11 22.4 9 18.4

Female 16 24.6 3 18.8 5 31.3 3 18.8 5 31.3

0.314

Lauren classification

Intestinal 41 63.1 9 22.0 12 29.3 10 24.4 10 24.4

Diffuse 24 39.9 8 33.3 8 33.3 4 16.7 4 16.7

0.221

Tumor grade 

G1 30 46.2 9 30.0 8 26.7 7 23.3 6 20.0

G2 8 12.3 1 12.5 3 37.5 2 25.0 2 25.0

G3 27 41.5 7 25.9 9 33.3 5 18.5 6 22.2

0.889

Localization

Cardia 18 27.7 3 16.7 9 50.0 3 16.0 3 16.7

Corpus 10 18.5 4 33.3 5 41.7 1 8.3 2 16.7

Antrum 12 15.4 3 30.0 3 30.0 2 20.0 2 20.0

Pylorus 2 2.1 0 0.0 0 0.0 2 100.0 0 0.0

Antropyloric 23 35.4 7 30.4 3 13.0 6 26.1 7 30.4

0.307

Her2Neu

Negative 54 83.1 13 24.1 15 27.8 13 24.1 13 24.1

Positive 11 16.9 4 36.4 5 45.5 1 9.1 1 9.1

0.116

Family history

No 40 61.5 13 32.5 9 22.5 10 25.0 8 20.0

Yes 14 21.5 2 14.3 6 42.9 2 14.3 4 28.6

Unknown 11 16.9 2 18.2 5 45.5 2 18.2 2 18.2

0.751

Liver metastasis

No 33 50.8 8 25.0 10 31.3 6 18.8 8 25.00

Yes 32 49.2 9 27.3 10 30.3 8 24.2 6 18.2

0.703

Lung metastasis

No 48 73.2 9 52.9 3 17.6 2 11.8 3 17.6

Yes 17 26.8 8 16.7 17 35.4 12 25.0 11 22.9

0.053

Metastasis sites

Liver 16 24.6 2 12.5 7 43.8 2 12.5 5 31.3

Lung 4 6.2 2 50.0 0 0.0 0 0.0 2 50.0

Peritoneum 11 16.9 0 0.0 5 45.5 3 27.3 3 27.3

LAP 14 21.5 4 28.6 2 14.3 6 42.90 2 14.30

Brain 2 3.1 2 100.0 0 0.0 0 0.0 0 0.0

Liver + lung 17 26.2 7 41.2 6 35.0 2 11.8 2 11.8

0.050
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Ovary 1 1.5 0 0.0 0 0.0 1 100.0 0 0.0

Adjuvant chemotherapy

No 29 44.6 8 27.6 9 31.0 6 20.7 6 20.7

Yes 36 55.4 9 25.0 11 30.6 8 22.2 8 22.2

0.793

Neoadjuvant chemotherapy

No 61 91.8 14 23.0 20 32.8 13 21.3 14 23.0

Yes 4 8.2 3 75.0 0 0.0 1 25.0 0 0.0

0.097

Exitus

No 7 10.8 0 0.0 3 42.9 3 42.9 1 14.3

Yes 58 89.2 17 29.3 17 29.3 11 19.0 13 22.4

0.401

CLDN18.2: Claudin 18.2; LAP: Lymphadenopathy.

Table 2 Univariate and multivariate analysis of baseline characteristics for progression-free survival

Progression-free survival univariate 
analysis

Progression-free survival multivariate 
analysisParameter

HR 95%CI P HR 95%CI P

Age in yr 1.36 0.80-2.30 0.26 Age in yr 1.29 0.71-2.33 0.41

Sex 1.40 0.76-2.56 0.28 Sex 1.49 0.73-3.05 0.28

Lauren classification 0.89 0.52-1.53 0.67 Lauren classification 0.93 0.39-2.22 0.87

Tumor grade 0.85 0.49-1.47 0.56 Tumor grade 0.91 0.58-1.43 0.69

Family history 0.87 0.45-1.77 0.75 Family history 0.51 0.20-1.28 0.15

Liver metastasis 1.09 0.64-1.85 0.75 Liver metastasis 1.07 0.60-1.91 0.82

Lung metastasis 0.93 0.52-1.66 0.79 Lung metastasis 0.98 0.49-1.94 0.95

Localization 0.94 0.42-2.11 0.88 Localization 1.01 0.81-1.24 0.98

Metastasis sites 0.83 0.27-2.60 0.75 Metastasis sites 0.99 0.84-1.18 0.94

Her2Neu 0.81 0.40-1.64 0.56 Her2Neu 0.85 0.37-1.93 0.69

CLDN18.2 1.22 0.54-2.32 0.77 CLDN18.2 1.30 0.54-3.19 0.56

CI: Confidence interval; CLDN18.2: Claudin 18.2; HR: Hazard ratio.

trials of zolbetuximab in the first-line setting, in combination with ChT and immunotherapy, are 
ongoing for G/GEJ adenocarcinoma (NCT03505320, NCT03504397, and NCT03653507).

Histopathological subtype was diffuse in 36.9% (24) of patients and intestinal in 63.1% (41), and there 
was no correlation with CLDN18.2 expression. In a study including 481 patients with gastric cancer, 
there was no correlation between histopathological subtype per Lauren classification and CLDN18.2 
expression, as in our study[13]. However, in a study including 263 Japanese patients with gastric 
adenocarcinoma, diffuse histopathological subtype was associated with strong CLDN18.2 expression
[14]. In another study of 85 patients with gastric adenocarcinoma, intestinal subtype was associated with 
strong CLDN18.2 expression[15]. There was no correlation between grades of tumors and CLDN18.2 
expression in a study including 485 patients with esophageal adenocarcinoma[16]; however, grade 3 
tumors were associated with strong CLDN18.2 expression in two studies[13,14].

HER2 expression was positive in 16.9% (11) of patients, and there was no correlation between HER2 
and CLDN18.2 expression. In three different studies, there was no correlation between HER2 and 
CLDN18.2 expression[13,15,17], while there was an inverse correlation in a study including patients 
with esophageal adenocarcinoma[16].

In the present study, CLDN18.2 expression was detected in 73.8% (48) of patients, with moderate to 
strong expression (≥ 2+) in 43.1% (n = 28). CLDN18.2 expression was detected in 87%, with moderate 
and strong expression in 51.5%, of Japanese patients in a study conducted by Rohde et al[14], and 
moderate to strong expression was present in 49% of patients with G/GEJ adenocarcinoma in the FAST 
study conducted by Sahin et al[6]. There was no correlation between clinicopathological characteristics 
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Table 3 Univariate and multivariate analysis of baseline characteristics for overall survival

Paragraph Overall survival univariate analysis Overall survival multivariate analysis

HR 95%CI P HR 95%CI P

Age in yr 2.46 1.39-4.33 0.01 Age in yr 3.17 1.45-6.92 0.01

Sex 1.10 0.61-1.99 0.75 Sex 0.65 0.26-1.59 0.34

Lauren classification 1.28 0.66-1.94 0.66 Lauren classification 1.23 0.24-6.16 0.81

Tumor grade 0.41 0.15-1.07 0.07 Tumor grade 0.29 0.08-1.06 0.06

Family history 0.83 0.36-1.97 0.67 Family history 2.14 0.68-6.71 0.19

Liver metastasis 0.94 0.56-1.59 0.82 Liver metastasis 0.74 0.33-1.65 0.46

Lung metastasis 0.71 0.39-1.27 0.25 Lung metastasis 0.58 0.22-1.52 0.27

Localization 0.91 0.46-1.79 0.78 Localization 2.14 0.68-6.71 0.19

Metastasis sites 1.36 0.30-6.09 0.69 Metastasis sites 1.88 0.52-6.82 0.34

Her2Neu 1.11 0.56-2.22 0.77 Her2Neu 0.90 0.35-2.34 0.83

CLDN18.2 1.68 0.81-3.50 0.12 CLDN18.2 2.78 0.85-9.07 0.09

CI: Confidence interval; CLDN18.2: Claudin 18.2; HR: Hazard ratio.

