Medtronic Global value dossier for minimally invasive surgery

Nissen Fundoplication

Prepared for:	Healthcare Economics, Policy and Reimbursement, Surgical Innovations, Medtronic
Prepared by:	Ossian Health Economics and Communications
	Bäumleingasse 20, 4051 Basel, Switzerland
Date:	April 02, 2016
Updated by:	Coreva Scientific GmbH & Co. KG.
	Im Mühlenbruch 1, 53639 Königswinter
Date updated:	April 8, 2021
	This Global Value Dossier is intended to demonstrate the potential
Purpose for dossier:	hospitals, and the health care system. The preferred procedure is that
	which, in the healthcare professional's judgement, addresses the need of the individual patient. Actual potential clinical and economic value
	may vary.

The original document was completed in April 2016, with literature review conducted in 2015. During the update in 2021, all originally included references were cross checked for accuracy and any claims supported only by publications pre-2010 were further examined for accuracy against more recent literature. No exhaustive literature review was performed during the update.

© 2022 Medtronic. All rights reserved. Medtronic, Medtronic logo and Further, Together are trademarks of Medtronic. All other brands are trademarks of a Medtronic company. 04/2022 - US-SE-2100282

Contents

1. Nissen fundoplication 3

1.1. Overview of procedure 3

1.2. Clinical and economic outcomes associated with laparoscopic versus open fundoplication6

1.3. Clinical and economic evidence tables for fundoplication 9

1.4. References 22

List of Tables

Table 1-1 Summary of key meta-analyses studies comparing open versus	
laparoscopic fundoplication	.9
Table 1-2 Summary of key clinical studies comparing open versus laparoscopic fundoplication	10
Table 1-3 Summary of key studies comparing economic outcomes of open versus	
laparoscopic fundoplication	19

List of Figures

.5
.7
.8
•

1 Nissen fundoplication

1.1 Overview of procedure

Gastroesophageal reflux disease (GERD) is a common and costly chronic condition which has a high prevalence throughout the world.¹ Prevalence is estimated to range between 10% and 20% across Europe and North America, but estimates are restricted by the lack of consensus definition of GERD.² GERD can have a substantial impact on quality of life, as sufferers often experience sleep disturbance, lower levels of concentration, and difficulties with exercise.³ If the condition is left untreated, persistent GERD can also lead to complications such as ulceration, erosive esophagitis, esophageal strictures, hemorrhage, and esophageal adenocarcinoma.⁴

Treatment of GERD typically depends on the severity of symptoms and can include both medical and surgical management. Individuals suffering from GERD typically use regular or continuous medication, particularly proton pump inhibitors (PPIs), to suppress acid production and control the condition.⁵ Although these medicines are generally considered safe and effective, questions have been raised regarding the long-term side-effects of prolonged acid suppression.^{5,6} Despite GERD's sizeable impact on patient morbidity, associated GERD-related mortality is rare.⁷

Since GERD is a chronic condition, medical therapy may be required for the rest of a patient's life. There is increasing interest in the use of surgery to improve the disease process for patients suffering GERD. Reasons for seeking surgical management of GERD include:⁸

- Failed medical management (inadequate symptom control, severe regurgitation not controlled with acid suppression, or medication side effects).
- Patients who opt for surgery despite successful medical management (due to quality-of-life considerations, life-long need for medication intake, expense of medication etc.).
- Complications of GERD (Barrett's esophagus, peptic stricture).
- Extraesophageal manifestations, e.g., the coexistence of Barrett's esophagus with reflux symptoms is considered by many as clear indication for antireflux surgery.

Although changing in the rate of utilization, different surgical procedures can be undertaken for the treatment of GERD. The two methods of fundoplication which may be used are:

- Classical open methods
- Laparoscopic techniques

Since the advent of laparoscopic surgery in the 1980s, minimally invasive, laparoscopic surgical techniques have progressively replaced open surgery techniques to become the standard of care for many procedures today; between 2003 and 2018, the proportion of Nissen fundoplication procedures performed laparoscopically (as opposed to using classical methods) has increased from 71% to 91%.⁹

Classical and laparoscopic Nissen fundoplication procedures differ in their exact process, however, the procedure itself can be divided into four typical stages of surgery: (1) access to the fundus, (2) dissection of the tissue for removal from the blood supply and other attached tissues, (3) identification of critical structures and fundus pull, where the fundus is wrapped around the esophagus and sutured to the stomach to keep in place, and (4) repair and closure. These techniques have the effect of creating a one-way valve in the esophagus to allow food to pass into the stomach but preventing stomach acid from flowing into the esophagus and thus preventing GERD.