Figure 1 Representative images of claudin 18.2 immunohistochemical staining in gastric adenocarcinoma. A: Score 0; B: Score 1+; C: Score 
2+; D: Score 3+.

of the patients and OS in the present study, consistent with other studies[13,15,16].
Inconsistent with the present study, Türeci et al[7] and Sahin et al[8] detected CLDN18.2 expression in 

only 17.1% and 14.1% of patients, respectively. This could be due to the different patient cohorts in the 
studies as well as the different kits used to detect CLDN18.2 expression. Few studies have been 
published regarding the expression of CLDN18.2 in gastric adenocarcinoma. Conflicting results exist 
about the CLDN18.2 expression ratios and the relationship between these parameters and the 
clinicopathological characteristics of patients with gastric adenocarcinoma; however, the studies are 
consistent in showing there is no correlation between CLDN18.2 expression and OS, as in the present 
study. The proportion of patients with gastric adenocarcinoma in whom zolbetuximab was efficacious 
was determined by the MONO and FAST trials. Our findings are consistent with these studies.
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Figure 2 Kaplan-Meier curves for according to claudin 18.2 expression scores. A: Progression-free survival; B: Overall survival according to claudin 
18.2 expression (CLDN 18.2) scores.

The limitations of this study included the relatively small number of patients analyzed and the 
retrospective character. Additional studies with a larger number of patients are needed to define the 
effect of CLDN18.2 expression on OS.

CONCLUSION
CLDN18.2 expression is quite high in patients with gastric adenocarcinoma, identifying the proportion 
of the patients in whom zolbetuximab would be efficacious. There is no statistically significant 
correlation with clinicopathological characteristics and OS. CLDN18.2 is not a prognostic marker in 
patients with gastric adenocarcinoma.
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Claudin 18.2 (CLDN18.2) is a cell surface protein expressed by gastric cancer cells and a new target for 
the monoclonal antibody named zolbetuximab.
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It is unknown whether CLDN18.2 expression on gastric cancer cells is prognostic.
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To identify the prognostic value of CLDN18.2 expression in patients with metastatic gastric adenocar-
cinoma.
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We investigated the effect of CLDN18.2 expression on clinicopathological characteristics (age, sex, 
histological grade, Lauren classification, family history, metastatic site, and HER2 expression) and 
prognosis for patients with metastatic gastric adenocarcinoma.
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There was no statistically significant correlation between CLDN18.2 expression and clinicopathological 
characteristics of the patients. In univariate and multivariate Cox regression analysis, there was no 
correlation between clinicopathological characteristics of patients and progression-free survival or 
overall survival. The expression of CLDN18.2 was predictive for zolbetuximab in metastatic gastric 
adenocarcinoma, but it is not prognostic.



Kayikcioglu E et al. Claudin 18.2 expression in gastric adenocarcinoma

WJGO https://www.wjgnet.com 350 February 15, 2023 Volume 15 Issue 2

Research conclusions
CLDN18.2 expression is high in metastatic gastric adenocarcinoma and predictive for zolbetuximab, but 
it is not prognostic.

Research perspectives
Detection of new prognostic and predictive markers will make gastric cancer more manageable.
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Abstract
BACKGROUND 
Immune checkpoint inhibitors (ICIs) have shown promising efficacy in treatment 
and clinical management of advanced gastric and gastroesophageal junction 
cancer. However, the inhibitors also cause immune-related adverse events 
(irAEs). The current systematic review and meta-analysis study aimed to 
investigate the incidence and nature of irAEs caused by ICIs.

AIM 
To investigate the incidence and nature of irAEs in advanced gastric and 
gastroesophageal junction cancer.

METHODS 
This systematic review was registered with PROSPERO (Reg. number: 
CRD42020152291). Data included in this study were collected from patients 
diagnosed with advanced gastric cancer or gastroesophageal junction cancer and 
treated with ICIs. A systematic literature search was conducted using the 
PubMed, EMBASE, and Cochrane Library databases. Meta-analysis was carried 
out using the single sample rate method. Synthesis and analysis of the data was 
conducted using Stata/SE and Review Manager Software.

RESULTS 
The patients enrolled in the present study included 14 patients from 14 case 
reports, 326 patients from 6 case series, and 1249 patients from 8 clinical trials. It 
was found that the overall incidence of irAEs was 16% [95% confidence interval 
(CI): 11-20] for all grades and 3% (95%CI: 2-4) for the severe grade. It was evident 
that the incidence of irAEs varied with the type of inhibitor and organs. A 
comparative study of the anti-programmed cell death receptor-1 (PD-1) and anti-
programmed death receptor-ligand 1 (PD-L1) treatments showed that the anti-

https://www.f6publishing.com
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PD-1 group had a higher overall incidence of irAEs (20%) as compared with that of the anti-PD-L1 
group (13%). Results of this study showed that the endocrine system experienced the highest 
incidence of organ-specific irAEs (7.4%), including hypothyroidism, hyperthyroidism, thyroiditis, 
diabetes, and adrenal insufficiency, followed by gastroenterology (2.2%), pulmonology (1.8%), 
neurology (1.4%), dermatology (1.4%), hematology (0.8%), and hepatology (0.7%). In clinical trials, 
it was found that the incidence of death related to irAEs was 1% (95%CI: 0-2.0), whereby colitis 
and interstitial lung diseases were the leading causes of death.

CONCLUSION 
It was evident that the incidence and nature of irAEs are both organ- and inhibitor-specific. The 
anti-PD-1 group had the highest incidence of all irAEs grades including the severe grades of irAEs. 
Early identification and management of irAEs allows clinical oncologists to effectively consider the 
pros and cons and hence enables them to strike a balance.

Key Words: Immune checkpoint inhibitors; Advanced gastric and gastroesophageal junction cancer; 
Systematic review; Meta-analysis.

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This systematic review shows that there is an increasing number of immune-related adverse 
events (irAEs) associated with immune checkpoint inhibitors that are being reported in patients with 
gastric cancer or gastroesophageal junction cancer. This is particularly severe organ-specific irAEs and 
death because of irAEs, which poses significant challenges for clinical oncologists. Therefore, to help 
clinicians effectively identify and manage irAEs as well as strike a balance, a comprehensive 
understanding, systematic prediction, and appropriate management of the adverse events are critical.

Citation: Pei WG, Chen WZ, Wu YK, Tan SX, Jie ZG. Immune-related adverse events associated with immune 
checkpoint inhibitors for advanced gastric and gastroesophageal junction cancer: A meta-analysis. World J 
Gastrointest Oncol 2023; 15(2): 352-367
URL: https://www.wjgnet.com/1948-5204/full/v15/i2/352.htm
DOI: https://dx.doi.org/10.4251/wjgo.v15.i2.352

INTRODUCTION
Gastric cancer (GC) is one of the most prevalent malignancies of the digestive tract in the world 
whereby the global incidence and mortality of GC ranks fifth and fourth of the malignancies, 
respectively[1]. Furthermore, it has been found that the global incidence and mortality rates of GC are 
15.59 per 100000 and 11.88 per 100000, respectively, as well as 30.64 per 100000 and 21.72 per 100000, 
respectively in China[2]. Although the most effective treatment for GC or gastroesophageal junction 
cancer (GEJC) is a surgical operation, the majority of patients cannot undergo radical surgery because of 
the advanced stage of the disease at the time of diagnosis. Instead, the patients receive chemotherapy, 
targeted therapy, and other medical treatment. Recently, immune checkpoint inhibitors (ICIs) have also 
made significant progress in the treatment and management of GC/GEJC.

The first ICI, ipilimumab [Yervoy, anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)], was 
approved by the Food and Drug Administration (FDA) in 2011 for the treatment of metastatic 
melanoma[3]. Following the approval of the first programmed cell death receptor-1 (PD-1)/pro-
grammed death receptor-ligand 1 (PD-L1) inhibitor (pembrolizumab) in 2014, several ICIs have later 
been utilized in clinical practice[4-5]. In 2021, the FDA approved two anti-PD-1 drugs (pembrolizumab 
and nivolumab) for treatment of different forms of GC. Generally, ICIs are divided into three categories: 
inhibitors of PD-1, PD-L1, and CTLA-4. Activation of PD-1 or PD-L1 signaling acts as the principal 
mechanism by which tumors evade antigen-specific T-cell immunologic responses. However, antibody 
blockage of PD-1 or PD-L1 reverses this process and enhances anti-tumor immune activity[6].

CTLA-4 possesses structural homology with CD28 and binds to the B7 molecules on APC with a 
higher affinity than the CD28. This results in a competitive inhibition of costimulatory CD28 signaling 
and damage to the T cell signaling[7-8]. ICIs exert anti-tumor effects by damaging co-inhibitory T cell 
signaling (Figure 1, source: Beida Pharmaceutical official website).

ICIs offer patients with GC or GEJC a glimmer of hope. A previous study suggested that pembrol-
izumab monotherapy may provide a potential treatment benefit for GC or GEJC[9]. However, ICIs 
result in severe or even fatal immune-related adverse events (irAEs) whereby they cause immune 
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Figure 1 The action mechanism of programmed cell death receptor-1, programmed death receptor-ligand 1, and cytotoxic T lymphocyte-
associated antigen-4 inhibitors. PD-1: Programmed cell death receptor-1; PD-L1: Programmed death receptor-ligand 1; CTLA-4: Cytotoxic T lymphocyte-
associated antigen-4; TCR: T-cell receptor; MHC: Major histocompatibility complex; APC: Antigen-presenting cell.

system hyperactivation in the normal tissues, which may be the underlying cause of irAEs[10]. Organ-
specific irAEs associated with ICIs mainly occur in endocrinopathy, gastroenterology, hepatology, 
neurology, hematology, dermatology, pulmonology, nephrology, cardiology, and rheumatic 
immunology.

The irAEs can result in a reduction in dosage, drug withdrawal, a decrease in compliance, delayed 
treatment, organ function damage, and eventual death. These adverse events have been reported in 
other tumors, but there has been no systematic review of the events in GC or GEJC. Therefore, this meta-
analysis was aimed to assess the incidence and nature of irAEs by conducting a systematic review of 
their adverse events in patients with GC or GEJC. The objective of the current systematic review and 
meta-analysis study was to assist clinicians in effective identification, and strike a balance by 
considering the pros and cons in management approaches of irAEs.

MATERIALS AND METHODS
Literature sources and searches
Three major databases (PubMed, EMBASE, and Cochrane Library) were used to perform a systematic 
literature search for the present study. The search was conducted for the studies published between 
January, 2000 and January, 2022. Population, Intervention, Comparison, Outcome, and Study design 
was utilized as a framework to conduct the literature search (Table 1). The relevant searching terms 
corresponded to terms of the Medical Subject Heading. In addition, the searches were immediately 
repeated before the final analyses to identify any additional studies for inclusion[11]. This study 
adhered to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
and was registered with PROSPERO (Registration number: CRD42020152291)[12]. Detailed search 
strategies in the three major databases (PubMed, EMBASE, and Cochrane Library) were as shown in 
Supplementary Tables 1-3. The retrieved documents were lastly managed using the EndNote 20.

Eligibility criteria and study selection
Inclusion criteria of the participants of this systematic review and meta-analysis study were: Adults 
diagnosed with advanced GC, GEJC, and treated with ICIs. On the other hand, the included studies 
were randomized controlled trials (RCTs), case series, and case reports published in peer-reviewed 
journals without language or time restrictions. In addition, there were no set restrictions on sex, race, 
ethnicity, education, and economic status in the study.

Exclusion criteria of this systematic review and meta-analysis study were: Patients receiving other 
therapies such as chemotherapy, radiotherapy, targeted therapy, or other immunotherapy. Further, the 
studies excluded were: Cohort studies, case-control studies, cross-sectional studies, and other nonran-
domized studies.

First, duplications were filtered using the automatic screening function of EndNote 20. The 
unqualified documents were then filtered after reading the title and abstract. Finally, the studies were 
further filtered by reading their full text via the online databases and school libraries. Corresponding 
authors were also contacted for further clarification during the filtering process. The search was carried 
out by two independent reviewers. Differences were resolved through consensus after discussion and 

https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
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Table 1 Population, Intervention, Comparison, Outcome, and Study design

Query Search term

#1 P (Neoplasm, Stomach[Title/Abstract] OR Stomach oplasm[Title/Abstract] OR Neoplasms, Stomach[Title/Abstract] OR Gastric 
Neoplasms[Title/Abstract] OR Gastric Neoplasm[Title/Abstract] OR Neoplasm, Gastric[Title/Abstract] OR Cancer of Stomach[Title/Abstract] 
OR Stomach Cancers[Title/Abstract] OR Gastric Cancer[Title/Abstract] OR Cancer, Gastric[Title/Abstract] OR gastroesophageal junction 
cancer[Title/Abstract] OR gastroesophageal junction adenocarcinoma[Title/Abstract] OR adenocarcinoma gastroesophageal 
junction[Title/Abstract])

#2 I (Checkpoint Inhibitors, Immune[Title/Abstract] OR Immune Checkpoint Inhibitor[Title/Abstract] OR PD-L1 Inhibitors[Title/Abstract] OR PD 
L1 Inhibitors[Title/Abstract] OR PD-L1 Inhibitor[Title/Abstract] OR PD L1 Inhibitor[Title/Abstract] OR CTLA-4 Inhibitors[Title/Abstract] OR 
CTLA 4 Inhibitors[Title/Abstract] OR ipilimumab[Title/Abstract] OR ticilimumab[Title/Abstract] OR nivolumab[Title/Abstract] OR pembrol-
izumab[Title/Abstract] OR pidilizumab[Title/Abstract] OR atezolizumab[Title/Abstract] OR durvalumab[Title/Abstract] OR 
avelumab[Title/Abstract])

#3 O (immune-related adverse events[Title/Abstract] OR immune related adverse events checkpoint inhibitors[Title/Abstract] OR immune related 
adverse events checkpoint blockade[Title/Abstract] OR management of immune related adverse events[Title/Abstract] OR immune related 
adverse events in patients[Title/Abstract] OR immune related adverse events systemic immunosuppression[Title/Abstract])

#4 S ("randomized controlled trial"[pt] OR "controlled clinical trial"[pt] OR randomized[tiab] OR placebo[tiab] OR "drug therapy"[sh] OR 
randomly[tiab] OR trial[tiab] OR groups[tiab] OR "randomized controlled trial"[pt] OR "controlled clinical trial"[pt] OR "clinical trials as 
topic"[mesh] OR "random allocation"[mesh] OR "double-blind method"[mesh] OR "single-blind method"[mesh])

#5 #1 AND #2 AND #3 AND #4

PD-1: Programmed cell death receptor-1; PD-L1: Programmed death receptor-ligand 1; CTLA-4: Cytotoxic T lymphocyte-associated antigen-4.

consultation with a senior third party.