Figure 1. Four typical stages of Nissen fundoplication showcasing instruments to assist in each phase

Access	Dissection	Resection / Repair	Closure
The fundus is accessed using a laparoscopic or open technique.	Disconnection of the tissue from blood supply and attachments.	Preparation of the tissue for removal, critical structure identification, blood vessel division.	Sealing of the tissue and body cavity.
Access Ports	Surgical Eporav	Staples/Sutures	Suturos
Access Ports	Surgical Energy	Staples/Sutures	Sutu

Image modified from a Medtronic internal file.

1.2 Clinical and economic outcomes associated with laparoscopic versus open fundoplication

Key findings

Clinical outcomes

- Length of stay (LOS): Laparoscopic fundoplication has been found to be associated with a significantly shorter LoS than open surgery (Figure 2.).¹⁰⁻¹³
- **Operating time:** Operating times were longer for laparoscopic fundoplication in studies in the US and UK,^{12,14} but no significant differences were reported in other studies.^{10,15}
- **GERD symptoms:** The resolution of reflux symptoms was comparable across open and laparoscopic surgeries in both short- and long-term.^{12,16,17}}
- Mortality: Mortality rates appear low, and no significant differences between laparoscopic and open surgical procedures are observed.¹⁴.
- Pain and other post-operative outcomes: Laparoscopic procedures are associated with reduced pain as well as postoperative wound infections.¹⁸ Significantly less wound pain was reported following laparoscopic than open fundoplication.¹²
- Re-intervention: A consensus is unclear. Two studies reported no significance difference in re-intervention rates,^{14,19} and a study also indicates that more patients underwent reoperation after open than laparoscopic fundoplication (however the mean interval between operation and re-intervention was longer after open surgery).¹⁶
- **Patient satisfaction:** Significantly more patients undergoing laparoscopic fundoplication gave a positive evaluation of their surgery than patients undergoing open surgery,²⁰ though no significant difference between surgical procedures was reported in other studies.^{12,19,21}

Economic outcomes

- **Total costs:** Findings from studies reporting economic data are inconsistent.
 - United States: Data from the US has shown that total hospital costs may be lower with laparoscopic surgery,¹¹ but that surgical costs are likely to be higher than with open surgery.¹⁴
 - Europe: Laparoscopic fundoplication was found to have potential to be less cost in the Netherlands compared with open surgery.¹³

• Savings due to clinical benefits: Clinical benefits of laparoscopic Nissen fundoplication, including shorter length of hospital stay have been shown to translate into economic benefits (cost savings from the payer perspective) in the US).¹¹

Other findings

Long-term outcomes: Significantly more patients remain symptomatic after open surgery than after laparoscopic surgery.²² Long-term symptomatic outcomes of both procedures appear to remain unchanged following the first 10 years following surgery.²⁰

Surgeon volume: Laparoscopic fundoplication operating time decreased as surgeons performed more procedure. This may have benefits in terms of health-economic and, potentially, clinical outcomes.¹²

Figure 2. Length of hospital stay with open versus laparoscopic fundoplication

NR, not reported. Blomqvist¹⁷ p=NR, Ackroyd¹² p=<0.001, Draaisma¹³ p=0.029, Fox¹¹ p=<0.01, Ruiz-Tover²² p=<0.001.

p=0.0484 for difference between groups on total excellent, good, or satisfactory evaluations. Source: Salminen et al. 2012^{20}

1.3 Clinical and economic evidence tables for fundoplication

Table 1-1 Summary of key meta-analyses studies comparing open versus laparoscopic fundoplication

Authors	Details	Procedures	Outcome	Standardized mean differences	P value
				(95% CI)	
Siddiqui et al.	6 studies of which 4	Open versus	Operative time (hours)	–0.55 (–1.69, 0.60), no significant	0.35
2011 ¹⁰	were retrospective	laparoscopic		difference	
	studies and two	Nissen	Hospital stay (days)	0.93 (0.41, 1.44) shorter with	p<0.01
	were prospective	fundoplication for		laparoscopy	
	trials (466 patients in	GERD in children	Start of feeding (hours)	4.13 (1.00, 7.27) sooner with	<0.01
	the laparoscopic			laparoscopy	
	group and 255 in		30-day morbidity	Relative risk 3.22 (1.98,5.25) higher	<0.01
	the open group)			with open	
			12-month recurrence	Relative risk 2.49 (0.50, 12.37), no	0.26
				significant difference	

CI: confidence interval; GERD: gastro-esophageal reflux disease.