Outcomes
Incidences of irAEs and organ-specific adverse events associated with ICIs in the treatment of GC/GEJC 
were documented in the present meta-analysis. The irAEs were described using version 2, 3, or 4 of the 
Common Terminology Criteria for Adverse Events of the National Cancer Institute. Adverse events 
were graded on a scale of 1 to 5 and grades 3 to 5 were regarded as the severe grade.

Data extraction
The data for each study were independently extracted and recorded by the two reviewers. The data 
collected for clinical trials were: Author(s), year, clinical trial information, study design, enrollment size, 
types of tumors, type and dose of monoclonal antibodies, version of the Common Terminology Criteria 
for Adverse Events, frequency of irAEs and organ-specific irAEs, and the median time.

The data collected for case reports and case series were: Patient characteristics, previous oncologic 
treatment, cancer outcome (oncologic response or progressive disease), the nature of each irAE, as well 
as irAE onset, treatment, and outcome. The final results were cross-checked and any disagreements 
(Kappa score: 0.76) were resolved through consensus after discussion or consultation with a senior third 
party.

Quality assessment
The Cochrane Risk of Bias Tool was used to assess the risk of bias and quality of the RCTs[13]. The tool 
consists of seven aspects: Random sequence generation (selection bias), allocation concealment 
(selection bias), blinding of participants and personnel (performance bias), blinding of outcome 
assessment (detection bias), incomplete outcome data (attrition bias), selective reporting (reporting 
bias), and other biases. Each aspect of the Cochrane Risk of Bias Tool was assigned a high, low, or 
unclear risk of bias[13]. Quality assessment was conducted using Review Manager Software (version 
5.4.1). This quality assessment was independently conducted by two reviewers who reached an 
agreement through consensus.

Data synthesis and analysis
All analyses in the present systemic review and meta-analysis were performed using Stata/SE (version 
12.0) and Review Manager (version 5.4.1) software. The following was the procedure involved in 
conducting the statistical analysis in the study.

Effect values combination
First, the incidence of irAEs was determined in each study based on the sample size and total number of 
irAEs. The incidence of irAEs was then combined, and the effect value was determined based on a meta-
analysis of sample rate and standard error. Stata/SE software (version 12.0) was used to draw the forest 
map and obtain the 95% confidence intervals (CIs) for the weighted average of all studies[14]. The 
combined effect value was conducted using Stata/SE (version 12.0) with the metan and metafunnel 
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commands of meta-analysis.

Heterogeneity test
Statistical heterogeneity between the selected studies was analyzed using the Q test and I² statistic. 
When the P-value of Q statistic was > 0.10 or I² ≤ 50%, there was no heterogeneity or acceptable hetero-
geneity between the studies. Further, when the P value was ≤ 0.10 or I² > 50%, there was a greater 
degree of heterogeneity between the studies[15]. The random-effect model, which accounts for the 
heterogeneity between the studies was used to examine the effect size because the heterogeneity 
between the studies was greater[16]. A Galbraith plot for heterogeneity was drawn to evaluate hetero-
geneity in the present study. The heterogeneity test was conducted using Stata/SE with the galbr 
command of meta-analysis.

Publication bias test
Initially, the risk of publication bias was evaluated using a funnel plot with pseudo 95% confidence 
limits and the publication bias was then assessed in the present study by observing the symmetry of the 
funnel plot. Furthermore, the funnel plot was evaluated using both the Begg and Egger methods. 
Therefore, the funnel plot was quantified and publication bias was assessed by examining the P-value. 
The test of publication bias was conducted using Stata/SE with the metabias command of meta-
analysis.

Subgroup analysis
Subgroup analysis is a common method for addressing heterogeneity. The studies in the present review 
were grouped according to the types of ICIs and organ-specific adverse events studied. The analysis 
was conducted using Stata/SE with the metan command of meta-analysis.

Sensitivity analysis
A new meta-analysis was conducted to determine whether the effect size had changed whenever 
research was deleted. However, the deleted study was considered when result of the new meta-analysis 
differed from that of the previous one to influence the total effect size. Influence analysis was conducted 
using Stata/SE with the metaninf command of meta-analysis.

RESULTS
Study selection
The literature search was conducted in the current systematic review based on the pre-established 
strategy. A total of 285 pieces of literature were searched including 38, 146, and 101 in the PubMed, 
EMBASE, and Cochrane databases, respectively. Initially, a total of 62 duplicated literature were 
excluded. A total of 155 articles that did not meet the criteria were then excluded after reading their 
titles and abstracts. A total of 28 articles (8 clinical trials, 14 case reports, and 6 case series) that met the 
inclusion criteria were finally selected after reading the full text (Figure 2). A reference list of all the 
excluded studies and reasons for their exclusion was as shown in the Supplementary Table 4.

Nature of irAEs: Data from clinical trials
General characteristics: A total of 8 clinical trials were included in this meta-analysis including 2 PD-1 
(pembrolizumab)[17-18], 5 PD-L1 (avelumab)[19-23], and 1 CTLA-4 (ipilimumab)[24]. All reviewed 
trials showed total irAEs, with 6 of them describing organ-specific irAEs. The remaining 2 trials only 
reported total irAEs. The general characteristics of the included studies were as shown in Table 2, which 
included a total of 1249 participants from 8 clinical trials. All trials included in the meta-analysis were 
open-label, multicenter, and randomized trials. Further, it was found that there was only one phase II 
clinical trial, three phase I clinical trials, and four phase III clinical trials. The average immunotherapy 
duration for the all included trials was 2.9 mo [interquartile range (IQR): 2.4 to 3.1 mo], whereas the 
median follow-up time was 15.5 mo (IQR: 9.9 to 20.5 mo). The median overall survival (OS) of these 
trials ranged between 4.6 (95%CI: 3.6 to 5.7) to 12.7 mo (95%CI: 10.5 to 18.9) whereas the median PFS 
ranged between 1.4 (95%CI: 1.4 to 1.5) and 3.2 mo (95%CI: 2.8 to 4.1).

Global incidence of irAEs: The global incidence of irAEs for overall grades was 20% (95%CI: 16 to 23) 
in the anti-PD-1 group, 13% (95%CI: 8 to 19) in the anti-PD-L1 group, and 18% (95%CI: 8 to 27) in the 
anti-CTLA-4 group, whereas 4% (95%CI: 2 to 5) in the anti-PD-1 group and 3% (95%CI: 1 to 4) in the 
anti-PD-L1 group for severe grade (Supplementary Figures 1-3). It was found that the anti-PD-1 group 
had the highest incidence of irAEs at all grades and severe grades as compared with that of the other 
three inhibitors. In addition, the overall incidence of irAEs was 16% (95%CI: 11 to 21) for all grades and 
3% (95%CI: 2 to 4) for severe grade in the anti-PD-1 combined with the anti-PD-L1 group 
(Supplementary Figure 4), which was comparable with that in the anti-PD-1 combined with anti-PD-L1, 

https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
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Table 2 Study characteristics of included clinical trials

Trial Design Design 
details

Cancer 
types

Enrollment 
size, n ICIs Dose, 

mg/kg
IrAEs, all 
grades, n

IrAEs, 
severe 
grades, n

mOS mPFS

Shitara et 
al[17], 
2018

RCT Open-label, 
multicenter, 
phase III

Advanced 
GC/GEJC

294 PD-1 (pembrol-
izumab)

200 mg, 
q3w

61 10 9.1 mo 
(95%CI: 6.2 
to 10.7 mo)

1.5 mo 
(95%CI: 
1.4 to 2.0 
mo)

Fuchs et al
[18], 2022

RCT Open-label, 
multicenter, 
phase III

Advanced 
GC/GEJC

294 PD-1 (pembrol-
izumab)

200 mg, 
q3w

55 11 NA NA

Moehler et 
al[19], 
2021

RCT Open-label, 
multicenter, 
phase III

Advanced 
GC/GEJC

249 PD-L1 (avelumab) 10, q2w 32 8 10.4 mo 
(95%CI: 9.1 
to 12.0 mo)

3.2 mo 
(95%CI: 
2.8 to 4.1 
mo)

Doi et al
[20], 2019

RCT Open-label, 
multicenter, 
phase I

Advanced 
GC/GEJC

40 PD-L1 (avelumab) 10, q2w 9 0 9.1 mo 
(95%CI: 7.2 
to 11.2 mo)

2.4 mo 
(95%CI: 
1.4 to 2.8 
mo)

Doi et al
[21], 2018

RCT Open-label, 
multicenter, 
phase I

Advanced 
GC/GEJC

40 PD-L1 (avelumab) 10, q2w 5 0 9.1 mo 
(95%CI: 7.2 
to 11.2 mo)

2.5 mo 
(95%CI: 
1.4 to 2.8 
mo)

Chung et 
al[22], 
2019

RCT Open-label, 
multicenter, 
phase I

Advanced 
GC/GEJC

90 PD-L1 (avelumab) 10, q2w 17 2 NA NA

Bang et al
[23], 2018

RCT Open-label, 
multicenter, 
phase III

Advanced 
GC/GEJC

185 PD-L1 (avelumab) 10, q2w 12 4 4.6 mo 
(95%CI: 3.6 
to 5.7 mo)

1.4 mo 
(95%CI: 
1.4 to 1.5 
mo)

Bang et al
[24], 2017

RCT Open-label, 
multicenter, 
phase II

Advanced 
GC/GEJC

57 CTLA-4 
(ipilimumab)

10, q3w 10 0 12.7 mo 
(95%CI: 
10.5 to 18.9 
mo)

2.7 mo

ICIs: Immune checkpoint inhibitors; irAEs: Immune-related adverse events; mOS: Median overall survival; mPFS: Median progression-free survival; RCT: 
Randomized controlled trial; GC: Gastric cancer; GEJC: Gastroesophageal junction cancer; NA: Not available; PD-1: Programmed cell death receptor-1; PD-
L1: Programmed death receptor-ligand 1; CTLA-4: Cytotoxic T lymphocyte-associated antigen-4.

and anti-CTLA-4 groups (Figure 3A and B).

Incidence of organ-specific irAEs: Organ-specific irAEs and their incidence were described as shown in 
Figure 3C. It was found that only one article documented an irAEs associated with dermatology[21]. In 
addition, it was noted that there were only two articles that showed the incidence of total irAEs without 
describing organ-specific irAEs[22-23]. The most common organ-specific irAEs occurred in the 
endocrine system, accounting for 7.4% (95%CI: 5.9-8.8), and included hypothyroidism, hyperthyroidism, 
thyroiditis and diabetes, followed by gastroenterology, pulmonology, neurology, and dermatology, 
accounting for 2.2% (95%CI: 1.4-3.1), 1.8% (95%CI: 1.0-2.5), 1.4% (95%CI: 0.8-2.1) and 1.4% (95%CI: 0.8-
2.1), respectively.

On the other hand, it was found that organ-specific irAEs with a lower incidence occurred in 
hematology and hepatology, accounting for 0.8% (95%CI: 0.3-1.3) and 0.7% (95%CI: 0.3-1.2), 
respectively. However, it was evident that the incidence of severe grade organ-specific irAEs was higher 
in hematology and hepatology than in other systems which was comparable with the results observed 
in the anti-PD-1 group (Figure 3C). In the group of anti-PD-1 combined with the anti-PD-L1, it was 
found that the most common organ-specific irAEs occurred in endocrinology accounting for 7.7% 
(95%CI: 6.2-9.2), whereas the rarest organ-specific irAEs occurred in hepatology and accounted for 0.7% 
(95%CI: 0.4-1.0). Incidence of organ-specific irAEs related to endocrinopathy, gastroenterology, 
hepatology, neurology, hematology, dermatology, pulmonology, nephrology, cardiology, and 
rheumatic immunology was displayed in forest plots for all grade and severe grade in anti-PD-1, anti-
PD-L1, anti-CTLA-4, or anti-PD-1 combined with anti-PD-L1 groups (Supplementary Figures 5-23).

Incidence of death related to irAEs: Results of this study found that the incidence of death related to 
irAEs was 1% (95%CI: 0-2.0) in all the included trials and a total of 6 deaths were reported in the anti-
PD-1 group (Supplementary Figure 24). Further, it was evident that the main causes of death were 

https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
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Figure 2 Flowchart of study selection and design.

colitis and interstitial lung disease.

Nature of irAEs: Data from case reports and case series
General characteristics: A total of 14 case reports[25-38] and 6 case series[39-44] were included in this 
meta-analysis. In the case of reports, one patient received pembrolizumab treatment and thirteen 
received nivolumab treatment. The general characteristics of the patients were as shown in Attached file 
4 (Supplementary Table 5). The average age of the enrolled patients was 70 years and 79% of them were 
male. Before receiving the anti-PD-1 therapy, it was found that 13 patients (93%) had failed at least one 
course of chemotherapy. Twelve patients (86%) reported occurrence of irAEs in a single system[25,27-
33,35-38], whereas two patients (14%) reported occurrence of irAEs in more than one system.

Results of case reports indicated an average immunotherapy duration of 14.6 cycles (IQR: 5.5 to 17.5) 
and a mean onset time of 8.2 mo (IQR: 3.0 to 6.0). Four patients (29%) continued to receive anti-PD-1 
treatment despite irAEs[25,27,29-30]. In the case series, all 326 patients received nivolumab treatment 
and their general characteristics were as shown in Table 3. Furthermore, the median OS in these case 
series ranged from 2.5 mo (95%CI: 0 to 5.0) to 7.9 mo (95%CI: 5.9 to 13.5), and the median PFS ranged 
from 1.0 mo (95%CI: 0.9 to 1.1) to 2.3 mo (95%CI: 0.5 to 24.8).

Incidence and nature of irAEs: Results of the present study showed that organ-specific irAEs in the case 
of reports were as described in the Supplementary Table 6. It was found that the endocrine system had 
the highest incidence of organ-specific irAEs, accounting for 36% (n = 5), including hyperthyroidism (n 
= 1)[37], thyroiditis (n = 2)[34,38], ACTH deficiency (n = 2)[30,38], and diabetes (n = 1)[31]. On the other 
hand, neurology and dermatology had the lowest incidence of organ-specific irAEs, accounting for 7% 
for each (n = 2)[26,29], including dizziness, nausea, truncal ataxia, rash, and sequential herpes zoster 
virus activation.