9 | Minimally Invasive Surgery Global Value Dossier: Nissen fundoplication

Study	Setting	Study details	Procedure (year performed)	Summary of clinical findings			
				Endpoint	Open	Laparosco pic	P value
Fyhn et al. 2015 ¹⁹	Norway	RCT in children, n=43 open, n=44	Laparoscopic versus open Nissen	Post-operative outcomes after 4 years of follow up			
		laparoscopic	fundoplication (2003-2009)	Recurrence of GERD, % Repeat fundoplication, % Able to burp, % Increased flatulence, % Retching (4-7 days/week), % Meal-related discomfort, % Improved well-being, %	<u>7</u> 5 71% 67 11 25 97	<u>37</u> 16 92 57 0 29 100	0.001 0.16 <0.05 NS NS NS NS
Papandria et al. 2015 ¹⁴	United States	Randomized, prospective study in children <2 years	Laparoscopic versus open Nissen fundoplication (2005-2012)	Operative and peri-operative outcomes Median operating room time (mins)	<u>165</u>	<u>209</u>	<u>0.002</u>

Table 1-2 Summary of key clinical studies comparing open versus laparoscopic fundoplication

10 | Minimally Invasive Surgery Global Value Dossier: Nissen fundoplication

old, n=21 open,	Median surgery length (mins)	<u>91</u>	<u>173</u>	<u><0.001</u>
n=18 laparoscopic	Median duration of epidural			
	catheter (days)	2	2	0.78
	Median duration of narcotic use			
	(days)	3	4	0.26
	Median time to full enteral feeds			
	(days)	3	4	0.91
	Median LoS (days)			
	Median operating room charges	4	6	0.08
	<u>(USD)</u>	<u>2,722</u>	<u>4,450</u>	<u>0.002</u>
	Median total hospital charges	13,906	26,445	0.18
	(USD)	13.6	29.4	0.26
	30-day re-admissions, %			
	Post-operative outcomes			
	(median 42 months follow up)	14	18	0.99
	Mortality. %	4	12	0.57
	Re-operation. %	4	6	0.99
	Continued symptomatic reflux. %	68	76	0.72
	Antacid use. %			

Fox et al.	United	Retrospective	Laparoscopic versus	Unadjusted operative			
2011 ¹¹	States	database analysis in	open fundoplication	outcomes			
		children (aged <19	(2005-2008)	Infection, %	27.6	15.7	<0.01
		years), n=3,105		Surgical complications, %	25.5	12.0	<0.01
		open, n=3,978		Post-procedure length of stay	6	3	<0.01
		laparoscopic		(days)			
				Total LoS (days)	10	4	<0.01
				Total costs (2008 USD)	22,487	13,003	<0.01

Ruiz-Tover et	Spain	Retrospective	Laparoscopic versus	Operative and peri-operative			
al. 2010 ²²		database analysis,	open Nissen	outcomes			
al. 2010 ²²		database analysis, n=88 open, n=78 laparoscopic	open Nissen fundoplication (1996-1998)	outcomes Mean surgical time (minutes) Complication rate, % Median post-operative stay (days) Post-operative outcomes (10 years follow up) Occasional symptoms (e.g. heartburn or regurgitation), % PPI use, %	151 5 9.5 <u>24</u> <u>16</u> 96	142 5 3 <u>11</u> <u>7</u> 97	NS NR <0.001 < <u><0.05</u> NS

Thatch et al.	United	Retrospective	Laparoscopic versus	Operative and post-operative			
2010 ¹⁵	States	medical records	open Nissen	outcomes			
		review, n=32 open,	fundoplication and	Time to goal feed (days)	6.1	4.3	0.04
		n=25 laparoscopic	gastrotomy	24-hour post-operative narcotic	0.55	0.24	0.007
			placement in	requirement (mg/kg)			
			neonatal intensive	Blood loss (mL)	13	11	0.33
			care unit (2002-	Operation time (minutes)	111	113	0.76
			2008)				

Knatten et al.	Norway	RCT in children,	Laparoscopic versus	Post-operative complications			
2014 ²³		n=13 open, n=16	open Nissen	occurring in the first three days			
		laparoscopic	fundoplication	after surgery			
			(2003-2007)	Pulmonary complications (Grade	46	6	NR
				II), %			
				Gastrostomy infection (Grade II),	0	6	NR
				%			
				Blood transfusion (Grade II), %	15	13	NR
				Repeat gastrostomy (Grade IIIb),	0	6	NR
				%			
				Total post-operative infection			
				complications			
				Infection, %	46	13	0.09

Pacilli et al.	United	RCT in children,	Laparoscopic versus	Post-operative findings at			
2014 ²¹	Kingdom	n=20 open, n=19	open Nissen	follow-up in 31 surviving			
		laparoscopic	fundoplication	patients (n=16 open, n=15			
			(2006)	laparoscopic			
				<u>Retching, %</u>	<u>50</u>	<u>7</u>	<u>0.01</u>
				Gas bloat syndrome, %	31	13	NS
				Dumping syndrome, %	6	7	NS
				Any of the above, %	56	27	NS
				Child's and parental overall			
				quality of life (1=excellent,			
				2=good, 3=average, 4=poor,			
				5=terrible), mean (SD)			
				6 months before surgery	4.1 (0.6)	4.1 (0.7)	NR
				6 months after surgery (vs 6	2.3 (0.8)	1.9 (1.0)	p<0.001
				months before surgery)			
				At follow up (4.1 years) (vs 6	1.7 (0.7)	1.5 (0.6)	p<0.001
				months before surgery)			

Salminen et	Finland	RCT, n=38 open,	Laparoscopic versus	Post-operative (15-year)			
al. 2012 ²⁰		n=48 laparoscopic	open Nissen	Positive evaluation of surgical	<u>76.3</u>	<u>91.7</u>	<u>0.0484</u>
			fundoplication	<u>result, %</u>			
			(1992-1995)	Barrett's esophagus, %	7.1	19.4	0.2778
				<u>Hiatal hernia, %</u>	<u>57.1</u>	<u>30.6</u>	<u>0.0326</u>
				Partial plication disruption, %	<u>32.1</u>	<u>8.3</u>	<u>0.0035</u>
				<u>Total plication disruption, %</u>	<u>14.3</u>	<u>2.8</u>	<u>0.0035</u>
				Would choose surgery again, %	65.8	77.1	0.1384
Broeders et	Netherland	RCT, n=69 open,	Laparoscopic versus	Post-operative			
al. 2009 ¹⁶	S	n=79 laparoscopic	open Nissen	GERD symptoms relieved, %	91	92	NS
			fundoplication	Relief of regurgitation, %	91	99	0.030
			(1997-1999)	Quality of life (VAS)	<u>61</u>	<u>65</u>	<u>NS</u>
				Would choose surgery again, %	73	79	NS
				<u>Re-operation, %</u>	35	15	0.006
				<u>Mean interval between surgery</u>	50.6	22.9	<u>0.047</u>
				and reintervention (months)			

Ackroyd et	United	RCT, n=47 open,	Laparoscopic versus	Peri-operative			
al. 2004 ¹²	Kingdom	n=52 laparoscopic	open Nissen	Median operating time, mins	<u>46</u>	<u>82</u>	<u>0.001</u>
			fundoplication	Time to oral fluid intake (days)	1	1	0.084
			(1993-2000)	<u>Time to solid food intake (days)</u>	2	2	0.004
				<u>LoS (days)</u>	<u>5</u>	<u>4</u>	<u><0.001</u>
				Median time to return to work	<u>7</u>	<u>4</u>	<u>0.002</u>
				(weeks)			
				Post-operative			
				Median acid exposure times	0.4	0.1	0.250
				(pH<4), %			
				Median reflux episodes	3	1	0.169
				<u>Amplitude distal esophageal</u>	<u>80</u>	<u>70.5</u>	<u>0.038</u>
				<u>motility, mmHg</u>			

GERD, gastro-esophageal reflux disease; kg, kilogram; LoS, length of stay; PPI, proton pump inhibitor; mg, milligram; mL, milliliter; NA, not applicable; NS, not significant; pH, potential of hydrogen; RCT, randomized controlled trial; SD, standard deviation; USD, United States Dollar; VAS, Visual Analogue Scale.