One patient experienced irAEs in multiple systems[26], including hematology, nephrology, 
dermatology, cardiology, and pulmonology. Although the patient was cured of irAEs, after receiving 
steroid treatment, he later suffered severe irAEs[38], developed grade 3 thyroiditis, and ACTH 
deficiency. It was found that treatment with anti-PD-1 induced an oncologic response in three patients 
(21%), and disease progression in five patients (36%). A total of 11 (79%) patients with irAEs were 
treated with steroids, 6 (43%) had cured irAEs, 3 (21%) had persistent irAEs, and 2 (14%) remained 
uncertain. Two (14%) of the 3 patients who were not treated with steroids developed persistent irAEs, 
and 1 (7%) died.

https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
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Table 3 Characteristics of the included case series studies

Case series Enrollment 
size, n Cancer types ICIs IrAEs, all 

grades, n
IrAEs, severe 
grades, n mOS mPFS

Suzuki et al[44], 2021 
(Low ascites burden)

50 AGC PD-1 
(nivolumab)

9 1 5.3 mo (95%CI: 
3.4 to 7.3 mo)

1.5 mo (95%CI: 
1.0 to 2.0 mo)

Suzuki et al[44], 2021 
(High ascites burden)

22 AGC PD-1 
(nivolumab)

5 0 2.5 mo (95%CI: 0 
to 5.0 mo)

1.0 mo (95%CI: 
0.9 to 1.1 mo)

Ohta et al[43], 2020 15 AGC PD-1 
(nivolumab)

5 0 6.3 mo NA

Namikawa et al[42], 
2020

29 AGC PD-1 
(nivolumab)

10 0 5.6 mo (95%CI: 
0.6 to 26.8 mo)

2.3 mo (95%CI: 
0.5 to 24.8 mo)

Kono et al[41], 2021 52 AGC PD-1 
(nivolumab)

13 1 7.9 mo (95%CI: 
5.9 to 13.5 mo)

1.9 mo (95%CI: 
1.4 to 3.0 mo)

Booka et al[40], 2021 50 GEA/ESCC PD-1 
(nivolumab)

13 5 NA NA

Ando et al[39], 2021 108 AGC PD-1 
(nivolumab)

17 5 3.6 mo (95%CI: 
3.0 to 5.3 mo)

1.4 mo (95%CI: 
1.2 to 1.8 mo)

ICIs: Immune checkpoint inhibitors; irAEs: Immune-related adverse events; mOS: Median overall survival; mPFS: Median progression-free survival; NA: 
Not available; PD-1: Programmed cell death receptor-1; AGC: Advanced gastric cancer; GEA: Gastroesophageal adenocarcinoma; ESCC: Esophageal 
squamous cell carcinoma.

Results showed that the overall incidence of irAEs in the case series was 22% (95%CI: 17 to 27) for all 
grades and 3% (95%CI: 1 to 6) for severe grade (Figure 4). It was noted that[39] the overall incidence of 
organ-specific irAEs was reported in only one article but did not describe organ-specific irAEs. Further, 
7.1% of all grade organ-specific irAEs occurred in the endocrine system, including hypothyroidism (n = 
6), hyperthyroidism (n = 2), thyroiditis (n = 3), hypopituitarism (n = 2), hyperglycemia (n = 1), thyroid 
insufficiency (n = 3), type 1 diabetes mellitus (n = 1) and others (n = 5). This was then followed by 
pulmonology (4.3%, n = 14), gastroenterology (3.7%, n = 12), and dermatology (3.4%, n = 11), whereas 
organ-specific irAEs with a lower incidence included, myocarditis, infusion reaction, arthritis, liver 
insufficiency, loss of appetite, taste disorder, myopathy, adrenal insufficiency, and mucositis.

Interstitial pneumonia and myocarditis were the most common organ-specific irAEs for severe grade. 
It was found that two patients died due to severe myocarditis and interstitial pneumonia. Furthermore, 
one article[43] reported that the incidence of irAEs in patients with advanced GC and a high ascites 
burden was 23% (95%CI: 5 to 40), as compared with 18% (95%CI: 7 to 29) in patients with a low ascites 
burden. In addition, the median OS in the high and low ascites burden groups was 2.5 mo (95%CI: 0 to 
5.0) and 5.3 mo (95%CI: 3.4 to 7.3), respectively. Comparatively, the median PFS in the high and low 
ascites burden groups were 1.0 mo (95%CI: 0.9 to 1.1) and 1.5 mo (95%CI: 1.0 to 2.0), respectively.

Quality of included studies and sensitivity analysis: Quality assessment: The risk of bias in each of the 
included RCTs was as shown in the attached file 5. The risk of selection bias was rated as high in 3 
studies (37.5%) whereas the risk of reporting bias was rated as high in 5 studies (62.5%) 
(Supplementary Figures 25 and 26).

Sensitivity analysis: The sensitivity analysis of all clinical trials was as shown in Attached file 5. It was 
found that the influence of a single study on the total merger effect was not significant except for one 
study[22] (Supplementary Figure 27).

Heterogeneity test: Galbraith plot indicated that there existed heterogeneity between the included 
studies (Supplementary Figure 28). Therefore, sensitivity analysis was used to explain the source of 
heterogeneity and the random effect model was used to determine the effect quantity.

Publication bias test: The Begg’s funnel plot and Egger’s publication bias plot showed that there was 
existence of publication bias among the included studies (Supplementary Figures 29 and 30).

DISCUSSION
This meta-analysis analyzed the irAEs of ICIs for advanced GC/GEJC according to different targets, 
tumor types, drug types, doses, and organ specificity to improve the understanding of the safety and 
efficacy of the emerging cancer drugs. A total of 8 clinical trials, 14 case reports, and 6 case series were 
included in this study. It was evident that the overall incidence of irAEs was high in patients with 
advanced GC/GEJC, at a rate of 16% (95%CI: 11 to 21) in clinical trials and 22% (95%CI: 17 to 27) in case 
series. It noted that the most common organ-specific irAEs were endocrine system disorders, including 

https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/3fb5e49d-bdeb-4ba1-a64c-04ba0a2456eb/WJGO-15-352-supplementary-material.pdf
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Figure 3 Incidence of global immune-related adverse events associated with anti- programmed cell death receptor-1, anti-programmed death receptor-ligand 1, and anti-cytotoxic T lymphocyte-associated 
antigen-4. A: All grade; B: Severe grade; C: Incidence of organ specific immune-related adverse events, value are percentage (95% confidence intervals). Any: includes all Common Terms classified by Clinical Adverse Events grades; Severe: 
includes CTCAE grades 3,4, or 5. NA: Not available; PD-1: Programmed cell death receptor-1; PD-L1: Programmed death receptor-ligand 1; CTLA-4: Cytotoxic T lymphocyte-associated antigen-4.
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Figure 4 Incidence of immune-related adverse events associated with anti-anti- programmed cell death receptor-1 (nivolumab) in case series. A: All grade; B: Severe grade.

hypothyroidism, hyperthyroidism, thyroiditis, and diabetes. The incidence of irAEs for severe grade 
(3%), and especially the death rate (1%) were relatively low whereas the interstitial pneumonia was the 
leading cause of death.

Consistent with results of a previous study, it was found that treatment with anti-PD-1 was 
significantly associated with a higher prevalence of all irAEs grades and severe grade irAEs as 
compared with that of anti-PD-L1 treatment[45]. This could be because the variation in the irAEs 
associated with anti-PD-1 and anti-PD-L1. Anti-PD-1 drugs may increase the risk of immune-related 
pneumonia whereas anti-PD-L1 drugs may increase the risk of hypothyroidism[45]. However, results of 
the current research showed that both anti-PD-1 and anti-PD-L1 drugs were associated with an increase 
in risk of endocrinopathy, which could be caused by different types of cancer.
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In addition, findings of a previous meta-analysis showed that the overall incidence of irAEs with anti-
CTLA-4 treatment was 72% (95%CI: 65 to 79) for all grade and 24% (95%CI: 18 to 30) for severe grade
[46], which was higher than 18% (95%CI: 8 to 27) and 0% in the present meta-analysis. This conclusion 
may have been caused by insufficient sample sizes of our study, or that the definition of irAEs required 
to be further clarified. Based on the findings of this study, there is need for additional research on irAEs 
with a particular focus on comparing anti-PD-1 and anti-PD-L1 medications to provide future guidance 
for clinical practices.