Table 1-3Summary of key studies comparing economic outcomes of open versus laparoscopic fundoplication

Study	Setting	Study	Procedures	Currency	Cost		
		details		(Cost year)	Outcome	Open	Laparoscopic
Draaisma	Netherlands	Cost-	Laparoscopic	EUR (2004)	Open versus		
et al.		effectiveness	versus open		laparoscopic Nissen		
2006 ¹³		analysis based	Nissen		fundoplication,		
		on RCT and	fundoplication		RCT mean hospital costs	6,989	9,126
		cohort study	(1997-1999)		Cohort mean hospital	6,951	7,782
		data			costs		
		n=46 open,				12.040	()=4
		n=57			RCT mean sick leave	13,940	6,351
		laparoscopic,			costs		
		plus n=121			Cohort mean hospital	0.59	6,560
		laparoscopic			costs		
		from the			RCT mean total costs		15,477
		cohort study			Cohort mean total costs		14,342

19 | Minimally Invasive Surgery Global Value Dossier: Nissen fundoplication

RCT mean QALYs in one	0.63
year (VAS)	
Cohort mean QALYs in	0.66
one year	
RCT ICER (cost per QALY	38,425
gained)	
Cohort ICER (cost per	5,743
QALY gained)	

Blomqvist	Sweden	Prospective	Laparoscopic	SEK (1995)	Direct costs		
et al.		observational	versus open		Laboratory tests	664	157
1998 ¹⁷		study, n=28	fundoplication		Blood transfusions	189	12
		open, n=28	(1991-1993)		Post-operative recovery	3,677	1,481
		laparoscopic			unit		
					Operating theatre	12,856	18,363
					Disposables (operating	0	5,850
					theatre)		
					Hospital stay	18,102	5,558
					Doctors' visits	1,929	1,993
					Endoscopies	65	129
					Total direct costs	37,482	27,693
					Indirect costs		
					Lost productivity due to	37 126	12 596
					surgery, doctors' visits	0,,,20	,
					and endoscopies		
					T		
					lotal costs	74,608	40,289

EUR, Euros; ICER, incremental cost-effectiveness ratio; RCT, randomized controlled trial; QALY, quality-adjusted life year; SEK, Swedish Kronor; VAS, Visual Analogue Scale.

1.4 References

- McKinley SK, Dirks RC, Walsh D, et al. Surgical Treatment of GERD: Systematic Review and Meta-Analysis. Surgical Endoscopy. 2021; <u>https://doi.org/10.1007/s00464-021-08358-5</u>.
 doi:<u>https://doi.org/10.1007/s00464-021-08358-5</u>.
- Dent J, El-Serag HB, Wallander MA, Johansson S. Epidemiology of gastro-oesophageal reflux disease: a systematic review. *Gut.* 2005; 54: 710-7. doi:10.1136/gut.2004.051821. <u>PMID:</u> 15831922.
- ³ Quigley EM, Hungin AP. Review article: quality-of-life issues in gastro-oesophageal reflux disease. *Aliment Pharmacol Ther.* 2005; 22 Suppl 1: 41-7. doi:10.1111/j.1365-2036.2005.02608.x. <u>PMID: 16042658</u>.
- Pisegna J, Holtmann G, Howden CW, et al. Review article: oesophageal complications and consequences of persistent gastro-oesophageal reflux disease. *Aliment Pharmacol Ther*. 2004; 20 Suppl 9: 47-56. doi:10.1111/j.1365-2036.2004.02240.x. PMID: 15527464.
- Sandhu DS, Fass R. Current Trends in the Management of Gastroesophageal Reflux Disease. Gut Liver. 2018; 12: 7-16. doi:10.5009/gnl16615. PMID: 28427116.
- ⁶ Ali T, Roberts DN, Tierney WM. Long-term safety concerns with proton pump inhibitors. *Am J Med*. 2009; 122: 896-903. doi:10.1016/j.amjmed.2009.04.014. <u>PMID: 19786155</u>.
- ⁷ Richter JE, Rubenstein JH. Presentation and Epidemiology of Gastroesophageal Reflux Disease.
 Gastroenterology. 2018; 154: 267-276. doi:10.1053/j.gastro.2017.07.045. <u>PMID: 28780072</u>.
- ⁸ Nwokediuko SC. Current trends in the management of gastroesophageal reflux disease: a review. *ISRN Gastroenterol*. 2012; 2012: 391631. doi:10.5402/2012/391631. <u>PMID: 22844607</u>.
- St John A, Caturegli I, Kubicki NS, Kavic SM. The Rise of Minimally Invasive Surgery: 16 Year
 Analysis of the Progressive Replacement of Open Surgery with Laparoscopy. JSLS. 2020; 24.
 doi:10.4293/JSLS.2020.00076. PMID: 33510568.
- ¹⁰ Siddiqui MR, Abdulaal Y, Nisar A, Ali H, Hasan F. A meta-analysis of outcomes after open and laparoscopic Nissen's fundoplication for gastro-oesophageal reflux disease in children. *Pediatr Surg Int*. 2011; 27: 359-66. doi:10.1007/s00383-010-2698-y. <u>PMID: 20734053</u>.
- Fox D, Morrato E, Campagna EJ, et al. Outcomes of laparoscopic versus open fundoplication in children's hospitals: 2005-2008. *Pediatrics*. 2011; 127: 872-80. doi:10.1542/peds.2010-1198.
 <u>PMID: 21502226</u>.
- Ackroyd R, Watson DI, Majeed AW, et al. Randomized clinical trial of laparoscopic versus open fundoplication for gastro-oesophageal reflux disease. *Br J Surg.* 2004; 91: 975-82. doi:10.1002/bjs.4574. <u>PMID: 15286957</u>.
- ¹³ Draaisma WA, Buskens E, Bais JE, et al. Randomized clinical trial and follow-up study of costeffectiveness of laparoscopic versus conventional Nissen fundoplication. *Br J Surg*. 2006; 93: 690-7. doi:10.1002/bjs.5354. <u>PMID: 16671071</u>.

- Papandria D, Goldstein SD, Salazar JH, et al. A randomized trial of laparoscopic versus open
 Nissen fundoplication in children under two years of age. *J Pediatr Surg.* 2015; 50: 267-71.
 doi:10.1016/j.jpedsurg.2014.11.014. <u>PMID: 25638616</u>.
- ¹⁵ Thatch KA, Yoo EY, Arthur LG, 3rd, et al. A comparison of laparoscopic and open Nissen fundoplication and gastrostomy placement in the neonatal intensive care unit population. *J Pediatr Surg.* 2010; 45: 346-9. doi:10.1016/j.jpedsurg.2009.10.073. <u>PMID: 20152349</u>.
- ¹⁶ Broeders JA, Rijnhart-de Jong HG, Draaisma WA, et al. Ten-year outcome of laparoscopic and conventional nissen fundoplication: randomized clinical trial. *Ann Surg.* 2009; 250: 698-706. doi:10.1097/SLA.0b013e3181bcdaa7. <u>PMID: 19801931</u>.
- ¹⁷ Blomqvist AM, Lonroth H, Dalenback J, Lundell L. Laparoscopic or open fundoplication? A complete cost analysis. *Surg Endosc*. 1998; 12: 1209-12. doi:10.1007/s004649900822. <u>PMID:</u> <u>9745058</u>.
- ¹⁸ Moore M, Afaneh C, Benhuri D, et al. Gastroesophageal reflux disease: A review of surgical decision making. *World J Gastrointest Surg.* 2016; 8: 77-83. doi:10.4240/wjgs.v8.i1.77. PMID: 26843915.
- Fyhn TJ, Knatten CK, Edwin B, et al. Randomized Controlled Trial of Laparoscopic and Open Nissen Fundoplication in Children. *Ann Surg.* 2015; 261: 1061-7.
 doi:10.1097/SLA.00000000001045. <u>PMID: 26291953</u>.
- ²⁰ Salminen P, Hurme S, Ovaska J. Fifteen-year outcome of laparoscopic and open Nissen fundoplication: a randomized clinical trial. *Ann Thorac Surg.* 2012; 93: 228-33. doi:10.1016/j.athoracsur.2011.08.066. <u>PMID: 22098922</u>.
- Pacilli M, Eaton S, McHoney M, et al. Four year follow-up of a randomised controlled trial comparing open and laparoscopic Nissen fundoplication in children. *Arch Dis Child*. 2014; 99: 516-21. doi:10.1136/archdischild-2013-304279. PMID: 24532685.
- ²² Ruiz-Tovar J, Diez-Tabernilla M, Chames A, Morales V, Martinez-Molina E. Clinical outcome at 10 years after laparoscopic versus open Nissen fundoplication. *J Laparoendosc Adv Surg Tech A*. 2010; 20: 21-3. doi:10.1089/lap.2009.0230. PMID: 19916741.
- ²³ Knatten CK, Hviid CH, Pripp AH, Emblem R, Bjornland K. Inflammatory response after open and laparoscopic Nissen fundoplication in children: a randomized study. *Pediatr Surg Int*. 2014; 30: 11-7. doi:10.1007/s00383-013-3433-2. <u>PMID: 24240577</u>.