The relationship between irAEs and efficacy of ICI is the subject of current debate. IrAEs have been 
associated with improved outcomes and high heterogeneity[47]. A previous meta-analysis showed that 
anti-PD-1 or anti-PD-L1 treatment improved the clinical benefits of long-term OS and prolonged 
duration of response in the patients as compared with that of chemotherapy[48]. The median OS for 
these trials was 9.2 mo and the median PFS was 2.3 mo which was higher than the best supportive 
therapy or placebo. However, irAEs cannot be ignored when ICIs improve the clinical outcome of 
oncology. It was found that the overall incidence of irAEs was particularly high in patients with 
advanced GC/GEJC. In addition, more than 50% of patients experienced intolerable toxicity caused by 
the reduction of irAEs or discontinuation of their medication. Therefore, it is essential to predict and 
manage irAEs in cancer immunotherapy.

The findings of the current study showed that incidence of all grade organ-specific irAEs in 
hematology and hepatology was low. However, the incidence of severe grade irAEs was high. Although 
hypothyroidism is the most common irAE of the endocrine system, its specific pathophysiological 
mechanism is still unknown. Furthermore, there was no association between hypothyroidism and 
cancer outcomes and the strongest associations for hypothyroidism were higher baseline thyroid-
stimulating hormone and female sex[49]. Therefore, there is a need for positive clinical tests, such as 
thyroid function tests (T3, T4, and TSH) which should be performed before and during treatment. 
Further standardization and improvement are also required for the clinical indicators of other irAEs.

Increasing numbers of drugs targeting immunotherapy and molecular pathways are moving from 
clinical trials to the clinic. However, the selection of the most appropriate therapy, timing of drug 
administration, and management of adverse events remain a challenge for severe toxicity and disease 
progression. Meanwhile, patients are treated with steroids and it has been found that the irAEs either 
persists or disappears.

Several studies have demonstrated that the use of steroids may inhibit the anti-tumor immune 
response and hence cause poor prognosis[50-51]. Drug withdrawal and decrease in compliance of 
patients may also contribute to occurrence of a poor prognosis. On the contrary, a different study has 
indicated that groups with poor prognoses were more likely to receive steroid treatment and that 
steroids were less likely to affect the efficacy of immunotherapy[52]. Therefore, there is a need for more 
research to show the relationship between toxicity and clinical outcomes.

In this systemic review, 14 case reports and 6 case series were included to qualitatively supplement 
the quantitative findings of the meta-analysis. The statistical analysis is usually constrained because the 
case studies typically report only novel or rare irAEs. Nonetheless, case studies included in the present 
review provide an opportunity to assess and study the incidence and nature of irAEs.

Case studies demonstrated that endocrine-related irAEs were the most common and this was in 
agreement with the findings of another previous meta-analysis[53]. It was evident that the incidence of 
irAEs was comparable in both case studies and clinical trials of anti-PD-1 therapy. Similar situations 
apply to deaths caused by irAEs. IrAEs resulted in a 2% mortality rate in case series and a 1% mortality 
rate in clinical trials, with colitis, myocarditis, and interstitial lung disease being the leading causes of 
death. This meta-analysis showed a higher mortality rate than a previous one which involved 112 trials 
and 19,217 patients whereby toxicity-related deaths occurred at 0.36% (anti-PD-1), 0.38% (anti-PD-L1), 
and 1.08% (anti-CTLA-4)[54].

This study had some advantages. First, it systematically evaluated the incidence of global irAEs and 
organ-specific irAEs associated with the ICIs monotherapy for advanced GC or GEJC. There are 
currently very few meta-analyses on irAEs in patients with GC and GEJC. Second, the trials selected for 
this meta-analysis were RCTs, with large samples, and a high evidence-based value. In addition, a 
random-effect model and subgroup analysis was used based on different targets, tumor types, drug 
types, organ specificity, and irAE grade to reduce both variance and bias. Third, the study included both 
case reports and case series, as well as a comprehensive evaluation of the occurrence, treatment, and 
prognosis of irAEs. Therefore, these improved the quality of the results and in strengthening the 
validity of the conclusions made in this study.

This study also had some limitations. First, there were selection, reporting, and publication biases 
among the included studies. Second, common symptoms such as fatigue, nausea, infusion reactions, 
and malaise were more likely to be diagnosed as treatment-related adverse events (trAEs) rather than 
irAEs and hence missed the diagnoses. Therefore, there is urgent need for standardization of the quanti-
fiable standards between irAEs and trAEs, irAEs and non-irAEs. To effectively diagnose and manage 
irAEs and trAEs, clinicians must also avoid confusing clinical symptoms with test indicators. Third, our 
study was a meta-analysis of irAEs with a single sample rate. Therefore, odds ratio could not be used 
for statistical analysis. Lastly, the number of articles included in our analysis is limited. Numerous 
indicators may be heterogeneous, and the outcome may readily amplify research findings and 
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inaccuracies. This was because of the limited number of published clinical studies on immunotherapy 
for GC/GEJC and even fewer studies describing irAEs. Consequently, the results of this study should be 
interpreted with caution and there is additional research to validate the obtained results.

CONCLUSION
This systematic review shows that there is an increasing number of irAEs associated with ICIs that are 
being reported in patients with GC or GEJC. This is particularly severe organ-specific irAEs and death 
because of irAEs, which poses significant challenges for clinical oncologists. Therefore, to help clinicians 
effectively identify and manage irAEs as well as strike a balance, a comprehensive understanding, 
systematic prediction, and appropriate management of the adverse events are critical.

ARTICLE HIGHLIGHTS
Research background
In recent years, there has been a steep rise in the development and implementation of anti-cancer 
immunotherapies. Although there has been a large amount of research focusing on adverse events 
associated with immune checkpoint inhibitors (ICIs), few studies have focused specifically on advanced 
gastric cancer (GC) and gastroesophageal junction cancer (GEJC).

Research motivation
By unbalancing the immune system, these new immunotherapies also generate dysimmune toxicities, 
called immune-related adverse events (irAEs) that mainly involve the gut, skin, endocrine glands, liver, 
and lung but can potentially affect any tissue. Although steroids can be used to treat these IRAEs, the 
associated immunosuppression may compromise the antitumor response. To help clinicians effectively 
identify and manage irAEs as well as strike a balance are critical.

Research objectives
This study focuses on the mechanisms of irAEs generation, putative relationship between dysimmune 
toxicity and antitumor efficacy.

Research methods
In the study, we systematically evaluated the incidence of global irAEs and organ-specific irAEs and 
proposed a random-effect model and subgroup analysis based on different targets, tumor types, drug 
types, organ specificity, and irAE grade to reduce variance and bias.

Research results
It was found that the overall incidence of irAEs was 16% (95%CI: 11-20) for all grades and 3% (95%CI: 2-
4) for the severe grade. It was evident that the incidence of irAEs varied with the type of inhibitor and 
organs. In clinical trials, it was found that the incidence of death related to irAEs was 1% (95%CI: 0-2.0) 
whereby colitis and interstitial lung diseases were the leading causes of death.

Research conclusions
This systematic review shows that there is an increasing number of irAEs associated with ICIs that are 
being reported in patients with GC or GEJC. This is particularly severe for organ-specific irAEs and 
death because of irAEs, which poses significant challenges for clinical oncologists. Therefore, to help 
clinicians effectively identify and manage irAEs as well as strike a balance, a comprehensive 
understanding, systematic prediction, and appropriate management of the adverse events are critical.

Research perspectives
In the study, we systematically evaluated the incidence of global irAEs and organ-specific irAEs and 
proposed a random-effect model and subgroup analysis based on different targets, tumor types, drug 
types, organ specificity, and irAE grade to reduce variance and bias. Another strength of our study is 
that both case reports and case series were included, as well as a comprehensive evaluation of the 
occurrence, treatment, and prognosis of irAEs. The study would be of great interest to a broad range of 
readers including oncologists, clinical researchers, patients, and other researchers in related fields.
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Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become a global burden, 
further exacerbating the occurrence of risk events in cancer patients. The high risk 
of death from pancreatic cancer makes it one of the most lethal malignancies. 
Recently, it was reported in the World Journal of Gastrointestinal Oncology that 
COVID-19 influences pancreatic cancer progression via the lung–gut–pancreatic 
axis, and the authors provided insights into the intrinsic crosstalk mechanisms in 
which the gut microbiota is involved, the characteristics and effects of inflam-
matory factors, and immunotherapeutic strategies for treating both diseases. Here, 
we review the latest cutting-edge researches in the field of the lung-gut-pancreatic 
axis and discuss future perspectives to address the severe survival challenges 
posed by the COVID-19 pandemic in patients with pancreatic cancer.

Key Words: COVID-19; Pancreatic cancer; Lung–gut–pancreatic axis; Gut microbiota; 
Inflammatory factors; Immunotherapeutic
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Core Tip: The coronavirus disease 2019 (COVID-19) pandemic has become a global 
burden, further exacerbating the occurrence of mortality risk events in patients with 
pancreatic cancer. The aim of this new article is to highlight the need for lung-gut-
pancreatic axis-based studies with a focus on intra-axis microbiota crosstalk and 
potential mechanisms of association to address the severe survival challenges posed by 
the COVID-19 pandemic in patients with pancreatic cancer.
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TO THE EDITOR
The coronavirus disease 2019 (COVID-19) pandemic has become a global burden, further exacerbating 
the occurrence of risk events in patients with cancer[1,2]. Contracting COVID-19 significantly increases 
the risk of morbidity, mortality, and ICU admission in patients with cancer[3]. Additionally, cancer 
patients have a 60% increased risk of contracting COVID-19 compared with patients without cancer[4]. 
Owing to the worsening disease and poorer prognosis resulting from COVID-19 in patients with cancer, 
this patient group is considered a high-risk vulnerable population[5]. The high risk of death from 
pancreatic cancer makes it one of the most lethal malignancies[6], and the COVID-19 pandemic not only 
poses a survival challenge for patients with pancreatic cancer but also seriously threatens the execution 
of pancreatic cancer research[7]. We are very interested in the review by Zhang et al[8] published in the 
August 2022 issue of the World Journal of Gastrointestinal Oncology. We consider it to be a good quality 
review because the authors included in their article many articles from international high-quality 
journals, such as Lancet, JAMA, Nature, and Cell, and the article conclusions accurately and clearly 
summarize the findings of the included literature. From the 98 literature reviews included by the 
authors, they identified a key connector between COVID-19 and pancreatic cancer; that is, the gut 
microbiota regulates the host systemic immune response. The question highlighted by Zhang et al[8] is 
how COVID-19 affects pancreatic cancer progression, i.e., via the lung–gut–pancreatic axis, and the 
authors explained the physiological basis, relevance, and potential biological mechanisms of targeting 
this axis. The novelty of the article is that, the authors highlight therapeutic perspectives in response to 
COVID-19 and pancreatic cancer based on the intrinsically linked mechanisms of the lung-gut-
pancreatic axis, including dietary interventions to stabilize the endostasis of the intestinal flora, the 
therapeutic efficacy of pharmacological interventions, and strategies to manage inflammatory storms. 
We thank Zhang et al[8] for their review, which has been instrumental in exploring pancreatic cancer 
treatment options and the development of risk event prevention programs in the context of the severe 
challenges of the COVID-19 pandemic.

Regional citrate anticoagulation (RCA) is an artificial intelligence technology-based open multidiscip-
linary citation analysis database. We searched the RCA database for articles in cutting-edge fields in the 
last 2 years using the search terms “COVID-19”, “pancreatic cancer”, and “gut microbiota”. In addition 
to highlighting that the gut microbiota regulates immune and inflammatory responses to influence 
disease severity in COVID-19 and pancreatic cancer[9,10], recent studies have revealed a complex 
intrinsic association between the three. Current studies indicate that the microbiota alters the malignant 
phenotype and prognosis of pancreatic cancer in ways that include stimulating persistent inflammation, 
altering the tumor microenvironment, modulating the anti-tumor immune system, and affecting cellular 
metabolism[11]. The emerging link between the gut microbiota and pancreatic cancer has recently 
highlighted the concept of local (direct pancreatic effects) and remote (non-pancreatic) effects of bacteria 
on organ physiology, which offers potential therapeutic options for pancreatic cancer[12]. However, 
research on the microbiota influencing pancreatic cancer progression has focused mainly on bacteria, 
and studies involving intestinal fungi and viruses are just starting to be published[12]. Future work on 
how these gut microbes are intrinsically linked and on the exact mechanisms by which they influence 
pancreatic cancer progression is needed. The latest cutting-edge research has bridged the gap between 
COVID-19 and the gut microbiota, discovering mechanisms that link the gut microbiota to the 
expression of the viral entry receptor angiotensin-converting enzyme 2 (ACE2)[13], the inflammatory 
response[14], the immune homeostasis[15], the microbiota metabolism[16], and the “gut–lung axis”[17]. 
In COVID-19, the main factor associated with disease severity is the involvement of a cytokine storm in 
the immune response, i.e., tissue damage and systemic inflammation[13]. The gut microbiota may 
influence the severity of COVID-19 by regulating the host immune response[18]. However, it is unclear 
whether the reported gut microbial changes are directly responsible for the inflammatory storm in 
patients with COVID-19 or if they represent the result of severe disease[19], and future studies invest-
igating these possibilities are pending. Zhang et al[8] reported that the inflammation-induced immune 
response is an intrinsic mechanism through which the lung–gut–pancreatic axis produces crosstalk 
between COVID-19 and pancreatic cancer. On the basis of this mechanism, the authors proposed some 
strategies on how to manage COVID-19 and pancreatic cancer, including the regulation of microbiota 
homeostasis to improve patient immunity and the application of anti-inflammatory drugs to reduce the 
amount of inflammatory damage[8]. However, the survival outcomes of applying these strategies for 
treating COVID-19 and pancreatic cancer co-morbidity and the effectiveness of such strategies during 
radiotherapy are not yet known. Future studies could focus on these issues. In conclusion, COVID-19 
impacts pancreatic cancer progression based on lung–gut–pancreatic axis, nevertheless, more studies 
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investigating the potential mechanisms of  the crosstalk between COVID-19, pancreatic cancer and gut 
microbiota are needed in patients with COVID-19 and pancreatic cancer co-morbidity to achieve a better 
management. Focusing on the lung-gut-pancreatic axis is expected to move us into a new paradigm of 
treatment for COVID-19 in patients with pancreatic cancer.
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